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Abstract 

There has been sustained clinical and cognitive neuroscience research interest in the 

neural basis of intelligence. The characterisation of brain structure and function underlying 

cognitive performance is necessary to understand the neurodevelopment of intelligence 

across the lifespan, and how associated neural correlates could be perturbed in atypical 

populations. As most work in this area has focused on neurotypical adults, the nature of 

functional brain connectivity underlying intelligence in paediatric cohorts with or without 

abnormal neurodevelopment requires further investigation. We use network-based 

statistics (NBS) to examine the association between resting-state functional Magnetic 

Resonance Imaging (fMRI) connectivity and fluid intelligence ability in male children with 

Autism Spectrum Disorders (ASD; M=10.45, SD=1.58 years, n=26) and in matched controls 

(M=10.38, SD=0.96 years). Compared to typically developing controls strictly matched on 

age, sex and fluid intelligence scores, boys with ASD displayed a subnetwork (network 

size=24, p=.0373, FWE-corrected) of significantly increased associations between 

functional connectivity and fluid intelligence performance. Between-group differences 

remained significant at a higher edge threshold of t=4 (size=6, p=.0425, FWE-corrected). 

Results were validated in independent-site replication analyses representing a similar male 

cohort with ASD (network size=14, p=.0396, FWE-corrected). Regions implicated in 

atypical ASD fluid intelligence connectivity were the angular gyrus, posterior middle 

temporal gyrus, occipital and temporo-occipital regions. Across all sites, within-group 

analyses failed to identify functional connectivity subnetworks associated with fluid or 

general intelligence performance in matched typically developing males. Findings suggest a 

prematurely accelerated but aberrant development of fluid intelligence neural correlates in 

young ASD males, possibly as a compensation mechanism that supports equivalent task 

performance to controls. The absence of whole-brain network correlates of general and 

fluid intelligence in young neurotypical males may represent the shift from local to global 

integration in the development of cognitive ability. 
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Introduction 

Fluid intelligence, or fluid reasoning, refers to the broad cognitive ability to solve novel 

problems and is typically estimated from composite scores of non-verbal or abstract tests 

(Barbey, Colom, Paul, & Grafman, 2014; Reynolds & Keith, 2017; Schneider & McGrew, 

2012). As a cognitive construct, fluid intelligence is distinct from but strongly correlated 

with general intelligence (Blair, 2006). The neural architecture of human cognition likely 

comprises of complex large-scale networks with dynamic interactions and co-functioning 

between distributed cortical and subcortical regions (Bressler & Menon, 2010; Petersen & 

Sporns, 2015). However, associated neural correlates could be differentially expressed in 

neurodevelopmental conditions (Gray, Chabris, & Braver, 2003; Kosslyn et al., 2002). 

 

The autism spectrum disorders (ASD) are a group of heterogeneous neurodevelopmental 

conditions associated with deficits in social communication, social interaction, and 

restricted and repetitive behaviours. Compared to typically developing controls, fluid 

intelligence in children and adults has been suggested to be increased in Asperger’s 

disorder, an associated ASD condition,  as well as elevated within ASD groups relative to 

crystallized intelligence scores on verbal tasks (Ehlers et al., 1997; Happé, 1994; Hayashi, 

Kato, Igarashi, & Kashima, 2008). The observed strengths in ASD fluid ability  were 

attributed to theorized disorder-specific deficits such as weak central coherence in autism, 

although others have argued that measured performance in ASD represent valid estimates 

of fluid intelligence (Dawson, Soulières, Gernsbacher, & Mottron, 2007). Early studies have 

reported deficits in executive functioning in ASD but were limited in methodology and 

sampling (Pennington & Ozonoff, 1996). An important note is that these findings should 

not be taken as indicative of any diagnostic profile for ASD, more so given the highly 

heterogeneous and variable nature of the condition (Ehlers et al., 1997). On the other hand, 

failure to account for variability in fluid intelligence performance in ASD  can contribute to 

estimation errors of group effects in brain-behaviour models (Hazlett, Poe, Gerig, Smith, & 

Piven, 2006).  

 

Individuals with ASD demonstrate an atypical reliance on enhanced visuospatial processes 

in extrastriate and parietal regions when engaging in fluid tasks (Koshino et al., 2005; 

Mottron et al., 2013). Increase in fluid task complexity modulated stronger activity in 

occipital and temporal regions in ASD, coupled with higher connectivity between major 

lobar regions (superior frontal gyrus, superior parietal lobe, inferior temporal gyrus, 

middle and inferior occipital gyrus; Simard, Luck, Mottron, Zeffiro, & Soulières, 2015; 

Soulières et al., 2009). Connectivity to prefrontal cortical areas observed in controls during 

fluid tasks were either altered or absent in ASD, suggesting aberrant functional segregation 

and integration in neural mechanisms underlying ASD fluid intelligence ability that are 

primarily characterized by increased occipito-parietal and temporal activity. (Sahyoun, 

Belliveau, Soulières, Schwartz, & Mody, 2010; Yamada et al., 2012). ASD performance on 
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visual search tasks show a similar pattern of atypically increased occipito-temporal but 

absent prefrontal activity, indicating a predisposition for local rather than global 

processing that could explain differences in brain activity and connectivity related to 

higher level cognition in this population. The atypical emphasis on constituent features in 

ASD could however be an efficient strategy for the processing of complex stimuli, 

consistent with observations of increased performance on fluid tasks in individuals with 

ASD (Ring et al., 1999). 

 

In contrast, fluid intelligence performance in neurotypical individuals involve broad 

recruitment across frontal, parietal, temporal and occipital cortices, as well as subcortical 

striatal and thalamic regions (Burgaleta et al., 2014; Geake & Hansen, 2010; Gong et al., 

2005; Kroger et al., 2002; Perfetti et al., 2009; Prabhakaran, Smith, Desmond, Glover, & 

Gabrieli, 1997). Lateral prefrontal and parietal regions could mediate between-subject 

variability in the association between fluid intelligence and task performance (Gray et al., 

2003). Psychometrically unidimensional tasks with high factor loadings on fluid 

intelligence also share similar patterns of associations with superior frontal, inferior and 

posterior parietal and temporal-occipital regions (Ebisch et al., 2012). Overall, it is not 

surprising that these pattern of findings are consistent with the parieto-frontal integration 

theory (P-FIT) of general intelligence neural correlates, given that fluid intelligence ability 

is related to a higher-order general intelligence factor  (Carroll, 1993; Colom et al., 2009; 

Jung & Haier, 2007; Reynolds & Keith, 2017). The recent voxel-based meta-analysis of 

Basten, Hilger, and Fiebach (2015) on brain structural and functional correlates of 

intelligence lends further support to the P-FIT hypothesis.  

 

Functional connectivity refers to the temporal dependency between the time series of 

measured neurophysiological signals and can express network mechanisms of high level 

cognitive processes (Biswal, Zerrin Yetkin, Haughton, & Hyde, 1995). Resting-state or 

intrinsic functional connectivity provide data about the functional architecture of the brain 

that also correspond to individual differences during task-dependent active states (Smith 

et al., 2009; Tavor et al., 2016). Intrinsic functional connectivity profiles have been shown 

to predict fluid intelligence ability, although existing investigations on brain networks in 

cognition are mostly limited to general intelligence in typically developing adult 

populations (Finn et al., 2015; Haász et al., 2013; Malpas et al., 2016; Penke et al., 2012).  

 

Previous investigations on the neural correlates of ASD fluid intelligence ability have 

mainly relied on functional Magnetic Resonance Imaging (fMRI) task-based paradigms 

using blood oxygen level dependent (BOLD) as an estimate of brain activity to infer the role 

of local brain regions. Consequently, current knowledge about the neural basis of cognition 

for different intelligence constructs is limited especially in paediatric populations, and the 

neural correlates of fluid intelligence in children with ASD are not well-defined. The 
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common use of a priori specified seed-target correlations to examine brain-cognition 

relationships may be associated with a bias for the identification of task-positive regions, 

and there is a need for network-based investigations across the whole-brain to be 

integrated with localization-focused findings on the neural mechanisms of fluid 

intelligence. Approaches that investigate brain-wide activity related to intelligence have 

recently been recommended (Basten et al., 2015; Langeslag et al., 2013). The nature and 

developmental trajectory of whole-brain fluid intelligence connectivity networks in ASD 

therefore merits further investigation. Given that ASD fluid task performance is 

characterized by aberrant activity in local anatomical regions-of-interest, we expect whole-

brain intrinsic functional connectivity networks associated with fluid intelligence to be 

altered in the ASD group in comparison to typically developing controls matched on age, 

sex and fluid intelligence ability. 

Methods 

Participants 

Data was obtained from the Kennedy Krieger Institute (KKI, ABIDE-II) sample (n=148) 

from the Autism Brain Imaging Database Exchange (ABIDE I and II; Di Martino et al., 2014). 

Full protocol details for sampling, image acquisition and phenotyping are available for 

public access1.Participants in the KKI sample were recruited as part of a study run by the 

Center for Neurodevelopment and Imaging Research (CNIR) at the KKI. All eligible 

participants received an MRI scan and cognitive assessment with the Wechsler Intelligence 

Scale for Children (Fourth Edition, WISC-IV; Fifth Edition, WISC-V). Handedness was 

assessed using the Edinburgh Handedness Inventory. Inclusion criteria were an age range 

of 8 years and 0 months  to 12 years, 11 months and 30 days, and WISC-IV or WISC-V Full 

Scale Intelligence Quotient  >80. For participants with a discrepancy of 12 points or more 

across indexes, the Verbal Comprehension Index (VCI), and the Perceptual Reasoning Index 

(PRI) score (or Visual Spatial Index and Fluid Reasoning Index in the WISC-V) had to be 

greater than 80 points, with the lowest index score above 65 points. Diagnosis of ASD was 

determined using the Autism Diagnostic Interview-Revised (ADI-R), Autism Diagnostic 

Observation Schedule-Generic (ADOS-G) module 3 or the ADOS-2 module 3. Instruments 

were administered by psychologists with graduate training. ASD classification criteria was 

based on the ADOS-G and/or ADI-R and clinical assessment by an expert paediatric 

neurologist with extensive experience in autism diagnosis. ASD participants were excluded 

if they had an identifiable cause of autism. For the control group, participants with a history 

of developmental or psychiatric disorders or with a first-degree relative with ASD were 

excluded.  For all participants, exclusion criteria were the presence or history of a 

                                                        
1
 Public access ABIDE protocol: http://fcon_1000.projects.nitrc.org/indi/abide/.  
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neurological disorder, major visual impairment, history of alcohol or substance use, and a 

developmental level of 3 or above on the Physical Development Scale.  

 

For the present study, inclusion criteria applied to the KKI sample were male participants 

satisfying DSM-IV-TR2 Pervasive Developmental Disorder criteria (Autistic Disorder, 

Asperger’s or Not Otherwise Specified), assessed with the WISC-IV, and with MRI data 

acquired under the same scanning protocol. Continuous variables in the phenotype data 

were demeaned. Non-parametric propensity matching was conducted using the MatchIt 

package (Ho, Imai, & King) in the R environment (Team, 2014). Male participants with ASD 

were matched with TD controls on the following variables: sex, age in years [ASD: M=10.45 

(SD=1.58); TD: M=10.38 (SD=0.96)], and PRI score from the WISC-IV [ASD: 108.65 (13.57); 

TD: 108.83 (14.14)]. The matching procedure resulted in a final sample of 50 male 

participants (ASD: n=26; TD: n=24).  

Image Acquisition 

MRI data was acquired on a 3 Tesla Phillips scanner (Achieva; Philips Healthcare, Best, The 

Netherlands). T1-weighted images were obtained through a 200 slice three-dimensional 

acquisition (Turbo Field Echo [TFE] MPRAGE; acquisition time = 8min 8sec; coronal slice 

orientation; flip angle =8°; repetition time (TR) = 8ms; echo time (TE) = 3.7ms; minimum 

inverse time (TI) delay = 843.25ms; field of view (FOV) = 256; matrix= 256 x 200; slice 

thickness = 1mm, in-plane resolution = 1mm x1.28mm). BOLD-weighted resting-state 

functional MRI volumes were acquired using echo planar imaging (EPI; number of volumes 

= 128; TE = 30ms; TR = 2500ms; slices = 47; flip angle = 7°; FOV = 256; matrix = 84x81; 

slice thickness = 3mm, in-plane resolution = 3mm x3.1mm; transverse slice orientation). 

During the resting-state scan, participants were instructed to relax and focus on a crosshair 

while remaining as still as possible with their eyes open. For the structural scan, 

participants watched a movie of their choice. Images were inspected after each processing 

step for quality control. 

Image Processing and Analysis 

Functional connectivity analysis and visualizations were generated with the Functional 

Connectivity Toolbox v.16.b (Whitfield-Gabrieli & Nieto-Castanon, 2012) pipeline, Matlab 

R2010b (The MathWorks, Inc., Natick, MA, USA) and NeuroMArVL 

(http://immersive.erc.monash.edu.au/neuromarvl/). The initial 4 functional volumes per 

session were removed to account for T1 saturation effects. Slice-timing correction and first-

volume realignment (using a six rigid-body parameter spatial transformation) were 

applied to adjust for temporal and motion artefacts.  Functional volumes were normalized 

                                                        
2 DSM-IV-TR: Diagnostic and statistical manual of mental disorders, text revision. American Psychiatric 
Association, & American Psychiatric Association. (2000). DSM-IV-TR: Diagnostic and statistical manual of 
mental disorders, text revision. Washington, DC: American Psychiatric Association, 75. 
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to MNI-space, and smoothed with a full-width half-maximum Gaussian kernel of 8mm. 

Structural images were co-registered and segmented into grey-matter, white-matter and 

cerebrospinal fluid for later use in the removal of physiological noise from the functional 

volumes. In the first-level BOLD model, identified outliers from head motion parameters 

and global signal intensities (Artifact Detection Tool scrubbing) were regressed from the 

BOLD signal. Using the aCompCor approach (Behzadi, Restom, Liau, & Liu, 2007), 

confounds from non-neuronal sources such as cardiac, respiratory and physiological 

activity were removed. The residual BOLD time series were detrended and band-pass 

filtered (0.008-0.09Hz) to reduce noise in the detection of gray-matter signals.  

 

Regions-of-interest (ROI) were defined using the FSL Harvard-Oxford Atlas 

(http://www.fmrib.ox.ac.uk/fsl/) for cortical and subcortical areas, and the Anatomical 

Automatic Labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002) for cerebellar regions, 

resulting in 132 ROIs. The mean BOLD time series for all voxels in each ROI were extracted 

to compute pairwise correlations between all ROIs with the Fisher r-to-z transformation to 

construct a 132x132 connectivity matrix. Brain networks showing between-group 

differences in functional connectivity were identified with network-based statistic (NBS; 

Zalesky, Fornito, & Bullmore, 2010). Fluid intelligence performance scores (PRI) were 

regressed onto individual edges in the functional connectivity matrix and one-way ANCOVA 

covariate models were used to test for between-group differences in functional 

connectivity associated with cognitive performance scores (PRI by group interaction), or 

between-group differences in functional connectivity.  Handedness and age were included 

as covariates for all analyses.  To identify connected subnetworks, a breadth first search 

(Ahuja, Magnanti, & Orlin, 1993) was performed among connections surviving a t-statistic 

threshold of at least t=3.0 and permuted to generate a null distribution of largest network 

sizes. Each permutation randomly reassigns group labels and identifies the size of the 

largest interconnected subnetwork. The family-wise error (FWE) corrected p-value for a 

given subnetwork of size m reflects the proportion of permutations for which the largest 

subnetwork size is equal to or greater than m. The FWE rate is therefore controlled non-

parametrically through the use of a randomized null distribution of maximum component 

size. Finally, subnetworks with a corrected p-FWE<0.05 value were retained. 

Validation 

To investigate if results from the present study (age range: 8 to 13 years) could be 

generalized to similar or older age cohorts, the above analyses were replicated on 

independent samples of data from other ABIDE sites. The University of Utah School of 

Medicine (USM, ABIDE-I), NYU Langone Medical Center (NYU, ABIDE-I) and Georgetown 

University (GU, ABIDE-II) sites were selected based on cohort age range and adequate 

sample size for analysis. This resulted in three independent samples representing a broad 

range of age cohorts (GU: 8 to 13 years; USM: 15 to 24 years; NYU: 6 to 39 years) of 
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individuals with ASD and typically developing controls. Table 1 provides descriptive 

statistics for all samples used for present analyses. Diagnostic criteria, imaging acquisition 

protocols and parameters differed between sites. To investigate the findings of a general 

intelligence subnetwork in neurotypical adults (Malpas et al., 2016) but in younger cohorts 

with or without ASD, we further ran the above analyses to identify between-group 

differences in functional connectivity networks that were associated with estimate scores 

of general intelligence ability. 

 
Table 1. Descriptive statistics of samples by site 
Site Sample 

size 
Age in years 
[M(SD)] 

Age range in 
years 

PRI [M(SD)] Test type 

KKI      

     ASD 26 10.45 (1.58) 8 to 13 108.65 (13.57) WISC-IV 

     TD 24 10.38 (0.96) 8.9 to 12.8 108.83 (14.14) WISC-IV 
      
GU      
     ASD 25 11.04(1.44) 8.28 to 13.08 109.68 (14.06) WASI 
     TD 25 10.6(1.46) 8.06 to12.7 118.52 (13.45) WASI 
      
USM      
     ASD 15 20.32 (1.48) 18.41-22.88 102.67 (13.98) WASI 
     TD 15 18.46 (2.45) 15-23.95 111 (10.39) WASI 
      
NYU      
    ASD 68 13.95 (6.51) 7.13- 39.10 110.29 (17.40) WASI 
    TD 68 14.86 (5.77) 6.47- 31.78 109.44 (14.32) WASI 
Notes. ASD: Autism Spectrum Disorders; FSIQ: Full Scale Intelligence Quotient, or general intelligence score estimate; GU: 

Georgetown University; KKI: Kennedy Krieger Institute; M= mean; NYU: NYU Langone Medical Center; PRI: Perceptual 

Reasoning Index, or fluid intelligence score estimate;  SD=standard deviation, TD: typically developing; USM: The 

University of Utah School of Medicine; WASI: Weschler Abbreviated Scale of Intelligence; WISC-IV: Weschler Intelligence 

Scale for Children – Fourth Edition. 
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Results 

Between-group differences in the association of resting-state fMRI subnetwork 

connectivity with fluid intelligence performance was identified in ASD males aged 8 to 13 

years (network size=24 links, t-statistic threshold=3.5, p=.0373, FWE-corrected), with 

higher strength in ASD compared to typically developing matched controls (Figure 1). The 

fluid intelligence subnetwork involved regions in the left temporo-occipital middle 

temporal gyrus, left posterior middle temporal gyrus, bilateral paracingulate gryus, 

posterior cingulate gyrus, right frontal pole, right inferior frontal gyrus pars triangularis, 

bilateral angular gyrus, left lateral occipital cortex (superior division) and precuneus 

(Table 2). Between-group differences remained significant at a higher network edge 

threshold (t=4, size=6, p=.0425, FWE-corrected) with nodes of the left temporo-occipital 

middle gyrus, bilateral angular gyrus, precuneus, posterior cingulate gyrus. Within-group 

edge associations in ASD also survived higher thresholding (t=4.5, size=48, p-

FWE=0.0017). No networks associated with fluid intelligence were found in the matched 

control group, even when initial statistical thresholding was relaxed (t=2.5).   

 

Table 2. Nodes identified in atypical subnetwork connectivity association with fluid intelligence in Autism 
Spectrum Disorders compared to matched controls (Site KKI) 
Lobe Node  Position Node Label MNI Coordinates 
    x y z 
Frontal Paracingulate gryus Left PaCiG l                   -6.21 36.65 20.79 
 Paracingulate gryus Right PaCiG r                   6.55 36.57 22.69 
 Frontal pole Right FP r                      26.16 52.14 8.26 
 Inferior frontal gyrus, 

pars triangularis 
Right IFG tri r                 51.87 27.76 7.71 

       
Temporal Middle temporal gyrus, posterior 

division 
Left pMTG l -60.91 -27.36 -11.00 

 Temoporo-occipital middle 
temporal gryus* 

Left toMTG l                   -57.64 -53.00 0.82 

       
Occipital Lateral occipital cortex, superior 

division 
Left sLOC l -31.96 -72.89 37.97 

       
Parietal Angular gyrus* Right AG r                      51.93 -51.80 32.36 
 Angular gyrus* Left AG l                      -50.35 -55.70 29.76 
 Precuneous* - Precuneous 0.95 -59.29 38.02 
 Posterior cingulate gyrus - PC 0.78 -36.62 29.98 
Notes. *Nodes surviving increased thresholding (T=4) in network-based statistics analysis (NBS); KKI:  Kennedy Krieger 

Institute. 
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   ASD vs TD ASD TD 

A 

B 

T-statistic threshold: t=3.5 T-statistic threshold: t=4 

C1 C2 

Figure 1. A: P-value heatmaps representing second-level within-group associations of pairwise BOLD ROI-ROI edges 
(132x132 matrix) with fluid intelligence performance (Site: KKI). ASD: Autism Spectrum Disorders group; ASD vs TD: 
Group interactions between functional connectivity and fluid intelligence performance association; KKI: Kennedy 
Krieger Institute; TD: matched typically developing controls. B: Visual model of subnetwork representing within-group 
associations in functional connectivity and fluid intelligence performance in ASD. C: Effect of increased thresholding in 
network-based analysis (NBS) before network construction. In C1, only pairwise edge association with fluid intelligence 
of at least t=3.5 were retained for network construction. In C2, the t-statistic threshold was further increased to t=4. 
Components that survived increased thresholding involved the angular gyrus, temporo-occipital middle temporal gyrus, 
precuneus and the posterior cingulate gyrus. AG: angular gryus; FP: frontal pole; IFG tri: inferior frontal gyrus, pars 
triangularis; PaCiG: paracingulate gyrus; PC: posterior cingulate gyrus; sLOC: Lateral occipital cortex, superior division; 
toMTG: temporo-occipital middle temporal gyrus.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2017. ; https://doi.org/10.1101/143891doi: bioRxiv preprint 

https://doi.org/10.1101/143891
http://creativecommons.org/licenses/by/4.0/


Repeat analyses for replication in independent samples from different sites presented a 

similar pattern of findings in the same age cohort (site GU; age range 8 to 13 years), 

showing a fluid intelligence subnetwork with increased association in ASD compared to 

controls (network size=14 links, t-statistic threshold=3.5,  p=.0396, FWE-corrected, 

alternate hypothesis: ASD>controls; Figure 2). Implicated regions were the bilateral 

occipital pole, right temoporo-occipital middle temporal gyrus, right anterior middle 

temporal gyrus, left posterior middle temporal gyrus, right angular gyrus and the 

cerebellum (Table 3). No fluid intelligence subnetworks were found in the matched control 

group, consistent with initial findings. Across replicated analyses from independent sites in 

age-matched samples, the right angular gyrus, left posterior middle temporal gyrus, 

occipital and temporo-occipital regions were consistently implicated in fluid intelligence 

subnetwork differences.  

 

Findings failed to replicate in older age cohorts from two independent sites of ages 15 to 24 

years (site USM; p>.05, FWE-corrected) and ages 6 to 39 years (site NYU; p>.05, FWE-

corrected). Fluid intelligence subnetworks were not identified in older cohorts with ASD, 

even when the initial thresholding of pairwise functional connectivity links and FWE-

corrected p-values were relaxed. No intrinsic connectivity subnetworks associated with 

general intelligence were identified in cohorts across all sites in our study. 

 

Table 3. Nodes identified in atypical subnetwork connectivity association with fluid intelligence in Autism 
Spectrum Disorders compared to matched controls (Site GU) 
Lobe Node  Position Node Label MNI Coordinates 
    x y z 
Frontal - - - - - - 
       
Temporal Middle temporal gyrus, anterior 

division 
Right aMTG r                    57.89 -1.529 -24.51 

 Middle temporal gyrus, 
posterior division* 

Left pMTG l -60.91 -27.36 -11.00 

 Temporo-occipital middle 
temporal gyrus* 

Right toMTG r 58.18 -49.22 1.59 

       
Occipital Occipital pole Right OP r 17.73 -95.13 8.31 
 Occipital pole Left OP l -16.85 -96.50 6.74 
       
Parietal Angular gyrus* Right AG r                      51.93 -51.80 32.36 
       
Cerebellar Cerebellum, crus II Left  Cereb2 l -28.64 -73.26 -38.20 
 Cerebellum, vermis 8 - Ver8 1.15 -64.43 -34.08 
Notes. *Nodes consistent across independent-site replication  GU: Georgetown University 
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A 

B1

 
 A 

B2

 
 A 

Figure 2. A: Cortical and subcortical regions involved in atypical neural correlates of ASD fluid intelligence in replicated 
analyses, configured by lobe. The subnetwork represents between-group differences in edge connectivity and fluid 
intelligence performance association in ASD compared to matched controls (Site: Georgetown University, GU). B: 
Network components implicated in atypical neural correlates of ASD fluid intelligence (B1; Site: Kennedy Krieger 
Institute, KKI) and in independent-site replication (B2; Site GU). Nodes consistent in the replicated subnetwork were the 
angular gryus, posterior and temoporo-occipital middle temporal gyrus. AG: angular gryus; aMTG: anterior middle 
temporal gyrus; Cereb2: cerebellum, crus II; FP: frontal pole; IFG: inferior frontal gyrus; OP: occipital pole; PaCiG: 
paracingulate gyrus; PC: posterior cingulate gyrus; pMTG: posterior middle temporal gyrus; sLOC: Lateral occipital 
cortex, superior division; toMTG: temporo-occipital middle temporal gyrus; Ver8: cerebellar vermis 8. 
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Discussion 

This is the first study to investigate the neural correlates of intelligence in paediatric 

cohorts using a sophisticated functional connectivity modelling technique with multi-site 

replication. We identified a resting-state functional connectivity subnetwork of fluid 

intelligence that showed atypical increased strength of association with fluid intelligence 

ability in young ASD males relative to matched controls. Findings were replicated in an 

independent sample of a similar matched cohort. This subnetwork was not found in older 

ASD samples, or in typically developing controls across all age groups in the present 

investigation. In the context of inter-site differences in sampling, phenotyping, diagnostic 

classification, MRI scanner and acquisition parameters, and the inherent heterogeneity 

within ASD neurobiology, the consistency of findings with replication support the 

robustness of a dysfunctional fluid intelligence subnetwork in individuals with ASD 

between 8 to 13 years of age. A unique strength of this study is the use of a network-based 

analysis approach to identify fluid intelligence intrinsic subnetworks controlling for whole-

brain multiple comparisons, together with replication of analyses in independent samples 

for validation. Controls were further matched on age, sex and fluid task performance for 

equivalency.  

 

Primary nodes implicated in atypical ASD fluid intelligence connectivity were the angular 

gyrus, posterior middle temporal gyrus, occipital and temporo-occipital regions. These 

regions remained consistent across independent-site replication and increased network 

thresholding. The strength of association between fluid intelligence and functional 

connectivity was greater in ASD compared to controls. Typical dorsolateral prefrontal 

involvement in fluid performance was notably absent in relation to fluid intelligence ability 

in children with ASD in replicated results when compared to controls, and did not survive 

increased thresholding in the initial analyses.  

 

These findings are consistent with investigations of localized functional BOLD activity 

during fluid task performance that report atypical increases in occipito-temporal activity 

coupled with decreased prefrontal activation in ASD (e.g. Yamada et al., 2012). A recent 

meta-analysis of grey-matter abnormalities in paediatric ASD reported grey-matter 

alterations in the right angular gyrus, left inferior occipital gyrus and right inferior 

temporal gyrus, as well as in frontal, medial parietal and cerebellar regions. Increased grey-

matter volume of the right angular gyrus was further associated with increased severity of 

repetitive behaviours, a core symptom in ASD (Liu et al., 2017). The distinct overlap of 

specific patterns of grey-matter abnormalities with our present study in similar age cohorts 

could suggest a structural morphometric basis for the identified atypical fluid intelligence 

functional connectivity subnetwork in children with ASD. 
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Independent component analysis of task-based fMRI metadata in previous work on 

neurotypical subjects show that temporo-occipital and inferior parietal regions constitute a 

cluster of intrinsic connectivity networks related to visual perception of complex stimuli 

higher-level visual processing, visual tracking, mental rotation and spatial discrimination 

(Laird et al., 2011). The angular gyrus and temporal-occipital cortex also demonstrate 

shared activity even among different fluid intelligence tasks, suggesting their role as 

potential neural correlates of fluid intelligence ability (Ebisch et al., 2012). In task-free 

states, connectivity between the angular gyrus and occipital regions form part of a 

temporally independent functional mode (Smith et al., 2012). Functionally, the angular 

gyrus serves as a cross-modal hub that combines and integrates multisensory information 

for attentional reorientation to critical information, comprehension of environmental 

events, manipulation of mental representations and problem solving (Seghier, 2013). The 

role of the angular gyrus according to the P-FIT hypothesis of information processing 

stages involves integration and abstraction of information, followed by parietal-frontal 

interactions that support problem solving and evaluation of solutions (Colom et al., 2009; 

Jung & Haier, 2007). That our present findings cohere with known resting-state and task-

dependent functional connectivity networks in relation to fluid ability in typical controls 

suggest that components of the dysfunctional fluid intelligence subnetwork subserve 

similar functions in ASD, but are susceptible to alterations in local activity and global 

connectivity.  

 

The dysfunctional fluid intelligence subnetwork in 8 to 13 year-old males was absent in 

older ASD cohorts. Age-dependent alterations in brain structure and function with inter- 

and intragroup heterogeneity are characteristic of atypical neurodevelopment in ASD 

(Uddin, Supekar, & Menon, 2013). A pattern of early increased functional connectivity 

followed by a decline in later stages has been reported in other disorders such as 

schizophrenia, possibly related to dysregulation of brain activity due to aberrant 

neurodevelopment of structural connectivity of hub regions in the association cortices 

(Fornito & Bullmore, 2015). Similarly in ASD, significant hypoactivation of the middle 

frontal gyrus during nonsocial tasks in children compared to adults suggest age-dependent 

trajectories of atypical changes in task neural correlates, and may account for discrepant 

findings between age cohorts in the present study (Dickstein et al., 2013). As dysfunctional 

subnetworks related to general intelligence were not detected in our ASD cohorts, the age-

dependent aberrant network structure of cognitive correlates may be specific to fluid 

intelligence ability in this population.  

Intelligence in Typically Developing Children 

Using the network-based analysis pipeline, a single subnetwork broadly distributed across 

regions in fronto-parietal and default-mode resting-state networks are associated with 

general intelligence in neurotypical adults (Hearne, Mattingley, & Cocchi, 2016; Malpas et 
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al., 2016).  The developmental trajectory of global neural architectures underlying 

intelligence ability in younger populations is less defined. Based on findings with 

replication in our present study, the absence of both general and fluid intelligence intrinsic 

connectivity subnetworks in typically developing boys suggests that whole-brain network 

correlates of intelligence ability in younger male cohorts are not yet robustly connected 

enough to be detected with fMRI. 

 

Typical brain maturation from infancy through adolescence involves a decrease in short-

range functional connectivity coupled with increases in long-range connections that reflect 

increased integration and segregation of brain networks with age. (Richmond, Johnson, 

Seal, Allen, & Whittle, 2016). The development of network topology is characterized by the 

reorganization of functional networks with a shift from local anatomical clustering to 

distributed function-dependent segregation, through which specific cognitive abilities co-

evolve with modular specialization and selective cross- network integration (Fair et al., 

2009; Grayson & Fair, 2017). The absence of a whole-brain intrinsic functional connectivity 

subnetwork of intelligence in our analyses of typically developing children could reflect the 

ongoing shift from local to global networks observed in adulthood.  In neurotypical adults, 

individual variation in general intelligence is associated with a large functional 

subnetwork, diffuse white-matter organization and increased global network efficiency (Li 

et al., 2009; Malpas et al., 2016; van den Heuvel, Stam, Kahn, & Hulshoff Pol, 2009). 

Consistent with this hypothesis are findings of intelligence-related differences in nodal but 

not global brain network properties in children between 5 to 19 years of age (Wu et al., 

2013). Functional network properties however showed age and sex differences, 

highlighting the need for cohort-specific groups to investigate network connectivity and 

age-dependent developmental trajectories of brain-behaviour associations with cognitive 

ability. (Shaw et al., 2006). 

 

In contrast, both global and local network properties of structural connectivity estimates of 

axonal white-matter tracts are related to fluid intelligence measures in children aged 6 to 

11 years. Better performance on measures of perceptual reasoning was associated with 

greater communication capacities of structural networks from both whole-brain and 

specific regions (Kim et al., 2016). Because anatomical networks determine pathways of 

neuronal signalling, structural connectivity drives and constrains functional connectivity 

throughout development (Petersen & Sporns, 2015; Vertes & Bullmore, 2015). Our findings 

could suggest that structural network development precedes the complete deployment of 

global intrinsic functional connectivity networks underlying intellectual ability in children 

and adolescents. Cross-modal network analysis that integrates structural and functional 

data will be necessary to delineate the mechanisms of cognitive development and their 

abnormal nature and trajectory over time in neurodevelopmental disorders (Grayson & 

Fair, 2017). 
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Implications 

There are several key points to draw from our analyses across distinct age and disorder-

specific samples. Importantly, between-group differences in intrinsic connectivity 

networks underlying fluid intelligence performance remain significant between ASD and 

controls even when groups were matched on fluid intelligence ability. The degree of 

association between subnetwork connectivity and fluid ability observed in ASD is therefore 

more likely related to disorder-specific effects, rather than differences in fluid performance 

ability (Gray et al., 2003; Perfetti et al., 2009). According to the neural efficiency hypothesis, 

differential cortical activity may be observed among subjects with discrepant neural 

resources in relation to cognitive performance. The degree of brain activity associated with 

cognitive processing could therefore be interpreted as a measure of neural efficiency that 

varies as a function of individual ability or task complexity, although findings have been 

ambiguous and may be region-specific (Haier et al., 1988; Neubauer & Fink, 2009; Perfetti 

et al., 2009). Abnormally increased activation of brain regions during cognitive tasks in 

atypical populations may indicate a mechanism of neural compensation, and often involves 

mediation by hub nodes that integrate multiple neural systems, such as the angular gryus 

in the parietal association cortex. Dedifferentiation, the failure of neural processes to 

specialize due to neurodevelopmental abnormalities could also underlie early aberrant 

increases in hub activity (Fornito, Bullmore, & Zalesky, 2017). Consistent with this 

framework, our results complement previous findings of increased BOLD signal changes 

with increased fluid task difficulty in the inferior parietal lobule including the angular 

gyrus, and the left temporo-occipital junction in healthy individuals (Preusse, van der Meer, 

Deshpande, Krueger, & Wartenburger, 2011). Increased resting-state connectivity was also 

associated with higher intelligence scores (Hearne et al., 2016). Given the aberrant brain 

structure and function in ASD, atypically increased strength of association in the ASD fluid 

intelligence subnetwork may reflect a compensatory effect to achieve the same level of 

fluid task performance as ability-matched controls in our analyses. 

 

Consequently, the common approach of controlling for performance variables based on 

matching of test scores may still remain fallible to sources of variation across different 

scales of brain structure and function. The general assumption behind matching groups on 

performance variables is that the neural architecture supporting covariates of interest also 

remain equivalent across groups, and therefore presumably do not contribute to variation 

in comparison analyses. However, observed between-group differences in neuroimaging 

measures in atypical neurodevelopmental conditions could be explained by variation at the 

level of associated neural correlates of cognitive ability, such as altered subnetwork 

connectivity underlying ASD fluid intelligence performance as we have shown. Matching 

groups on general intelligence ability without careful considerations could introduce 

artefactual differences in case-control comparisons biased by differential associations with 

neural correlates in ASD (Lefebvre, Beggiato, Bourgeron, & Toro, 2015). The critical point is 
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that group differences in brain structure and function should demonstrate covariation with 

variables of interest such as clinical symptom severity, beyond rudimentary matching on 

performance variables as a method for confound control (Picci, Gotts, & Scherf, 2016). 

 

The strength of the present study design based on variable matching also comes with 

inherent limits to generalizability of findings. The degree and structure of neural correlates 

of cognition could vary as a function of both task complexity and individual differences in 

intelligence ability (Gray et al., 2003; Khundrakpam et al., 2017; Perfetti et al., 2009; 

Preusse et al., 2011). ASD research is unfortunately biased towards the sampling of high-

functioning individuals, likely under-representing subgroups with lower nonverbal 

intelligence ability. The proportion of cohorts with neuroimaging data available is even 

smaller (Jack & Pelphrey, 2017). Interpretations of findings are generally limited to 

sampled cohorts, and extension of assumptions to understudied ASD populations should be 

done with caution. This is reflected in ASD samples in our study with intelligence ability in 

the average range. Previous work has shown that  intelligence estimates in ASD based on 

the Raven’s Progressive Matrices (RPM) were higher than scores derived from the 

Wechsler intelligence scales, suggesting an under or over-estimation of intelligence in this 

population (Dawson et al., 2007). However, others have postulated that findings may only 

be specific to ASD subgroups with low intelligence ability, emphasizing the need to 

consider the implications of individual differences in task performance in clinical research 

(Bölte, Dziobek, & Poustka, 2009).  

 

With the wide range of tasks and instruments used to interrogate the neural mechanisms 

underlying cognition, test construct validity should be carefully evaluated in the selection 

of dependent variables. That is, the validity of neuroimaging and psychometric task 

measures of brain structure, function and performance should warrant equal consideration 

when investigating the neural correlates of cognition. For our study, we relied on full and 

abbreviated forms of the Wechsler intelligence scales with established construct validity 

and reliability in both typically developing and ASD populations (Minshew, Turner, & 

Goldstein, 2005; Scott, Austin, & Reid, 2007; Weiss, Keith, Zhu, & Chen, 2013). Others have 

suggested that the abbreviated form may overestimate nonverbal intelligence ability, and 

the PRI has also been recently separated into two independent factors representing fluid 

intelligence and visual processing in the latest iteration of the WISC (Axelrod, 2002; 

Reynolds & Keith, 2017).  Varying definitions and measurement of cognitive constructs 

might account for inter-site differences in findings, such as the prominent occipital 

mediation in ASD that we observed in replication analyses. The nomenclature of brain 

regions also tend to differ between studies depending on the cognitive domain of interest 

(Seghier, 2013).  Despite discrepancies in task, image acquisition and site, in addition to the 

heterogeneous nature of ASD, the consistent finding of a single atypical subnetwork 
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associated with fluid intelligence in independent ASD samples is remarkable evidence that 

the neural correlates of fluid performance are altered in this population. 

 

A final consideration are the constraints of NBS. The technique yields increased power over 

link-based FWE control to detect connected components with whole-brain multiple 

comparisons, but at the cost of localizing resolution for independent links (Zalesky et al., 

2010). We have thus refrained from directly interpreting individual edge links in the 

identified subnetworks. Connectivity strength and network topology are distinct properties 

of the brain connectome that can demonstrate mutually exclusive perturbations (Hong et 

al., 2013). While we have focused on between-group differences in functional connectivity, 

these findings establish a framework for subsequent investigations into the multi-scale 

configuration of connections fundamental to cognition. Apart from identifying fundamental 

units or collective features of network topology, graph-based measures allow the 

identification of intermediate mesoscale structures through community detection 

techniques and across multiple timescales. Importantly, the function of network nodes may 

differ depending on the scale of analysis (Betzel & Bassett, 2016). The characterization of 

the neural architecture of intelligence in both typical and atypical populations will require 

an appreciation of brain structural and functional network topology across multiple scales, 

and their integration with valid measurement of cognitive constructs of interest.     

Conclusion 

We demonstrate preliminary evidence with replication for an atypical intrinsic 

connectivity brain network underlying fluid intelligence in male ASD children matched on 

fluid task ability to controls. Together with the absence of such a network in typically 

developing children, the neural architecture of fluid intelligence in ASD children may 

involve prematurely accelerated but aberrant network integration of distributed regions to 

support equal task performance with same-aged peers. There is potential for longitudinal 

investigations to delineate inter- and intra-individual variation and between-sex 

differences in the neurodevelopment of cognitive ability across different populations. 
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