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Abstract 5 

 Many researchers want to report an R2 to measure the variance explained by a model. 6 

When the model includes correlation among data, such as mixed models and phylogenetic 7 

models, defining an R2 faces two conceptual problems. (i) It is unclear how to measure the 8 

variance explained by predictor (independent) variables when the model contains covariances. 9 

(ii) Researchers may want the R2 to include the variance explained by the covariances by asking 10 

questions such as “What is the partial R2 for random effects in a linear mixed model?” or “How 11 

much of the variance is explained by phylogeny?”. 12 

 I propose using three R2s for mixed and phylogenetic models. A least-squares R2
ls is an 13 

extension of the ordinary least-squares R2 that weights residuals by variances and covariances 14 

estimated by the model. The likelihood ratio R2
lr was first used by Cragg and Uhler (1970) for 15 

logistic regression, and here is used with the standardization proposed by Nagelkerke (1991). 16 

The conditional expectation R2
ce is based on "predicting" each residual from the remaining 17 

residuals of the fitted model. These three R2s can be formulated as partial R2s to compare the 18 

contributions of mean components (fixed effects in mixed models and regression coefficients in 19 

phylogenetic models) and variance components (random effects and phylogenetic signal) to the 20 

fit of models. 21 

 I investigated the properties of the R2s for linear and generalized linear mixed models 22 

(LMMs and GLMMs), and phylogenetic models for continuous and binary response data (PGLS 23 
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 2 

and phylogenetic logistic regression). For LMMs and GLMMs, I compared the R2s to R2
glmm 24 

from Nakagawa and Schielzeth (2013), and for LMMs also the ordinary least-squares R2 treating 25 

random effects as fixed effects. 26 

 R2
ls, R2

lr, and R2
ce have reasonable performance, and each has advantages and 27 

disadvantages for different applications. Overall, R2
lr showed less variation among repeated 28 

simulations of the same model than R2
ls and R2

ce (and also R2
glmm), making it the most precise 29 

estimate of goodness-of-fit. Nonetheless, all three can be used with a wide range of models for 30 

correlated data.  31 

 32 

key-words: binomial regression, coefficient of determination, non-independent residuals, 33 

phylogenetic model, pseudo-likelihood 34 

 35 

Introduction 36 

 Researchers often want to calculate a coefficient of determination, an R2, to give a 37 

measure of the amount of variance in their data explained by a statistical model. For ordinary 38 

least-squares models (OLS), such as regression and ANOVA, the R2 is simple to calculate and 39 

interpret. Many types of models, however, assume that the errors among response variables are 40 

correlated. Linear mixed models (LMMs) include random effects that generate correlation in the 41 

residual variation; for example, LMMs can account for correlation between residuals of 42 

experimental replicates within the same block. Similarly, phylogenetic generalized least squares 43 

models (PGLS) allow the possibility of phylogenetically related species being more similar to 44 

each other, leading to phylogenetic correlations in the errors. The situation is more complex for 45 

generalized linear mixed models (GLMMs) and phylogenetic logistic regression models (PLOG) 46 

in which the response variable is discrete. For models of discrete distributions, even perfectly 47 
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fitting models have residual variation due to the discreteness of the data, and this complicates the 48 

interpretation of an R2. 49 

 Correlated errors in statistical models cause two issues for defining an R2. The first 50 

involves assessing the goodness-of-fit of predictor variables (fixed effects) in terms of the 51 

explained variance. For OLS models, the errors are assumed to be identical and independently 52 

distributed, and therefore the variance in the residuals can be calculated directly to give the total 53 

variance that is not explained by the model. In models for correlated data, however, the errors are 54 

not independently distributed. To properly calculate an "explained variance", it is necessary to 55 

incorporate the estimated covariances (Judge et al. 1985 p. 32). 56 

 The second issue for defining an R2 involves assessing the goodness-of-fit of the 57 

covariances (random effects) estimated in the model. For phylogenetic models, this is embodied 58 

by the question "How much of the data is explained by phylogeny?" The difficulty is that a 59 

phylogenetic model can be used to estimate the strength of phylogenetic signal (covariances) in 60 

the errors, but the phylogenetic signal does not lead to predictions of the fitted data. Therefore, it 61 

is not immediately clear what it means for a phylogeny to “explain” the data. This conceptual 62 

issue also arises in mixed models, although it is more subtle. In some algorithms used to fit 63 

LMMs, coefficients are estimated for each level of the random effect during the fitting, akin to 64 

what would be done in OLS if the random effect was treated as a fixed effect. In LMMs, it is 65 

possible to use these coefficients to estimate residual variances that are not captured by the 66 

variances in the random effects (Nakagawa & Schielzeth 2013). Nonetheless, the random effects 67 

of LMMs are still mathematically given by covariances in the model. This contrasts an OLS 68 

model in which R2 is calculated by minimizing the unexplained variance in the data. Thus, the 69 

R2s from LMMs and OLS models measure subtly different things. The conceptual issue facing 70 
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LMM and PGLS of explaining the data from variances estimated in the model is more 71 

complicated for GLMM and PLOG in which even perfectly fitting models have residual 72 

variation. 73 

 Here, I address the problem of defining and calculating R2s for models with fitted 74 

parameters governing covariances. The general form of the models is 75 

 76 

 Yi ~ F(µi) 77 

 g(µi) = β0 + β1xi + ei           78 

 e ~ Gaussian(0, σ2Σ(θ)) eqn 1 79 

 80 

where data Yi (i = 1, ..., n) are distributed by a member F of the exponential family of 81 

distributions (McCullagh & Nelder 1989). The parameter µi of distribution F is itself a random 82 

variable, and applying the link function g() to µi gives a linear equation in terms of the predictor 83 

variable xi and an error term ei. The error term ei has a multivariate Gaussian distribution with 84 

means 0 and covariance matrix σ2Σ(θ) that depends on a vector of parameters θ. This general 85 

model form produces GLMMs (and LMMs as a special case) when the random effects are 86 

contained as block-diagonal elements in the covariance matrix σ2Σ(θ) (Gelman & Hill 2007); for 87 

GLMMs, the parameters θ governing the covariances are the variances of the random effects. In 88 

phylogenetic models, σ2Σ(θ) contains the phylogenetic covariance among species given by their 89 

evolutionary relatedness (Lavin et al. 2008); the parameters θ govern the strength of 90 

phylogenetic signal. For simplicity, equation 1 only includes a single predictor variable x and 91 
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single variance parameter θ. Nonetheless, multiple regression and multiple parameters θ can be 92 

included in the obvious way and are allowed in the accompanying R code. 93 

 I derive three different R2s for models given by equation 1. Because the models can 94 

contain multiple parameters, these R2s are derived to compare a full model with a reduced model 95 

in which one or more of the parameters are removed; thus, they are partial R2s that give the 96 

explained variance by the components that differ between full and reduced models. The total R2s  97 

are obtained by selecting the reduced model in which there is only an intercept and residuals are 98 

independent.  99 

 R2s can be assessed on multiple grounds (Kvalseth 1985), and here I use three. First, does 100 

the R2 give a good measure of fit of a model to data? To serve as a basis for assessment, I use the 101 

log-likelihood ratio (LLR) of the full and reduced models. The LLR approaches a χ2 distribution 102 

for large samples and is therefore used for hypothesis tests of full vs. reduce models (Judge et al. 103 

1985). Also, the LLR is linearly related to the AIC and other measures used for model selection 104 

(Burnham & Anderson 2002). Therefore, the LLR is a natural choice to assess R2s: a good R2 105 

should be monotonically related to the LLR. Second, can the R2 separate the contribution of 106 

different components of the model to the overall model fit? For the simple case of equation 1 in 107 

which there is only a single regression coefficient (β1) and a single variance parameter (θ), I ask 108 

whether the R2s can distinguish between the two in their contributions to the fit of the model. 109 

Although not done here, the R2s could also be used to sort among multiple regression coefficients 110 

or variance parameters. Third, does the R2 give similar values when applied to data generated by 111 

the same statistical process? If the values of R2 when applied to data generated from the same 112 

statistical process are all similar, then the R2 gives a precise measure of goodness-of-fit. 113 
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 6 

 I assess the R2s using four special cases of equation 1: LMM, PGLS, GLMMs for binary 114 

(binomial) data, and PLOG. Functions in the statistical computing language R code are provided 115 

for the three R2s that can be applied to fitted models of classes lmerMod and glmerMod {lme4}, 116 

phylolm and phyloglm {phyloglm}, and binaryPGLMM {ape}.  117 

 118 

Materials and Methods 119 

 R2
ls is derived from generalized least-squares (GLS) and therefore has a close conceptual 120 

tie to the standard R2 from OLS. R2
lr is the application of an R2 proposed for logistic regression 121 

(Cragg & Uhler 1970; Maddala 1983; Cox & Snell 1989) and generalized by Magee (1990) and 122 

Nagelkerke (1991). It is based on the likelihood ratio between the full and reduced models. R2
lr is 123 

closely related to R2
ls, because for linear models they differ only by the way in which they are 124 

scaled. R2
ce is based on the conditional expectations of new data points given the full versus 125 

reduced models. For comparison with these models in application to LMMs and GLMMs, I also 126 

consider R2
glmm proposed by Nakagawa and Schielzeth (2013), and for LMMs the standard R2

ols 127 

in which random effects are treated as fixed effects. I know of no existing R2s that have been 128 

applied for phylogenetic models that can be used to compare with the three proposed R2s. 129 

 130 

R2
ls 131 

 For linear models with correlated errors, the R2 can be calculated from GLS as  132 

 133 

 Rls
2 =1−

MSE f θ̂ f( )
MSEr θ̂r( )

  eqn 2
 

 134 

 135 
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 7 

where MSEf is the mean squared errors for the full model, and MSEr is for the reduced model. 136 

Both full and reduced models may contain parameters in vectors θf and θr that involve the 137 

variances and covariances among samples. For a GLS model  138 

 139 

 MSE θ̂( ) = 1n Y−Xβ̂( )'V θ̂( )
−1
Y−Xβ̂( )   eqn 3 140 

  141 

where Y is the n × 1 vector of response values Yi, X is the n × p matrix for p predictor variables 142 

(including the intercept), β̂  is the 1 × p vector of estimated regression coefficients (fixed effects) 143 

that may depend on θ (for discrete distributions), andV θ̂( )
−1

 is the inverse of the n × n matrix 144 

V(θ) that contains the variances and covariances of the errors. For many models, V(θ) will 145 

depend on estimated parameters θ̂ , and therefore equation 3 technically gives the MSE of an 146 

estimated generalized linear model (EGLS Judge et al. 1985). The MSE for OLS models is the 147 

special case in which V(θ) = I, the n × n identity matrix, which gives the standard R2.  148 

 Setting V(θ) = Σ(θ), the MSE gives an estimate of the variance term σ2 from equation 1. 149 

However, V(θ) can be scaled by a constant without changing the fit of the statistical model; the 150 

only effect of scaling V(θ) by a constant is to change the value of σ2 by 1/constant. When 151 

comparing full and reduced models, it will generally be the case that V( θ̂ f ) ≠ V( θ̂r ); for 152 

example, even for LMMs including the same random effects, V( θ̂ f ) ≠ V( θ̂r ) if removing fixed 153 

effects from the full model changes the estimated variances of the random effects in the reduce 154 

model. Therefore, the calculation of the GLS R2 depends on how V(θ) is scaled. 155 
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 8 

 For LMMs, a natural scaling of V(θ) is to let V(θ) = I + G(θ) where G(θ) is the block-156 

diagonal matrix containing the variances of the random effects divided by the residual variance. 157 

In this case, the MSE in equation 2 is the estimate of the residual variance in a LMM under 158 

maximum likelihood estimation. For phylogenetic models, V(θ) can be scaled by dividing all 159 

elements in the matrix by the sum of the branch lengths of the phylogenetic tree used to derive 160 

V(θ). This standardization means that V( θ̂ f ) and V( θ̂r ) represent the same total amount of 161 

independent phylogenetic divergence, since the rescaled phylogenies have the same total branch 162 

lengths. Standardizing by summed branch lengths is a reasonable convention, and it produces 163 

sensible values of R2. 164 

 For non-Gaussian models, it is necessary to account for the variation introduced by 165 

discrete data. This can be done by defining 166 

 167 

 MSE = 1
n
Y− µ̂( )'A µ̂( )−1/2V θ̂( )

−1
A µ̂( )−1/2 Y− µ̂( )   eqn 4 168 

  169 

where µ̂ = g−1 Xβ̂( )  are the fitted values of µ, and V( θ̂ ) = σ̂2Σ( θ̂ ) + I is estimated when fitting 170 

the model (Schall 1991; Breslow & Clayton 1993; Ives & Helmus 2011). The matrix A has 171 

diagonal elements given by the variance function v(µ) for the link function g(); for example, a 172 

binomial model with a logit link function will have v(µ) = µ(1-µ). Equation 4 can be interpreted 173 

as the MSE for the distribution of e in equation 1, with the residuals transformed to have a 174 

variance of 1. When σ̂2= 0, the model reduces to a GLM, and equation 4 becomes the quasi-175 

likelihood score function that can be used to estimate GLM parameters (McCullagh & Nelder 176 
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 9 

1989). For models for discrete data, V(θ) should be standardized in the same way as for models 177 

for continuous data.  178 

 179 

R2
lr 180 

 For Gaussian models, R2
lr differs from R2

ls only in the scaling of V(θ). If V(θ) is scaled 181 

so that the determinant det(V(θ)) = 1, then the maximum log likelihood is 182 

 183 

 logLik θ̂( ) = − n2 log 2πMSE θ̂( )( )+1( ) . eqn 5 184 

 185 

Substituting into equation 2 then leads to 186 

 187 

 Rlr
2 =1− exp −2

n
logLik θ̂ f( )− logLik θ̂r( )( )⎛

⎝
⎜

⎞

⎠
⎟ . eqn 6 188 

 189 

This definition of R2
lr in terms of likelihoods extends immediately to models for discrete data. 190 

However, for discrete data, equation 6 does not have a maximum of 1, because the maximum 191 

attainable log-likelihood for discrete data is zero. Therefore, Nagelkerke (1991) and Cameron 192 

and Windmeijer (1997) proposed dividing by the maximum attainable value, which is equation 6 193 

with logLik θ̂ f( )  = 0; throughout, I have used this Nagelkerke standardization. The R code in the 194 

supplement computes R2
lr, which is also computed for a range of models in the MuMIn package 195 

of R (Barton 2016). The deviance 2 logLik θ̂ f( )− logLik θ̂r( )( )  is approximately χ2 distributed 196 

with degrees of freedom equal to the number of parameters differing between full and reduced 197 
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 10 

models, and this establishes a direct link between R2
lr and a formal test of goodness-of-fit. Note 198 

that because R2
lr and R2

ls scale V(θ) differently, their values will differ. 199 

 200 

R2
ce 201 

 From a fitted Gaussian model in which V( θ̂ ) is estimated, it is possible to compute the 202 

expected value of each residual assuming that the residuals for the other data points are known. 203 

Specifically, for the general form of equation 3, the expected value of residual zi = yi - ŷi  from 204 

the remaining residuals Z[-i] is 205 

 206 

 ẑi = z +V[i,−i]V
−1
[−i,−i] Z[−i] − z( ) , eqn 7 207 

 208 

where z  is the GLS mean of the residuals, V[i,-i]  is row i of V with column i removed, and V[-i,-i] 209 

is V with row i and column i removed (Petersen & Pedersen 2012). The MSE is then the 210 

variance of the residuals after updating the estimates ŷ : var Y− ŷ+ Ẑ( )( ) . For discrete data, it 211 

would seem natural to use equation 7 with V replaced by A-1/2VA-1/2 as in equation 4; however, 212 

in the simulations performed here, this approach led to occasional values of R2
ce far below zero, 213 

and therefore I used V even for non-Gaussian models. 214 

 215 

Alternative methods 216 

 For LMMs and GLMMs, R2
ls, R2

lr and R2
ce can be compared to R2

glmm given by 217 

Nakagawa and Schielzeth (2013), and for LMMs comparison can also be made to R2
ols that treats 218 

the random effects in the LMM as fixed effects.  219 
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 11 

 From Nakagawa and Schielzeth (2013), the conditional R2 for the model in equation 1 is 220 

 221 

 Rglmm(c)
2 =

σ̂ f
2 + σ̂ l

2

σ̂ f
2 + σ̂ l

2 + σ̂ ε
2 + σ̂ d

2
 eqn 8 222 

 223 

where σ̂ f
2  is calculated from the fixed effects, σ̂ l

2  is calculated from the random effects, σ̂ ε
2  is 224 

the residual variance, and σ̂ d
2  is the distribution-specific variance. This corresponds to the total 225 

R2 that gives the proportion of residual variance explained by the fixed and random effects. For 226 

discrete GLMMs, R2
glmm(c) with this formulation never reaches 1, because σ̂ d

2  is never zero. The 227 

marginal R2
glmm(m) gives the proportion of the variance explained by only the fixed effects and is 228 

given by equation 8 after removing σ̂ l
2  from the numerator. Note that the marginal R2

glmm(m) is 229 

not equivalent to the partial R2 for the fixed effects; a partial R2
 would refit the GLMM without 230 

the fixed effects as a reduced model, giving new variances σ̂ l
2  for the random effects. To give a 231 

comparable measure to R2
glmm(m) for the proportion of the variance explained by the random 232 

effects, I will define R2
glmm(v) as equation 8 after removing σ̂ f

2  from the numerator.  233 

 To calculate OLS R2s, LMMs can be converted to LMs by treating the random effects as 234 

fixed effects; I then applied adjusted partial R2s from OLS to give R2
ols. 235 

 236 

Simulations 237 

 The simulations to explore LMM, PGLS, GLMM, and PLOG from equation 1 all follow 238 

the same strategy. For each, data were simulated when there is only a fixed effect (β1 > 0, θ = 0), 239 

only a random effect (β1 = 0, θ > 0), and when there is both (β1 > 0, θ > 0). For each case, the 240 
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 12 

model parameters were the same for all simulations, so that variation in values of a given R2 241 

among datasets is caused by random sampling from the same statistical process. For example, for 242 

the LMM with β1 > 0 and θ = 0, the model yi = β0 + β1xi + ei with e ~ Gaussian(0, σ2I) was 243 

simulated repeatedly for the same values of β0, β1, and σ2.  244 

 For LMM, data were simulated with the model 245 

 246 

 yi = β0 + β1xi + bui  + φi eqn 9 247 

 248 

where xi follows a Gaussian distribution with mean 0 and variance 1, and the random effect ui 249 

has 10 levels, with b following a normal distribution with mean 0 and variance θ. I selected 250 

parameter values to generate moderate R2 values. When there is a fixed effect, β1 = 1, and when 251 

there is a random effect, θ = 1.5. The variance of the residual term φi is 1. For GLMM data, I 252 

used a binomial (binary) model with logit link function g() having the same structure as the 253 

LMM. Values for the fixed and random effects were β1 = 1.8 and θ = 1.8, and there was no 254 

residual variation, φi = 0. Models were fit using lmer and glmer in the lme4 package of R (Bates 255 

et al. 2014). 256 

 For the PGLS model, to obtain the covariance matrix Σ(θ) in equation 1, I first simulated 257 

random phylogenetic trees using the rtree function of the ape package of R (Paradis, Claude & 258 

Strimmer 2004), standardizing the base-to-tip lengths to be 1. Thus, a different tree was 259 

simulated for each dataset. Under the assumption of Brownian motion (BM) evolution, the 260 

expected covariance in trait values between two tips is given by the height of the most recent 261 

common node (ancestor), and from this it is possible to construct the covariance matrix ΣBM 262 

(Martins & Hansen 1997; Blomberg, Garland & Ives 2003). For PGLS simulations, the strength 263 
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 13 

of phylogenetic signal was varied using Pagel’s lambda transform, Σ(λ) = (1 – λ)I + λΣBM, in 264 

which values of λ = 0 imply no phylogenetic correlations and λ = 1 recovers ΣBM. Values of xi 265 

were simulated under the BM assumption using the rTraitCont function (Paradis, Claude & 266 

Strimmer 2004). Values of the regression coefficient (fixed effect) and phylogenetic signal 267 

(random effect) were β1 = 1.5 and θ = λ = 0.7. The simulated data were fit using penalized 268 

maximum likelihood with the function phylolm assuming a Pagel’s lambda transformation in the 269 

package phyloglm in R (Ho & Ane 2014). 270 

 The PLOG model was similar to the PGLS model. In contrast to the PGLS, however, the 271 

predictor variable xi was assumed to be independently distributed; including phylogenetic signal 272 

in xi caused challenges for model fitting for some simulated datasets, making the simulation 273 

studies difficult. Phylogenetic signal in the residuals ei was controlled by setting Σ(λ) = λΣBM so 274 

that in the absence of phylogenetic signal (λ = 0) the simulations conformed to a simple logistic 275 

regression model. Values of the regression coefficient and phylogenetic signal were β1 = 1.5 and 276 

θ = 2. To simulate binary data, a logit link function was used in equation 1. To obtain maximum 277 

likelihood values, the simulations were fit using a modified version of the function phyloglm (Ho 278 

& Ane 2014) in which Nelder-Mead optimization was used; Nelder-Mead optimization was 279 

more likely to find the maximum likelihood than the built-in optimizer. Fitting with the modified 280 

phyloglm was performed using Firth penalized maximum likelihood, although the regular 281 

maximum likelihoods were used to compute R2
lr. For R2

ls and R2
ce, the simulated data were fit 282 

using binaryPGLMM (Ives & Garland 2014) in the ape package (Paradis, Claude & Strimmer 283 

2004). 284 

 285 

Results 286 
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 The R2s were assessed according to the three properties: (i) their ability to measure 287 

goodness-of-fit as benchmarked by the LLR of full model and the model with only an intercept, 288 

(ii) whether they can partition sources of variation in the model, and (iii) how precise is their 289 

inference about goodness-of-fit. Property (iii) treats the R2s as if they were estimators of 290 

goodness-of-fit and asks how variable are the estimates when applied to repeated simulations 291 

from the same model. R2
ls, R2

lr and R2
ce are applied to all simulations, while R2

glmm can only be 292 

applied to LMMs and GLMMs, and R2
ols is only applied to LMMs. A more comprehensive 293 

treatment is given in the Supplement and figures S1-S12. 294 

 295 

Goodness-of-fit 296 

 Figure 1 plots the total R2s against the corresponding LLR. All R2s were positively 297 

related to the LLR, which is a minimum requirement for an R2. R2
lr shows a monotonic 298 

relationship with LLR, which is necessarily the case due to the definition of R2
lr (eqns 5, 6). For 299 

the remaining R2s, values for a given LLR were generally lower for simulations in which 300 

variation was produced only by the fixed effect (β1 > 0, θ = 0; Fig. 1, blue circles). This implies 301 

that, relative to the LLR, these R2s were attributing less “explained” variance to fixed effects 302 

than random effects.  303 

 For the LMM, R2
ls, R2

glmm and R2
ols were almost identical (Fig. S2). This correspondence 304 

suggests that R2
ls gives an R2 that is comparable to R2

glmm and R2
ols but generalizes to models that 305 

do not have block-diagonal covariance matrices that underlie the random effects in LMMs. Thus, 306 

R2
ls for PGLS is comparable to R2

glmm for LMM. This comparison, however, has to be made with 307 

the caution that R2
ls applied to PGLS requires an assumption about the scaling of the covariance 308 
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matrix V(θ) (eqn 3) which will affect its value. Because R2
lr is based on likelihoods, it gives a 309 

comparison between LMM and PGLS that is not conditional upon scaling decisions. 310 

 All of the R2s other than R2
lr showed greater scatter in their relationships with LLR for 311 

the simulations of binary data (GLMM and PLOG). In part, this is due to the difficulty of 312 

estimating variance parameters θ in binomial models. For example, there is more scatter in R2
glmm 313 

for GLMM simulations than LMM simulations. The scatter seems particularly large for R2
ls 314 

applied to PLOG simulations, although this case requires some technical discussion. For PLOG, 315 

the LLR was obtained from phyloglm using penalized maximum likelihood, whereas the 316 

variance parameter θ was estimated from binaryPGLMM using the pseudo-likelihood. The 317 

penalized ML estimate of phylogenetic signal tended to absorb at zero even when the pseudo-318 

likelihood estimate of θ was positive; therefore, R2
ls

 could be positive even when the LLR was 319 

zero. Comparison between penalized maximum likelihood and pseudo-likelihood estimation for 320 

phylogenetic logistic regression shows that they have similar performances but do not 321 

necessarily give the same conclusions about the presence of phylogenetic signal for the same 322 

dataset (Ives & Garland 2014). This contrast between fitting methods is not the only thing that 323 

underlies the scatter in R2
ls, however, because R2

ce uses the same estimate of θ as R2
ls but has less 324 

scatter. 325 

 326 

Partitioning sources of variation 327 

 The partial R2
ls, R2

lr, and R2
ce were generally able to partition sources of variation 328 

between components of a model, in particular between regression coefficients (fixed effects) and 329 

covariance parameters (random effects). Simulations with β1 > 0 and θ = 0 should have partial 330 

R2s for β1 that are positive and partial R2s for θ that are zero (blue circles, Fig. 2). Simulations 331 
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with β1 = 0 and θ > 0 should have partial R2s for β1 that are zero and partial R2s for θ that are 332 

positive (red triangles, Fig. 2). Simulations with β1 > 0 and θ > 0 should have both partial R2s 333 

positive (black x’s, Fig. 2). Because the values of β1 and θ were the same whether or not the 334 

other was zero, the partial R2s for β1 should be the same for simulations with θ = 0 (blue circles) 335 

as for simulations with θ > 0 (black x's), and the partial R2s for θ should similarly be the same for 336 

β1 = 0 (red triangles) and β1 > 0. Among the R2s, the worst performance was R2
ls applied to 337 

PGLS, in which the partial R2 for β1 differed between the cases of  θ = 0 and θ > 0. All three R2s 338 

shows a lot of scatter for GLMM and PLOG, which in large part is due to the statistical 339 

challenge of estimating regression coefficients and variance parameters from discrete data. This 340 

is seen, for example, in the GLMM and PLOG simulations with β1 > 0 and θ > 0 in which the 341 

partial R2
lr for θ was zero (black x’s); these cases occur when the estimate of θ was zero even 342 

though a non-zero value was used in the simulations.  343 

 The case of R2
glmm is distinct, because rather than use partial R2s, I used the marginal 344 

R2
glmm(m) provided by Nakagawa & Schielzeth (2013) and the comparable R2

glmm(v) for the random 345 

effects. A more appropriate comparison would be with a partial R2
glmm (see Discussion), although 346 

this has not been presented previously in the literature. By construction, R2
glmm(m) and R2

glmm(v) 347 

add up to R2
glmm(c), and this generates the negative correlation between them when β1 > 0 and θ > 348 

0 in the simulations, which is especially visible for the LMM (Fig. 2).  349 

 350 

Inference about underlying process 351 

 To summarize the ability of R2s to infer the fit of the statistical process to the model, I 352 

plotted the mean value with 66% and 95% inclusion intervals for simulated datasets with sample 353 

sizes 40, 60, …, 160 (Fig. 3). For LMM and GLMM, there were 10 levels of the random effect; 354 
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datasets were produced by first simulating 160 samples (16 replicates at each level) and then 355 

randomly removing two replicates at each level to reduce the sample size in steps of 20. For 356 

PGLS and PLOG, each dataset at each sample size was simulated independently. 357 

 For LMM simulations, R2
ls, R2

glmm and R2
ols showed similar patterns (Fig. 3), reflecting 358 

the fact that they give very similar values (Fig. 1, S2). Mean values did not change with sample 359 

size, and there was only moderate increase in variability among simulations with decreasing 360 

sample size. In contrast, mean values of R2
lr and R2

ce decreased with decreasing sample size. For 361 

R2
lr this probably reflects the information that is lost when estimating the model parameters, in 362 

the same way that information (degrees of freedom) is lost in OLS causing the non-adjusted R2
ols 363 

to decrease with sample size. For R2
ce this occurs because smaller sample size decreases the 364 

information available to estimate a residual from the other data points. This can be illustrated 365 

with the reductio ad absurdum case of a sample size of two, in which the best estimate of one 366 

residual is the value of the other residual; this will lead to a negative R2
ce. This happens not only 367 

with a sample size of two, but also when there are only two values at each level of a random 368 

effect in a LMM. In contrast to LMM simulations, the PGLS simulations showed less change in 369 

the means of R2
lr and R2

ce with sample size, presumably because there were more covariances 370 

among samples (i.e., the covariance matrix had more non-zero elements) than in the LMM with 371 

few replicates per level. 372 

 For the GLMM, both R2
ls and R2

glmm had higher variances (less precision) than R2
lr. The 373 

results for R2
ls were actually worse than shown by figure 3, because I omitted occasional values 374 

that were much less than -1. These errant values of R2
ls often occurred when the estimate of the 375 

random effect variance σ̂ l
2  (eqn 8) was very large. These very large estimates of  also caused 376 

errant values of R2
glmm = 1. The greater variation in values of R2

ls and R2
glmm compared to R2

lr 377 

σ̂ l
2
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occurs because R2
ls and R2

glmm depend on estimates of σ̂ l
2  while R2

lr depends on likelihoods. 378 

Thus, R2
ls and R2

glmm are compromised when the estimates of the random effects are poor, as is 379 

particularly the case when sample sizes are small. Even though R2
ce is also calculated using σ̂ l

2 , 380 

it is not as variable as R2
ls and R2

glmm. This is at least in part because the observation-level 381 

variance contained in the matrix A (eqn 4) was ignored when calculating R2
ce. For PLOG, values 382 

of R2
ls were very rarely negative (2/7000 simulations), and the variation in R2

ls was not much 383 

greater than R2
lr and R2

ce (Fig. 3). This is likely because estimates of phylogenetic signal (λ = θ) 384 

were well-bounded, in contrast to σ̂ l
2  in the GLMMs. 385 

 386 

Discussion 387 

 R2
ls, R2

lr, and R2
ce are broadly applicable, easy to implement, and often perform as well or 388 

better than previous methods designed for more specialized cases. Below, I first address their 389 

specific application to the simulation model considered here, and then give general 390 

recommendations. 391 

 392 

Applications to LMM, PGLS, GLMM and PLOG 393 

 For LMMs, all R2s had good performance (Table 1). R2
ls gave very similar values to R2

ols 394 

computed by treating random effects as fixed effects, and this correspondence to familiar and 395 

easily understood OLS argues for using R2
ls. Nonetheless, R2

lr weights the fixed and random 396 

effects according to LLRs, and therefore partitioning the contribution of fixed and random 397 

effects to the total R2 is done in a way that can be directly related to hypothesis tests. R2
ls, R2

lr, 398 

and R2
ce also had good performance for PGLS. While either R2

ls or R2
lr are reasonable choices, 399 
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R2
ce has the advantage of addressing how much of the data is “explained by the phylogeny.” The 400 

disadvantage of R2
ce, however, is that it can be negative for small sample sizes. 401 

 GLMM and PLOG were more problematic, in large part because of challenges estimating 402 

parameters in GLMM and PLOG models. This is not a problem with the R2s per se, but relative 403 

insensitivity of R2s to parameter estimates is an advantage. R2
ls was more sensitive to variation in 404 

parameter estimates than R2
ce, leading to greater variation in R2

ls than R2
ce (Fig. 3). R2

lr was the 405 

most precise, presumably because it uses likelihoods rather than parameter estimates. All three 406 

R2s, however, were dependent on the model fitting to partition between regression coefficients 407 

(fixed effects) and variance parameters (random effects), with considerable scatter produced for 408 

all R2s (Fig. 2). A lesson from these results is that if estimates of variance parameters (random 409 

effects) are poor, then R2s are likely to be of questionable value. 410 

 For LMMs, the conditional R2
glmm(c) gave almost identical values to the total R2

ls and R2
ols 411 

(when the reduced model contained only the intercept). However, instead of partial R2s to 412 

compare with R2
ls and R2

ols, I used the marginal R2
glmm(m) and its counterpart for random effects, 413 

R2
glmm(v). By construction, these add up to the conditional R2

glmm(c), and this necessarily generates 414 

negative association between R2
glmm(m) and R2

glmm(v) when partitioning components of variation in 415 

models (Fig. 2). The conceptual advantage of partial R2s is that they give the improvement in the 416 

fit of the full model relative to the reduced model; they answer "How much better does the model 417 

fit when including this parameter?" It is simple to define a partial R2
glmm for either fixed or 418 

random effects by comparing full and reduced as 419 

  420 

 Rglmm. partial
2 =1−

1− Rglmm(c). full
2

1− Rglmm(c).reduced
2  eqn 10 421 

 422 
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Using this partial R2
glmm also adds flexibility to compare combinations of fixed and random 423 

effects, as well as more-complex random effects such as random slope models (Johnson 2014).  424 

 425 

Recommendations 426 

 An ideal R2 would make it possible to compare among different models and among 427 

different methods used to fit the same model (Kvalseth 1985 properties of a good R2 #4 and #5). 428 

R2
ls and R2

ce can be used for any model and fitting method that estimates the covariance matrix; 429 

for example, they could be used to compare LMMs fit with ML vs. REML, or binary 430 

phylogenetic models fit with ML or quasi-likelihood (binaryPGLMM). Nonetheless, R2
ls and R2

ce 431 

have a disadvantage in terms of generality. For correlated data a decision must be made about 432 

how to weight the covariance matrix V(θ) (eqn 3). The conventions I used for LMMs and PGLS 433 

differed, making in unclear how the R2s from LMM compare to the R2s from PGLS. In contrast, 434 

R2
lr is restricted to models that are fit with ML estimation; however, if ML is used for fitting, 435 

then values of R2
lr can be compared across different types of models. This applies to any type of 436 

data and model fit with ML estimation. 437 

  An ideal R2 should also be intuitive (Kvalseth 1985 property #1). However, intuitive is in 438 

the eye of the beholder. R2
ls is the most similar to R2

ols, which grounds R2
ls in the familiar and 439 

intuitive OLS framework. R2
lr is also related to R2

ols: in LMMs and PGLS, R2
lr only differs from 440 

R2
ls by the way in which the covariance matrix V(θ) (eqn 3) is scaled, and this provides a link 441 

between R2
lr and R2

ols through R2
ls. R2

ce “predicts” the data from covariances estimated in the 442 

model, and therefore could be viewed as the most intuitive way to relate the variance explained 443 

by regression coefficients (fixed effects) to that explained by variance parameters (random 444 
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effects). This said, however, I suspect that different researchers would rank the intuitiveness of 445 

R2
ls, R2

lr, and R2
ce differently. 446 

 R2s are often used as "summary statistics" to describe the fit of a model to data in a way 447 

that does not involve statistical inference about the underlying stochastic process that generated 448 

the data: "How does the model fit these data?" rather than "How much does the model infer 449 

about the process that generated the data?" Should R2s be judged as a summary statistic? I think 450 

not. All the R2s showed high variation among simulations of the same model with the same 451 

parameters, especially when sample sizes were small (Fig. 3). This means that how the model fits 452 

a specific data set involves a lot of chance, and hence one should not get too excited about a high 453 

R2, or too discouraged about a low one. R2s are best treated as inferential statistics, that is, as 454 

functions of a data-generating process that are themselves random variables. As an inferential 455 

statistic, R2
lr outperformed R2

ls and R2
ce – and also R2

glmm – for models with discrete data, since 456 

R2
lr was more precise (less variable). For me, this tips the balance to favor R2

lr over the others. 457 
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Additional Supporting Information may be found in the online version of this article:  516 

Appendix S1. R scripts for computing R2
ls, R2

lr, and R2
ce with examples.  517 

Appendix S2. Text and figures S1-S12 giving a comprehensive discussion of the behaviors of 518 

R2
ls, R2

lr, and R2
ce in the simulations.   519 
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Table 1. Qualitative comparison among four R2s with respect to their performance (i) as 520 

measures of goodness-of-fit relative to the log-likelihood ratio comparing full to reduced models, 521 

(ii) in partitioning explained variance between regression coefficients (fixed effects) and 522 

variance parameters (random effects), and (iii) to infer the fit of the model to data generated by 523 

the same statistical process (given by the variance in R2 values among simulations). Three 524 

qualitative levels imply good (black), acceptable (dark gray), and poor (light gray) performance. 525 

The qualitative comparisons are based only on the simulations in this article and may differ in 526 

other contexts. 527 

  LMM PGLS GLMM PLOG 

R2
ls Goodness-of-fit     

 Partitioning variances     

 Inference     

R2
lr Goodness-of-fit     

 Partitioning variances     

 Inference     

R2
ce Goodness-of-fit     

 Partitioning variances     

 Inference     

R2
glmm Goodness-of-fit  -  - 

 Partitioning variances † - † - 

 Inference  -  - 
† Marginal rather than partial R2

glmm was used; partitioning variances will be more effective with 528 

partial R2
glmm. 529 

- R2
glmm cannot be applied to PGLS and PLOG models  530 
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531 
Fig. 1. Results for LMM, PGLS, GLMM, and PLOG simulations giving R2

ls (eqn 2), R2
lr (eqn 6), 532 

R2
ce (eqn 7), R2

glmm (eqn 8), and R2
ols versus the log likelihood ratio (LLR) between full model 533 

and reduced model containing only an intercept. All simulated data had 100 samples. For LMM, 534 

the simulation model (eqn 9) contained a fixed effect with β1 = 0 or 1, and a random effect ui 535 
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with 10 levels and variance θ = 0 or 1.5. The binomial (binary) GLMM was similar but with β1 = 536 

0 or 1.8, and θ = 0 or 1.8. For PGLS, β1 = 0 or 1.5, and the strength of phylogenetic signal θ = λ 537 

= 0 or 0.7; while for PLOG β1 = 0 or 1.5, and θ = 0 or 2. The LMM was fit using lmer (Bates et 538 

al. 2014); the GLMM was fit using glmer (Bates et al. 2014); the PGLS was fit using phylolm 539 

(Ho & Ane 2014); and for PLOG LLR and R2
lr were fit using a modified version of phyloglm 540 

(Ho & Ane 2014), and R2
ls and R2

ce were fit using binaryPGLMM (Ives & Garland 2014).  541 
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 542 

Fig. 2. Results for LMM, PGLS, GLMM, and PLOG simulations giving partial values of R2
ls, 543 

R2
lr, R2

ce, R2
glmm, and R2

ols. The partial R2 for β1 was calculated using the reduced model in which 544 

θ is removed, and for the partial R2 for θ the reduced model had β1 removed. The simulated data 545 

and fitting methods are the same as in figure 1. For reduced models without variance parameters, 546 

fitting was done using lm and glm. 547 
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 548 

Fig. 3. Results for LMM, PGLS, GLMM, and PLOG simulations showing means, 66% and 95% 549 

inclusion intervals for R2
ls, R2

lr, R2
ce, R2

glmm, and R2
ols versus sample size. For GLMM 1000 550 

datasets were analyzed at each sample size, while 500 datasets were analyzed for the other 551 

models. Parameter values were: LMM, β1 = 1, θ = 1.5; PGLS, β1 = 1.5, θ = 0.7; GLMM, β1 = 1.8, 552 

θ = 1.8; and PLOG, β1 = 1.5, θ = 2. For GLMM, values of R2
ls less than –1 were excluded; these 553 

were 19, 9, 7, 6, 4, 3, and 4 of the 1000 values for sample sizes 40, 60, …, 160. 554 
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