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Abstract

CLARITY is a tissue clearing method, which enables immunostaining and imaging of large volumes for 3D-
reconstruction. The method was initially time-consuming, expensive and relied on electrophoresis to remove
lipids to make the tissue transparent. Since then several improvements and simplifications have emerged,
such as passive clearing (PACT) and methods to improve tissue staining. Here, we review advances and
compare current applications with the aim of highlighting needed improvements as well as aiding selection of
the specific protocol for use in future investigations.
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Introduction

The process of clearing tissue for the purpose of histological analysis has recently become a common tool
in biological investigations. The purpose is to keep the proteins in a structure while removing the light-
scattering lipids, and thus to allow deep penetration of light for fluorescent 3D microscopy. Several clearing
methods have recently been developed.
Here, we focus on the advancement in the procedure called CLARITY (C lear Lipid-exchanged Acrylamide-
hybridized Rigid Imaging/Immunostaining/In situ-hybridization-compatible T issue-hY drogel). It is a con-
venient histological fixation and clearing technique that enables immunohistochemistry (ICH) and mainte-
nance of fluorophores during imaging of large volumes for 3D-reconstruction. The method was developed
by Chung, Gradinaru, Deisseroth & colleagues and relies on the removal of lipids while keeping the protein
and DNA of the tissue by creating a hydrogel by cross-linking with acrylamide (Chung et al., 2013; Chung
and Deisseroth, 2013). Since then several improvements and simplifications have emerged, such as passive
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clearing (PACT), and other adaptations (EDC-CLARITY).
We review advances, and compare current applications and limitations for this methodology, with the aim
of highlighting needed improvements as well as aiding selection of the specific CLARITY or hydrogel-based
protocol for use in future investigations. CLARITY was originally demonstrated on rodent brains, but has
since been successfully applied to other tissues organs and species, e.g. fish and plants. In this review, we
primarily focus on nervous tissue although the protocols work for other tissues as well.

The original CLARITY method

CLARITY works by polymerising proteins, DNA, and RNA in fixed tissue using acrylamide to form a
tissue-hydrogel hybrid before lipid-removal. The acrylamide based hydrogel binds molecules with amine
ends, predominantly proteins and a small proportion of DNA and RNA, into a skeleton structure, which
is permeable to larger molecules. The lipids are then encapsulated into micelles using detergent (sodium
dodecyl sulfate, SDS). The micelles are electrically charged and can therefore easily be carried out through
the pores by an applied electrical field. Antibodies for immunohistochemistry (ICH) can also penetrate the
hydrogel to reach and stain the fixed membrane proteins. The original protocol was first demonstrated on
whole adult mice brains and can be summarised in the following steps:

1. Fixation of tissue. The animal is transcardially perfused with a mixture of 4% (w/v) paraformalde-
hyde (PFA), 4% (w/v) acrylamide, 0.05% (w/v) bis-acrylamide, 0.25% (w/v) VA-044 and in phosphate-
bu↵ered saline (PBS), and the brain is removed and incubated in the same solution for 3 days.

2. Hydrogel formation. A 3-hour heat activation at 37°C for the thermal initiator, VA-044, results in
the polymerisation of the acrylamide and bis-acrylamide to the PFA-fixed tissue.

3. Lipid extraction. Tissue clearing, or lipid removal, is accomplished by incubating the tissue in a
sodium borate bu↵er (0.2 M, pH 8.5) containing 4% (w/v) SDS in a custom-designed electrophoretic
chamber. The basic pH leads to negatively charged micelles, which pass trough the porous hydrogel
by electrophoresis using a 10-60V current applied across the sample at 37-50°C for two days.

4. Refractive index matching. The tissue is washed in PBS for two days to remove SDS. The tissue-
hydrogel has a refractive index (RI) of 1.44-1.46. The tissue is incubated with a proprietary imaging
solution, FocusClear (CelExplorer Labs Co.), with a similar RI of 1.454 to increase transparency.

The novelty in the CLARITY method is the second step since utilization of a hydrogel had a clear benefit
compared with other methods. Even using the harsh 4% SDS for a week, the cleared tissue had only 8%
protein loss. For comparison, in PFA-fixed tissue in 4% SDS, without the hydrogel up to 65% protein was
lost. Similar protein loss is observed using other clearing methods without a hydrogel, such as Sca/e, which
uses urea and glycerol (Hama et al., 2011). The e↵ective retention of proteins and antigens also enabled
repetitive staining, where antibodies could be washed out briefly in 4% SDS and restained.
However, the step of lipid extraction had several limitations: active clearing with electrophoresis required a
custom-designed chamber with a continuous exchange of SDS solution. The electrical current, if not properly
controlled, can decompose or discolour the tissue. Thus, since the original CLARITY method both required
expensive elements in step 4 such as the RIMS medium (FocusClear) and was di�cult to implement, a
potential for improvement presented itself. Several labs have employed a more simple version of CLARITY
without electrophoresis, which is the passive CLARITY clearing. The need for cheaper refractive index
imaging solutions than the original (FocusClear) has also become apparent. First, we will address the
general challenges in tissue clearing.

“
CLARITY in its original form used electrophoretic tissue clearing (ETC) to extract lipids from large
samples, which can be challenging to implement and can cause variability in final tissue quality, including
epitope loss, damage to fine processes, and tissue browning due to heating (Lee et al., 2014).
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General challenges

There are several issues to consider when clearing tissue. Processing time, the number of procedural steps,
the toxicity of reagents, signal and bleaching of fluorophores and the required concentration of primary
and secondary antibodies, which are usually expensive and therefore beneficial to reduce. E�ciency in the
extraction of lipids from the hydrogel, i.e. how much of the original lipids remain and how much time does the
procedure require. Successful extraction of lipids is usually manifested in the transparency of the sample and
the incubation time is often adjusted by the investigator for the sample to achieve the appropriate properties.
Although the tissue transparency has been attributed to the removal of lipids during the procedure, it is
still unknown to what extent the lipids are cleared from the sample and how much remains in transparent
samples. This is contrary to the degree of protein loss, which has been quantified (Chung et al., 2013; Lai
et al., 2016).
A major challenge introduced by clarified tissue samples is the imaging technology followed by the data
analysis. Using conventional single photon laser scanning confocal microscopy, vast areas of the sample
become unnecessarily illuminated, which introduces photobleaching of the fluorophores as a general issue.
Photo-bleaching is potentially devastating in samples with a weak fluorescent signal, such as in Brainbow
tissue (Cai et al., 2013).
For the same reason, it is important to limit the protein loss during storage of CLARITY samples. A novel
imaging technology overcomes this issue by selectively only illuminating a single thin plane in a sequential
manner. This technique is known as light-sheet microscopy, which can give a high rate of data acquisition of
high contrast and resolution, and with very limited exposure to the rest of the sample (Stefaniuk et al., 2016).
Light-sheet microscopy is remarkably faster than traditional single- or two-photon laser scanning microscopy.
Several variants of light-sheet microscopy are commercially available, but they are not inexpensive and will
represent a major investment to most laboratories. Another issue to consider is the price of the equipment
and protocol compounds. The equipment necessary to set up active CLARITY with electrophoresis is
approximately 6,800 USD. FocusClear is the originally recommended imaging media, which is expensive, but
other less expensive alternative exist such as RIMS, sRIMS and glycerol.
It is also important to consider that acrylamide, the primary component in the formation of the hydrogel,
is a carcinogenic compound and is on the U.S. federally regulated list of ’extremely hazardous substances’.
Finding a less toxic alternative is therefore appealing. An acrylamide-free procedure with fewer steps has
been suggested that the SDS alone can extract the lipids without the need for the toxic hydrogel (Lai et al.,
2016).

Based on these issues, we have composed a list of improvements in the CLARITY protocol below.

Variants and improvements of CLARITY

The steps of the CLARITY procedure including staining and imaging is summarized as follows: 1) Tissue
fixation and cutting, 2) Hydrogel polymerization, 3) Passive or active lipid removal, 4) Staining, 5) Optical
clearing, 6) Imaging (figure 1). Here we summarize the improvements in these steps. A list of variants of
the CLARITY improvements are found in table 3.

Figure 1: Steps in the CLARITY procedure including challenges and considerations.

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 12, 2017. ; https://doi.org/10.1101/144378doi: bioRxiv preprint 

https://doi.org/10.1101/144378
http://creativecommons.org/licenses/by/4.0/


1. Tissue fixation and cutting

Tissue fixation is the initial step in practically all histology as well as CLARITY. The original protocol
prescribes the animal to be transcardially perfused with 4% PFA together with the acrylamide monomers
and activator VA-044, and the nervous tissue further incubated in the same solution for 3 days (Chung
et al., 2013). In the following published protocol, the incubation was shortened to 1 day (Tomer et al.,
2014). However, fixation with 4% PFA alone was later demonstrated as su�cient for the subsequent cross-
linking and hydrogel polymerization if the tissue was just incubated in the monomer solution afterwards
(Costantini et al., 2015; Lee et al., 2014; Zheng and Rinaman, 2016; Jensen and Berg, 2016). Transcardial
perfusion of PBS to remove blood followed by the fixative or monomer solution is preferable. However, for
some purposes just fixing the excised tissue, which has not been perfused, e.g. human tissue, overnight in 4%
PFA in PBS is su�cient. Trimming the tissue down to the minimal required volume speeds up clearing and
staining. Smaller tissue volume also results in less light scattering and clearer imaging. This can be done
by embedding the tissue in low melting agar and cutting the tissue down to the most practical form e.g. a
hemisphere, 1-2 mm slices or sections on a vibratome. Slicing the tissue after the hydrogel formation (step
2) is not recommended since the hydrogel swells to a sticky mass and is di�cult to cut accurately, besides
being carcinogenic. We recommend cutting before incubation and the polymerisation step.

2. Hydrogel polymerization and composition

Warning! Acrylamide is carcinogenic and should be handled with great care. After fixation, the tissue needs
to be cross-linked and hybridised into a hydrogel by the acrylamide monomers to stabilise biomolecules and
retain them during tissue clearing. The purpose is to achieve a fast and homogeneous clearing process, with
good antibody penetration depth and retaining the desired antigens (protein). PFA fixes the tissue and
supposedly acts as an anchor point for the acrylamide monomers to polymerise into a mesh. After removal
of lipids the proteins are left in a hydrogel (step 3).
The original hydrogel monomer solution (4% PFA, 4% acrylamide, 0.05% bis-acrylamide) was optimized to
provide a balance between hydrogel rigidity and porosity with minimal protein loss (⇠8% when cleared in
a 4% SDS borate bu↵er) after ETC clearing (Chung et al., 2013). However, solution adjustments may be
useful for applying CLARITY to certain kinds of tissues and passive and active clearing.
While an emphasis has been put on optimising the hydrogel composition for passive clearing, the modifi-
cations in the hydrogel composition are applicable to both passive and active clearing by electrophoresis.
The hydrogel presented in the PACT method (the A4P0 composition) is the current default in for passive
clearing, but it is also applied in active clearing with the ACT-PRESTO protocol. Others have used 2%PFA
and 2% acrylamide for active clearing (Bastrup and Larsen, 2017). The variations in the hydrogel monomer
solution are therefore presented here before addressing the lipid extraction step.

PACT and PARS

Yang et al. (2014) focused on developing a simple version of CLARITY based purely on the passive removal
of lipids, i.e. passive clearing. They tested several hydrogel compositions and SDS concentrations leading to
an improved protocol named PACT (passive CLARITY technique) protocol. They had three main findings:
First, omitting PFA in the monomer solution did not change the degree of protein loss, but did increase IgG
penetration depth i.e. better antibody labelling. Second, omitting PFA leads to faster transparency, but
also a greater tissue swelling (⇠230%), yet the swelling is transient, and may improve staining by making
the tissue more porous. Finally, lower acrylamide concentration (i.e. 2%) leads to less cross-linking and less
solid tissue, this in turns results in faster clearing, but also greater tissue swelling and protein loss. Hence,
they concluded that 4% acrylamide, which they referred to as A4P0 solution, is optimal for nervous tissue
and other tissues e.g. liver and kidney.

While A4P0 was optimised for passive clearing, the recipe is also used in active clearing (Lee et al., 2016).
Rather than tissue incubation in the monomer solutions, the PACT reagents can be delivered either via
the vasculature (intracardial injection) or intracranially by injection into the cisterna magna or a subdural
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cannula above the olfactory bulb to achieve whole body or CNS clearing and labelling. The technique is
termed PARS (Perfusion-assisted Agent Release in S itu). The PACT reagents used in PARS are recirculated
into the cerebrospinal fluid (CSF) or through the whole-body vasculature for several days-to-weeks in closed-
loop perfusion system mimicking regular blood flow allowing for clearing and staining deep in the tissue
(Tomer et al., 2014). PARS does not change the speed of tissue clearing of the brain or internal organs
(Woo et al., 2016), table 2. The PARS delivery system can be combined with other of the below methods
if needed. In summary, PACT/PARS is a radical improvement since they provide a simpler recipe, which
also gives a faster clearing with better antibody staining.

psPACT

psPACT (processes separate PACT) enhanced the clearing speed by splitting the monomer incubation
into separate processes before polymerisation: an initial 24 hr incubation at 37oC in acrylamide solution
(4% w/v in PBS), followed by a 6-12 hr incubation at room temperature in VA-044 initiator solution (0.25%
w/v in PBS) for the hydrogel formation. This protocol shortens the subsequent clearing time by ⇠10% (Woo
et al., 2016). A comparison of protein loss with the PACT method has not yet been performed.

ePACT

ePACT (expansion-enhanced PACT) is used to expand thin tissue sections (100µm) to larger volumes for
better resolution and resolution beyond the di↵raction limit (Treweek et al., 2015). The hydrogel is composed
of an acrylate-acrylamide copolymer and cleared with 10% SDS, where IHC such be done prior, and then
digested with collagenase before incubation in water, which results in water absorption and tissue expansion.

FASTClear

In CLARITY protocols proteins are assumed to be fixed to an acrylamide sca↵old via PFA, whereas lipids
are washed out by the amphiphilic SDS-micelles. Nevertheless, Lai et al. (2016) demonstrated an acrylamide-
free version of CLARITY, where the tissue is essentially only washing with SDS followed by RIMS, gave
better results for formalin-fixed tissue. Therefore Lai et al. (2016) suggested that the tissue–PFA–acrylamide
cross-linking does not actually occur, and therefore omitting acrylamide-polymerisation is not only easier,
but also better. Hence, they developed a Free of acrylamide SDS-based tissue-clearing (FASTClear) protocol
(Liu et al., 2016).

Other modifications

It is worth noting that the PACT protocol also omits bis-acrylamide, which acts as a secondary cross-linker,
and therefore does not link the PFA-tagged biomolecules, but rather directly cross-links poly-acrylamide
chains to form the gel. Therefore Bis-acrylamide increases the rigidity of the hydrogel network by creating
cross-links inside cavities that may be void or sparse of biomolecules such as the ventricles. Bis-acrylamide
also causes all the hydrogel solution surrounding the tissue sample to cross-link and form a gel during the
polymerization step, which is a helpful aid in determining successful polymerisation. The surrounding gel
can easily be removed manually from the tissue by physical rubbing/handling. Without bis-acrylamide and
the gel formation outside the tissue, the sample can simply be removed from the solution following the
polymerization step and is therefore recommended for small or fragile specimens that cannot withstand the
physical gel removal process.

The incubation time of the tissue in monomer solution before polymerisation varies among authors with 1-3
days of incubation for a whole rodent brain, while for 1-2 mm slices overnight is su�cient. Saponin is a mild
non-ionic surfactant often used to permeabilise cellular membranes in conventional histology. It was briefly
mentioned by Chung and Deisseroth (2013) as an adjunct in the monomer solution to improve di↵usion of
the hydrogel monomer and initiator into tissues, where cardiac perfusion is not possible e.g. post-mortem
human tissues and zebrafish brains. Saponin reportedly shortens the incubation time required in the hydro-
gel monomer infusion process. However, saponin may cause bubbles, and therefore it is not recommended
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and red has only been reported utilised in a study of ovarian follicles (Feng et al., 2017). In zebrafish adding
dimethyl sulfoxide (DMSO) improves monomer penetration.
Another challenge for users has been initiating the polymerisation, which is inhibited by oxygen. The original
CLARITY protocol, therefore, involved a vacuum desiccation chamber(Chung et al., 2013). While Yang et al.
(2014) demonstrated it was su�cient to displace the oxygen from the solution by bubbling for ⇠10 min with
Nitrogen gas before initiation. Some users have found it su�cient to prevent aeration by sealing the monomer
solution o↵ by placing a layer of vegetable oil on top in the test tube (forum.claritytechniques.org), yet
others simply filled the tube entirely with the monomer solution to minimise inhibitory e↵ects of the oxygen
(Bastrup and Larsen, 2017). Another method simply uses double the concentration of the initiator, VA-044,
which eliminates any vacuum purging or nitrogen backfilling. This method is called ’simplified CLARITY
method’ (or SCM), but was only tested on thin sections, of 100 µm (Sung et al., 2016).

3. Lipid removal

Since membrane lipids are the main cause of light di↵raction in tissues and comprise ⇠60% of nervous tissue,
lipid elution renders the tissue translucent. Temperature and solutions a↵ect lipid clearing: speed, uniformity
and protein loss. The original CLARITY protocol used a 4% SDS (sodium borate bu↵er, pH 8.5) intended
for active clearing by electrophoresis (see below). Tissue clearing can be passive where lipids captured in
detergent micelles slowly di↵use out of the tissue into the wash solution or active at an accelerated rate by
applying an electric field (figure 2). In a study comparing active and passive CLARITY, there were no
significant di↵erences in protein concentration as an e↵ect of active versus passive clearing (Epp et al., 2015).

Passive lipid removal

Passive clearing without electrophoresis is gentle on the tissue with little risk of damage. The clearing lasts
longer, which can reduce the signal from fluorescent proteins and increase the loss of biomolecules. It is
inexpensive and requires little equipment. A simplified di↵usion-based method omitting the electrophoretic
chamber, coined CLARITY2, to clarify <1.5 mm thick slices was proposed by Poguzhelskaya et al. (2014) .

PACT

Yang et al. (2014) optimised the hydrogel composition for passive clearing and also tested several SDS
concentrations leading to the improved PACT protocol. They found that 8% SDS (in PBS bu↵er, pH 7.5)
gave a faster and more uniform tissue clearing compared to 4% SDS, 20% SDS and 10% sodium deoxycholate.
For this reason, PACT has become the default passive CLARITY protocol. There is no significant di↵erence
in the swelling and shrinking behaviour of passively cleared rodent gut tissue with CLARITY or PACT
solution, nor a di↵erence in clearing time (Neckel et al., 2016).

mPACT

Woo et al. (2016) was inspired by the SeeDB method (Ke et al., 2013) and added 0.5% ↵-thioglycerol to
the PACT clearing solution, which improved clearing time with ⇠10%. They named it psPACT (process–
seperated PACT) with added ↵-thioglycerol mPACT (modified PACT). The mPACT gives a combined
⇠25% faster clearing compared with regular PACT on most tissues (table 2). The e↵ect of ↵-thioglycerol
on protein loss has not been reported, but any protein loss is unlikely to have an adverse e↵ect. On the
contrary, since ↵-thioglycerol preserves proteins by counteracting the Maillard reaction, i.e. browning of the
specimen, autofluorescence and antigen loss is likely to be minimal.

Temperature and speed

Tissue clearing is often performed at room temperature (RT) or 37°C. Generally, increasing temperature
accelerates clearing and imaging depths but at the risk of damage to the tissue and quenching fluorescent
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Figure 2: CLARITY tissue clearing: passive and active.
The hydrogel-tissue hybrid is formed (left) by an incubation in the acrylamide monomer solution with the
initiator VA-044. Polymerization is activated by heat. Afterwards, the lipids can either be cleared from the
tissue by passive (top) or active (bottom) methods. The detergent, SDS, collects lipids and carries them
out of the tissue leaving behind a transparent hydrogel-tissue hybrid. Passive tissue clearing, PACT (top),
is straightforward and inexpensive, but also a slower process as it relies on di↵usion, which is enhanced by
gentle shaking and an elevation of temperature. During this process the tissue absorbs water and expands in
volume up to ⇠200%, which improves the access of antibodies and thus the staining. The swelling is reversed
in the hygroscopic medium (right). The alternative method of tissue clearing requires more equipment and
supervision as it uses electrophoresis (bottom). The negatively charged lipid micelles are actively carried by
the electrical field, which greatly enhance the extraction rate. In the final step of optically clearing the tissue
(right) the hydrogel is incubated overnight in a refractive index matching medium to complete transparency.

proteins. For instance, passively clearing of 1 mm cortical sections takes ⇠48 hours at 37°C compared to
⇠12 hours at 57°C (Yu et al., 2017). Yu et al. (2017) found that an elevated temperature range of 42-
47°C for PACT resulted in faster transparency and deeper imaging depth than 37°C without a↵ecting the
fluorescence signal. There is reportedly no significant di↵erence in protein loss at higher temperatures such
as 55°C compared to 37°C (Epp et al., 2015).

Passive clearing can be improved by gentle shaking, continuously replacing the clearing solution (figure
2) or with a flow-assisted clearing setup with a circulator. An alternative setup without a circulator is
using a 50 ml conical tube perforated with several holes at the 15-20 ml mark and at the bottom of the
tube, which is inserted into a 250 ml glass bottle filled with clearing solution. Unidirectional flow is created
by using a magnetic stir bar on a stirring hot plate to accelerate the clearing at the desired temperature
(capture-clarity.org/optimized-clarity). The clearing time of various tissues and protocols are listed
in table 2.

Active lipid removal by electrophoresis

Tissue is composed of di↵erent types of lipids primarily fatty acids and phospholipids. The detergent, SDS,
captures the lipids in SDS micelles. The micelles are negatively charged at basic pH (7.5–8.5) and carries the
lipids along the electric field. This electrophoretic tissue-clearing (ETC) enhances the speed of extraction
by orders of magnitude such that a large tissue sample e.g. a mouse brain becomes transparent a matter
of hours to days instead of days to weeks during passive clearing (Tomer et al., 2014). Lipid clearing using
ETC is faster and therefore results in less tissue swelling compared with passive clearing.

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 12, 2017. ; https://doi.org/10.1101/144378doi: bioRxiv preprint 

capture-clarity.org/optimized-clarity
https://doi.org/10.1101/144378
http://creativecommons.org/licenses/by/4.0/


The ECT system should have three elements: 1) The chamber containing the sample and electrodes. 2) A
circulator, which controls flow rate and temperature. This can be a simple pump and a liquid reservoir that
serves to remove electrophoretic by-products such as acid, bubbles and heat. 3) A bu↵er filter to filter out
larger particles in the clearing solution.

There are, however, important caveats to consider when using ETC. If the electrical field is too strong, small
bubbles will form inside the hydrogel and make the hydrogel opaque, while bigger bubbles may rupture
hydrogel (Kim et al., 2015). Keeping the voltage small enough to avoid this issue, ETC is a helpful step
in clearing the sample. The electric field is recommended to be applied as a low–voltage constant current
generator of 250-280 mA to ensure low voltage field (10-40V ). Such a field will avoid electrolysis of water
in the liquid and formation of bubbles (Lee et al., 2014). Running ETC at higher temperatures (55°C)
produces very clear tissue, but the tissue tends to lose structural integrity (Epp et al., 2015). Lowering the
temperature ⇠15°C to counteract Joule–heating is also recommended (Kim et al., 2015). Practically the
tissue sample is placed in a custom-designed electrophoretic chamber with platinum electrodes as well as
drainage and access of liquid (Tomer et al., 2014; Lee et al., 2016). The original CLARITY chamber had wire
electrodes with a surface area of 314mm2, which could clear a mouse brain in 5-16 days, whereas electrode
plates with a greater surface area of 1200mm2 as in ACT gives faster clearing (whole mouse brain and other
organs within 24 hrs, table 2) and less tissue damage (Lee et al., 2016).

Another caveat of ECT is the flux of lipids is in one direction along the field, which means that the central
parts, as well as the parts along borders in parallel with the field, will not have extraction lipids in the
same degree as the perpendicular parts. As a result, there is a non-even lipid–extraction and penetration
of antibodies when using ECT for ICH. A solution to this problem is, rather than using a static field, to
change the direction of the electric field over time, e.g. by rotating the direction. Such rotational electrical
field enhances the stochastic electro-di↵usion, which enhances lipid extraction as well as staining of large
and dense tissue with nuclei dyes, proteins, antibodies (Kim et al., 2015). The two-chamber design with the
rotational electrical field can clear mice brains and other organs within 3 days (table 2).

While most chamber designs are freely and commercially available, setting up ETC can be expensive. 3D–
printing of shared designs may significantly reduces costs for experimenters and allow for organ-specific
designs (Sulkin et al., 2013; Miller and Rothstein, 2017); e.g. a tissue cutting matrix (Tyson et al., 2015)
and imaging chambers (idisco.info/idisco-protocol). An overview of the three ECT approaches and
where to find free designs and commercial ETC chambers are summarised (table 1).

Table 1: Active lipid removal using electrophoretic tissue clearing (ETC): protocols and cham-
bers.
Protocol Electrodes Speed and Time to clear Freely available protocol Commercial

and field tissue damage a mouse brain and chamber blueprints options
CLARITY Wire-electrodes; (+) Linear with V

15–16 days
Chung et al. (2013); Tomer et al. (2014)

unidirectional field Discolouration and Bastrup and Larsen (2017)
(10-30V ;280mA) tissue damage wiki.claritytechniques.org

ACT Large sufrace plate-electrodes; (+++) Linear with V
6 hours Lee et al. (2016)

X-CLARITY
unidirectional field (1.5A) Less tissue damage (Logos Biosystems)

Stochastic Wire-electrodes; (++) Quadratic with V
3 days

Sylwestrak et al. (2016) and SmartClear I & II
Electrotransport* rotating field (10-100V ) Least tissue damage www.chunglabresources.com (LifeCanvas Tech)
*The Stocastic Electrotransport system can also be used to rapidly deliver dyes or antibodies into the tissue during staining.

Loss of fluorescent proteins and antigens

Many investigations employ viral tracers to induce fluorescent protein expression in specific neuronal pop-
ulations (figure 3a). However, the fluorescent proteins are vulnerable to over-fixation, denaturation and
elution with subsequent signal loss and the fluorescence may require amplification. Another common tool
is to image fluorescent reporters such as green– or yellow fluorescent proteins (GFP or YFP), which are
expressed exclusively in a specific neuronal population e.g. dopaminergic neurons or parva-albuminergic
neurons in transgenic animals (figure 3b). In 1 mm brain slices with genetically expressed GFP, when
cleared by passive CLARITY, tissue transparency reaches a plateau after 5 days, while the fraction of GFP
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remaining in the tissue decreases rapidly during clearing (Magliaro et al., 2016), demonstrating a trade-o↵
between transparency and protein retention. Antigens and fluorescent proteins are lost during tissue clear-
ing. The optimal clearing is the shortest duration with the best ratio of transparency and protein retention.
Magliaro et al. (2016) measured transparency with a regular digital camera and they measured antigen and
fluorescent protein loss into the clearing solution with a fluorescent plate reader or a spectrophotometer.

Table 2: Clearing times for organs and tissues using various protocols. Note that the clearing time
do not have a single definition across studies, but is an indication the time to reach su�cient transparency.
Organs are whole unless otherwise noted.

Animal Organ Size Clearing Clearing Reference
Protocol time (days)

Mice Brain 1 mm ACT 2 hrs Lee et al. (2016)
1 mm PACT (4% A, 0.05% B) 4 Jensen and Berg (2016)
2 mm Active CLARITY (2% PFA, 2% A) 2 Bastrup and Larsen (2017)
3 mm ACT 4 hrs Lee et al. (2016)
3 mm Active CLARITY 3 Lee et al. (2014)
whole ACT 6 hrs Lee et al. (2014)
whole Stocastic Electrotransport 3 Kim et al. (2015)
whole Active CLARITY (4 d at 37°C, 1 d at 55°C) 5 Epp et al. (2015)
whole Active CLARITY 12–16 Lee et al. (2014)

Brain & spinal cord whole mPACT 14 Woo et al. (2016)
whole PACT 23 Woo et al. (2016)

Bone Bone CLARITY 21 Greenbaum et al. (2017)
Embryos mPACT 3 Woo et al. (2016)
Heart mPACT 15 Woo et al. (2016)

Stocastic Electrotransport 3 Kim et al. (2015)
Intestine ACT 3 hrs Lee et al. (2014)

Active CLARITY 8–12 Lee et al. (2014)
Passive CLARITY 12–14 Neckel et al. (2016)
PACT 12–14 Neckel et al. (2016)
mPACT 15 Woo et al. (2016)
PACT 21 Woo et al. (2016)
Stocastic Electrotransport 1 Kim et al. (2015)

Kidney ACT 1 Lee et al. (2016)
Active CLARITY 8–12 Lee et al. (2014)
Stocastic Electrotransport 3 Kim et al. (2015)

Liver ACT 1 Lee et al. (2016)
Active CLARITY 18–22 Lee et al. (2014)
PACT 22 Woo et al. (2016)

Lung ACT 5 hrs Lee et al. (2016)
Active CLARITY 13–17 Lee et al. (2014)
mPACT 14 Woo et al. (2016)
PACT 18 Woo et al. (2016)
Stocastic Electrotransport 3 Kim et al. (2015)

Pancreas Active CLARITY 8–12 Lee et al. (2014)
mPACT 17 Woo et al. (2016)
PACT 17 Woo et al. (2016)

Rat Brain hemisphere ACT 8 hrs Lee et al. (2016)
4 mm mPACT 5 Woo et al. (2016)
4 mm psPACT 7 Woo et al. (2016)
4 mm PACT 10 Woo et al. (2016)

Spinal cord section 4 mm PACT (4% A, 0.05% B) 6 Jensen and Berg (2016)
Brain & spinal cord whole mPACT or PARS-mPACT 21 Woo et al. (2016)
Heart PARS-mPACT 16 Woo et al. (2016)
Kidney mPACT or PARS-mPACT 23 Woo et al. (2016)

PARS-PACT 23 Woo et al. (2016)
Liver PARS-mPACT 23 Woo et al. (2016)
Lung PARS-mPACT 18 Woo et al. (2016)
Pancreas mPACT or PARS-mPACT 15 Woo et al. (2016)
Spleen mPACT or PARS-mPACT 19 Woo et al. (2016)

Zebrafish Whole adult fish ACT 6 hrs Lee et al. (2016)
PACT (1% A, 0.05% B) 5 Cronan et al. (2015)
PACT (4% A, 0.05% B) 30+ Cronan et al. (2015)

*A: acrylamide, B: bis-acrylamide
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Figure 3: Applications of CLARITY. CLARITY can be used in various purposes. a) Whole field imaging
combined with deep tissue imaging (inset) using low magnification (10×) air objects and image stitching.
Cell nuclei stained (DAPI: white/blue)of a mid–sagittal mouse brain slice (thickness 2 mm). Low resolution
imaging was used to achieve an quick overview of a slab of CLARITY tissue (⇠1 min). Viral injected
neurons expressing ChR2-YFP in ventral tegmental area was visualised (green). YFP amplified by IHC
with a YFP targeting GFP conjugated antibody) (Navntoft, 2015). b) Endogenous expression of yellow
fluorescent protein conjugated with channel-rhodopsin-2 (ChR2-YFP) in PV–cells of a CLARITY–treated
cortical slice from a transgenic mouse are visible without need of IHC. The neurites (downward arrow) and
membranes of the soma (upward arrow). Objective: standard 20× air. Depth ⇠300 µm at the maximum of
the working distance of 0.55 mm in the 1 mm thick slice. c) The lateral ventricle choroid plexus of mouse
reconstructed in 3D after CLARITY and DAPI staining. d) Single neuron staining with biocytin following
electrophysiology. Biocytin was injected intracellularly during recording from a motoneuron of the adult
turtle spinal cord (Petersen et al., 2014). The neuron was located in a 300 µm slice and 3D–reconstructed
with a maximum intensity projection of Z (blue), X (red) and Y (green) plans of the 65 confocal images (Z=66
µm) to reveal the morphology of the soma and dendrites. a-d) Tissues were PACT–cleared and imaged in
RIMS using a confocal microscope (Zeiss, LSM 700 or 710) with standard 10× or 20× air objectives (Jensen
and Berg, 2016).
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4. Staining

The main feature of CLARITY is the ability to combine large volume tissue clearing with molecular pheno-
typing by IHC and other staining methods. Multiple rounds of staining are possible without damage to the
preserved structure since the innate biomolecules are chemically bound in the tissue-hydrogel. The tissue
clearing solution containing detergent (SDS) can be used to denature antibodies, disrupt binding, and wash
antibodies and other molecular labels out of the hydrogel-embedded tissue as preparation for addition rounds
of staining. The procedure is simply: incubate overnight with shaking in PBST at 20-40°C, then incubate
overnight with shaking in clearing solution at 60°C to wash out antibodies, finally incubate overnight with
shaking in PBST at 20-40°C to wash out SDS before next round of IHC and imaging (Tomer et al., 2014).
However, there were several shortcomings in this protocol e.g. slow staining, incompatible with lipid dyes
and poor retention of RNA, which have since been improved.

Passive versus active staining

Similar to the clearing of lipids, the application of antibodies for IHC can be performed either passively by
di↵usion or actively with the assistance of an electrical field or other means. Two of the main challenges
in staining are proper uniformity and depth and the penetration of antibodies is relying on di↵usion. The
slow rate of penetration within the hydrogel is a time–limiting factor in processing samples and thick tissues
require weeks to months to adequately label. Increasing the pore size of the hydrogel can be accomplished
by reducing acrylamide concentration, but this has limited e↵ect on di↵usion speed. The speed is dependent
on the molecular weight of the dye or antibody. When choosing a small dye, e.g. DAPI (0.28 kDa), a thick
CLARITY-treated tissue can be stained reliably overnight (figure 3a–c), (Jensen and Berg, 2016), whereas
staining with heavier antibodies (150 kDa) can take days to weeks. The time of penetration using di↵usion
can be reduced by half by using smaller antibody fragments such as F(ab’)2 (110 kDa) and Fab (50kDa)) (Li
et al., 2015). Another approach to improve antibody staining is using high antibody concentrations or two
primary antibodies for a single target, which improved staining speed and quality of parvalbumin-expressing
neurons (Bastrup and Larsen, 2017).

The PARS method to clear the tissue can also be used as an active staining method where the staining
solution is delivered via the vasculature route mimicking blood flow to reach the whole body and all areas of
the tissues to increase speed and penetration depth. If only staining of the brain or CNS is desired delivery
by a subdural cannulation directly above the olfactory bulb or in the cisterna magna is more e↵ective.

An initial report demonstrated how an electrophoretically-driven approach could decrease the delivery time
of antibodies by taking advantage of their net charge. A static and unidirectional 25V electric field increased
antibody penetration by more than 800-fold compared to simple di↵usion (Li et al., 2015). Nevertheless, Kim
et al. (2015) found that static electrophoresis resulted in substantial tissue damage, similar to the problems
with ETC when clearing lipids (see above). An alternative strategy was proposed by the Chung group, which
is based on stochastic electrotransport. The method briefly appeared under the name eTANGO (Richardson
and Lichtman, 2015; Hubbert et al., 2014). A rotational electric field selectively dispersed charged molecules
without interfering with the endogenous biomolecules. Fluorescent dyes, proteins, and antibodies of di↵erent
sizes (70-2,000 kDa) was tested using stochastic transport and all gave rapid homogeneous staining of whole
brains within a day (Kim et al., 2015).

The benefit of the stochastic electrical field is the more rapid penetration, since speed scales quadratically
with the current, and therefore requires a smaller current for the same speed. Hence, the tissue damage
is likely to be smaller than for static fields. A static electrical field also has rapid penetration, where
the speed scales linearly with the current, but this requires a slightly stronger field for same speed and is
therefore more likely to cause damage to the tissue. The main challenge in stochastic electrotransport is
building the chamber and bu↵er flow system. The design is available (www.chunglabresources.com) and
a commercial option is expected soon from LifeCanvas Technologies (www.lifecanvastech.com). Lee et al.
(2016) demonstrated a simpler and cheaper method based on applying pressure to increase the speed and
depth of dyes and antibodies penetration into the tissue, which they coined PRESTO (Pressure-Related

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 12, 2017. ; https://doi.org/10.1101/144378doi: bioRxiv preprint 

www.chunglabresources.com
www.lifecanvastech.com
https://doi.org/10.1101/144378
http://creativecommons.org/licenses/by/4.0/


E�cient and Stable Transfer of macromolecules into Organs) as a part of the ACT-PRESTO protocol.
Centrifugal force (c-PRESTO) or convection flow (s-PRESTO; for syringe) enabled rapid IHC in 100 µm
thick sections within 2–3 h, which compared to passive di↵usion requires 1-2 days. c-PRESTO requires a
standard table-top centrifuge, while s-PRESTO requires a syringe pump.

RNA studies

Strands of RNA are fixed by PFA and retained in the hydrogel, but the potential histological value from
RNA is so far unexplored in most clearing methods. Single-molecule fluorescence in-situ hybridization (sm-
FISH) of RNA has been demonstrated in thin (100 µm) PACT-processed sections (Yang et al., 2014). By
adding a polymerisation step, hybridization chain reaction (smHCR), the depth of RNA detection is ex-
tended to 500 µm (Shah et al., 2016), which can visualise e.g. bacterial infections (DePas et al., 2016).
However, a modified protocol, EDC-CLARITY, uses carbodiimide chemistry to crosslink the 5’ terminal
phosphates to adjacent amines and preserve small RNAs before clearing (Sylwestrak et al., 2016). It uses
a less rigid hydrogel (4% PFA, 1% Acrylamide and 0.00625% Bis-acrylamide) and an EDC (1-Ethyl-3-(3-
dimethylaminopropyl)carbodiimide) fixation step before clearing to retain even microRNA. Depending on the
length of the oligonucleotide probe, the probe can be amplified by several strategies i.e. Digoxigenin-labeled
locked nucleic acids and tyramide signal amplification that enables measurement of activity-dependent tran-
scriptional signatures, cell-identity markers, and diverse non-coding RNAs in large tissue volumes (Sylwestrak
et al., 2016).

Lipid and membrane stains

Fluorescent dyes, such as the generic DiI, DiD and other carbocyanine dyes, are lipophilic and therefore
primarily stain cellular membranes (Lai et al., 2017). They are extensively used for retro- and anterograde
neuronal labelling as well as for marking the position of extracellular electrodes after electrophysiology
(Petersen and Berg, 2016) as an alternative to electrical lesioning (Berg et al., 2009). CLARITY and other
clearing techniques, such Sca/e and CUBIC (Hama et al., 2011; Susaki et al., 2014) essentially work by
washing away the lipids with detergent and solvents. As an unintended consequence, the clearing process
therefore also washes out lipophilic dyes, since they adhere to the lipids (Chung et al., 2013; Richardson
and Lichtman, 2015; Tainaka et al., 2016). Nevertheless, there are CLARITY-compatible lipophilic and
membrane dyes, which can circumvent this problem. DiI—analogues, sulfonated DiI–variants (SP-DiI),
and DiI with a chloromethyl benzamide modification (CM-DiI) are aldehyde-fixable to proteins and reliable
remain fluorescent in PACT treated tissue (Jensen and Berg, 2016). An alternative is to stain the membranes
post-mortem or after tissue-clearing, even with fixable (SP-DiI) or regular DiI (Jensen and Berg, 2016; Xavier
et al., 2017). Similarly, the smaller lipophilic FM dyes, are used to image synaptic vesicle exocytosis and
endocytosis and has an analogous chemical structure to DiI. FM 1–43FX is a modified FM dye with an
aldehyde–fixable aliphatic amine terminal, that also reliably remains and fluoresces stable in PACT treated
tissue (Jensen and Berg, 2016).

Since the DiI–analogues are covalently bound to primary amines on proteins by methylene bridges following
aldehyde fixation, they are not removed during lipid extraction by solvents or detergents. Other membrane
probes that have a aldehyde-fixable anchor point such as mCLING (Revelo et al., 2014) are likely also
CLARITY-compatible. Despite the lipid removal and disruption of the lipid membranes, it is possible to
perform immunocytochemistry on membrane associated proteins e.g. tight junctions proteins (e.g. Zonula
Occludens-1) and channels (e.g. Aquaporin-4) (Neckel et al., 2016).

Other dyes

Intracellular neuronal labelling is often performed using the generic amide dyes neurobiotin or biocytin. The
delivery of such dyes into the neuronal cytoplasm is accomplished either by an intracellular electrode after
electrophysiological recording (Petersen et al., 2014; Vestergaard and Berg, 2015; Petersen and Berg, 2016)
or by uptake from the nearby surroundings left by juxtacellular deposits in association with extracellular
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recordings (Wilson and Sachdev, 2004). The dyes are amides and therefore aldehyde-fixable and compatible
with CLARITY. Biocytin is not washed out of the cell during CLARITY and can be stained with streptavidin
conjugated dye, e.g. Cyanine-3, akin to regular IHC (figure 3d).

CLARITY can also be combined with classical histology such as hematoxylin-eosin and Heidenhain’s azan
stain, suggesting potential use in histopathology (Neckel et al., 2016) or combined with colorimetric (non-
fluorescent) methods such as horseradish peroxidase conversion of diaminobenzidine to a coloured insoluble
product (Sung et al., 2016).

Minimizing autofluorescence

Two primary sources of autofluorescence in CLARITY treated tissue are heme and lipofuscin. It is therefore
important to remove as much blood as possible to reduce the autofluorescent signal from heme. Under
normal conditions, blood is removed during the initial cardiac perfusion, but in special situations where
perfusion is not possible, such as in human tissue, heme can be eluted by incubating hydrogel-embedded
PACT sections in aminoalcohol (CUBIC reagent-1: mixture of 25% (w/v) urea, 25% (w/v) N,N,N’,N’-
tetrakis(2-hydroxypropyl) ethylenediamine and 15% (w/v) Triton X-100 (Susaki et al., 2014), or 25% (w/v)
N,N,N’,N’-tetrakis(2-hydroxypropyl) ethylenediamine in PBS alone for 12-24 h at 37°C while shaking before
(Treweek et al., 2015) or after clearing (Greenbaum et al., 2017). Lipofuscin autofluorescence is partially
countered by the tissue clearing process. However, when the tissue sections are thick, they may be incubated
in 0.2%-1.0% (w/v) Sudan Black B, which is a nonfluorescent lipophilic dye, in 70% ethanol for 1-3 hours
immediately before hydrogel-polymerisation in order to further reduce autofluorescence (Treweek et al.,
2015).

5. Optical Clearing

The final step before imaging is optical clearing, where the average refractive index (RI) of the hydrogel
(⇠1.46) and the imaging solution are closely matched. Photons from both the excitation light and the
emitted fluorescence signal scatter if the RI is not matched when travelling through the sample, which limits
the quality and depth of imaging. The RI of each solution can be matched to the optimal RI of the tissue
or microscope objective by adjusting the concentration of the main ingredient, e.g. Histodenz. Brain tissue
usually has an average RI of 1.46-1.47, whereas e.g. bone has 1.48-1.49. It is possible to image without a
mounting solution, but in simple water or PBST e.g. PBST (0.1% Triton X- 100 in PBS) (Poguzhelskaya
et al., 2014). However, the tissue remains swollen, and water and PBST have a lower RI (⇠1.33) than of
the hydrogel (⇠1.46) and therefore the tissue sample will appear opaque or cloudy. Imaging in water is part
of the ePACT method where the tissue is intentionally expanded for greater resolution. There are several
di↵erent options of mounting solutions (table 4).

FocusClear: the generic imaging solution

The original FocusClear (CelExplorer Labs Co.) with the main ingredient diatrizoic acid has an RI of 1.454
similar to the tissue-hydrogel, but is expensive (⇠29 USD/ml), and not usable for storage (Tomer et al.,
2014). If the sample is not washed properly in PBST, a irreversible white precipitate, which is likely caused
by a reaction with remaining SDS, can develop within the embedded tissue after a few days.
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RIMS and nRIMS: the optimal solutions

Yang et al. (2014) developed an a↵ordable alternative to FocusClear coined refractive index matching
solution (RIMS) of 88% (w/v) Histodenz in PBS with an RI of 1.46. Both Diatrizoic acid and Iohexol
(HistoDenz) are complex molecules containing an aromatic ring and three iodine atoms, which provides
a large number of electrons for interaction with passing light waves, i.e. high refractive index, but in a
relatively low-concentration and low-viscosity solution (Richardson and Lichtman, 2015). Woo et al. (2016)
used a 80% (w/v) solution of Iomeprol-d3 (also known as Nycodenz and Iohexol-d5), referred to as nRIMS,
which also has an RI of 1.46. A similar clearing solution is PROTOS (Murray et al., 2015; Kim et al., 2015).
RIMS reportedly works better for rodent brains and is reportedly less ideal for human brain tissue, where
47% TDE in PB is better (Liu et al., 2015).

Glycerol, Sorbitol and TDE: a↵ordable alternatives

Glycerol, sorbitol, and thiodiglycol (2,2’-thiodiethanol, TDE) are water-soluble and low-viscosity liquids that
can be used to tune an aqueous solution over a range of refractive indices by dilution in water. Glycerol and
sorbitol are inexpensive and are often found in conventional clearing reagents and in mounting media. TDE
was initially used in mounting media for super-resolution microscopy (Staudt et al., 2006), but concentrations
of 40-60% (v/v) can also clear large tissues i.e. rodent brains (Costantini et al., 2015; Aoyagi et al., 2015).
Solutions with 63% (v/v) TDE, 80% (v/v) glycerol, or 70% (w/v) sorbitol (coined sRIMS) all have an RI
of ⇠1.46. One drawback to TDE is that at high concentrations it reduces the brightness of some green
fluorophores (Staudt et al., 2006). TDE (47%) in PB (instead of PBS) is reportedly better for RI-matching
in human tissues (Liu et al., 2015). RIMS outperformed sRIMS and glycerol regarding imaging resolution
and depth (Yang et al., 2014; Marx, 2014). Another option is a mix of DMSO and D-sorbitol (Economo
et al., 2016).

Storage of CLARITY tissue

All solutions apart from FocusClear can be used for storage. However, a slight loss of fluorescent signal
of AlexaFluor-568 has been reported in glycerol (Liu et al., 2015), although the fluorescent signal loss
of (red) DiI-dyes has not been observed over 6 months in glycerol (Jensen and Berg, 2016). Storage at
room temperature as opposed to using refrigeration is recommended since precipitate can appear at lower
temperatures. All solutions should include 0.01% sodium azide to prevent bacterial and fungal growth.
Lowering the PBS concentration to 0.005 M phosphate bu↵er reduces the appearance of salt precipitate at
colder temperatures i.e. 4°C (Treweek et al., 2015).

6. Imaging CLARITY tissue

Imaging of the clarified tissue is more di�cult than conventional histological samples. The point of the lipid
removal is to make the tissue transparent for the purpose of imaging in depth. This changes the task from
imaging single or several 2-dimensional (2D) sections to a 3-dimensional (3D) volume, which is a much larger
volume than what is used in conventional microscopy (figure 3c-d). Such imaging requires considerations
of imaging time and resolution when selecting the microscope and objective as well as sample size.

Choice of microscope

Standard light microscopy is generally not suitable for large transparent tissues samples as the excitation
light penetrates the sample and generates fluorescence signal from the whole sample. The signal from the
focused plane will be attenuated and likely lost by the fluorescence coming from elsewhere. While it is
possible to image highly fluorescent neurons (600 µm deep in 2 mm tissue) such image will require post-
processing deconvolution (Epp et al., 2015). However, a low magnification (i.e. 1.5-5×) wide field or stereo
microscope can be helpful in an initial examination of samples for identifying fluorescence signals from e.g.
labelled electrode traces before further investigation (Jensen and Berg, 2016; Petersen and Berg, 2016).
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Imaging of CLARITY-processed tissue samples can be performed using standard confocal microscopes. No
modifications are required, but optimal choice of objectives is recommended (see below). However, processing
time is slow, especially for high resolution, high sampling, and large volumes, furthermore, illuminates of the
entire sample during imaging can lead to photobleaching during long imaging sessions and when imaging at
large depths.

The properties of two-photon microscopy lead to significant lower photobleaching of fluorophores and may
also provide greater imaging depths than confocal microscopy. The serial point–by–point scanning in 3D
tissue is similarly slow.

Light-sheet microscopy is a 3D imaging technique is ideal for clarified samples. Light-sheet microscopy
achieves optical sectioning by selectively confining the illumination to the plane of interest by using a Gaussian
or a Bessel beam from the side of the tissue. Furthermore, while confocal and two-photon microscopy is
point scanning, and hence inherently slow, light-sheet microscopy uses fast sCMOS or CCD camera sensors
to image the selectively illuminated focal plane, resulting in minimal photobleaching and increased imaging
speeds that are 2–3 orders of magnitude faster than confocal and two-photon microscopy (Tomer et al.,
2014).

Microscope objectives

Objectives with high numerical aperture and long working distances are desirable for maximum imaging
depth and resolution. Furthermore, objectives should be optimised for an RI of 1.46 for CLARITY cleared
tissues. Several objectives have been developed specifically for CLARITY (table 5).

When using a non-optimized objective, it is best to use the one designed for the RI near 1.46 e.g. glycerine
(RI 1.47) or oil immersion (RI 1.52). Water-immersion lenses (RI 1.33) work better than air objectives
(RI 1). Furthermore, it is time-consuming imaging a large area using a 25× objective, since this requires
capturing and stitching of multiple tiles of images. Such strategy also increases the risk of photobleaching.
A lower magnification 10x can be more useful to image over larger areas (figure 3a), and they have longer
working distances. Indeed, the a↵ordable and commonly available low magnification (10-20×) air lenses are
compatible and have been successfully used for several CLARITY studies (Jensen and Berg, 2016; Hsiang
et al., 2014; Poguzhelskaya et al., 2014; Bastrup and Larsen, 2017). Images in figure 3 were captured with
low magnification (10-20×) air lenses. CLARITY-based tissue clearing provided an increased signal-to-noise
ratio, and staining homogeneity in super-resolution stimulated emission depletion (STED) microscopy (i.e.
with a 100× objective) of kidney tissue (Unnersjö-Jess et al., 2015). During extended imaging moisture can
evaporate from the imaging medium and cause subtle changes RI and resulting in aberrations and loss of
resolution. A hygroscopic imaging media or sealed chamber can prevent this.

Table 5: Microscope objectives optimised for imaging CLARITY samples
Model Manufacturer Numerical Magn. Working Refractive

Aperture Distance Index
XLPLN10×SVMP Olympus 0.6 10× 8.0 mm 1.33—1.52
LSFM Clearing 20×/1.0 Zeiss 1.0 20× 5.6 mm 1.45
Clr Plan-APOCHROMAT 20×/1.0 Corr Zeiss 1.0 20× 5.6 mm 1.45
Clr Plan-NEOFLUAR 20×/1.0 Corr Zeiss 1.0 20× 5.6 mm 1.45
HC FLUOTAR L 25×/1.00 IMM motCORR VISIR Leica 1.0 25× 6.0 mm 1.46
XLSLPN25×GMP Olympus 1.0 25× 8.0 mm 1.41—1.52

Stereology and tractography

Quantification of total cell numbers, densities and projections in tissue while preserving spatial information
has been a challenge in stereology, since it relies on interpretation of 2D sections of tissues and statistical
sampling methods from several histological tissue sections (Gundersen and Jensen, 1987; Walloe et al., 2011).
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Applying stereological methods to cleared tissues eliminates the need for labour-intensive sectioning. Fur-
thermore, clearing and counting in the whole 3D volumes rather than multiple sampled 2D sections allows
for better stereological estimates. Stereology in CLARITY tissue also has the advantage of the ability
to detect subtle changes that might be overlooked because of sampling variance (Erskine and Khundakar,
2016; Greenbaum et al., 2017; Bastrup and Larsen, 2017). However, the computational challenge of aligning
images, down-sampling, and creating a 3D–visualisation are currently only semi-automated and for many
investigators such task represents a strain. The performance of automated cell detection and segmentation
algorithms as alternatives to manual stereological cell counting are still limited by lower detection rates and
higher false-positive rates (Schmitz et al., 2014).

Similarly, quantifying axon tracts is also a challenge. Therefore, Deisseroth and colleagues developed a
method to compute 3D structure tensors from CLARITY images using tools adapted from di↵usion–MRI
tractography (Ye et al., 2016). Ye et al. (2016) used activity dependent viral expression of fluorescent proteins
to quantify axonal projections of behaviourally defined neuronal populations. They termed this method
CLARITY-based activity projection tracking upon recombination (CAPTURE). The method requires viral
tools and light sheet imaging, but software for this large–scale image analysis is freely available at capture-
clarity.org.

Figure 4: Factors and qualities when selecting and optimising a CLARITY-protocol.
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Author recommendations

Several qualities are worth considering when selecting or optimising a CLARITY protocol (figure 4). From
our experience we recommend the following:

For most tissue use PACT or mPACT: The passive protocols are uncomplicated and inexpensive to
setup for novel users. The protocols that omits PFA result in faster clearing with less protein loss and better
staining. However, we also recommend including 0.05% bis-acrylamide in the monomer solution because it
makes for a more rigid hydrogel. The solidification of the monomer solution surrounding the tissue is an
indicator of successful polymerisation, although bis-acrylamide may slow the clearing. Clearing speed can
further be improved by elevating the temperature during clearing to 42-47°C and employing mPACT. A
minimalist incubation chamber can consist of a styrofoam box with a temperature–controlled heating pad,
and then placing the box and a gentle lab shaker.

For large tissues use ETC: For active clearing of large tissues with a simple ETC chamber with single
wires for thick tissue sections (1-3 mm), we recommend the design by Bastrup and Larsen (2017) where
the distance between wires can easily be adjusted and enables tissue clearing of variable tissue sizes while
minimising the resistance and limiting the heat generated in the system. For whole brains or organs, we
recommend the more elaborate stochastic electrotransport approach. The addition of 0.5% ↵-thioglycerol
to prevent tissue discolouration during electrophoresis recommended regardless of chamber design.

Use glycerol and RIMS: Selecting an imaging solution is a matter of price versus quality. We regularly
use 80% glycerol and RIMS for imaging and storage. See table 4 for options of mounting solutions.

Successful applications using CLARITY

CLARITY is applicable not only to nervous tissue, but in principle to any biological tissue. The spinal cord
is enveloped by dense grey matter, and the myelin can be di�cult, although not impossible, to clear, and
limits access to the internal white matter (Jensen and Berg, 2016; Spence et al., 2014; Liang et al., 2015,
2016). One simple solution is to split the spinal cord down the midline into two hemisections, which may
be easier to stain and image than using PARS-CSF. While CLARITY was originally demonstrated in mice
and rat brains, CLARITY and its variants have been used in several other tissues and organisms. Zebrafish
is a popular neuroscience model organism and has been cleared in PACT, but with an added 5% DMSO to
the monomer solution to increase penetration as well as 1% PFA and 0.05-0.025% bis-acrylamide to increase
rigidity (Cronan et al., 2015; Frétaud et al., 2017).

Human samples

Application of CLARITY on human brain samples opens the possibility of visualising human pathology in a
novel way. Transcardial perfusion is obviously impossible and clinical samples are usually fixed and stored in
formalin over extended periods. Indeed, the human pathology of Alzheimer’s (Ando et al., 2014), Parkinson’s
(Liu et al., 2015), neurodegeneration due to mitochondrial disease (Phillips et al., 2016), autism (Chung et al.,
2013) as well as intractable epilepsy (Costantini et al., 2015) have been visualised in 3D by CLARITY on
formalin-fixed tissues. A frozen brain sample, which was PFA-fixed and cryoprotected in sucrose, has also
been cleared and stained using CLARITY (Phillips et al., 2016). The human enteric nervous system was
also studied recently using CLARITY (Neckel et al., 2016). The speed of tissue clearing di↵ers between
CNS regions depending on the degree of myelination and the duration of formalin fixation. The transient
tissue expansion during CLARITY-clearing of animal tissue has been observed to be irreversible in human
brain tissues, especially after prolonged (>40 days) passive tissue clearing (Liu et al., 2015). Lai et al. (2016)

18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 12, 2017. ; https://doi.org/10.1101/144378doi: bioRxiv preprint 

https://doi.org/10.1101/144378
http://creativecommons.org/licenses/by/4.0/


tested an acrylamide-free version of CLARITY, i.e. essentially only washing with SDS followed by RIMS, and
found it gave better results for formalin-fixed tissue. They argued that the previously suggested tissue-PFA-
acrylamide cross-linking does not actually occur. For this reason, omitting acrylamide is better and they
named this protocol Free of acrylamide sodium dodecyl sulphate (SDS)-based tissue-clearing (FASTClear)
(Liu et al., 2016).

Beyond the CNS

The enteric nervous system and mesenteric vasculature can be visualised in 3D with CLARITY (Neckel et al.,
2016). While it is possible to clear skeletal muscle with CLARITY, labelling the neuromuscular junctions
with fluorescently labelled ↵-bungarotoxin has not been possible, likely due to the cross-linking and fixation
preventing the access of the toxin to the acetylcholine receptors (Milgroom and Ralston, 2016). However
peripheral nerves could be targeted by IHC or an anterograde lipophilic tracer e.g. SP-DiI or a viral tracer
instead. It remains to be tested whether labelling of Isolectin B4-positive nociceptor cells is compatible with
CLARITY clearing. Neurovasculature has also been studied, where the tissue is incubated in or flushed with
antibodies through the vasculature, i.e. anti-CD31 (Neckel et al., 2016; Woo et al., 2016). The endothelial
cells could also be stained by flushing the vasculature with a DiI-dye or biocytin before fixation.

Muscle and bone

It is possible to clear skeletal, cardiac and smooth muscle with CLARITY-based clearing with no modifica-
tions to the protocols (Yang et al., 2014; Epp et al., 2015; Milgroom and Ralston, 2016; Gloschat et al., 2016;
Kolesová et al., 2016; Sung et al., 2016; Ding et al., 2017). However, the collagen-rich tendons are di�cult
to make transparent, similar to the myelin-rich white matter of the spinal cord. Extended clearing time and
adjustment of the RIMS RI may improve tendon transparency. Chondrocytes can be stained with the fixable
lipophilic dye, DiI-SP (Jensen and Berg, 2016; Calve et al., 2015). Bone tissue, however, is challenging since
it has low lipid content, a hard mineral component in addition to the soft bone marrow. Clearing osseous
tissue can be done using solvent based methods (Richardson and Lichtman, 2015; Greenbaum et al., 2017).
Bone tissue can also be cleared using CLARITY by adding a decalcification step, PACT-deCAL, in which
tissue is placed in a 0.1 M EDTA (in PBS, pH 8 for 2 days) during PACT-clearing with increased SDS
concentration and pH (8-10% SDS and pH 8). Nevertheless, this gave only modest visualisation depth of
200-300 µm (Treweek et al., 2015). By extending and increasing the decalcification step (0.3 M EDTA and
14 days) Greenbaum et al. (2017) was able to extend visualisation depth to 1.5 mm in a protocol called ‘Bone
CLARITY’. The heme-rich bone marrow also presents a problem regarding autofluorescence, which has be
reduced by removing heme with amino alcohol before refractive index matching (figure 5). The osteoblasts
can be stained with the fixable lipophilic dye CM-DiI (Jensen and Berg, 2016; van Gastel et al., 2012).

Figure 5: Bone tissue clearing by modified CLARITY protocols. The steps of the three basic
protocols for clearing bone tissue are listed in horizontal direction. The essential modification of the original
PACT (top) is the addition of a decalcification step (blue) in PACT deCAL (middle) and Bone CLARITY
(bottom). The latter also includes reduction of autofluorescence.
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Other organs and species

CLARITY-based protocols have been used with little, e.g. lower acrylamide concentrations, or no modifi-
cations to clear most other organs such as lever (Lee et al., 2014; Font-Burgada et al., 2015), kidney (Yang
et al., 2014; Lee et al., 2014; Unnersjö-Jess et al., 2015), pancreas (Lee et al., 2014; Muzumdar et al., 2016),
adrenal gland (Epp et al., 2015), spleen (Epp et al., 2015; Kie↵er et al., 2017), lymphoid tissues (Kie↵er
et al., 2017), intestine (Yang et al., 2014; Lee et al., 2014; Epp et al., 2015; Neckel et al., 2016; Kie↵er et al.,
2017), testes (Epp et al., 2015; Frétaud et al., 2017), ovaries (Feng et al., 2017), and lung tissue (Yang et al.,
2014; Lee et al., 2014; Epp et al., 2015; Saboor et al., 2016). However, given that organs have di↵erent
densities and ratios of connective tissue, lipids, and protein the clearing times and the average RI of the
tissue-hydrogel vary (table 2). For spleen and kidney, the best RI-matching solutions were found to be
CUBIC-mount, RIMS, sRIMS and TDE, respectively (Lee et al., 2016).

Vertebrate and invertebrate animal models, such as rabbits, chickens, zebrafish, xenopus, small octopuses
were cleared by the ACT (Lee et al., 2016). Other models include sea lamprey (Chung-Davidson et al.,
2014) and turtles (figure 3d). Adding an enzymatic degradation step as in Plant-Enzyme-Assisted (PEA)-
CLARITY, it is possible to remove the plant cell walls after tissue-clearing in SDS to clear and stain whole
plant tissues without the need for any sectioning of the material. This can be useful in localisation of protein
in intact plant tissue in 3D while retaining cellular structure (Palmer et al., 2015). CLARITY has also been
used with hybridization chain reaction to detect rRNA from and visualise bacterial infections (DePas et al.,
2016).

Alternative clearing methods

There are several new and old alternatives to CLARITY with their own advantages and limitations. Tissue-
clearing methods can be divided into three groups: organic solvent–based, aqueous–based and hydrogel-based
(Figure 6).

Organic solvent–based

The first tissue clearing method by Spalteholz a century ago was based on the replacing water within
the tissue with a mixture of organic solvents i.e. benzyl benzoate and methyl salicylate, which improves
transparency by reducing light scattering (Spalteholz, 1914). Since benzyl benzoate is insoluble in water, it
required an intermediate dehydration step with ethanol. Subsequent organic solvent–based methods have
the same scheme i.e. dehydration with lipid solvation followed by an alcohol/ether–step then followed by
additional lipid solvation–step and RI-matching (Richardson and Lichtman, 2015). Dodt et al. (2007) refined
the method by employing mixture of benzyl alcohol/benzyl benzoate (BABB). However, BABB quenches
the emission of fluorescent proteins within hours (Richardson and Lichtman, 2015), and the gentler solvents
tetrahydrofuran (THF) and dibenzylether (DBE) in the 3DISCO method prolongs the emission for 1-2 days
(Becker et al., 2012; Ertürk et al., 2012). This approach has an advantage in rapid clearing kinetics due to
the quick di↵usion of small molecules and imaging speed due to a tissue shrinkage. 3DISCO has limited
antibody penetration depth (250 µm)(Hirashima and Adachi, 2015), but has been improved in the iDISCO
protocol (Renier et al., 2017). Organic solvents are generally toxic and some, i.e. THF and DBE, are even
explosive.

Aqueous-based

Aqueous-based clearing solutions work by detergent-based lipid removal and hydration. The RIs are then
matched in an aqueous solution of concentrated sugar– or contrast–agents with a high RI (1.44–1.49). The
RI-matching is accomplished by the inclusion of glycerol in Sca/eA and Sca/eS (Hama et al., 2011, 2015)
or sugars e.g. fructose or sucrose in high concentration in CUBIC, SeeDB, FRUIT (Susaki et al., 2014;
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Ke et al., 2013; Hou et al., 2015). Some protocols use urea to enhance the hydration of biomolecules and
improve penetration into the tissue i.e. Sca/e, SeeDB, CUBIC (Hama et al., 2011; Susaki et al., 2014; Ke
et al., 2013), although this can lead to tissue swelling. They are better at preserving fluorescent proteins
compared with organic solvent–based clearing. Generally, aquous–based clearing induces limited change in
tissue size, and the compounds are relatively harmless, but the protocol can be labour intensive.

SeeDB and FRUIT provide good transparency, but they have limited permeability for macromolecules and
are therefore incompatible with IHC (Ke and Imai, 2014; Hou et al., 2015). The gentler methods omitting
strong detergents, glycerol and amino alcohols (i.e. Sca/eS, SeeDB and FRUIT) are however compatible
with lipophilic dyes (Hama et al., 2015; Ke et al., 2013; Hou et al., 2015). Yet, fixable lipophilic dyes are
likely compatible with all aqueous- and solvent-based methods (Jensen and Berg, 2016).

Hydrogel-based

Hydrogel-based clearing is innovative approach, that works similar to aqueous-based methods, but has a more
aggressive lipid removal combined with impregnation of the tissue with a monomeric component (Silvestri
et al., 2016). Polymers and gels, e.g. para�n and OCT compound, have long been used to support tissues
during sectioning and histology. Hydrogels have been a focus of tissue engineering as a substrate for cell
culture and a sca↵old for growing organs (El-Sherbiny and Yacoub, 2013). In contrast, in the hydrogel-based
clearing, the supporting gel is built from within the tissue by anchoring the cellular components to the gel
monomers. Cross–linking produces a polymerization, where the unlinked elements, such as lipids, can be
removed and give room for macromolecular probes and IHC (Deisseroth, 2017; Silvestri et al., 2016). Since
2013, many variations and improvements of the original hydrogel-based clearing concept, CLARITY, have
emerged, which we reviewed above. However, two divergent approaches are briefly mentioned here.

SWITCH

Using a system-w ide control of interaction t ime and kinetics of chemicals (SWITCH) Murray et al. (2015)
replaced the original polyacrylamide mesh with a more stable dialdehyde, i.e. glutaraldehyde. Glutaralde-
hyde can penetrate through large tissues at pH 3, circumventing the need for tissue perfusion, and rapidly
initiate cross-link reactions deep inside the tissue when the pH is switched to pH 7. After fixation, lipids are
removed by boiling the tissue at 60–80°C in a bu↵er with SDS. The rigid fixation also preserves some lipids
and small molecules such as dopamine after clearing, and the harsh treatment does not result in significant
loss of proteins or antigens. A similar on/o↵ control of the binding kinetics of the antibodies improves the
penetration antibodies. SWITCH also allows for iterative IHC staining as CLARITY, but it is more stable
and allows up to 20 rounds of IHC.

Expansion Microscopy

This technique transforms small tissue samples or cell cultures into swellable hydrogels similar to that of
CLARITY by adding the super–absorbent sodium acrylate copolymer (Chen et al., 2015). The purpose
is to study small species without the need for tissue–clearing since the sample is expanded and therefore
transparent. The hydrogel serves as a sca↵old that is partially enzymatically digested and expanded by
almost two orders of magnitude to improve resolution beyond the optical di↵raction limit.

Conclusion

Much work has increased the clearing speed of the method CLARITY and adapted its use to several tissue
types i.e. non-nervous tissue, bones, and plants. This increases our understanding of biology in di↵erent
organs and species. While IHC in large volumes continues to be di�cult, the main limitation seems to be in
imaging and data processing of the large volumes. Light-sheet microscopy makes image–acquisition fast and
easy, but is not readily available to all researchers. Furthermore, large image volumes give large data volumes
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Figure 6: Clearing methods and ideal applications. Clearing methods fall into three categories: or-
ganic solvent–based (top, left), aqueous–based (top, middle) and hydrogel–based (top, right). Each method
have advantages and shortcomings. The choice of approach should be guided by the histological question.
Histological questions are connected with one or more applications listed below: Large volume immuno-
histochemistry (green), preservation of endogenously expressed fluorescent proteins (red) or tracing using
lipophilic dyes (blue). The compatibility of topics with individual methods are indicated by the arrows. For
instance, endogenous expression of fluorescent proteins is not ideal to be studied with BABB and 3DISCO,
since these methods quenches fluorescence within hours (BABB) or days (3DISCO). *Modified dyes are
required since traditional lipophilic dyes are washed out during CLARITY.

(giga- to terabyte) that are di�cult to handle and analyse. The challenge of image acquisition and analysis,
therefore, lies beyond CLARITY and is a problem shared by all tissue clearing methods. Improvements
in large volume image data analysis will improve not only help experimenters using CLARITY, but bring
histology into the third dimension.
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