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Abstract18

Viruses and bacteria are critical components of the human microbiome and play important roles in health and19

disease. Most previous work has relied on studying microbes and viruses independently, thereby reducing20

them to two separate communities. Such approaches are unable to capture how these microbial communities21

interact, such as through processes that maintain community stability or allow phage-host populations to22

co-evolve. We developed and implemented a network-based analytical approach to describe phage-bacteria23

network diversity throughout the human body. We accomplished this by building a machine learning algorithm24

to predict which phages could infect which bacteria in a given microbiome. This algorithm was applied to25

paired viral and bacterial metagenomic sequence sets from three previously published human cohorts. We26

organized the predicted interactions into networks that allowed us to evaluate phage-bacteria connectedness27

across the human body. We found that gut and skin network structures were person-specific and not28

conserved among cohabitating family members. High-fat diets and obesity appeared to be associated with29

less connected networks. Network structure differed between skin sites, with those exposed to the external30

environment being less connected and more prone to instability. This study quantified and contrasted the31

diversity of virome-microbiome networks across the human body and illustrated how environmental factors32

may influence phage-bacteria interactive dynamics. This work provides a baseline for future studies to better33

understand system perturbations, such as disease states, through ecological networks.34
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Importance35

The human microbiome, the collection of microbial communities that colonize the human body, is a crucial36

component to health and disease. Two major components to the human microbiome are the bacterial37

and viral communities. These communities have primarily been studied separately using metrics of38

community composition and diversity. These approaches have failed to capture the complex dynamics39

of interacting bacteria and phage communities, which frequently share genetic information and work40

together to maintain stable ecosystems. Removal of bacteria or phage can disrupt or even collapse those41

ecosystems. Relationship-based network approaches allow us to capture this interaction information. Using42

this network-based approach with three independent human cohorts, we were able to present an initial43

understanding of how phage-bacteria networks differ throughout the human body, so as to provide a baseline44

for future studies of how and why microbiome networks differ in disease states.45
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Introduction46

Viruses and bacteria are critical components of the human microbiome and play important roles in health47

and disease. Bacterial communities have been associated with disease states, including a range of skin48

conditions (1), acute and chronic wound healing conditions (2, 3), and gastrointestinal diseases, such as49

inflammatory bowel disease (4, 5), Clostridium difficile infections (6) and colorectal cancer (7, 8). Altered50

human viromes (virus communities consisting primarily of bacteriophages) also have been associated with51

diseases and perturbations, including inflammatory bowel disease (5, 9), periodontal disease (10), spread52

of antibiotic resistance (11), and others (12–17). Viruses act in concert with their microbial hosts as a single53

ecological community (18). Viruses influence their living microbial host communities through processes54

including lysis, host gene expression modulation (19), influence on evolutionary processes such as horizontal55

gene transfer (22) or antagonistic co-evolution (26), and alteration of ecosystem processes and elemental56

stoichiometry (27).57

Previous human microbiome work has focused on bacterial and viral communities, but have reduced them58

to two separate communities by studying them independently (5, 9, 10, 12–17). This approach fails to59

capture the complex dynamics of interacting bacteria and phage communities, which frequently share genetic60

information and work together to maintain stable ecosystems. Removal of bacteria or phages can disrupt or61

even collapse those ecosystems (18, 28–37). Relationship-based network approaches allow us to capture62

this interaction information. Studying such bacteria-phage interactions through community-wide networks63

built from inferred relationships could offer further insights into the drivers of human microbiome diversity64

across body sites and enable the study of human microbiome network dynamics overall.65

In this study, we characterized human-associated bacterial and phage communities by their inferred66

relationships using three published paired virus and bacteria-dominated whole community metagenomic67

datasets (13, 14, 38, 39). We leveraged machine learning and graph theory techniques to establish68

and explore the human bacteria-phage network diversity therein. This approach built upon previous69

large-scale phage-bacteria network analyses by inferring interactions from metagenomic datasets, rather70

than culture-dependent data (33), which is limited in the scale of possible experiments and analyses.71
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Our metagenomic interaction inference model improved upon previous models of phage-host predictions72

that have utilized a variety of techniques, such as linear models to predict bacteria-phage co-occurrence73

using taxonomic assignments (40), and nucleotide similarity models that were applied to both whole virus74

genomes (41) and related clusters of whole and partial virus genomes (42). Our approach uniquely included75

protein interaction data and was validated based on experimentally determined positive and negative76

interactions (i.e. who does and does not infect whom). Through this approach we were able to provide a77

basic understanding of the network dynamics associated with phage and bacterial communities on and in78

the human body. By building and utilizing a microbiome network, we found that different people, body sites,79

and anatomical locations not only support distinct microbiome membership and diversity (13, 14, 38, 39,80

43–45), but also support ecological communities with distinct communication structures and propensities81

toward community instability. Through an improved understanding of network structures across the human82

body, we empower future studies to investigate how these communities dynamics are influenced by disease83

states and the overall impact they may have on human health.84

Results85

Cohort Curation and Sample Processing86

We studied the differences in virus-bacteria interaction networks across healthy human bodies by leveraging87

previously published shotgun sequence datasets of purified viral metagenomes (viromes) paired with88

bacteria-dominated whole community metagenomes. Our study contained three datasets that explored89

the impact of diet on the healthy human gut virome (14), the impact of anatomical location on the healthy90

human skin virome (13), and the viromes of monozygotic twins and their mothers (38, 39). We selected91

these datasets because their virome samples were subjected to virus-like particle (VLP) purification,92

which removed contaminating DNA from human cells, bacteria, etc. To this end, the publishing authors93

employed combinations of filtration, chloroform/DNase treatment, and cesium chloride gradients to eliminate94

organismal DNA (e.g. bacteria, human, fungi, etc) and thereby allow for direct assessment of both the95

5

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 1, 2017. ; https://doi.org/10.1101/144642doi: bioRxiv preprint 

https://doi.org/10.1101/144642
http://creativecommons.org/licenses/by/4.0/


extracellular and fully-assembled intracellular virome (Supplemental Figure S1 A-B) (14, 39). Each96

research group reported quality control measures to ensure the purity of the virome sequence datasets,97

using both computational and molecular techniques (e.g. 16S rRNA gene qPCR) (Table S1). These reports98

confirmed that the virome libraries consisted of highly purified virus genomic DNA.99

The bacterial and viral sequences from these studies were quality filtered and assembled into contigs. We100

further grouped the related bacterial and phage contigs into operationally defined units based on their k-mer101

frequencies and co-abundance patterns, similar to previous reports (Supplemental Figure S2 - S3) (42). We102

referred to these operationally defined groups of related contigs as operational genomic units (OGUs). Each103

OGU represented a genomically similar sub-population of either bacteria or phages. Contig lengths within104

clusters ranged between 103 and 105.5 bp (Supplemental Figure S2 - S3).105

While supplementing the previous quality control measures (Table S1) we found that, in light of the rigorous106

purification and quality control during sample collection and preparation, 77% (228 / 298 operational107

genomic units) still had some nucleotide similarity to a given bacterial reference genome (e-value < 10−25).108

As absence of bacterial contamination had been confirmed by sensitive molecular methods (Table S1),109

we interpreted this as evidence that the majority of the gut and skin bacteriophages were temperate and110

thereby shared elements with bacterial reference genomes that contained similar integrated phages when111

sequenced–a trend previously reported (14). Additionally, we identified two OGUs as being complete112

phages using the stringent Virsorter phage identification algorithm (class 1 confidence group) (47).113

The whole metagenomic shotgun sequence samples primarily consisted of bacteria, with an average viral114

relative abundance of 0.4% (Table S1) (13, 14, 38, 39). We found that only 2% (6 / 280 OGUs) of bacterial115

OGUs had significantly strong nucleotide similarity to phage reference genomes (e-value < 10−25) (13, 14,116

38, 39). No OGUs were confidently identified as lytic or temperate phage OGUs in the bacterial dataset using117

the Virsorter algorithm (47). Together this suggests only minimal “contamination” of the bacterial OGUs.118
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Evaluating the Model to Predict Phage-Bacteria Interactions119

We predicted which phage OGUs infected which bacterial OGUs using a random forest model trained on120

experimentally validated infectious relationships from six previous publications (41, 48–52). Only bacteria121

and phages were used in the model. The training set contained 43 diverse bacterial species and 30 diverse122

phage strains, including both broad and specific ranges of infection (Supplemental Figure S4 A - B). While123

it is true that there are more known phages that infect bacteria, we were limited by the information confirming124

which phages do not infect certain bacteria and attempted to keep the numbers of positive and negative125

interactions similar. Phages with linear and circular genomes, as well as ssDNA and dsDNA genomes, were126

included in the analysis. Because we used DNA sequencing studies, RNA phages were not considered127

(Supplemental Figure S4 C-D). This training set included both positive relationships (a phage infects a128

bacterium) and negative relationships (a phage does not infect a bacterium). This allowed us to validate the129

false positive and false negative rates associated with our candidate models, thereby building upon previous130

work that only considered positive relationships (41).131

Four phage and bacterial genomic features were used in a random forest model to predict infectious132

relationships between bacteria and phages: 1) genome nucleotide similarities, 2) gene amino acid133

sequence similarities, 3) bacterial Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)134

spacer sequences that target phages, and 4) similarity of protein families associated with experimentally135

identified protein-protein interactions (53). The resulting random forest model was assessed using nested136

cross validation, and the median area under its receiver operating characteristic (ROC) curve was 0.788,137

the median model sensitivity was 0.952, and median specificity was 0.615 (Figure 1 A). The most important138

predictor in the model was amino acid similarity between genes, followed by nucleotide similarity of whole139

genomes (Figure 1 B). Protein family interactions were moderately important to the model, and CRISPRs140

were largely uninformative, due to the minimal amount of identifiable CRISPRs in the dataset and their141

redundancy with the nucleotide similarity methods (Figure 1 B). Approximately one third of the training set142

relationships yielded no score and therefore were unable to be assigned an interaction prediction (Figure 1143

C).144
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We used our random forest model to classify the relationships between bacteria and phage operational145

genomic units, which were then used to build the interactive network. The master network contained the146

three studies as sub-networks, which themselves each contained sub-networks for each sample (Figure 1 D).147

Metadata including study, sample ID, disease, and OGU abundance within the community were stored in the148

master network for parsing in downstream analyses (Supplemental Figure S5). Bacterial and phage relative149

abundance was recorded in each sample for each OGU and the weight of the edge connecting those OGUs150

was calculated as a function of those relative abundance values. The separate extraction of the phage and151

bacterial libraries ensured a more accurate measurement of the microbial communities, as has been outlined152

previously (54, 55). The master network was highly connected and contained 72,287 infectious relationships153

among 578 nodes, representing 298 phages and 280 bacteria. Although the network was highly connected,154

not all relationships were present in all samples. Relationships were weighted by the relative abundances155

of their associated bacteria and phages. Like the master network, the skin network exhibited a diameter156

of 4 (measure of graph size; the greatest number of traversed vertices required between two vertices) and157

included 576 (297 phages, 279 bacteria, 99.7% total) and 72,127 (99.8%) of the master network nodes and158

edges, respectively (Figure 1 E - F). The phages and bacteria in the diet and twin sample sets were more159

sparsely related, with the diet study consisting of 89 (41 phages, 48 bacteria) nodes and 5,566 relationships,160

and the twin study containing 137 (36 phages, 101 bacteria) nodes and 17,250 relationships (Figure 1 E -161

F).162

Role of Diet & Obesity in Gut Microbiome Connectivity163

Diet is a major environmental factor that influences resource availability and gut microbiome composition and164

diversity, including bacteria and phages (14, 56, 57). Previous work in isolated culture-based systems has165

suggested that changes in nutrient availability are associated with altered phage-bacteria network structures166

(30), although this has yet to be tested in humans. We therefore hypothesized that a change in diet would167

also be associated with a change in virome-microbiome network structure in the human gut.168

We evaluated the diet-associated differences in gut virome-microbiome network structure by quantifying how169
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central each sample’s network was on average. We accomplished this by utilizing two common centrality170

metrics: degree centrality and closeness centrality. Degree centrality, the simplest centrality metric,171

was defined as the number of connections each phage made with each bacterium. We supplemented172

measurements of degree centrality with measurements of closeness centrality. Closeness centrality is a173

metric of how close each phage or bacterium is to all of the other phages and bacteria in the network. A174

higher closeness centrality suggests that the effects of genetic information or altered abundance would be175

more impactful to all other microbes in the system. A network with higher average closeness centrality also176

indicates an overall greater degree of connections, which suggests a greater resilience against instability.177

This is because more highly connected networks are more stable as a result of pathway dependencies and178

the unlikelihood that a randomly removed bacteria or phage would cause major divisions across the network179

(30, 58). We used this information to calculate the average connectedness per sample, which was corrected180

for the maximum potential degree of connectedness. Unfortunately our dataset was insufficiently powered181

to make strong conclusions toward this hypothesis, but this is an interesting observation that warrants further182

investigation.183

Using our limited sample set, we observed that the gut microbiome network structures associated with high-fat184

diets appeared less connected than those of low-fat diets, although a greater sample size will be required185

to more properly evaluate this trend (Figure 2 A-B). Five subjects were available for use, all of which had186

matching bacteria and virome datasets and samples from 8-10 days following the initiation of their diets.187

High-fat diets appeared to exhibit reduced degree centrality (Figure 2 A), suggesting bacteria in high-fat188

environments were targeted by fewer phages and that phage tropism was more restricted. High-fat diets189

also appeared to exhibit decreased closeness centrality (Figure 2 B), indicating that bacteria and phages190

were more distant from other bacteria and phages in the community. This would make genetic transfer and191

altered abundance of a given phage or bacterium less capable of impacting other bacteria and phages within192

the network.193

In addition to diet, we found preliminary evidence that obesity influenced network structure. This was done194

using the three mother samples available from the twin sample set, all of which had matching bacteria195
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and phage samples and confirmed BMI information. The obesity-associated network appeared to have a196

higher degree centrality (Figure 2 C), but less closeness centrality than the healthy-associated networks197

(Figure 2 D). These results suggested that the obesity-associated networks are less connected, having198

microbes further from all other microbes within the community. This again comes with the caveat that this is199

a preliminary observation with too small of a sample size to make more substantial claims.200

Individuality of Microbial Networks201

Skin and gut community membership and diversity are highly personal, with people remaining more similar202

to themselves than to other people over time (13, 59, 60). We therefore hypothesized that this personal203

conservation extended to microbiome network structure. We addressed this hypothesis by calculating204

the degree of dissimilarity between each subject’s network, based on phage and bacteria abundance205

and centrality. We quantified phage and bacteria centrality within each sample graph using the weighted206

eigenvector centrality metric. This metric defines central phages as those that are highly abundant (AO as207

defined in the methods) and infect many distinct bacteria which themselves are abundant and infected by208

many other phages. Similarly, bacterial centrality was defined as those bacteria that were both abundant and209

connected to numerous phages that were themselves connected to many bacteria. We then calculated the210

similarity of community networks using the weighted eigenvector centrality of all nodes between all samples.211

Samples with similar network structures were interpreted as having similar capacities for maintaining stability212

and transmitting genetic material.213

We used this network dissimilarity metric to test whether microbiome network structures were more similar214

within people than between people over time. We found that gut microbiome network structures clustered by215

person (ANOSIM p-value = 0.005, R = 0.958, Figure 3 A). Network dissimilarity within each person over the216

8-10 day sampling period was less than the average dissimilarity between that person and others, although217

this difference was not statistically significant (p-value = 0.125, Figure 3 B). Four of the five available subjects218

were used because one of the subjects was not sampled at the initial time point. The lack of statistical219

confidence was likely due to the small sample size of this dataset.220
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Although there was evidence for gut network conservation among individuals, we found no evidence for221

conservation of gut network structures within families. The gut network structures were not more similar222

within families (twins and their mothers; intrafamily) compared to other families (other twins and mothers;223

inter-family) (p-value = 0.312, Figure 3 C). In addition to the gut, skin microbiome network structure was224

strongly conserved within individuals (p-value < 0.001, Figure 3 D). This distribution was similar when225

separated by anatomical sites. Most sites were statistically significantly more conserved within individuals226

(Supplemental Figure S6).227

Association Between Environmental Stability and Network Structure Across the228

Human Skin Landscape229

Extensive work has illustrated differences in diversity and composition of the healthy human skin microbiome230

between anatomical sites, including bacteria, virus, and fungal communities (13, 44, 59). These communities231

vary by degree of skin moisture, oil, and environmental exposure. As viruses are known to influence microbial232

diversity and community composition, we hypothesized that microbe-virus network structure would be specific233

to anatomical sites, as well. To test this, we evaluated the changes in network structure between anatomical234

sites within the skin dataset.235

The average centrality of each sample was quantified using the weighted eigenvector centrality metric.236

Intermittently moist skin sites (dynamic sites that fluctuate between being moist and dry) were significantly237

less connected than the more stable moist and sebaceous environments (p-value < 0.001, Figure 4 A). Also,238

skin sites that were occluded from the environment were much more highly connected than those that were239

constantly exposed to the environment or only intermittently occluded (p-value < 0.001, Figure 4 B).240

To supplement this analysis, we compared the network signatures using the centrality dissimilarity approach241

described above. The dissimilarity between samples was a function of shared relationships, degree of242

centrality, and bacteria/phage abundance. When using this supplementary approach, we found that network243

structures significantly clustered by moisture, sebaceous, and intermittently moist status (Figure 4 C,E).244
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Occluded sites were significantly different from exposed and intermittently occluded sites, but there was no245

difference between exposed and intermittently occluded sites (Figure 4 D,F). These findings provide further246

support that skin microbiome network structure differs significantly between skin sites.247

Discussion248

Foundational work has provided a baseline understanding of the human microbiome by characterizing249

bacterial and viral diversity across the human body (13, 14, 43–45, 61). Here, we offer an initial250

understanding of how phage-bacteria networks differ throughout the human body, so as to provide a251

baseline for future studies of how and why microbiome networks differ in disease states. We developed and252

implemented a network-based analytical model to evaluate the basic properties of the human microbiome253

through bacteria and phage relationships, instead of membership or diversity alone. This enabled the254

application of network theory to provide a new perspective on complex ecological communities. We utilized255

metrics of connectivity to model the extent to which communities of bacteria and phages interact through256

mechanisms such as horizontal gene transfer, modulated bacterial gene expression, and alterations in257

abundance.258

Just as gut microbiome and virome composition and diversity are conserved in individuals (13, 43, 44, 60), gut259

and skin microbiome network structures were conserved within individuals over time. Gut network structure260

was not conserved among family members. These findings suggested that the community properties inferred261

from microbiome interaction network structures, such as stability (meaning a more highly connected network262

is more stable because a randomly removed bacteria or phage node is less likely to divide or disintegrate263

(30, 58) the overall network), the potential for horizontal gene transfer between members, and co-evolution264

of populations, were person-specific. These properties may be impacted by personal factors ranging from265

the body’s immune system to external environmental conditions, such as climate and diet.266

We observed evidence supporting the ability of environmental conditions to shape gut and skin microbiome267

interaction network structure by observing that diet and skin location were associated with altered network268
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structures. We found evidence that diet was sufficient to alter gut microbiome network connectivity, although269

this needs to be interpreted as a case observation, due to the small sample size. Although our sample size270

was small, our findings provided some preliminary evidence that high-fat diets were less connected than271

low-fat diets and that high-fat diets therefore may lead to less stable communities with a decreased ability for272

microbes to directly influence one another. We supported this finding with the observation that obesity may273

have been associated with decreased network connectivity. Together these findings suggest the food we eat274

may not only impact which microbes colonize our guts, but may also impact their interactions with infecting275

phages. Further work will be required to characterize these relationships with a larger cohort.276

In addition to diet, the skin environment also influenced the microbiome interaction network structure.277

Network structure differed between environmentally exposed and occluded skin sites. The sites under278

greater environmental fluctuation and exposure (the exposed and intermittently exposed sites) were less279

connected and therefore were predicted to have a higher propensity for instability. Likewise, intermittently280

moist sites demonstrated less connectedness than the more stable moist and sebaceous sites. Together281

these data suggested that body sites under greater degrees of fluctuation harbored less connected,282

potentially less stable microbiomes. This points to a link between microbiome and environmental stability283

and warrants further investigation.284

While these findings take us an important step closer to understanding the microbiome through interspecies285

relationships, there are caveats to and considerations regarding the approach. First, as with most286

classification models, the infection classification model developed and applied is only as good as its training287

set – in this case, the collection of experimentally-verified positive and negative infection data, where288

genomes of all members are fully sequenced. Large-scale experimental screens for phage and bacteria289

infectious interactions that report high-confidence negative interactions (i.e., no infection) are desperately290

needed, as they would provide more robust model training and improved model performance. Furthermore,291

just as we have improved on previous modeling efforts, we expect that new and creative scoring metrics will292

be integrated into this model to improve future performance.293

Second, although our analyses utilized the best datasets currently available for our study, this work was done294
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retrospectively and relied on existing data up to seven years old. These archived datasets were limited by295

the technology and costs of the time. For example, the diet and twin studies, relied on multiple displacement296

amplification (MDA) in their library preparations–an approach used to overcome the large nucleic acids297

requirements typical of older sequencing library generation protocols. It is now known that MDA results298

in biases in microbial community composition (62), as well as toward ssDNA viral genomes (63, 64), thus299

rendering the resulting microbial and viral metagenomes largely non-quantitative. Future work that employs300

larger sequence datasets and that avoids the use of bias-inducing amplification steps will build on and validate301

our findings, as well as inform the design and interpretation of further studies.302

Finally, the networks in this study were built using operational genomic units (OGUs), which represented303

groups of highly similar bacteria or phage genomes or clustered genome fragments. Similar clustering304

definition and validation methods, both computational and experimental, have been implemented in other305

metagenomic sequencing studies, as well (42, 65–67). These approaches could offer yet another level of306

sophistication to our network-based analyses. While this operationally defined clustering approach allows307

us to study whole community networks, our ability to make conclusions about interactions among specific308

phage or bacterial species or populations is inherently limited, compared to more focused, culture-based309

studies such as the work by Malki et al (68). Future work must address this limitation, e.g., through improved310

binning methods and deeper metagenomic shotgun sequencing, but most importantly through an improved311

conceptual framing of what defines ecologically and evolutionarily cohesive units for both phage and bacteria312

(69). Defining operational genomic units and their taxonomic underpinnings (e.g., whether OGU clusters313

represent genera or species) is an active area of work critical to the utility of this approach. As a first314

step, phylogenomic analyses have been performed to cluster cyanophage isolate genomes into informative315

groups using shared gene content, average nucleotide identity of shared genes, and pairwise differences316

between genomes (70). Such population-genetic assessment of phage evolution, coupled with the ecological317

implications of genome heterogeneity, will inform how to define nodes in future iterations of the ecological318

network developed here. Even though we are hesitant to speculate on phage host ranges at low taxonomic319

levels in our dataset, the data does aggree with previous reports of instances of broad phage host range (68,320

71).321
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Together our work takes an initial step towards defining bacteria-virus interaction profiles as a characteristic322

of human-associated microbial communities. This approach revealed the impacts that different human323

environments (e.g., the skin and gut) can have on microbiome connectivity. By focusing on relationships324

between bacterial and viral communities, they are studied as the interacting cohorts they are, rather than325

as independent entities. While our developed bacteria-phage interaction framework is a novel conceptual326

advance, the microbiome also consists of archaea and small eukaryotes, including fungi and Demodex mites327

(1, 72)–all of which can interact with human immune cells and other non-microbial community members (73).328

Future work will build from our approach and include these additional community members and their diverse329

interactions and relationships (e.g., beyond phage-bacteria). This will result in a more robust network and a330

more holistic understanding of the evolutionary and ecological processes that drive the assembly and function331

of the human-associated microbiome.332

Materials & Methods333

Code Availability334

A reproducible version of this manuscript written in R markdown and all of the code used to obtain and335

process the sequencing data is available at the following GitHub repository:336

https://github.com/SchlossLab/Hannigan_ConjunctisViribus_mSystems_2017337

Data Acquisition & Quality Control338

Raw sequencing data and associated metadata were acquired from the NCBI sequence read archive (SRA).339

Supplementary metadata were acquired from the same SRA repositories and their associated manuscripts.340

The gut virome diet study (SRA: SRP002424), twin virome studies (SRA: SRP002523; SRP000319), and341

skin virome study (SRA: SRP049645) were downloaded as .sra files. Sequencing files were converted342

to fastq format using the fastq-dump tool of the NCBI SRA Toolkit (v2.2.0). Sequences were quality343
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trimmed using the Fastx toolkit (v0.0.14) to exclude bases with quality scores below 33 and shorter than 75344

bp (74). Paired end reads were filtered to exclude sequences missing their corresponding pair using the345

get_trimmed_pairs.py script available in the source code.346

Contig Assembly347

Contigs were assembled using the Megahit assembly program (v1.0.6) (75). A minimum contig length of 1348

kb was used. Iterative k-mer stepping began at a minimum length of 21 and progressed by 20 until 101. All349

other default parameters were used.350

Contig Abundance Calculations351

Contigs were concatenated into two master files prior to alignment, one for bacterial contigs and one for352

phage contigs. Sample sequences were aligned to phage or bacterial contigs using the Bowtie2 global aligner353

(v2.2.1) (76). We defined a mismatch threshold of 1 bp and seed length of 25 bp. Sequence abundance was354

calculated from the Bowtie2 output using the calculate_abundance_from_sam.pl script available in355

the source code.356

Operational Genomic Unit Binning357

Contigs often represent large fragments of genomes. In order to reduce redundancy and the resulting358

artificially inflated genomic richness within our dataset, it was important to bin contigs into operational359

units based on their similarity. This approach is conceptually similar to the clustering of related 16S rRNA360

sequences into operational taxonomic units (OTUs), although here we are clustering contigs into operational361

genomic units (OGUs) (61).362

Contigs were clustered using the CONCOCT algorithm (v0.4.0) (77). Because of our large dataset and limits363

in computational efficiency, we randomly subsampled the dataset to include 25% of all samples, and used364
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these to inform contig abundance within the CONCOCT algorithm. CONCOCT was used with a maximum365

of 500 clusters, a k-mer length of four, a length threshold of 1 kb, 25 iterations, and exclusion of the total366

coverage variable.367

OGU abundance (AO) was obtained as the sum of the abundance of each contig (Aj) associated with that368

OGU. The abundance values were length corrected such that:369

AO =
107 ∑k

j=1 Aj∑k
j=1 Lj

Where L is the length of each contig j within the OGU.370

Operational Genomic Unit Identification371

To confirm a lack of phage sequences in the bacterial OGU dataset, we performed blast nucleotide alignment372

of the bacterial OGU representative sequences using an e-value < 10−25, which was stricter than the 10−10373

threshold used in the random forest model below, against all of the phage reference genomes available in374

the EMBL database. We used a stricter threshold because we know there are genomic similarities between375

bacteria and phage OGUs from the interactive model, but we were interested in contigs with high enough376

similarity to references that they may indeed be from phages. We also performed the converse analysis377

of aligning phage OGU representative sequences to EMBL bacterial reference genomes. Finally, we ran378

both the phage and bacteria OGU representative sequences through the Virsorter program (1.0.3) to identify379

phages (all default parameters were used), using only those in the high confidence identification category380

“class 1” (47).381

Open Reading Frame Prediction382

Open reading frames (ORFs) were identified using the Prodigal program (V2.6.2) with the meta mode383

parameter and default settings (78).384
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Classification Model Creation and Validation385

The classification model for predicting interactions was built using experimentally validated bacteria-phage386

infections or validated lack of infections from six studies (41, 48–52). Associated reference genomes were387

downloaded from the European Bioinformatics Institute (see details in source code). The model was created388

based on the four metrics listed below.389

The four scores were used as parameters in a random forest model to classify bacteria and bacteriophage390

pairs as either having infectious interactions or not. The classification model was built using the Caret391

R package (v6.0.73) (79). The model was trained using five-fold cross validation with ten repeats, and392

the median model performance was evaluated by training the model on 80% of the dataset and testing393

performance on the remaining 20%. Pairs without scores were classified as not interacting. The model was394

optimized using the ROC value. The resulting model performance was plotted using the plotROC R package.395

Identify Bacterial CRISPRs Targeting Phages396

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) were identified from bacterial397

genomes using the PilerCR program (v1.06) (80). Resulting spacer sequences were filtered to exclude398

spacers shorter than 20 bp and longer than 65 bp. Spacer sequences were aligned to the phage genomes399

using the nucleotide BLAST algorithm with default parameters (v2.4.0) (81). The mean percent identity for400

each matching pair was recorded for use in our classification model.401

Detect Matching Prophages within Bacterial Genomes402

Temperate bacteriophages infect and integrate into their bacterial host’s genome. We detected integrated403

phage elements within bacterial genomes by aligning phage genomes to bacterial genomes using the404

nucleotide BLAST algorithm and a minimum e-value of 1e-10. The resulting bitscore of each alignment was405

recorded for use in our classification model.406

Identify Shared Genes Between Bacteria and Phages407
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As a result of gene transfer or phage genome integration during infection, phages may share genes with408

their bacterial hosts, providing us with evidence of phage-host pairing. We identified shared genes between409

bacterial and phage genomes by assessing amino acid similarity between the genes using the Diamond410

protein alignment algorithm (v0.7.11.60) (82). The mean alignment bitscores for each genome pair were411

recorded for use in our classification model.412

Protein - Protein Interactions413

The final method used for predicting infectious interactions between bacteria and phages was the detection414

of pairs of genes whose proteins are known to interact. We assigned bacterial and phage genes to protein415

families by aligning them to the Pfam database using the Diamond protein alignment algorithm. We then416

identified which pairs of proteins were predicted to interact using the Pfam interaction information within the417

Intact database (53). The mean bitscores of the matches between each pair were recorded for use in the418

classification model.419

Interaction Network Construction420

The bacteria and phage operational genomic units (OGUs) were scored using the same approach as outlined421

above. The infectious pairings between bacteria and phage OGUs were classified using the random forest422

model described above. The predicted infectious pairings and all associated metadata were used to populate423

a graph database using Neo4j graph database software (v2.3.1) (83). This network was used for downstream424

community analysis.425

Centrality Analysis426

We quantified the centrality of graph vertices using three different metrics, each of which provided different427

information graph structure. When calculating these values, let G(V, E) be an undirected, unweighted graph428

with |V | = n nodes and |E| = m edges. Also, let A be its corresponding adjacency matrix with entries429
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aij = 1 if nodes Vi and Vj are connected via an edge, and aij = 0 otherwise.430

Briefly, the closeness centrality of node Vi is calculated taking the inverse of the average length of the431

shortest paths (d) between nodes Vi and all the other nodes Vj . Mathematically, the closeness centrality of432

node Vi is given as:433

CC (Vi) =

 n∑
j=1

d (Vi, Vj)

−1

The distance between nodes (d) was calculated as the shortest number of edges required to be traversed434

to move from one node to another.435

Intuitively, the degree centrality of node Vi is defined as the number of edges that are incident to that node:436

CD (Vi) =
n∑

j=1
aij

where aij is the ijth entry in the adjacency matrix A.437

The eigenvector centrality of node Vi is defined as the ith value in the first eigenvector of the associated438

adjacency matrix A. Conceptually, this function results in a centrality value that reflects the connections of439

the vertex, as well as the centrality of its neighboring vertices.440

The centralization metric was used to assess the average centrality of each sample graph G. Centralization441

was calculated by taking the sum of each vertex Vi’s centrality from the graph maximum centrality Cw, such442

that:443

C (G) =
∑n

i=1 Cw − c (Vi)
T

The values were corrected for uneven graph sizes by dividing the centralization score by the maximum444

theoretical centralization (T) for a graph with the same number of vertices.445
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Degree and closeness centrality were calculated using the associated functions within the igraph R package446

(v1.0.1) (84).447

Network Relationship Dissimilarity448

We assessed similarity between graphs by evaluating the shared centrality of their vertices, as has been449

done previously. More specifically, we calculated the dissimilarity between graphs Gi and Gj using the450

Bray-Curtis dissimilarity metric and eigenvector centrality values such that:451

B (Gi, Gj) = 1 − 2Cij

Ci + Cj

Where Cij is the sum of the lesser centrality values for those vertices shared between graphs, and Ci and452

Cj are the total number of vertices found in each graph. This allows us to calculate the dissimilarity between453

graphs based on the shared centrality values between the two graphs.454

Statistics and Comparisons455

Differences in intrapersonal and interpersonal network structure diversity, based on multivariate data,456

were calculated using an analysis of similarity (ANOSIM). Statistical significance of univariate Eigenvector457

centrality differences were calculated using a paired Wilcoxon test.458

Statistical significance of differences in univariate eigenvector centrality measurements of skin virome-microbiome459

networks were calculated using a pairwise Wilcoxon test, corrected for multiple hypothesis tests using the460

Holm correction method. Multivariate eigenvector centrality was measured as the mean differences between461

cluster centroids, with statistical significance measured using an ANOVA and post hoc Tukey test.462
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Figure Legends473

Figure 1: Summary of Multi-Study Network Model. (A) Median ROC curve (dark red) used to create the
microbiome-virome infection prediction model, based on nested cross validation over 25 random iterations.
The maximum and minimum performance are shown in light red. (B) Importance scores associated with
the metrics used in the random forest model to predict relationships between bacteria and phages. The
importance score is defined as the mean decrease in accuracy of the model when a feature (e.g. Pfam) is
excluded. Features include the local gene alignments between bacteria and phage genes (denoted blastx;
the blastx algorithm in Diamond aligner), local genome nucleotide alignments between bacteria and phage
OGUs, presence of experimentally validated protein family domains (Pfams) between phage and bacteria
OGUs, and CRISPR targeting of bacteria toward phages (CRISPR). (C) Proportions of samples included
(gray) and excluded (red) in the model. Samples were excluded from the model because they did not
yield any scores. Those interactions without scores were automatically classified as not having interactions.
(D) Bipartite visualization of the resulting phage-bacteria network. Phage OGUs are presented in orange,
bacteria OGUs in red, and their interaction edges are represented as connecting lines. This network includes
information from all three published studies. (E) Network diameter (measure of graph size; the greatest
number of traversed vertices required between two vertices), (F) number of vertices, and (G) number of
edges (relationships) for the total network (orange) and the individual study sub-networks (diet study = red,
skin study = yellow, twin study = green).

Figure 2: Impact of Diet and Obesity on Gut Network Structure. (A) Quantification of average degree
centrality (number of edges per node) and (B) closeness centrality (average distance from each node to
every other node) of gut microbiome networks of subjects limited to exclusively high-fat or low-fat diets. Each
point represents the centrality from a human subject stool sample that was collected 8-10 days following the
beginning of their defined diet. There are five samples here, compared to the four in figure 3, because one
of the was only sampled post-diet, providing us data for this analysis but not allowing us to compare to a
baseline for figure 3. (C) Quantification of average degree centrality and (D) closeness centrality between
obese and healthy adult women from the Twin gut study. Each point represents a stool sample taken from
one of the three adult woman confirmed as obese or healthy and with matching virus and bacteria data.
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Figure 3: Intrapersonal vs Interpersonal Network Dissimilarity Across Different Human Systems. (A)
NMDS ordination illustrating network dissimilarity between subjects over time. Each sample is colored by
subject, with each colored sample pair collected 8-10 days apart. Dissimilarity was calculated using the
Bray-Curtis metric based on abundance weighted eigenvector centrality signatures, with a greater distance
representing greater dissimilarity in bacteria and phage centrality and abundance. Only four subjects were
included here, compared to the five used in figure 2, because one of the subjects was missing the inital
sampling time point and therefore lacked temporal sampling. (B) Quantification of gut network dissimilarity
within the same subject over time (intrapersonal) and the mean dissimilarity between the subject of interest
and all other subjects (interpersonal). The p-value is provided near the bottom of the figure. (C) Quantification
of gut network dissimilarity within subjects from the same family (intrafamily) and the mean dissimilarity
between subjects within a family and those of other families (interfamily). Each point represents the
inter-family and intra-family dissimilarity of a twin or mother that was sampled over time. (D) Quantification
of skin network dissimilarity within the same subject and anatomical location over time (intrapersonal) and
the mean dissimilarity between the subject of interest and all other subjects at the same time and the same
anatomical location (interpersonal). All p-values were calculated using a paired Wilcoxon test.

Figure 4: Impact of Skin Micro-Environment on Microbiome Network Structure. (A) Notched box-plot
depicting differences in average eigenvector centrality between moist, intermittently moist, and sebaceous
skin sites and (B) occluded, intermittently occluded, and exposed sites. Notched box-plots were created
using ggplot2 and show the median (center line), the inter-quartile range (IQR; upper and lower boxes),
the highest and lowest value within 1.5 * IQR (whiskers), outliers (dots), and the notch which provides an
approximate 95% confidence interval as defined by 1.58 * IQR / sqrt(n). Sample sizes for each group were:
Moist = 81, Sebaceous = 56, IntMoist = 56, Occluded = 106, Exposed = 61, IntOccluded = 26. (C) NMDS
ordination depicting the differences in skin microbiome network structure between skin moisture levels and (D)
occlusion. Samples are colored by their environment and their dissimilarity to other samples was calculated
as described in figure 3. (E) The statistical differences of networks between moisture and (F) occlusion status
were quantified with an anova and post hoc Tukey test. Cluster centroids are represented by dots and the
extended lines represent the associated 95% confidence intervals. Significant comparisons (p-value < 0.05)
are colored in red, and non-significant comparisons are gray.
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Supplemental Figure Legends474

Figure S1: Sequencing Depth Summary. Number of sequences that aligned to (A) Phage and (B) Bacteria
operational genomic units per sample and colored by study.
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Figure S2: Contig Summary Statistics. Scatter plot heat map with each hexagon representing the
abundance of contigs. Contigs are organized by length on the x-axis and the number of aligned sequences
on the y-axis.
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Figure S3: Operational Genomic Unit Summary Statistics. Scatter plot with operational genomic unit
clusters organized by average contig length within the cluster on the x-axis and the number of contigs in the
cluster on the y-axis. Operational genomic units of (A) bacteriophages and (B) bacteria are shown.
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Figure S4: Summary information of validation dataset used in the interaction predictive model. A)
Categorical heat-map highlighting the experimentally validated positive and negative interactions. Only
bacteria species are shown, which represent multiple reference strains. Phages are labeled on the x-axis
and bacteria are labeled on the y-axis. B) Quantification of bacterial host strains known to exist for each
phage. C) Genome strandedness and D) linearity of the phage reference genomes used for the dataset.
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Figure S5: Structure of the interactive network. Metadata relationships to samples (Phage Sample ID and
Bacteria Sample ID) included the associated time point, the study, the subject the sample was taken from,
and the associated disease. Infectious interactions were recorded between phage and bacteria operational
genomic units (OGUs). Sequence count abundance for each OGU within each sample was also recorded.
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Figure S6: Intrapersonal vs Interpersonal Dissimilarity of the Skin. Quantification of skin network
dissimilarity within the same subject and anatomical location over time (intrapersonal) and the mean
dissimilarity between the subject of interest and all other subjects at the same time and the same anatomical
location (interpersonal), separated by each anatomical site (forehead [Fh], palm [Pa], toe web [Tw], umbilicus
[Um], antecubital fossa [Ac], axilla [Ax], and retroauricular crease [Ra]). P-value was calculated using a paired
Wilcoxon test.
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Supplemental Table Legend475

Table S1: Summary of the primary quality control measures reported in the original publications of the viromes476

used in this current study.477
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