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Abstract 1 

The pathophysiology of stress cardiomyopathy (SCM), also known as takotsubo 2 

syndrome, is poorly understood. SCM usually occurs sporadically, often in 3 

association with a stressful event, but clusters of cases are reported after major 4 

natural disasters. There is some evidence that this is a familial condition. We 5 

have examined three possible models for an underlying genetic predisposition to 6 

SCM. Our primary study cohort consists of 28 women who suffered SCM as a 7 

result of two devastating earthquakes that struck the city of Christchurch, New 8 

Zealand, in 2010 and 2011. To seek possible underlying genetic factors we 9 

carried out exome analysis, Cardio-MetaboChip genotyping array analysis and 10 

array comparative genomic hybridization on these subjects. The most striking 11 

finding from these analyses was the observation of a markedly elevated rate of 12 

rare, heterogeneous copy number variants (CNV) of uncertain clinical 13 

significance (in 12/28 subjects). Several of these CNVs clearly impacted on 14 

genes of cardiac relevance including RBFOX1, GPC5, KCNRG, CHODL, and 15 

GPBP1L1. There is no physical overlap between the CNVs, and the genes they 16 

impact do not fall into a clear pathophysiological pathway. However, the 17 

recognition that SCM cases display a high rate of unusual CNV, and that SCM 18 

predisposition may therefore be associated with these CNVs, offers a novel 19 

perspective and a new approach by which to understand this enigmatic 20 

condition.  21 

 22 

Introduction 23 

Stress cardiomyopathy (SCM), also known as "broken heart syndrome" or 24 

takotsubo syndrome,1; 2 is a condition that captures widespread public interest. 25 
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The cardiomyopathy is distinctive and the precipitating emotional event is 26 

typically clearly defined, however the mechanism for the cardiomyopathy and 27 

links between the psychological event and the physical illness are not 28 

understood.  29 

 30 

Sporadic cases of SCM are estimated to account for 1-5% of acute coronary 31 

syndrome presentations.3-5 Predominantly the condition occurs in post-32 

menopausal women,6; 7 and because of this, 5-10% of female presentations with 33 

suspected acute coronary syndrome are attributed to SCM.8-11  Although SCM 34 

can be fatal, the symptoms are commonly transient and patients generally have 35 

a good prognosis and recover well over a period of days to weeks.12 In classic 36 

descriptions the cardiomyopathy has a typical pattern but a number of variations 37 

are now widely recognised and it is increasingly apparent that cases can be 38 

quite heterogeneous.13 39 

 40 

SCM occurring in clusters around the time of major disasters such as 41 

earthquakes, floods and bushfires is also well recognised.6; 14-16 Due to the large 42 

impact these events have upon hospital resources and medical infrastructure, it 43 

is rare for such clusters of SCM to be studied in any depth. This was made clear 44 

in reports from the Great East Japan Earthquake.17  In the Canterbury (New 45 

Zealand) earthquake sequence of 2010 and 2011 the two main events 46 

precipitated large case clusters of SCM.17-22 Unusually for a major natural 47 

disaster, the tertiary hospital in Christchurch continued to function, allowing the 48 

collection of a relatively large homogenous cohort of cases which have been 49 

followed over several years.18-23 Most research around this disorder has focused 50 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2017. ; https://doi.org/10.1101/144675doi: bioRxiv preprint 

https://doi.org/10.1101/144675
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 4 
 

on sporadic SCM associated with heterogenous triggers.4; 24-26  Although the 51 

presentation of earthquake-associated SCM (EqSCM) appears to be similar to 52 

that of sporadic cases, a key difference is the homogenous nature of the trigger. 53 

 54 

Various mechanisms have been postulated for takotsubo cardiomyopathy, 55 

including that the syndrome arises from stunning of the heart muscle 56 

(myocardium) as a result of either ischemia from spasm of the coronary arteries, 57 

or from the direct effect of catecholamines (dopamine, adrenaline or 58 

noradrenaline) on cardiac myocytes.4; 24; 27; 28  Despite suggestive 59 

pathophysiological observations and theories, most authors conclude that the 60 

aetiology of SCM is poorly understood, and we do not yet have satisfactory 61 

explanations for the origins of this condition.27; 29-32 26; 32 Some retrospective 62 

case series have suggested that the incidence of SCM is increased in patients 63 

with anxiety conditions, but in our studies we did not find any correlation with 64 

psychiatric or anxiety disorders.19; 23 65 

 66 

Amongst the models that may be proposed for SCM aetiology, it is worth 67 

considering the possible contribution of genetic factors. Many forms of 68 

cardiomyopathy have genetic origins.33; 34 Hypertrophic cardiomyopathy is the 69 

most common form of familial heart disease and a leading cause of sudden 70 

cardiac death. It is inherited in an autosomal dominant Mendelian manner with 71 

variable expressivity and age-related penetrance.33 These cardiomyopathies 72 

show considerable genetic heterogeneity, with cases now attributed to some 73 

1400 mutations in 11 genes, all of which contribute to cardiac sarcomere 74 

function. Familial dilated cardiomyopathy is also frequently attributable to an 75 
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underlying genetic predisposition and at least 50 genes have now been 76 

implicated, with most eliciting disease as dominant mutations.34   77 

 78 

Evidence for genetic contributions to SCM are not as strong as for other 79 

cardiomyopathies. However, there are several examples of familial occurrence 80 

of SCM involving siblings35-37 or mother-daughter pairs,38-42 and a large Swedish 81 

study of SCM identified three families in which several close relatives developed 82 

the condition.43 The overall rarity of SCM would suggest that these familial 83 

clusters are significant, and it is quite possible that more overt familial 84 

relationships in this disorder are obscured by the simultaneous requirement for 85 

two key circumstances (in most cases): post-menopausal status and 86 

environmental exposure to a sudden major stressful event. Occasional cases of 87 

SCM occur in younger women or males, and a proportion of patients report no 88 

preceding stressor,44 suggesting that an intrinsic pathogenic mechanism is 89 

involved. The recurrence of SCM in some patients, including one Christchurch 90 

EqSCM case,22 also implies a biological vulnerability.  91 

 92 

These observations have prompted consideration of genetic susceptibility to this 93 

condition.39; 42; 45; 46 Until recently, genetic studies were restricted to candidate 94 

gene analysis in case series of sporadic SCM patients,47-51 but these have 95 

yielded mainly negative findings. One candidate gene study reported a 96 

significant difference in the frequency of a GRK5 polymorphism in cases,52 but 97 

this has not been replicated and past history of single gene association studies 98 

suggests it is unlikely to be meaningful.53 More recently, another candidate gene 99 

study has implicated estrogen receptor genes as potential risk factors for 100 
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SCM.54 In an effort to capture genome-wide data, exome sequencing55-58 was 101 

recently applied to a sample of sporadic SCM cases.42 Although this analysis did 102 

not reveal any difference in allele frequency or burden between SCM cases and 103 

population controls (28 adults with normal echocardiograms), it was noted that 104 

two thirds of the cases carried a rare deleterious variant within at least one gene 105 

of a large set of adrenergic pathway genes, and 11 genes harboured a variant in 106 

two or more cases. However, the significance of these rare variants remains 107 

unclear. 108 

 109 

In this study, we set out to explore the role of genetic factors in predisposition to 110 

EqSCM. We specifically tested three discrete hypotheses for potential genetic 111 

contributions to risk of SCM: (i) an essentially Mendelian hypothesis that rare 112 

genetic variants in one or a few key genes cause predisposition, which was 113 

tested by whole exome sequencing (WES); (ii) that SCM was a complex 114 

disorder with genetic contributions from multiple common variants, which was 115 

tested using the Cardio-MetaboChip genotyping array; and (iii) that rare copy 116 

number variants (CNV) impacting on relevant genes contribute to risk, which 117 

was tested by array comparative genomic hybridization (aCGH).  118 

 119 

Material and Methods 120 

Cases 121 

The September 2010 earthquake of magnitude 7.1 on the Richter scale (Mw 122 

7.1) in Christchurch (New Zealand) triggered eight cases of EqSCM, and the 123 

shallow highly destructive quake (Mw 6.3) that followed in February 2011 124 

triggered 21 cases over four days. One woman presented after both quakes 22, 125 
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and one was in hospital during the initial quake. Enrolment of this latter 126 

participant was delayed, and her sample was available for aCGH analysis 127 

(n=28) but not for Cardio-Metabolome analysis (n=27). The steps leading to 128 

recruitment of our EqSCM cohort are detailed elsewhere20; 21, but briefly, our 129 

study commenced the day of the first earthquake with the creation of a register 130 

of prospectively identified earthquake stress cardiomyopathy cases. As our 131 

hospital was still functioning we could build a cohort with first-world data from 132 

complete single centre capture. After the second earthquake the study was 133 

extended.20-22   134 

 135 

Inclusion criteria: i) Meeting modified Mayo criteria for stress cardiomyopathy 136 

and admitted to Christchurch Hospital within one week of either the September 137 

2010 or February 2011 earthquake; ii) age over 18; iii) informed consent given. 138 

Exclusion criteria: i) unable to understand English sufficiently to be able to 139 

complete questionnaires. 140 

 141 

All participants were recruited with informed consent, including discussion of the 142 

possibility of incidental findings from genetic analyses, and return of such 143 

findings after consultation with a medical geneticist. The Southern Health and 144 

Disability Ethics Committee (New Zealand) approved this study. 145 

 146 

DNA extraction 147 

Peripheral blood samples were obtained from consenting participants. Genomic 148 

DNA was extracted from 3 mL peripheral blood using NucleoMag extraction kits 149 

(Machery-Nagel GmbH, Düren, Germany) on a KingFisher™ Flex Magnetic 150 
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liquid-handling robot (Thermo Fisher Scientific, Inc, Waltham, MA). DNA was 151 

quantified by analysis with the NanodropTM (ThermoFisher), and, where 152 

appropriate, the Tapestation 4200 system (Agilent Technologies). 153 

 154 

Exome analysis 155 

We applied WES to a subset (24 of 28) EqSCM cases. The exome capture and 156 

sequencing was carried out in two batches of 12, during 2012-13 (New Zealand 157 

Genomics Limited, Dunedin, New Zealand). DNA was processed with Illumina 158 

TruSeq sample preparation and exome enrichment kits (which capture ~62Mb of 159 

genomic DNA), and sequencing (100bp paired-end reads) was carried out on an 160 

Illumina HiSeq2000 system. Good quality sequence was obtained across all 161 

exomes, with very few unassigned reads, and greater than 20 million sequence 162 

reads per sample at mean quality scores (Phred) of Q37. Raw read data were 163 

aligned to the GRCh37 human reference genome using the Burrows-Wheeler 164 

Aligner (BWA),59 and processed through the Broad GATK pipeline.60 The 165 

alignment process included removal of reads from duplicate fragments, 166 

realignment around known indels, and recalibration of all base quality scores. 167 

Joint variant calling was performed with GATK's HaplotypeCaller. This included 168 

de novo assembly at each potential variant locus. Variants were annotated and 169 

analysed using Ingenuity Variant Analysis (IVA) software (QIAGEN, Redwood 170 

City, CA, USA), MutationTaster2,61 SnpEff,62 SeattleSeq annotation server,55 171 

and Galaxy (via usegalaxy.org).63 Allele frequencies and additional annotations 172 

were drawn from 1000 Genomes project,64 NHLBI GO Exome Sequencing 173 

Project (ESP), Seattle, WA (URL: http://evs.gs.washington.edu/EVS/), ClinVar,65 174 

and Exome Aggregation Consortium (ExAC), Cambridge, MA (URL: 175 
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http://exac.broadinstitute.org). Promising gene variants were inspected by 176 

Sanger sequence analysis on the appropriate genomic DNA samples. 177 

 178 

Cardio-MetaboChip Analysis 179 

Three groups were genotyped using the Illumina Cardio-MetaboChip: 27 out of 180 

28 female Christchurch EqSCM cases, 133 heart-healthy controls from the 181 

Canterbury Healthy Volunteers Study (HVOLs, 54 F / 79 M),66 and 157 patients 182 

recruited for an ongoing study of premature coronary heart disease and 183 

consented for genotyping (CHD, 64 F / 93 M). DNA samples were run on the 184 

Cardio-MetaboChip and scanned on the Illumina® iScan platform by 185 

AgResearch Limited (Invermay, New Zealand).  186 

 187 

Quality control with summary analysis of allele and genotype frequencies, 188 

Hardy-Weinberg equilibrium tests, and missing genotype rates were performed 189 

with PLINK version 1.07 software.67 SNPs with a minor allele frequency of <0.05 190 

and those that failed the Hardy-Weinberg equilibrium test (p<0.001) were 191 

excluded from the analysis, leaving 141,095 SNPs in the analysis (Table 1). 192 

Three samples from the CHD Study were also removed after analysis of 193 

relatedness. Principal Component Analysis (PCA, Eigenstrat 4.2) was 194 

performed on an independent subset of almost 50,000 SNPs; the first principal 195 

component explained 6% of the variation, subsequent components all less than 196 

0.5%, and matched self-reported ethnicity (visual inspection). Hence the first 197 

principal component was subsequently included as a factor in the logistic 198 

regression. Logistic regression was performed to evaluate differences in SNP 199 

minor allele frequencies between groups, adjusted for ethnicity and gender, 200 
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using an additive genetic model (R 3.01 software68). P values were adjusted for 201 

false discovery rate (FDR) using the Benjamini Yekuteli method.69 Pathway 202 

analysis was performed for the leading 100 SNPs in each pairwise group 203 

comparison, using MetaCore from GeneGo (Thomson Reuters). 204 

 205 

CNV detection and analysis 206 

Array comparative genomic hybridisation (aCGH) was undertaken on 28 207 

EqSCM cases to examine structural variants in the cohort. For this analysis, we 208 

used either the Nimblegen 135k oligo array (CGX12) (Roche NimbleGen Inc, 209 

Madison, WI, USA), capable of genome-wide screening for CNV to a resolution 210 

of 10kb in well-categorised pathogenic genomic regions, and 50kb elsewhere or 211 

the Agilent 180k HD oligo array (Sureprint G3 Human 4x180k) (Agilent 212 

Technologies, Santa Clara, CA, USA), which has a similar resolution.  213 

 214 

Pooled reference DNA samples (catalogue numbers G147A and G152A) were 215 

purchased from Promega (Madison, WI, USA). EqSCM case and reference 216 

DNA samples (0.5-1 μg each) were labelled with Cy3 and Cy5 dyes 217 

respectively, purified, hybridized, and washed according to Nimblegen and 218 

Agilent protocols. Microarrays were scanned on a GenePix 4000B laser scanner 219 

(Axon Instruments, CA, USA) or a G2600D Agilent SureScan microarray 220 

scanner (Agilent Technologies). Data was processed using Nimblescan (Roche 221 

Nimblegen Inc) or Cytogenomics software (Agilent Technologies) with the 222 

default algorithms and analysis settings, but with a 5 probe minimum calling 223 

threshold. All arrays passed QC metrics for derivative log ratio spread (DLRS) 224 

values of <0.2. CNV data was visualised and interpreted using Genoglyphix 225 
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software (Perkin Elmer) and NCBI genome browser software (genome build 226 

hg19 (GRCh37)). The EqSCM aCGH data were assessed against many CNV 227 

databases including Genoglyphix Chromosome Aberration Database (containing 228 

over 14,000 validated variants from 50,000 samples) (Perkin Elmer, Waltham, 229 

MA, USA),70 DECIPHER,71 and the Database of Genomic Variation (DGV, 230 

containing CNV data from over 35,000 unaffected individuals).72 CNVs were 231 

classified as thought to be benign (TBB), uncertain clinical significance (UCS), 232 

or clinically significant (CS) using an evidence-based approach73-76 which 233 

included database comparisons (frequency in cases/controls and relation to 234 

phenotype), gene content, gene function and dosage sensitivity. A broad 235 

summary of our CNV interpretation algorithm is depicted in Figure S1. Rare 236 

CNVs are defined as those that occur at a frequency of ≤ 1%. We classified our 237 

rare CNV frequency using larger DGV studies containing >1000 individuals.77-81  238 

 239 

Results 240 

Exome Analysis 241 

To test the potential for an essentially Mendelian predisposition to EqSCM, WES 242 

was carried out on 24 of the 28 Christchurch EqSCM cases. Several 243 

approaches to analysis of the identified variants were used, all of them 244 

hypothesising the involvement of gene variants with a low population minor 245 

allele frequency (MAF), that were over-represented in the EqSCM cohort. We 246 

carried out various iterations of filtering using variant allele frequency data 247 

derived from large population databases (1000 Genomes; NHBLI Exome 248 

Sequencing Project), followed by careful manual inspection of remaining 249 

variants. For example, excluding all variants present in these databases with an 250 
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allele frequency > 3%, and selecting for any present in at least 4/24 EqSCM 251 

exomes, identified variants in 131 genes, none of which proved to be convincing 252 

on closer analysis. We also carried out ranking of gene variants by predicted 253 

functional impact using various approaches.61; 62; 82 Once again, none of the 254 

variants identified in these analyses proved to be significantly enriched amongst 255 

our EqSCM exomes. 256 

 257 

Mitochondrial DNA reads can be recovered from exome data 83. We carried out 258 

manual inspection of BAM files of mitochondrial DNA for our exome data 259 

compared with non-disease control exomes 84. No unusual variants were 260 

detected in mitochondrial sequences of the EqSCM samples. 261 

 262 

Finally, the 11 genes listed in Figure 2 of Goodloe et al (2014),42 as well as a 263 

gene recently proposed to play a role in SCM, BAG3,46 were carefully examined 264 

for presence of any rare variants in the EqSCM dataset. None of the previously 265 

identified variants,42; 46 and no other convincing rare variants in these genes, 266 

were detected. 267 

 268 

Cardio-MetaboChip Analysis 269 

To test the possibility of a more complex, polygenetic basis to SCM risk, 270 

involving multiple variants of small effect size, Cardio-MetaboChip analysis was 271 

carried out. The Cardio-MetaboChip data for 27 EqSCM cases and 133 heart-272 

healthy controls were compared by logistic regression (adjusted for ethnicity and 273 

gender, additive genetic model), first performed for pairwise comparisons across 274 

groups. No SNPs reached statistical significance of <0.05 after adjusting for 275 
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false discovery rate (FDR) when comparing either the EqSCM and HVOLs, or 276 

the EqSCM and CHD samples. To investigate whether the top 100 of these 277 

SNPs mapped to gene pathways that might assist in understanding potential 278 

disease mechanisms underlying SCM, pathway analysis of the leading 100 279 

SNPs in the EqSCM versus HVOLs pairwise comparison was performed in 280 

MetaCore. Disease Biomarker Pathway analysis identified Myocardial Ischemia 281 

as the third most enriched pathway (FDR-adjusted p=1.3e-2), featuring 11 SNP 282 

loci on our list out of 886 pathway objects, including annexin V, ANRIL, 283 

COL4A1, dynein, HXK4, nectin-2, PPAR-gamma, prolidase, Tcf(Lef), UGT, and 284 

VEGFR-2 . 285 

  286 

aCGH Analysis 287 

To test for potential involvement of CNVs in SCM, we applied aCGH to all 288 

cases. Of the 28 EqSCM cases examined by aCGH, twelve (42%) showed 289 

evidence of large, rare heterozygous CNVs classified as being of unclear clinical 290 

significance (Table 2), meaning that insufficient evidence is available for 291 

unequivocal determination of clinical significance.73  Of these CNVs, seven were 292 

deletions and six were duplications. All of the CNVs were different, and there 293 

was no physical overlap between the various CNVs. Each of these rare CNVs 294 

encompasses one or more genes, or their immediate upstream regulatory 295 

regions, and many of the genes included within the CNVs have functions of 296 

cardiac relevance. A full list of all CNVs detected in the cohort is presented in 297 

Table S1. 298 

 299 
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Three cases (EqSCM 01, 06 and 19) harboured deletions very likely to impact 300 

genes of high relevance to cardiomyopathy or cardiac function. In EqSCM 01, 301 

intragenic deletion of RBFOX1 results in a single copy loss of one exon used by 302 

the majority of transcripts predicted for the gene (Figure 1). This exon contains 303 

the start methionine for the RBFOX1 protein, meaning the gene is most likely 304 

rendered non-functional. RBFOX1 is an important RNA-binding protein 305 

mediating the incorporation of microexons into many transcripts associated with 306 

neurological patterning and tissue development,85; 86 particularly in the brain, 307 

heart and muscles. Intragenic deletions in RBFOX1 have been observed in a 308 

range of conditions, including occasional cases with cardiac defects.87; 88; 89 309 

Furthermore, RBFOX1-mediated RNA splicing was also recently shown to be an 310 

important regulator of cardiac hypertrophy and heart failure90. 311 

 312 

In the second case (EqSCM 06, Figure. 2), a heterozygous deletion 313 

encompassed exon 2 and the majority of intron 2 of the Glypican 5 (GPC5) 314 

locus. GPC5 encodes a cell surface proteoglycan, which binds to the outer 315 

surface of the plasma membrane in the cardiovascular system and displays 316 

diverse functions including blood vessel formation after ischemic injury and 317 

proliferation of smooth muscle cells during atherogenesis.91 GPC5 was also 318 

implicated by GWAS as a protective locus for sudden cardiac arrest,92 and other 319 

glypicans (GPC3, 4 and 6) have been associated with cardiac dysfunction.93 320 

This case (EqSCM 06) also harbours a duplication on 4q21.21 involving the 321 

ANXA3 gene, which encodes a member of the annexin family, annexin A3. 322 

Members of this calcium-dependent phospholipid-binding protein family have a 323 

range of functions in the regulation of cellular growth and signal transduction 324 
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pathways. Annexin A6 for example is the most abundant annexin expressed in 325 

the heart and its overexpression in mice has been shown to cause physiological 326 

alterations in contractility leading to dilated cardiomyopathy, while Annexin A6 327 

knockout has been found to induce faster changes in Ca2+ transience and 328 

increased contractility.94; 95 Alterations in expression and activity of annexins A5 329 

and A7 have also been found to be associated with regulation of Ca2+ handling 330 

in the heart.96 The function of annexin A3 is not fully understood, however it has 331 

been shown to play a role in endothelial migration and vascular development.97 332 

 333 

The third case (EqSCM 19), contained a deletion at chr13q14.3. This region 334 

harbours at least 10 genes (DLEU2, TRIM13, KCNRG, MIR16-1, MIR15A, 335 

DLEU1, DLEU1AS-1, ST13P4, DLEU7AS-1, DLEU7, and RNASEH2B-AS1), 336 

including several non-coding RNAs (DLEU genes and micro-RNA genes) and a 337 

gene (KCNRG) encoding a protein involved in the regulation of voltage-gated 338 

potassium channel activity. The micro-RNA genes mir-16-1 and mir-15a in this 339 

interval have been implicated in a range of cardiovascular phenotypes, including 340 

a role for mir-15a in postnatal mitotic arrest of cardiomyocytes.98-100 Two further 341 

chromosome 13 duplicated CNVs of approximately 150kb were classified as 342 

uncertain significance - one involving LINC00346 and ANKRD10 and the other 343 

containing ENOX1, postulated to affect vascular development based on 344 

zebrafish expression patterns101  (Table 2). 345 

 346 

Beyond these three cases, cardiac or relevant neurological impacts appeared 347 

likely for many of the other rare CNVs identified in EqSCM cases (Table 2, 348 

Figure 2, Table S1), several of which are discussed below. 349 
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 350 

A 96kb heterozygous deletion in EqSCM 03 disrupts all predicted transcripts of 351 

the chondrolectin gene (CHODL), a membrane bound C-type lectin involved in 352 

muscle organ development, whose protein product is detected in heart and 353 

skeletal muscle by immunohistochemistry.102 In addition to this CNV, this patient 354 

carries a 1.94Mb duplication at 22q11.25, a locus containing 45 genes or 355 

miRNAs, associated with learning difficulties.103; 104 This individual, who 356 

exhibited a degree of cognitive impairment, had consented for clinically relevant 357 

findings to be forwarded to their General Practice clinician, who subsequently 358 

recommended genetic counselling for this individual.  359 

 360 

A 455kb duplication within EqSCM 04 at 1p34.1 affects the genes GPBP1L1, 361 

TMEM69, IPP, MAST2, and PIK3R3. Smaller rare duplications in this region 362 

have been reported by the DGV database105 but none span the genes within this 363 

CNV. GPBP1L1 is widely expressed in many tissues, including heart muscle106 364 

and predicted to be involved in transcriptional regulation. TMEM69, a gene of 365 

unknown function, is most strongly expressed in heart tissue.106 IPP is a 366 

transcription factor with a 50 amino acid Kelch repeat known to interact with 367 

actin, while MAST2 contains a PDZ domain and is another gene highly 368 

expressed in heart and skeletal muscle.106 The protein product of PIK3R3, 369 

phosphoinositide-3-kinase regulatory subunit 3, acts downstream of G-protein-370 

coupled receptors in cardiac function,107 and is also a target for isoproterenol, 371 

which can trigger SCM-like conditions in humans and rodents.12; 108-110 372 

 373 
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Duplication of a long non-coding RNA (LOC101928358), the 3’ segment of 374 

COL4A5 and the entire IRS4 gene at Xq22.3 (9 probes, 113kb) was identified 375 

within case EqSCM 05. IRS4 is an insulin receptor molecule expressed in heart 376 

and skeletal muscle cells111 and other tissues such as brain, kidney and liver.112 377 

Duplication of IRS4 may be of functional significance, although copy number 378 

increases on the X chromosome of females may be counteracted to a degree by 379 

random X inactivation. Of note is a Genoglyphix Chromosome Aberration 380 

Database (GCAD70) case 52414 with a phenotype of low muscle tone, which 381 

has an identical duplication at this locus (as well as a 1p33 deletion). With 382 

regard to IRS4, Schreyer et al. (2003)111 found a more restricted tissue 383 

distribution than IRS1 and IRS2, in primary human skeletal muscle cells and rat 384 

cardiac muscle and isolated cardiomyocytes. Although IRS4 protein function is 385 

still relatively unknown, the role of IRS proteins in general, acting as mediators 386 

of intracellular signalling from insulin and insulin-like growth factor 1 receptors, 387 

implicates IRS4 in cell growth and survival.113 It is interesting to note that PI 3-388 

kinase (PI3K) signalling in HEH293T cells depends on IRS4, and that the IRS 389 

proteins relay signals from receptor tyrosine kinases to downstream 390 

components of signalling pathways,111 which we note is a connection with the 391 

PIK3R3 gene duplicated in one of our other cases, EqSCM 04. 392 

 393 

EqSCM 10 harboured a 130kb duplication of NLRP7, NLRP2, GP6 and RDH13 394 

at 19q13.42. One similar DGV duplication has been seen in this area 395 

(nsv1062047105), but otherwise duplicated CNVs are generally much smaller 396 

and rare. NLRP2 and NLRP7 are genes that encode members of the NACHT, 397 

leucine rich repeat, and PYD containing (NLRP) protein family. These proteins 398 
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are implicated in the activation of pro-inflammatory caspases. Recessive 399 

mutations ininin NLRP2/7 in humans are associated with reproductive 400 

disorders.114 Another gene in this duplicated cluster associated with disease is 401 

GP6, a platelet membrane glycoprotein, involved in collagen-induced platelet 402 

aggregation and thrombus formation, which is expressed at high levels in heart, 403 

kidney and whole blood.106 A GP6 SNP (c.13254TC) has been implicated in 404 

recurrent cardiovascular events and mortality.115 Another study involving this 405 

SNP,116 found that hormone replacement therapy (HT) reduced the hazard ratio 406 

(HR) of CHD) events in patients with the GP6 13254TT genotype by 17% but 407 

increased the HR in patients with the TC+CC genotypes by 35% (adjusted 408 

interaction P < 0.001). The authors found that in postmenopausal women with 409 

established CHD, the GP6 polymorphism, and another in GP1B, were predictors 410 

of CHD events and significantly modified the effects of HT on CHD risk.116  411 

 412 

Duplication of PPL2, YPEL1 and MAPK1 on chromosome 22q11.21 (180kb) 413 

observed in EqSCM 11, does not appear in the DGV catalogue of CNVs in 414 

healthy individuals, and the consequences of overexpression of these genes, 415 

miRNAs or regulatory sequences are unknown. One of the affected genes, 416 

MAPK1 (previously named ERK or ERK2), may constitute a link to another 417 

kinase intracellular signalling pathway – the RAF-MEK-ERK kinase cascade, 418 

which in mice and human has an established role in the induction of cardiac 419 

tissue hypertrophy.117 Although not the kind of left ventricular enlargement seen 420 

in SCM, subtle copy number variation at MAPK1 may influence signalling 421 

through this pathway. Another duplication in EqSCM 11 involving the 3’ half of 422 

TSPAN7, a member of the tetraspanin protein superfamily (Xp11.4) was noted 423 
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as rare, and a similar (though larger) duplication was recently observed in a 424 

patient with Rolandic epilepsy.118  425 

 426 

An agenic duplication 50kb upstream from NRG3 (10q23.1) was seen in case 427 

EqSCM 15. This CNV could conceivably disrupt upstream regulatory regions of 428 

NRG3, which encodes an important ligand for the transmembrane tyrosine 429 

kinase receptor ERBB4. NRG3 has been shown to activate tyrosine 430 

phosphorylation of its cognate receptor, ERBB4, and is thought to influence 431 

neuroblast proliferation, migration and differentiation by signalling through 432 

ERBB4. NRG3 is a strong candidate gene for schizophrenia, and neuregulin 433 

molecules and their receptors are involved in rat cardiac development and 434 

maintenance.119 435 

 436 

Finally, the two rare deletions observed on chromosome 13 (13q21.33 and 437 

13q33.1) in case EqSCM 17, fall into largely uncharacterised areas of the 438 

genome. The first is agenic, although there is a prediction of a spliced EST in 439 

the NCBI database, and the second occurs as two 50kb blocks within the 440 

ITGBL1 gene. ITGBL1 is most strongly expressed in aorta.120; 121 441 

 442 

 443 

Discussion 444 

Monogenic and polygenic models of risk 445 

The Christchurch earthquakes repeatedly exposed the entire population of the 446 

city, approximately 350,000 people, to major stress and life disruption. Almost all 447 

patients presenting with EqSCM were post-menopausal females, consistent with 448 
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other reports.122 We set out to explore three categories of genetic contributions 449 

to SCM predisposition, using WES to explore Mendelian models of risk, Cardio-450 

MetaboChip analysis to test for polygenic risk factors, and aCGH analysis to 451 

evaluate the role of genomic structural variants. 452 

 453 

Extensive analysis of the WES data did not yield any apparent enrichment of 454 

rare, damaging variants within exome regions amongst the EqSCM cases. 455 

Therefore, it seems unlikely that point mutations or small insertion-deletion 456 

(indels) in a single gene underlie predisposition to earthquake SCM. A limitation 457 

of this analysis is that it would have been unable to detect regulatory mutations, 458 

or other important variants, not included or well represented within the captured 459 

exome regions. Whole genome sequencing may therefore be warranted to 460 

further test the hypothesis of Mendelian underpinnings of SCM, as this approach 461 

could identify any regulatory variants not obtained with WES, and due to the 462 

absence of a DNA capture step, would also provide more uniform coverage of 463 

exons.  464 

 465 

In a second approach, we explored the alternative hypothesis of polygenic risk 466 

alleles of small effect size using a case-control association study, with 467 

genotypes generated by the Cardio-MetaboChip. This chip allowed genotyping 468 

of ~200,000 SNPs previously identified through genome‐wide association 469 

studies (GWAS) for risk of metabolic, atherosclerotic and cardiovascular 470 

diseases and traits.123 The traits covered by the panel of genetic variants on the 471 

chip include myocardial infarction (MI) and coronary heart disease (CHD), type 2 472 

diabetes (T2D), T2D age diagnosed, T2D early onset, mean platelet volume, 473 
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platelet count, white blood cell, HDL cholesterol, LDL cholesterol, triglycerides, 474 

total cholesterol, body mass index, waist hip ratio (BMI adjusted), waist 475 

circumference (BMI adjusted), height, percent fat mass, fasting glucose, fasting 476 

insulin, 2-hour glucose, HbA1c, systolic blood pressure, diastolic blood pressure 477 

and QT interval.  This analysis did not yield variants of genome-wide 478 

significance in the SCM cases compared to either healthy controls or patients 479 

with coronary disease. Exploratory pathway analysis suggested that the EqSCM 480 

cases carried a greater burden of SNPs that mapped to a myocardial ischemia 481 

pathway compared to the healthy controls, although this must be interpreted 482 

with caution as our small sample set meant very limited statistical power. Two 483 

limitations of this analysis were the relatively constrained content of the Cardio-484 

MetaboChip, which is less able to provide a rich dataset of genome-wide SNP 485 

genotypes than the chips commonly used for GWAS, and the relatively small 486 

cohort of cases available for study.  Recruitment of a much larger SCM cohort 487 

with a view to a well-powered GWAS with a more extensive genotyping chip 488 

would therefore be a worthwhile future goal to more fully explore possible 489 

polygenic underpinnings of this disorder. We note the recent publication of a 490 

preliminary GWAS on 96 SCM cases and 475 healthy controls,124 and believe 491 

extension of this approach to larger cohorts is an important goal. 492 

 493 

Involvement of copy number variants  494 

CNVs have been implicated in many diseases since the recognition a decade 495 

ago of their widespread distribution through the genome.125-127 Of note, rare 496 

CNVs are implicated in autism, epilepsy, schizophrenia, developmental delay 497 

and intellectual disability.105; 128-132 Cardiac conditions which involve CNVs 498 
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include congenital left-sided heart disease,133; 134 congenital heart disease,135; 136 499 

some cases of long QT syndrome,137 and Tetralogy of Fallot.138 Our final 500 

analysis, therefore, was to explore the potential involvement of CNV in risk of 501 

EqSCM, using aCGH analysis of all cases. Results from this analysis were 502 

striking, with 42% of EqSCM cases having a rare CNV of unclear clinical 503 

significance. The CNV detection rate for diagnostic aCGH in childhood 504 

developmental disorders such as autism, developmental delay and intellectual 505 

disabilities, is approximately 20-30%.139-141 A recent report of a large New 506 

Zealand aCGH case series (5,300 pre- and post-natal tests) reported CNVs in 507 

28.3% of these clinically-selected cases.142  Our observation of a rate of 42% for 508 

the EqSCM case series is significantly greater (P < 0.02) than rates for the 509 

enriched case cohorts normally referred for clinical aCGH testing139-142. The 510 

CNVs detected in EqSCM cases were all different, and there were no physical 511 

overlaps between them. This situation is similar to the pattern of CNVs seen in 512 

other conditions, including rolandic epilepsies118 and congenital heart 513 

disease.133; 135; 136 Many of the CNVs we observed are likely to impact genes of 514 

potential relevance to physiological processes implicated in SCM. 515 

 516 

We have taken a relatively conservative approach to categorising CNVs, in 517 

terms of rarity and predicted functional significance. For example, we did not 518 

include two CNVs located at 9p24.3, involving individuals EqSCM 14 and 28 - a 519 

deletion and duplication, respectively. These CNVs encompassed a region 520 

including the large isoform of DOCK8 gene. DOCK8 encodes a protein 521 

implicated in the regulation of the  actin cytoskeleton,143 and DOCK8 mutations 522 

cause autosomal recessive hyper-IgE syndrome.144 One reported case of a 523 
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homozygous 129kb deletion in this region was associated with Graves’s disease 524 

and aortic aneurysm.145 However, several deletions of DOCK8 are recorded in 525 

the DGV for unaffected individuals, therefore the CNVs in EqSCM 14 and 28 526 

were categorised as TBB (thought to be benign). The approximately160kb 527 

duplication in EqSCM 28 was larger than the 44kb deletion in EqSCM 14, and it 528 

encompassed a second gene, KANK1. A small number of similar duplications 529 

have been recorded in the DGV, and therefore we did not consider this to be 530 

pathogenic. However, it is of interest that we see two relatively rare CNVs at this 531 

locus in our small EqSCM cohort. 532 

 533 

Of the twelve EqSCM cases with rare CNVs, we consider that three (EqSCM 01, 534 

06 and 19) contain CNVs that affect genes of high relevance to cardiomyopathy 535 

or cardiac function. The remaining candidate CNVs are also strong candidates 536 

with potential functional relevance. In one of our most highly-ranked candidate 537 

CNV containing cases (EqSCM 01) a large genomic deletion removes an exon 538 

of RBFOX1 which contains the start codon used by the majority of transcripts 539 

predicted for the gene. A recent report by Gao et al. (2016) provided strong 540 

functional data that would support our hypothesis of this gene’s involvement as 541 

a susceptibility locus for SCM90. Their work with mouse models has shown 542 

RBFox1 deficiency in the heart promoted pressure overload–induced heart 543 

failure, and induction of RBFox1 over-expression in these murine pressure-544 

overload models, substantially attenuated cardiac hypertrophy and pathological 545 

manifestations90. The haploinsufficiency seen in EqSCM 01 at the RBFOX1 546 

locus may, in concert with other environmental or genetic factors, contribute to 547 

SCM through reduced global RNA splicing changes in the heart.  548 
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Conclusion 549 

Beginning with a cohort of 28 SCM cases triggered by two major earthquakes 550 

that caused extensive death and damage in Christchurch (New Zealand), we 551 

carried out exploratory analyses of three models for genetic predisposition to 552 

this disorder. Using WES and Cardio-MetaboChip genotyping analyses we did 553 

not detect an obvious role for exonic mutations in a monogenic model, or SNPs 554 

in a polygenic model, for SCM risk. However, our analysis of copy number 555 

variation in SCM cases revealed a high rate of occurrence of CNV categorised 556 

as of uncertain clinical significance. Most of the CNV we detected in SCM cases 557 

were rare, or not previously seen (Table 2).  558 

 559 

These observations lead us to propose that SCM is a copy number variant 560 

disorder, whereby haploinsufficiency of genes overlapping deletions or over-561 

expression of duplicated genes leads to relatively subtle modification of cardiac 562 

or adrenergic physiology, such that these individuals are at increased risk of 563 

suffering SCM when exposed to specific environmental triggers. Although no 564 

obvious single pathway relationships between the genes affected by these 565 

CNVs is apparent, most of the CNVs encompass loci relevant to cardiac 566 

function or cardioneuronal development.  567 

 568 

In order to confirm whether SCM predisposition does indeed arise from CNVs, 569 

four key areas for future work need to be pursued. First, more widespread 570 

analysis is required of CNVs in many SCM cases. This would confirm whether 571 

our observation of a high rate of CNV in EqSCM also prevails in sporadic cases, 572 

and it will broaden the catalog of affected genes, helping to discern underlying 573 
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signalling networks and physiological processes. In addition, with increasing 574 

numbers of cases, physical overlaps between CNVs in different individuals 575 

should become apparent, pinpointing key genomic regions for more intensive 576 

analysis. Second, the inheritance patterns of these CNVs must be established. It 577 

is unclear what proportion are de novo versus inherited from either parent. 578 

Third, there is a clear need for detailed physiological and gene expression 579 

analyses on appropriate cells, including cardiomyocytes, derived from SCM 580 

cases. Given the diversity of CNV seen in our SCM cases, this goal would most 581 

effectively be achieved by generation of induced-pluripotent stem cell (iPSC) 582 

lines from many patients and appropriate controls.146; 147 Finally, although our 583 

data implicate CNV as a significant genetic factor underlying SCM risk, it would 584 

seem wise to pursue an effective GWAS strategy to identify other genetic 585 

contributors to SCM and build on the initial study in this area.124 International 586 

initiatives to collate SCM cases13 should therefore ensure that consented DNA is 587 

available to provide appropriately large numbers of well phenotyped cases and 588 

controls to facilitate this goal.  589 

 590 

Finally, we hope our observations implicating CNV in this unique case series of 591 

EqSCM will stimulate further studies of copy number variation in other SCM 592 

cohorts, and lead to an improved understanding of this perplexing and intriguing 593 

condition. 594 

 595 

Supplemental Data 596 

Supplemental Data include one figure and one table and can be found with this 597 

article online at…. 598 
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Figure titles and legends 1144 
 1145 

Figure 1. CNV detected in EqSCM case 01. A: Chromosomal location of the 1146 
CNV at the RBFOX1 locus of chromosome 16. B: Enlargement of the fifteen 1147 
probe deletion (139kb, delimited by vertical green lines and blue shading) 1148 
illustrating loss of the fMet-containing exon (pale blue vertical bar) for three 1149 
major RBFOX1 isoforms. DGV track of known CNVs shown at bottom of figure, 1150 
beneath the genes2 and regions of interest tracks. Graphical views from 1151 
Genoglyphix (PerkinElmer) software. 1152 
 1153 
 1154 
Figure 2. Genome wide distribution of CNVs. CNVs detected in 12 (of 28) 1155 
EqSCM individuals by aCGH analysis. Numbers beside arrows relate to EqSCM 1156 
patient number. Red arrows denote deletions, blue arrows duplications. Note 1157 
that EqSCM 03, EqSCM 06, EqSCM 11 carry two rare CNVs, while EqSCM 19 1158 
contains three. 1159 
 1160 
 1161 
 1162 
 1163 
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Table titles and legends 1183 
 1184 
Table 1. SNP markers removed from Cardio-MetaboChip analysis in quality 1185 
control 1186 
 1187 
Stage of analysis Number of SNPs Comments 
Assayed 196,725  
No genotype 10,927  
Mono allelic 28,367  
MAF <0.004 44,424 SNPs with only 1 minor allele 

found 
Missing > 0.02 of 
samples 

36,884  

HWE fail 130 HWE_P <1e-20 and 1.5x more 
heterozygotes than expected 

Total Removed 65,622 Note that SNPs could fail on two 
or more of the criteria above 

 
SNPs remaining in 
analysis 
 

 
131,103 

 

 1188 
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Table 2. Rare CNVs detected in a cohort of 28 EqSCM cases.  
 
Case ID Prediction* Location Del/Dup Key genes** Size Frequency Location 

EqSCM 01 UCS 16p13.2 DEL RBFOX1** 139kb 1/20000  HG19 chr16:7,054,481-7,193,526 

EqSCM 03 UCS 21q21.1 DEL CHODL** 96kb 1/9000 HG19 chr21:19,537,178-19,633,275 

 CS 22q11.26.1 DUP  2Mb  HG19 chr22:23,055,148-24,991,669 

EqSCM 04 UCS 1p34.1 DUP IPP** PIK3R3 (+3 others) 455kb 1/7000 HG19 chr1:46,144,479-46,599,815 

EqSCM 05 UCS Xq22.3 DUP IRS4** COL4A5** 113kb 1/2000 HG19 chrX:107,896,435-108,009,609 

EqSCM 06 UCS 13q31.5 DEL GPC5** 207kb 1/5000 HG19 chr13:92,075,673-92,283,600 

 UCS 4q21.21 DUP FRAS1 ANX3** LINC01094 329kb 1/29000 HG19 chr4:79,281,048-79,610,796 

EqSCM 07 UCS 12q13.13 DUP 17 Keratin genes 411kb 0 HG19 chr12:52,657,396-53,069,013 

EqSCM 10 UCS 19q13.42 DUP GP6** 130kb 1/15000 HG19 chr19:55,439,927-55,570,442 

EqSCM 11 UCS 22q11.21 DUP YPEL1** (+ 2 others) 180kb 0  HG19 chr22:22,008,249-22,189,094 

 UCS Xp11.4 DUP TSPAN7** 140kb 1/1000 HG19 chrX:38,485,991-38,626,762 

EqSCM 15 UCS 10q23.1 DUP upstream NRG3** 78kb 0 HG19 chr10:83,506,502-83,585,097 

EqSCM 17 UCS 13q33.1 DEL ITGBL1** 148kb 0 HG19 chr13:102,148,514-102,296,766 

EqSCM 19 ?CS 13q14.2 DEL KCNRG (+ 6 others) 886kb 0 HG19 chr13:50,585,186-51,452,033 

 UCS 13q34 DUP LINC00346, ANKRD10 146kb 0 HG19 chr13:111,385,673-111,532,564 

 UCS 13q14.11 DUP ENOX1** 149kb 0  HG19 chr13:89,219,432-89,359,036 

EqSCM 27 UCS 7q31.1 DEL LRRN3** IMMP2L 105kb 1/12000 HG19 chr7:110,744,611-110,849,681 

 

*UCS = unclear clinical significance, ?CS = potential clinical significance. **Genes with clear cardiovascular association. 
Frequency calculations are based on larger (>1000 individuals) studies included in the DGV. 
A full list of all CNVs detected for each individual is presented in Supplementary Table 1. 
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Supplemental data 
 
Table S1: Complete CNV detection list of EqSCM cases in this study. (Separate Excel spreadsheet). 
 
Figure S1: CNV interpretation algorithm (Separate word file doc) 
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