Copy number variants implicate cardiac function and development pathways in earthquake-induced stress cardiomyopathy.

Authors

Cameron J. Lacey^{1,10}, Kit Doudney^{2,10}, Paul G. Bridgman³, Peter M. George^{2, 9}, Roger T. Mulder¹, Julie J. Zarifeh⁴, Bridget Kimber¹, Murray J. Cadzow⁵, Michael A. Black⁵, Tony R. Merriman⁵, Klaus Lehnert⁶, Vivienne M Bickley², John F. Pearson⁷, Vicky A. Cameron⁸, Martin A. Kennedy⁹.

Author affiliations

- ¹ Department of Psychological Medicine, University of Otago, Christchurch, New Zealand.
- ² Molecular Pathology Laboratory, Canterbury Health Laboratories, Canterbury District Health Board, Christchurch, New Zealand.
- ³ Department of Cardiology, Christchurch Hospital, Christchurch, New Zealand.
- ⁴ Psychiatric Consultation Service, Christchurch Hospital, Canterbury District Health Board, Christchurch, New Zealand.
- ⁵ Department of Biochemistry, University of Otago, Dunedin, New Zealand.
- ⁶ School of Biological Sciences, University of Auckland, Auckland, New Zealand.
- ⁷ Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand.
- ⁸ Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, New Zealand.
- ⁹ Department of Pathology, University of Otago, Christchurch, New Zealand.

¹⁰ These authors contributed equally to this work.

Correspondence

cameron.lacey@otago.ac.nz (C.L.), martin.kennedy@otago.ac.nz (M.K.)

bioRxiv preprint doi: https://doi.org/10.1101/144675; this version posted May 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

1 Abstract

2	The pathophysiology of stress cardiomyopathy (SCM), also known as takotsubo
3	syndrome, is poorly understood. SCM usually occurs sporadically, often in
4	association with a stressful event, but clusters of cases are reported after major
5	natural disasters. There is some evidence that this is a familial condition. We
6	have examined three possible models for an underlying genetic predisposition to
7	SCM. Our primary study cohort consists of 28 women who suffered SCM as a
8	result of two devastating earthquakes that struck the city of Christchurch, New
9	Zealand, in 2010 and 2011. To seek possible underlying genetic factors we
10	carried out exome analysis, Cardio-MetaboChip genotyping array analysis and
11	array comparative genomic hybridization on these subjects. The most striking
12	finding from these analyses was the observation of a markedly elevated rate of
13	rare, heterogeneous copy number variants (CNV) of uncertain clinical
14	significance (in 12/28 subjects). Several of these CNVs clearly impacted on
15	genes of cardiac relevance including RBFOX1, GPC5, KCNRG, CHODL, and
16	GPBP1L1. There is no physical overlap between the CNVs, and the genes they
17	impact do not fall into a clear pathophysiological pathway. However, the
18	recognition that SCM cases display a high rate of unusual CNV, and that SCM
19	predisposition may therefore be associated with these CNVs, offers a novel
20	perspective and a new approach by which to understand this enigmatic
21	condition.
22	

23 Introduction

24 Stress cardiomyopathy (SCM), also known as "broken heart syndrome" or

25 takotsubo syndrome,^{1; 2} is a condition that captures widespread public interest.

26 The cardiomyopathy is distinctive and the precipitating emotional event is 27 typically clearly defined, however the mechanism for the cardiomyopathy and 28 links between the psychological event and the physical illness are not 29 understood. 30 31 Sporadic cases of SCM are estimated to account for 1-5% of acute coronary syndrome presentations.³⁻⁵ Predominantly the condition occurs in post-32 33 menopausal women,^{6; 7} and because of this, 5-10% of female presentations with suspected acute coronary syndrome are attributed to SCM.⁸⁻¹¹ Although SCM 34 35 can be fatal, the symptoms are commonly transient and patients generally have a good prognosis and recover well over a period of days to weeks.¹² In classic 36 37 descriptions the cardiomyopathy has a typical pattern but a number of variations 38 are now widely recognised and it is increasingly apparent that cases can be quite heterogeneous.¹³ 39 40 41 SCM occurring in clusters around the time of major disasters such as

42 earthquakes, floods and bushfires is also well recognised.^{6; 14-16} Due to the large 43 impact these events have upon hospital resources and medical infrastructure, it 44 is rare for such clusters of SCM to be studied in any depth. This was made clear in reports from the Great East Japan Earthquake.¹⁷ In the Canterbury (New 45 46 Zealand) earthquake sequence of 2010 and 2011 the two main events precipitated large case clusters of SCM.¹⁷⁻²² Unusually for a major natural 47 48 disaster, the tertiary hospital in Christchurch continued to function, allowing the 49 collection of a relatively large homogenous cohort of cases which have been followed over several years.¹⁸⁻²³ Most research around this disorder has focused 50

51	on sporadic SCM associated with heterogenous triggers.4; 24-26 Although the
52	presentation of earthquake-associated SCM (EqSCM) appears to be similar to
53	that of sporadic cases, a key difference is the homogenous nature of the trigger.
54	
55	Various mechanisms have been postulated for takotsubo cardiomyopathy,
56	including that the syndrome arises from stunning of the heart muscle
57	(myocardium) as a result of either ischemia from spasm of the coronary arteries,
58	or from the direct effect of catecholamines (dopamine, adrenaline or
59	noradrenaline) on cardiac myocytes.4; 24; 27; 28 Despite suggestive
60	pathophysiological observations and theories, most authors conclude that the
61	aetiology of SCM is poorly understood, and we do not yet have satisfactory
62	explanations for the origins of this condition. ^{27; 29-32 26; 32} Some retrospective
63	case series have suggested that the incidence of SCM is increased in patients
64	with anxiety conditions, but in our studies we did not find any correlation with
65	psychiatric or anxiety disorders. ^{19; 23}
66	
67	Amongst the models that may be proposed for SCM aetiology, it is worth
68	considering the possible contribution of genetic factors. Many forms of
69	cardiomyopathy have genetic origins. $^{33; 34}$ Hypertrophic cardiomyopathy is the
70	most common form of familial heart disease and a leading cause of sudden
71	cardiac death. It is inherited in an autosomal dominant Mendelian manner with
72	variable expressivity and age-related penetrance.33 These cardiomyopathies
73	show considerable genetic heterogeneity, with cases now attributed to some
74	1400 mutations in 11 genes, all of which contribute to cardiac sarcomere
75	function. Familial dilated cardiomyopathy is also frequently attributable to an

76 underlying genetic predisposition and at least 50 genes have now been

77 implicated, with most eliciting disease as dominant mutations.³⁴

78

79 Evidence for genetic contributions to SCM are not as strong as for other 80 cardiomyopathies. However, there are several examples of familial occurrence of SCM involving siblings³⁵⁻³⁷ or mother-daughter pairs,³⁸⁻⁴² and a large Swedish 81 82 study of SCM identified three families in which several close relatives developed the condition.⁴³ The overall rarity of SCM would suggest that these familial 83 84 clusters are significant, and it is guite possible that more overt familial 85 relationships in this disorder are obscured by the simultaneous requirement for 86 two key circumstances (in most cases): post-menopausal status and 87 environmental exposure to a sudden major stressful event. Occasional cases of 88 SCM occur in younger women or males, and a proportion of patients report no preceding stressor,⁴⁴ suggesting that an intrinsic pathogenic mechanism is 89 90 involved. The recurrence of SCM in some patients, including one Christchurch EqSCM case,²² also implies a biological vulnerability. 91 92 93 These observations have prompted consideration of genetic susceptibility to this condition.^{39; 42; 45; 46} Until recently, genetic studies were restricted to candidate 94 gene analysis in case series of sporadic SCM patients,⁴⁷⁻⁵¹ but these have 95 96 yielded mainly negative findings. One candidate gene study reported a significant difference in the frequency of a *GRK5* polymorphism in cases,⁵² but 97 98 this has not been replicated and past history of single gene association studies

99 suggests it is unlikely to be meaningful.⁵³ More recently, another candidate gene

100 study has implicated estrogen receptor genes as potential risk factors for

Page 5

SCM.⁵⁴ In an effort to capture genome-wide data, exome sequencing⁵⁵⁻⁵⁸ was 101 recently applied to a sample of sporadic SCM cases.⁴² Although this analysis did 102 103 not reveal any difference in allele frequency or burden between SCM cases and 104 population controls (28 adults with normal echocardiograms), it was noted that 105 two thirds of the cases carried a rare deleterious variant within at least one gene 106 of a large set of adrenergic pathway genes, and 11 genes harboured a variant in 107 two or more cases. However, the significance of these rare variants remains 108 unclear.

109

110 In this study, we set out to explore the role of genetic factors in predisposition to

111 EqSCM. We specifically tested three discrete hypotheses for potential genetic

112 contributions to risk of SCM: (i) an essentially Mendelian hypothesis that rare

113 genetic variants in one or a few key genes cause predisposition, which was

114 tested by whole exome sequencing (WES); (ii) that SCM was a complex

115 disorder with genetic contributions from multiple common variants, which was

116 tested using the Cardio-MetaboChip genotyping array; and (iii) that rare copy

117 number variants (CNV) impacting on relevant genes contribute to risk, which

118 was tested by array comparative genomic hybridization (aCGH).

119

120 Material and Methods

121 Cases

122 The September 2010 earthquake of magnitude 7.1 on the Richter scale (Mw

123 7.1) in Christchurch (New Zealand) triggered eight cases of EqSCM, and the

- 124 shallow highly destructive quake (Mw 6.3) that followed in February 2011
- 125 triggered 21 cases over four days. One woman presented after both quakes ²²,

126	and one was in hospital during the initial quake. Enrolment of this latter
127	participant was delayed, and her sample was available for aCGH analysis
128	(n=28) but not for Cardio-Metabolome analysis (n=27). The steps leading to
129	recruitment of our EqSCM cohort are detailed elsewhere ^{20; 21} , but briefly, our
130	study commenced the day of the first earthquake with the creation of a register
131	of prospectively identified earthquake stress cardiomyopathy cases. As our
132	hospital was still functioning we could build a cohort with first-world data from
133	complete single centre capture. After the second earthquake the study was
134	extended. ²⁰⁻²²
135	
136	Inclusion criteria: i) Meeting modified Mayo criteria for stress cardiomyopathy
137	and admitted to Christchurch Hospital within one week of either the September
138	2010 or February 2011 earthquake; ii) age over 18; iii) informed consent given.
139	Exclusion criteria: i) unable to understand English sufficiently to be able to
140	complete questionnaires.
141	
142	All participants were recruited with informed consent, including discussion of the
143	possibility of incidental findings from genetic analyses, and return of such
144	findings after consultation with a medical geneticist. The Southern Health and
145	Disability Ethics Committee (New Zealand) approved this study.
146	
147	DNA extraction
148	Peripheral blood samples were obtained from consenting participants. Genomic
149	DNA was extracted from 3 mL peripheral blood using NucleoMag extraction kits
450	(Machany Nagal Ombill Düran, Carmany) and King Fish artM Flass Margaritic

150 (Machery-Nagel GmbH, Düren, Germany) on a KingFisher™ Flex Magnetic

151 liquid-handling robot (Thermo Fisher Scientific, Inc, Waltham, MA). DNA was

152 quantified by analysis with the Nanodrop[™] (ThermoFisher), and, where

153 appropriate, the Tapestation 4200 system (Agilent Technologies).

154

155 Exome analysis

156 We applied WES to a subset (24 of 28) EqSCM cases. The exome capture and 157 sequencing was carried out in two batches of 12, during 2012-13 (New Zealand 158 Genomics Limited, Dunedin, New Zealand). DNA was processed with Illumina 159 TruSeq sample preparation and exome enrichment kits (which capture ~62Mb of 160 genomic DNA), and sequencing (100bp paired-end reads) was carried out on an 161 Illumina HiSeq2000 system. Good quality sequence was obtained across all 162 exomes, with very few unassigned reads, and greater than 20 million sequence 163 reads per sample at mean quality scores (Phred) of Q37. Raw read data were 164 aligned to the GRCh37 human reference genome using the Burrows-Wheeler 165 Aligner (BWA),⁵⁹ and processed through the Broad GATK pipeline.⁶⁰ The 166 alignment process included removal of reads from duplicate fragments, 167 realignment around known indels, and recalibration of all base quality scores. 168 Joint variant calling was performed with GATK's HaplotypeCaller. This included 169 de novo assembly at each potential variant locus. Variants were annotated and 170 analysed using Ingenuity Variant Analysis (IVA) software (QIAGEN, Redwood City, CA, USA), MutationTaster2,⁶¹ SnpEff,⁶² SeattleSeg annotation server,⁵⁵ 171 and Galaxy (via usegalaxy.org).⁶³ Allele frequencies and additional annotations 172 were drawn from 1000 Genomes project,⁶⁴ NHLBI GO Exome Sequencing 173 Project (ESP), Seattle, WA (URL: http://evs.gs.washington.edu/EVS/), ClinVar.65 174 175 and Exome Aggregation Consortium (ExAC), Cambridge, MA (URL:

- 176 http://exac.broadinstitute.org). Promising gene variants were inspected by
- 177 Sanger sequence analysis on the appropriate genomic DNA samples.
- 178
- 179 Cardio-MetaboChip Analysis
- 180 Three groups were genotyped using the Illumina Cardio-MetaboChip: 27 out of
- 181 28 female Christchurch EqSCM cases, 133 heart-healthy controls from the
- 182 Canterbury Healthy Volunteers Study (HVOLs, 54 F / 79 M),⁶⁶ and 157 patients
- 183 recruited for an ongoing study of premature coronary heart disease and
- 184 consented for genotyping (CHD, 64 F / 93 M). DNA samples were run on the
- 185 Cardio-MetaboChip and scanned on the Illumina® iScan platform by
- 186 AgResearch Limited (Invermay, New Zealand).
- 187
- 188 Quality control with summary analysis of allele and genotype frequencies,
- 189 Hardy-Weinberg equilibrium tests, and missing genotype rates were performed
- 190 with PLINK version 1.07 software.⁶⁷ SNPs with a minor allele frequency of <0.05
- and those that failed the Hardy-Weinberg equilibrium test (p<0.001) were
- 192 excluded from the analysis, leaving 141,095 SNPs in the analysis (Table 1).
- 193 Three samples from the CHD Study were also removed after analysis of
- 194 relatedness. Principal Component Analysis (PCA, Eigenstrat 4.2) was
- 195 performed on an independent subset of almost 50,000 SNPs; the first principal
- 196 component explained 6% of the variation, subsequent components all less than
- 197 0.5%, and matched self-reported ethnicity (visual inspection). Hence the first
- 198 principal component was subsequently included as a factor in the logistic
- 199 regression. Logistic regression was performed to evaluate differences in SNP
- 200 minor allele frequencies between groups, adjusted for ethnicity and gender,

201	using an additive genetic model (R 3.01 software ⁶⁸). P values were adjusted for
202	false discovery rate (FDR) using the Benjamini Yekuteli method. ⁶⁹ Pathway
203	analysis was performed for the leading 100 SNPs in each pairwise group
204	comparison, using MetaCore from GeneGo (Thomson Reuters).
205	
206	CNV detection and analysis
207	Array comparative genomic hybridisation (aCGH) was undertaken on 28
208	EqSCM cases to examine structural variants in the cohort. For this analysis, we
209	used either the Nimblegen 135k oligo array (CGX12) (Roche NimbleGen Inc,
210	Madison, WI, USA), capable of genome-wide screening for CNV to a resolution
211	of 10kb in well-categorised pathogenic genomic regions, and 50kb elsewhere or
212	the Agilent 180k HD oligo array (Sureprint G3 Human 4x180k) (Agilent
213	Technologies, Santa Clara, CA, USA), which has a similar resolution.
214	
215	Pooled reference DNA samples (catalogue numbers G147A and G152A) were
216	purchased from Promega (Madison, WI, USA). EqSCM case and reference
217	DNA samples (0.5-1 μg each) were labelled with Cy3 and Cy5 dyes
218	respectively, purified, hybridized, and washed according to Nimblegen and
219	Agilent protocols. Microarrays were scanned on a GenePix 4000B laser scanner
220	(Axon Instruments, CA, USA) or a G2600D Agilent SureScan microarray
221	scanner (Agilent Technologies). Data was processed using Nimblescan (Roche
222	Nimblegen Inc) or Cytogenomics software (Agilent Technologies) with the
223	default algorithms and analysis settings, but with a 5 probe minimum calling
224	threshold. All arrays passed QC metrics for derivative log ratio spread (DLRS)
225	values of <0.2. CNV data was visualised and interpreted using Genoglyphix

226	software (Perkin Elmer) and NCBI genome browser software (genome build
227	hg19 (GRCh37)). The EqSCM aCGH data were assessed against many CNV
228	databases including Genoglyphix Chromosome Aberration Database (containing
229	over 14,000 validated variants from 50,000 samples) (Perkin Elmer, Waltham,
230	MA, USA), ⁷⁰ DECIPHER, ⁷¹ and the Database of Genomic Variation (DGV,
231	containing CNV data from over 35,000 unaffected individuals). ⁷² CNVs were
232	classified as thought to be benign (TBB), uncertain clinical significance (UCS),
233	or clinically significant (CS) using an evidence-based approach73-76 which
234	included database comparisons (frequency in cases/controls and relation to
235	phenotype), gene content, gene function and dosage sensitivity. A broad
236	summary of our CNV interpretation algorithm is depicted in Figure S1. Rare
237	CNVs are defined as those that occur at a frequency of \leq 1%. We classified our
238	rare CNV frequency using larger DGV studies containing >1000 individuals.77-81
239	

240 Results

241 Exome Analysis

242 To test the potential for an essentially Mendelian predisposition to EqSCM, WES 243 was carried out on 24 of the 28 Christchurch EqSCM cases. Several 244 approaches to analysis of the identified variants were used, all of them 245 hypothesising the involvement of gene variants with a low population minor 246 allele frequency (MAF), that were over-represented in the EqSCM cohort. We 247 carried out various iterations of filtering using variant allele frequency data 248 derived from large population databases (1000 Genomes; NHBLI Exome 249 Sequencing Project), followed by careful manual inspection of remaining 250 variants. For example, excluding all variants present in these databases with an

251	allele frequency > 3%, and selecting for any present in at least 4/24 EqSCM
252	exomes, identified variants in 131 genes, none of which proved to be convincing
253	on closer analysis. We also carried out ranking of gene variants by predicted
254	functional impact using various approaches. ^{61; 62; 82} Once again, none of the
255	variants identified in these analyses proved to be significantly enriched amongst
256	our EqSCM exomes.
257	
258	Mitochondrial DNA reads can be recovered from exome data ⁸³ . We carried out
259	manual inspection of BAM files of mitochondrial DNA for our exome data
260	compared with non-disease control exomes ⁸⁴ . No unusual variants were
261	detected in mitochondrial sequences of the EqSCM samples.
262	
262 263	Finally, the 11 genes listed in Figure 2 of Goodloe et al (2014), ⁴² as well as a
	Finally, the 11 genes listed in Figure 2 of Goodloe et al (2014), ⁴² as well as a gene recently proposed to play a role in SCM, <i>BAG3</i> , ⁴⁶ were carefully examined
263	
263 264	gene recently proposed to play a role in SCM, BAG3, ⁴⁶ were carefully examined
263 264 265	gene recently proposed to play a role in SCM, <i>BAG3</i> , ⁴⁶ were carefully examined for presence of any rare variants in the EqSCM dataset. None of the previously
263 264 265 266	gene recently proposed to play a role in SCM, <i>BAG3</i> , ⁴⁶ were carefully examined for presence of any rare variants in the EqSCM dataset. None of the previously identified variants, ^{42; 46} and no other convincing rare variants in these genes,
263 264 265 266 267	gene recently proposed to play a role in SCM, <i>BAG3</i> , ⁴⁶ were carefully examined for presence of any rare variants in the EqSCM dataset. None of the previously identified variants, ^{42; 46} and no other convincing rare variants in these genes,
263 264 265 266 267 268	gene recently proposed to play a role in SCM, <i>BAG3</i> , ⁴⁶ were carefully examined for presence of any rare variants in the EqSCM dataset. None of the previously identified variants, ^{42; 46} and no other convincing rare variants in these genes, were detected.
263 264 265 266 267 268 269	gene recently proposed to play a role in SCM, <i>BAG3</i> , ⁴⁶ were carefully examined for presence of any rare variants in the EqSCM dataset. None of the previously identified variants, ^{42; 46} and no other convincing rare variants in these genes, were detected. <i>Cardio-MetaboChip Analysis</i>

- 273 healthy controls were compared by logistic regression (adjusted for ethnicity and
- 274 gender, additive genetic model), first performed for pairwise comparisons across
- 275 groups. No SNPs reached statistical significance of <0.05 after adjusting for

276	false discovery rate (FDR) when comparing either the EqSCM and HVOLs, or
277	the EqSCM and CHD samples. To investigate whether the top 100 of these
278	SNPs mapped to gene pathways that might assist in understanding potential
279	disease mechanisms underlying SCM, pathway analysis of the leading 100
280	SNPs in the EqSCM versus HVOLs pairwise comparison was performed in
281	MetaCore. Disease Biomarker Pathway analysis identified Myocardial Ischemia
282	as the third most enriched pathway (FDR-adjusted $p=1.3e^{-2}$), featuring 11 SNP
283	loci on our list out of 886 pathway objects, including annexin V, ANRIL,
284	COL4A1, dynein, HXK4, nectin-2, PPAR-gamma, prolidase, Tcf(Lef), UGT, and
285	VEGFR-2.
286	
287	aCGH Analysis
287 288	<i>aCGH Analysis</i> To test for potential involvement of CNVs in SCM, we applied aCGH to all
288	To test for potential involvement of CNVs in SCM, we applied aCGH to all
288 289	To test for potential involvement of CNVs in SCM, we applied aCGH to all cases. Of the 28 EqSCM cases examined by aCGH, twelve (42%) showed
288 289 290	To test for potential involvement of CNVs in SCM, we applied aCGH to all cases. Of the 28 EqSCM cases examined by aCGH, twelve (42%) showed evidence of large, rare heterozygous CNVs classified as being of unclear clinical
288 289 290 291	To test for potential involvement of CNVs in SCM, we applied aCGH to all cases. Of the 28 EqSCM cases examined by aCGH, twelve (42%) showed evidence of large, rare heterozygous CNVs classified as being of unclear clinical significance (Table 2), meaning that insufficient evidence is available for
288 289 290 291 292	To test for potential involvement of CNVs in SCM, we applied aCGH to all cases. Of the 28 EqSCM cases examined by aCGH, twelve (42%) showed evidence of large, rare heterozygous CNVs classified as being of unclear clinical significance (Table 2), meaning that insufficient evidence is available for unequivocal determination of clinical significance. ⁷³ Of these CNVs, seven were
288 289 290 291 292 293	To test for potential involvement of CNVs in SCM, we applied aCGH to all cases. Of the 28 EqSCM cases examined by aCGH, twelve (42%) showed evidence of large, rare heterozygous CNVs classified as being of unclear clinical significance (Table 2), meaning that insufficient evidence is available for unequivocal determination of clinical significance. ⁷³ Of these CNVs, seven were deletions and six were duplications. All of the CNVs were different, and there
288 289 290 291 292 293 294	To test for potential involvement of CNVs in SCM, we applied aCGH to all cases. Of the 28 EqSCM cases examined by aCGH, twelve (42%) showed evidence of large, rare heterozygous CNVs classified as being of unclear clinical significance (Table 2), meaning that insufficient evidence is available for unequivocal determination of clinical significance. ⁷³ Of these CNVs, seven were deletions and six were duplications. All of the CNVs were different, and there was no physical overlap between the various CNVs. Each of these rare CNVs

298 Table S1.

300	Three cases (EqSCM 01, 06 and 19) harboured deletions very likely to impact
301	genes of high relevance to cardiomyopathy or cardiac function. In EqSCM 01,
302	intragenic deletion of RBFOX1 results in a single copy loss of one exon used by
303	the majority of transcripts predicted for the gene (Figure 1). This exon contains
304	the start methionine for the RBFOX1 protein, meaning the gene is most likely
305	rendered non-functional. RBFOX1 is an important RNA-binding protein
306	mediating the incorporation of microexons into many transcripts associated with
307	neurological patterning and tissue development, ^{85; 86} particularly in the brain,
308	heart and muscles. Intragenic deletions in RBFOX1 have been observed in a
309	range of conditions, including occasional cases with cardiac defects. ^{87; 88; 89}
310	Furthermore, RBFOX1-mediated RNA splicing was also recently shown to be an
311	important regulator of cardiac hypertrophy and heart failure ⁹⁰ .
312	
512	
313	In the second case (EqSCM 06, Figure. 2), a heterozygous deletion
	In the second case (EqSCM 06, Figure. 2), a heterozygous deletion encompassed exon 2 and the majority of intron 2 of the <i>Glypican 5</i> (<i>GPC5</i>)
313	
313 314	encompassed exon 2 and the majority of intron 2 of the Glypican 5 (GPC5)
313 314 315	encompassed exon 2 and the majority of intron 2 of the <i>Glypican 5</i> (<i>GPC5</i>) locus. <i>GPC5</i> encodes a cell surface proteoglycan, which binds to the outer
313 314 315 316	encompassed exon 2 and the majority of intron 2 of the <i>Glypican 5</i> (<i>GPC5</i>) locus. <i>GPC5</i> encodes a cell surface proteoglycan, which binds to the outer surface of the plasma membrane in the cardiovascular system and displays
 313 314 315 316 317 	encompassed exon 2 and the majority of intron 2 of the <i>Glypican 5</i> (<i>GPC5</i>) locus. <i>GPC5</i> encodes a cell surface proteoglycan, which binds to the outer surface of the plasma membrane in the cardiovascular system and displays diverse functions including blood vessel formation after ischemic injury and
 313 314 315 316 317 318 	encompassed exon 2 and the majority of intron 2 of the <i>Glypican 5</i> (<i>GPC5</i>) locus. <i>GPC5</i> encodes a cell surface proteoglycan, which binds to the outer surface of the plasma membrane in the cardiovascular system and displays diverse functions including blood vessel formation after ischemic injury and proliferation of smooth muscle cells during atherogenesis. ⁹¹ <i>GPC5</i> was also
 313 314 315 316 317 318 319 	encompassed exon 2 and the majority of intron 2 of the <i>Glypican 5</i> (<i>GPC5</i>) locus. <i>GPC5</i> encodes a cell surface proteoglycan, which binds to the outer surface of the plasma membrane in the cardiovascular system and displays diverse functions including blood vessel formation after ischemic injury and proliferation of smooth muscle cells during atherogenesis. ⁹¹ <i>GPC5</i> was also implicated by GWAS as a protective locus for sudden cardiac arrest, ⁹² and other
 313 314 315 316 317 318 319 320 	encompassed exon 2 and the majority of intron 2 of the <i>Glypican 5</i> (<i>GPC5</i>) locus. <i>GPC5</i> encodes a cell surface proteoglycan, which binds to the outer surface of the plasma membrane in the cardiovascular system and displays diverse functions including blood vessel formation after ischemic injury and proliferation of smooth muscle cells during atherogenesis. ⁹¹ <i>GPC5</i> was also implicated by GWAS as a protective locus for sudden cardiac arrest, ⁹² and other glypicans (GPC3, 4 and 6) have been associated with cardiac dysfunction. ⁹³
 313 314 315 316 317 318 319 320 321 	encompassed exon 2 and the majority of intron 2 of the <i>Glypican 5</i> (<i>GPC5</i>) locus. <i>GPC5</i> encodes a cell surface proteoglycan, which binds to the outer surface of the plasma membrane in the cardiovascular system and displays diverse functions including blood vessel formation after ischemic injury and proliferation of smooth muscle cells during atherogenesis. ⁹¹ <i>GPC5</i> was also implicated by GWAS as a protective locus for sudden cardiac arrest, ⁹² and other glypicans (GPC3, 4 and 6) have been associated with cardiac dysfunction. ⁹³ This case (EqSCM 06) also harbours a duplication on 4q21.21 involving the

325	pathways. Annexin A6 for example is the most abundant annexin expressed in
326	the heart and its overexpression in mice has been shown to cause physiological
327	alterations in contractility leading to dilated cardiomyopathy, while Annexin A6
328	knockout has been found to induce faster changes in Ca2+ transience and
329	increased contractility.94;95 Alterations in expression and activity of annexins A5
330	and A7 have also been found to be associated with regulation of Ca2+ handling
331	in the heart. ⁹⁶ The function of annexin A3 is not fully understood, however it has
332	been shown to play a role in endothelial migration and vascular development.97
333	
334	The third case (EqSCM 19), contained a deletion at chr13q14.3. This region
335	harbours at least 10 genes (DLEU2, TRIM13, KCNRG, MIR16-1, MIR15A,
336	DLEU1, DLEU1AS-1, ST13P4, DLEU7AS-1, DLEU7, and RNASEH2B-AS1),
337	including several non-coding RNAs (DLEU genes and micro-RNA genes) and a
338	gene (KCNRG) encoding a protein involved in the regulation of voltage-gated
339	potassium channel activity. The micro-RNA genes mir-16-1 and mir-15a in this
340	interval have been implicated in a range of cardiovascular phenotypes, including
341	a role for mir-15a in postnatal mitotic arrest of cardiomyocytes.98-100 Two further
342	chromosome 13 duplicated CNVs of approximately 150kb were classified as
343	uncertain significance - one involving LINC00346 and ANKRD10 and the other
344	containing ENOX1, postulated to affect vascular development based on
345	zebrafish expression patterns ¹⁰¹ (Table 2).
346	
347	Beyond these three cases, cardiac or relevant neurological impacts appeared
348	likely for many of the other rare CNVs identified in EqSCM cases (Table 2,
349	Figure 2, Table S1), several of which are discussed below.

Page 15

bioRxiv preprint doi: https://doi.org/10.1101/144675; this version posted May 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

351	A 96kb heterozygous deletion in EqSCM 03 disrupts all predicted transcripts of
352	the chondrolectin gene (CHODL), a membrane bound C-type lectin involved in
353	muscle organ development, whose protein product is detected in heart and
354	skeletal muscle by immunohistochemistry. ¹⁰² In addition to this CNV, this patient
355	carries a 1.94Mb duplication at 22q11.25, a locus containing 45 genes or
356	miRNAs, associated with learning difficulties. ^{103; 104} This individual, who
357	exhibited a degree of cognitive impairment, had consented for clinically relevant
358	findings to be forwarded to their General Practice clinician, who subsequently
359	recommended genetic counselling for this individual.
360	
361	A 455kb duplication within EqSCM 04 at 1p34.1 affects the genes GPBP1L1,
362	TMEM69, IPP, MAST2, and PIK3R3. Smaller rare duplications in this region
363	have been reported by the DGV database ¹⁰⁵ but none span the genes within this
364	CNV. GPBP1L1 is widely expressed in many tissues, including heart muscle ¹⁰⁶
365	and predicted to be involved in transcriptional regulation. TMEM69, a gene of
366	unknown function, is most strongly expressed in heart tissue. ¹⁰⁶ IPP is a
367	transcription factor with a 50 amino acid Kelch repeat known to interact with
368	actin, while MAST2 contains a PDZ domain and is another gene highly
369	expressed in heart and skeletal muscle. ¹⁰⁶ The protein product of <i>PIK3R3,</i>
370	phosphoinositide-3-kinase regulatory subunit 3, acts downstream of G-protein-
371	coupled receptors in cardiac function, ¹⁰⁷ and is also a target for isoproterenol,
372	which can trigger SCM-like conditions in humans and rodents. ^{12; 108-110}
373	

374 Duplication of a long non-coding RNA (LOC101928358), the 3' segment of 375 COL4A5 and the entire IRS4 gene at Xq22.3 (9 probes, 113kb) was identified 376 within case EqSCM 05. IRS4 is an insulin receptor molecule expressed in heart and skeletal muscle cells¹¹¹ and other tissues such as brain, kidney and liver.¹¹² 377 378 Duplication of *IRS4* may be of functional significance, although copy number 379 increases on the X chromosome of females may be counteracted to a degree by 380 random X inactivation. Of note is a Genoglyphix Chromosome Aberration Database (GCAD⁷⁰) case 52414 with a phenotype of low muscle tone, which 381 382 has an identical duplication at this locus (as well as a 1p33 deletion). With 383 regard to *IRS4*, Schreyer et al. (2003)¹¹¹ found a more restricted tissue 384 distribution than IRS1 and IRS2, in primary human skeletal muscle cells and rat 385 cardiac muscle and isolated cardiomyocytes. Although IRS4 protein function is 386 still relatively unknown, the role of IRS proteins in general, acting as mediators 387 of intracellular signalling from insulin and insulin-like growth factor 1 receptors, implicates IRS4 in cell growth and survival.¹¹³ It is interesting to note that PI 3-388 389 kinase (PI3K) signalling in HEH293T cells depends on IRS4, and that the IRS 390 proteins relay signals from receptor tyrosine kinases to downstream components of signalling pathways,¹¹¹ which we note is a connection with the 391 392 PIK3R3 gene duplicated in one of our other cases, EqSCM 04. 393 394 EqSCM 10 harboured a 130kb duplication of NLRP7, NLRP2, GP6 and RDH13 395 at 19q13.42. One similar DGV duplication has been seen in this area 396 (nsv1062047¹⁰⁵), but otherwise duplicated CNVs are generally much smaller 397 and rare. NLRP2 and NLRP7 are genes that encode members of the NACHT,

398 leucine rich repeat, and PYD containing (NLRP) protein family. These proteins

Page 17

399	are implicated in the activation of pro-inflammatory caspases. Recessive
400	mutations ininin NLRP2/7 in humans are associated with reproductive
401	disorders. ¹¹⁴ Another gene in this duplicated cluster associated with disease is
402	GP6, a platelet membrane glycoprotein, involved in collagen-induced platelet
403	aggregation and thrombus formation, which is expressed at high levels in heart,
404	kidney and whole blood. ¹⁰⁶ A GP6 SNP (c.13254TC) has been implicated in
405	recurrent cardiovascular events and mortality. ¹¹⁵ Another study involving this
406	SNP, ¹¹⁶ found that hormone replacement therapy (HT) reduced the hazard ratio
407	(HR) of CHD) events in patients with the GP6 13254TT genotype by 17% but
408	increased the HR in patients with the TC+CC genotypes by 35% (adjusted
409	interaction $P < 0.001$). The authors found that in postmenopausal women with
410	established CHD, the GP6 polymorphism, and another in GP1B, were predictors
411	of CHD events and significantly modified the effects of HT on CHD risk. ¹¹⁶
412	
413	Duplication of PPL2, YPEL1 and MAPK1 on chromosome 22q11.21 (180kb)
414	observed in EqSCM 11, does not appear in the DGV catalogue of CNVs in
415	healthy individuals, and the consequences of overexpression of these genes,
416	miRNAs or regulatory sequences are unknown. One of the affected genes,
417	MAPK1 (previously named ERK or ERK2), may constitute a link to another
418	kinase intracellular signalling pathway – the RAF-MEK-ERK kinase cascade,
419	which in mice and human has an established role in the induction of cardiac
420	tissue hypertrophy. ¹¹⁷ Although not the kind of left ventricular enlargement seen

- 421 in SCM, subtle copy number variation at *MAPK1* may influence signalling
- 422 through this pathway. Another duplication in EqSCM 11 involving the 3' half of
- 423 TSPAN7, a member of the tetraspanin protein superfamily (Xp11.4) was noted

424 as rare, and a similar (though larger) duplication was recently observed in a

- 425 patient with Rolandic epilepsy.¹¹⁸
- 426

427	An agenic duplication 50kb upstream from NRG3 (10q23.1) was seen in case

- 428 EqSCM 15. This CNV could conceivably disrupt upstream regulatory regions of
- 429 NRG3, which encodes an important ligand for the transmembrane tyrosine
- 430 kinase receptor ERBB4. NRG3 has been shown to activate tyrosine
- 431 phosphorylation of its cognate receptor, ERBB4, and is thought to influence
- 432 neuroblast proliferation, migration and differentiation by signalling through
- 433 ERBB4. *NRG3* is a strong candidate gene for schizophrenia, and neuregulin
- 434 molecules and their receptors are involved in rat cardiac development and
- 435 maintenance.¹¹⁹
- 436
- 437 Finally, the two rare deletions observed on chromosome 13 (13q21.33 and
- 438 13q33.1) in case EqSCM 17, fall into largely uncharacterised areas of the
- 439 genome. The first is agenic, although there is a prediction of a spliced EST in
- 440 the NCBI database, and the second occurs as two 50kb blocks within the
- 441 *ITGBL1* gene. *ITGBL1* is most strongly expressed in aorta.^{120; 121}
- 442

443

- 444 Discussion
- 445 Monogenic and polygenic models of risk

The Christchurch earthquakes repeatedly exposed the entire population of the

- city, approximately 350,000 people, to major stress and life disruption. Almost all
- 448 patients presenting with EqSCM were post-menopausal females, consistent with

other reports.¹²² We set out to explore three categories of genetic contributions 449 450 to SCM predisposition, using WES to explore Mendelian models of risk, Cardio-451 MetaboChip analysis to test for polygenic risk factors, and aCGH analysis to 452 evaluate the role of genomic structural variants. 453 454 Extensive analysis of the WES data did not yield any apparent enrichment of 455 rare, damaging variants within exome regions amongst the EqSCM cases. 456 Therefore, it seems unlikely that point mutations or small insertion-deletion 457 (indels) in a single gene underlie predisposition to earthquake SCM. A limitation 458 of this analysis is that it would have been unable to detect regulatory mutations, 459 or other important variants, not included or well represented within the captured 460 exome regions. Whole genome sequencing may therefore be warranted to 461 further test the hypothesis of Mendelian underpinnings of SCM, as this approach 462 could identify any regulatory variants not obtained with WES, and due to the 463 absence of a DNA capture step, would also provide more uniform coverage of 464 exons. 465

466 In a second approach, we explored the alternative hypothesis of polygenic risk 467 alleles of small effect size using a case-control association study, with 468 genotypes generated by the Cardio-MetaboChip. This chip allowed genotyping 469 of ~200,000 SNPs previously identified through genome - wide association 470 studies (GWAS) for risk of metabolic, atherosclerotic and cardiovascular diseases and traits.¹²³ The traits covered by the panel of genetic variants on the 471 472 chip include myocardial infarction (MI) and coronary heart disease (CHD), type 2 473 diabetes (T2D), T2D age diagnosed, T2D early onset, mean platelet volume,

474 platelet count, white blood cell, HDL cholesterol, LDL cholesterol, triglycerides, 475 total cholesterol, body mass index, waist hip ratio (BMI adjusted), waist 476 circumference (BMI adjusted), height, percent fat mass, fasting glucose, fasting 477 insulin, 2-hour glucose, HbA1c, systolic blood pressure, diastolic blood pressure 478 and QT interval. This analysis did not yield variants of genome-wide 479 significance in the SCM cases compared to either healthy controls or patients 480 with coronary disease. Exploratory pathway analysis suggested that the EqSCM 481 cases carried a greater burden of SNPs that mapped to a myocardial ischemia 482 pathway compared to the healthy controls, although this must be interpreted 483 with caution as our small sample set meant very limited statistical power. Two 484 limitations of this analysis were the relatively constrained content of the Cardio-485 MetaboChip, which is less able to provide a rich dataset of genome-wide SNP 486 genotypes than the chips commonly used for GWAS, and the relatively small 487 cohort of cases available for study. Recruitment of a much larger SCM cohort 488 with a view to a well-powered GWAS with a more extensive genotyping chip 489 would therefore be a worthwhile future goal to more fully explore possible 490 polygenic underpinnings of this disorder. We note the recent publication of a preliminary GWAS on 96 SCM cases and 475 healthy controls,¹²⁴ and believe 491 492 extension of this approach to larger cohorts is an important goal.

493

494 Involvement of copy number variants

CNVs have been implicated in many diseases since the recognition a decade
ago of their widespread distribution through the genome.¹²⁵⁻¹²⁷ Of note, rare
CNVs are implicated in autism, epilepsy, schizophrenia, developmental delay
and intellectual disability.^{105; 128-132} Cardiac conditions which involve CNVs

499	include congenital left-sided heart disease,133;134 congenital heart disease,135;136
500	some cases of long QT syndrome, ¹³⁷ and Tetralogy of Fallot. ¹³⁸ Our final
501	analysis, therefore, was to explore the potential involvement of CNV in risk of
502	EqSCM, using aCGH analysis of all cases. Results from this analysis were
503	striking, with 42% of EqSCM cases having a rare CNV of unclear clinical
504	significance. The CNV detection rate for diagnostic aCGH in childhood
505	developmental disorders such as autism, developmental delay and intellectual
506	disabilities, is approximately 20-30%. ¹³⁹⁻¹⁴¹ A recent report of a large New
507	Zealand aCGH case series (5,300 pre- and post-natal tests) reported CNVs in
508	28.3% of these clinically-selected cases. ¹⁴² Our observation of a rate of 42% for
509	the EqSCM case series is significantly greater ($P < 0.02$) than rates for the
510	enriched case cohorts normally referred for clinical aCGH testing ¹³⁹⁻¹⁴² . The
511	CNVs detected in EqSCM cases were all different, and there were no physical
512	overlaps between them. This situation is similar to the pattern of CNVs seen in
513	other conditions, including rolandic epilepsies ¹¹⁸ and congenital heart
514	disease. $^{133;\ 135;\ 136}$ Many of the CNVs we observed are likely to impact genes of
515	potential relevance to physiological processes implicated in SCM.
516	
517	We have taken a relatively conservative approach to categorising CNVs, in
518	terms of rarity and predicted functional significance. For example, we did not
519	include two CNVs located at 9p24.3, involving individuals EqSCM 14 and 28 - a
520	deletion and duplication, respectively. These CNVs encompassed a region
521	including the large isoform of DOCK8 gene. DOCK8 encodes a protein
522	implicated in the regulation of the actin cytoskeleton, ¹⁴³ and DOCK8 mutations
523	cause autosomal recessive hyper-IgE syndrome. ¹⁴⁴ One reported case of a

524 homozygous 129kb deletion in this region was associated with Graves's disease and aortic aneurysm.¹⁴⁵ However, several deletions of *DOCK8* are recorded in 525 526 the DGV for unaffected individuals, therefore the CNVs in EqSCM 14 and 28 527 were categorised as TBB (thought to be benign). The approximately160kb 528 duplication in EqSCM 28 was larger than the 44kb deletion in EqSCM 14, and it 529 encompassed a second gene, KANK1. A small number of similar duplications 530 have been recorded in the DGV, and therefore we did not consider this to be 531 pathogenic. However, it is of interest that we see two relatively rare CNVs at this 532 locus in our small EqSCM cohort.

533

534 Of the twelve EqSCM cases with rare CNVs, we consider that three (EqSCM 01, 535 06 and 19) contain CNVs that affect genes of high relevance to cardiomyopathy 536 or cardiac function. The remaining candidate CNVs are also strong candidates 537 with potential functional relevance. In one of our most highly-ranked candidate 538 CNV containing cases (EqSCM 01) a large genomic deletion removes an exon 539 of *RBFOX1* which contains the start codon used by the majority of transcripts 540 predicted for the gene. A recent report by Gao et al. (2016) provided strong 541 functional data that would support our hypothesis of this gene's involvement as a susceptibility locus for SCM⁹⁰. Their work with mouse models has shown 542 543 RBFox1 deficiency in the heart promoted pressure overload-induced heart 544 failure, and induction of *RBFox1* over-expression in these murine pressure-545 overload models, substantially attenuated cardiac hypertrophy and pathological 546 manifestations⁹⁰. The haploinsufficiency seen in EqSCM 01 at the *RBFOX1* 547 locus may, in concert with other environmental or genetic factors, contribute to 548 SCM through reduced global RNA splicing changes in the heart.

Page 23

bioRxiv preprint doi: https://doi.org/10.1101/144675; this version posted May 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

549 Conclusion

550	Beginning with a cohort of 28 SCM cases triggered by two major earthquakes
551	that caused extensive death and damage in Christchurch (New Zealand), we
552	carried out exploratory analyses of three models for genetic predisposition to
553	this disorder. Using WES and Cardio-MetaboChip genotyping analyses we did
554	not detect an obvious role for exonic mutations in a monogenic model, or SNPs
555	in a polygenic model, for SCM risk. However, our analysis of copy number
556	variation in SCM cases revealed a high rate of occurrence of CNV categorised
557	as of uncertain clinical significance. Most of the CNV we detected in SCM cases
558	were rare, or not previously seen (Table 2).
559	
559 560	These observations lead us to propose that SCM is a copy number variant
	These observations lead us to propose that SCM is a copy number variant disorder, whereby haploinsufficiency of genes overlapping deletions or over-
560	
560 561	disorder, whereby haploinsufficiency of genes overlapping deletions or over-
560 561 562	disorder, whereby haploinsufficiency of genes overlapping deletions or over- expression of duplicated genes leads to relatively subtle modification of cardiac
560 561 562 563	disorder, whereby haploinsufficiency of genes overlapping deletions or over- expression of duplicated genes leads to relatively subtle modification of cardiac or adrenergic physiology, such that these individuals are at increased risk of
560 561 562 563 564	disorder, whereby haploinsufficiency of genes overlapping deletions or over- expression of duplicated genes leads to relatively subtle modification of cardiac or adrenergic physiology, such that these individuals are at increased risk of suffering SCM when exposed to specific environmental triggers. Although no

568

569 In order to confirm whether SCM predisposition does indeed arise from CNVs,

570 four key areas for future work need to be pursued. First, more widespread

analysis is required of CNVs in many SCM cases. This would confirm whether

572 our observation of a high rate of CNV in EqSCM also prevails in sporadic cases,

and it will broaden the catalog of affected genes, helping to discern underlying

Page 24

574 signalling networks and physiological processes. In addition, with increasing 575 numbers of cases, physical overlaps between CNVs in different individuals 576 should become apparent, pinpointing key genomic regions for more intensive 577 analysis. Second, the inheritance patterns of these CNVs must be established. It 578 is unclear what proportion are *de novo* versus inherited from either parent. 579 Third, there is a clear need for detailed physiological and gene expression 580 analyses on appropriate cells, including cardiomyocytes, derived from SCM 581 cases. Given the diversity of CNV seen in our SCM cases, this goal would most 582 effectively be achieved by generation of induced-pluripotent stem cell (iPSC) 583 lines from many patients and appropriate controls.^{146; 147} Finally, although our 584 data implicate CNV as a significant genetic factor underlying SCM risk, it would 585 seem wise to pursue an effective GWAS strategy to identify other genetic contributors to SCM and build on the initial study in this area.¹²⁴ International 586 initiatives to collate SCM cases¹³ should therefore ensure that consented DNA is 587 588 available to provide appropriately large numbers of well phenotyped cases and 589 controls to facilitate this goal. 590 591 Finally, we hope our observations implicating CNV in this unique case series of 592

593 cohorts, and lead to an improved understanding of this perplexing and intriguing 594 condition.

EqSCM will stimulate further studies of copy number variation in other SCM

595

596 Supplemental Data

597 Supplemental Data include one figure and one table and can be found with this 598 article online at....

599

600 Acknowledgements

- 601 This study was supported by an Earthquake research grant jointly awarded by
- the Health Research Council of New Zealand and Canterbury Medical Research
- 603 Foundation. This study makes use of data generated by the DECIPHER
- 604 community. A full list of centres who contributed to the generation of the data is
- available from http://decipher.sanger.ac.uk and via email from
- 606 decipher@sanger.ac.uk. Funding for the project was provided by the Wellcome
- 607 Trust. We thank all participants for their agreement to be involved in this study,
- and Alan Aitchison and Allison Miller for preparation of DNA samples and
- 609 Sanger sequencing analyses.
- 610

612 Web Resources

- 613 1000 Genomes project, http://www.internationalgenome.org/
- 614 ClinVar, <u>https://www.ncbi.nlm.nih.gov/clinvar/</u>
- 615 Database of Genomic Variation (DGV), <u>http://dgv.tcag.ca/dgv/app/home</u>
- 616 DECIPHER, <u>https://decipher.sanger.ac.uk/</u>
- 617 Exome Aggregation Consortium (ExAC), <u>http://exac.broadinstitute.org</u>
- 618 Galaxy, https://galaxyproject.org/
- 619 GTex, <u>https://www.gtexportal.org/home/</u>
- 620 HUGO Gene Nomenclature Committee, <u>http://www.genenames.org</u>
- 621 MutationTaster2, <u>http://www.mutationtaster.org/</u>
- 622 NHLBI GO Exome Sequencing Project (ESP),
- 623 https://esp.gs.washington.edu/drupal/
- 624 SeattleSeq annotation server, http://evs.gs.washington.edu/EVS/

626 References

020	Nelelences
627	
628	1. Dote, K., Sato, H., Tateishi, H., Uchida, T., and Ishihara, M. (1991). [Myocardial
629	stunning due to simultaneous multivessel coronary spasms: a review of 5
630	cases]. J Cardiol 21, 203-214.
631	2. Tsuchihashi, K., Ueshima, K., Uchida, T., Oh-mura, N., Kimura, K., Owa, M.,
632	Yoshiyama, M., Miyazaki, S., Haze, K., Ogawa, H., et al. (2001). Transient left
633	ventricular apical ballooning without coronary artery stenosis: a novel heart
634	syndrome mimicking acute myocardial infarction. Angina Pectoris-
635	Myocardial Infarction Investigations in Japan. Journal of the American
636	College of Cardiology 38, 11-18.
637	3. Sharkey, S.W. (2013). Takotsubo cardiomyopathy: natural history. Heart Fail Clin
638	9, 123-136, vii.
639	4. Sharkey, S.W., Windenburg, D.C., Lesser, J.R., Maron, M.S., Hauser, R.G., Lesser,
640	J.N., Haas, T.S., Hodges, J.S., and Maron, B.J. (2010). Natural history and
641	expansive clinical profile of stress (tako-tsubo) cardiomyopathy. J Am Coll
642	Cardiol 55, 333-341.
643	5. Eshtehardi, P., Koestner, S.C., Adorjan, P., Windecker, S., Meier, B., Hess, O.M.,
644	Wahl, A., and Cook, S. (2009). Transient apical ballooning syndromeclinical
645	characteristics, ballooning pattern, and long-term follow-up in a Swiss
646	population. Int J Cardiol 135, 370-375.
647	6. Watanabe, H., Kodama, M., Okura, Y., Aizawa, Y., Tanabe, N., Chinushi, M.,
648	Nakamura, Y., Nagai, T., Sato, M., and Okabe, M. (2005). Impact of
649	Earthquakes on Takotsubo Cardiomyopathy. Jama 294, 305-307.
650	7. Strunk, B., Shaw, R.E., Bull, S., Adams, J., Baer, M., Gershengorn, K., Kao, A., Keeffe,
651	B., Sklar, J., Sperling, D., et al. (2006). High incidence of focal left ventricular
652	wall motion abnormalities and normal coronary arteries in patients with
653	myocardial infarctions presenting to a community hospital. The Journal of
654	invasive cardiology 18, 376-381.
655	8. Sy, F., Basraon, J., Zheng, H., Singh, M., Richina, J., and Ambrose, J.A. (2013).
656	Frequency of Takotsubo cardiomyopathy in postmenopausal women
657	presenting with an acute coronary syndrome. Am J Cardiol 112, 479-482.
658	9. Eitel, I., von Knobelsdorff-Brenkenhoff, F., Bernhardt, P., Carbone, I., Muellerleile,
659	K., Aldrovandi, A., Francone, M., Desch, S., Gutberlet, M., Strohm, O., et al.
660	(2011). Clinical characteristics and cardiovascular magnetic resonance
661	findings in stress (takotsubo) cardiomyopathy. JAMA 306, 277-286.
662	10. Prasad, A., Dangas, G., Srinivasan, M., Yu, J., Gersh, B.J., Mehran, R., and Stone,
663	G.W. (2014). Incidence and angiographic characteristics of patients with
664	apical ballooning syndrome (takotsubo/stress cardiomyopathy) in the
665	HORIZONS-AMI trial: an analysis from a multicenter, international study of
666	ST-elevation myocardial infarction. Catheter Cardiovasc Interv 83, 343-348.
667	11. Deshmukh, A., Kumar, G., Pant, S., Rihal, C., Murugiah, K., and Mehta, J.L. (2012).
668	Prevalence of Takotsubo cardiomyopathy in the United States. American
669 670	heart journal 164, 66-71 e61.
670	12. Wright, P.T., Tranter, M.H., Morley-Smith, A.C., and Lyon, A.R. (2014).
671	Pathophysiology of takotsubo syndrome: temporal phases of cardiovascular
672	responses to extreme stress. Circ J 78, 1550-1558.
673	13. Templin, C., Ghadri, J.R., Diekmann, J., Napp, L.C., Bataiosu, D.R., Jaguszewski, M.,
674	Cammann, V.L., Sarcon, A., Geyer, V., Neumann, C.A., et al. (2015). Clinical

 14. Steptoe, A. (2009). The impact of natural disasters on myocardial infarction. Heart 95, 1972-1973. 15. Butterly, S.J., Indrajith, M., Garrahy, P., Ng, A.C., Gould, P.A., and Wang, W.Y. (2013). Stress-induced takotsubo cardiomyopathy in survivors of the 2011 Queensland floods. Med J Aust 198, 109-110. 16. Leor, J., Poole, W.K., and Kloner, R.A. (1996). Sudden cardiac death triggered by an earthquake. N Engl J Med 334, 413-419. 17. Aoki, T., Takahashi, J., Fukumoto, Y., Yasuda, S., Ito, K., Miyata, S., Shinozaki, T., Inoue, K., Yagi, T., Komaru, T., et al. (2013). Effect of the Great East Japan Earthquake on cardiovascular diseases-report from the 10 hospitals in the disaster area. Circ J 77, 490-493. 18. Bridgman, P.G., Finsterer, J., Lacey, C., Kimber, B., Parkin, P. J., Miller, A.L., and Kennedy, M.A. (2016). CTG-repeat expansions in the DMPK gene do not cause takotsubo syndrome. Int J Cardiol 203, 107-108. 19. Lacey, C., Mulder, R., Bridgman, P., Kimber, B., Zarifeh, J., Kennedy, M., and Cameron, V. (2014). Broken heart syndrome - is it a psychosomatic disorder? J Psychosom Res 77, 158-160. 20. Chan, C., Elliott, J., Troughton, R., Frampton, C., Smyth, D., Crozier, I., and Bridgman, P. (2013). Acute myocardial infarction and stress cardiomyopathy following the Christchurch earthquakes. PLoS One 8, e66504. 21. Chan, C., Troughton, R., Elliott, J., Zarifeh, J., and Bridgman, P. (2014). One-year follow-up of the 2011 Christchurch Earthquake stress cardiomyopathy cases. N 2 Med J 127, 15-22. 22. Bridgman, P.G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent earthquake stress cardiomyopathy with a differing wall motion abnormality. Echocardia graphy 29, E26-27. 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake-induced stress cardiomyopathy, myocardial infarction and non-carliac chest pain. Intern Med 142, 369-373. 24. Wittstein, I.S. (2012). St	675 676	Features and Outcomes of Takotsubo (Stress) Cardiomyopathy. N Engl J Med 373, 929-938.
 15. Butterly, S.J., Indrajith, M., Garrahy, P., Ng, A.C., Gould, P.A., and Wang, W.Y. (2013). Stress-induced takotsubo cardiomyopathy in survivors of the 2011 Queensland floods. Med J Aust 198, 109-110. 16. Leor, J., Poole, W.K., and Kloner, R.A. (1996). Sudden cardiac death triggered by an earthquake. N Engl J Med 334, 413-419. 17. Aoki, T., Takahashi, J., Fukumoto, Y., Yasuda, S., Ito, K., Miyata, S., Shinozaki, T., Inoue, K., Yagi, T., Komaru, T., et al. (2013). Effect of the Great East Japan Earthquake on cardiovascular diseases-report from the 10 hospitals in the disaster area. Circ 177, 490-493. 18. Bridgman, P.G., Finsterer, J., Lacey, C., Kimber, B., Parkin, P.J., Miller, A.L., and Kennedy, M.A. (2016). CTG-repeat expansions in the DMPK gene do not cause takotsubo syndrome. Int J Cardiol 203, 107-108. 19. Lacey, C., Mulder, R., Bridgman, P., Kimber, B., Zarifeh, J., Kennedy, M., and Cameron, V. (2014). Broken heart syndrome - is it a psychosomatic disorder? J Psychosom Res 77, 158-160. 20. Chan, C., Elliott, J., Troughton, R., Frampton, C., Smyth, D., Crozier, I., and Bridgman, P. (2013). Acute myocardial infarction and stress cardiomyopathy following the Christchurch earthquakes. PLoS One 8, e68504. 21. Chan, C., Troughton, R., Elliott, J., Zarifeh, J., and Bridgman, P. (2014). One-year follow-up of the 2011 Christchurch Earthquake stress cardiomyopathy cases. N Z Med J 127, 15-22. 22. Bridgman, P.G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent earthquake stress cardiomyopathy with a differing wall motion abnormality. Echocardiography 29, E26-27. 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake-induced stress cardiomyopathy, myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857.<td>677</td><td>14. Steptoe, A. (2009). The impact of natural disasters on myocardial infarction.</td>	677	14. Steptoe, A. (2009). The impact of natural disasters on myocardial infarction.
 16. Leor, J., Poole, W.K., and Kloner, R.A. (1996). Sudden cardiac death triggered by an earthquake. N Engl J Med 334, 413-419. 17. Aoki, T., Takahashi, J., Fukumoto, Y., Yasuda, S., Ito, K., Miyata, S., Shinozaki, T., Inoue, K., Yagi, T., Komaru, T., et al. (2013). Effect of the Great East Japan Earthquake on cardiovascular diseases-report from the 10 hospitals in the disaster area. Circ J 77, 490-493. 18. Bridgman, P.G., Finsterer, J., Lacey, C., Kimber, B., Parkin, P.J., Miller, A.L., and Kennedy, M.A. (2016). CTG-repeat expansions in the DMPK gene do not cause takotsubo syndrome. Int J Cardiol 203, 107-108. 19. Lacey, C., Mulder, R., Bridgman, P., Kimber, B., Zarifeh, J., Kennedy, M., and Cameron, V. (2014). Broken heart syndrome - is it a psychosomatic disorder? J Psychosom Res 77, 158-160. 20. Chan, C., Elliott, J., Troughton, R., Frampton, C., Smyth, D., Crozier, I., and Bridgman, P. (2013). Acute myocardial infarction and stress cardiomyopathy following the Christchurch earthquakes. PLoS One 8, e68504. 21. Chan, C., Troughton, R., Elliott, J., Zarifeh, J., and Bridgman, P. (2014). One-year follow-up of the 2011 Christchurch Earthquake stress cardiomyopathy cases. N Z Med J 127, 15-22. 22. Bridgman, P.G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent earthquake stress cardiomyopathy with a differing wall motion abnormality. Echocardiography 29, E26-27. 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake-induced stress cardiomyopathy, myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo ca	679	15. Butterly, S.J., Indrajith, M., Garrahy, P., Ng, A.C., Gould, P.A., and Wang, W.Y.
 an earthquake. N Engl J Med 334, 413-419. 17. Aoki, T., Takahashi, J., Fukumoto, Y., Yasuda, S., Ito, K., Miyata, S., Shinozaki, T., Inoue, K., Yagi, T., Komaru, T., et al. (2013). Effect of the Great East Japan Earthquake on cardiovascular diseases-report from the 10 hospitals in the disaster area. Circ J 77, 490-493. 18. Bridgman, P. G., Finsterer, J., Lacey, C., Kimber, B., Parkin, P.J., Miller, A.L., and Kennedy, M.A. (2016). CTG-repeat expansions in the DMPK gene do not cause takotsubo syndrome. Int J Cardiol 203, 107-108. 19. Lacey, C., Mulder, R., Bridgman, P., Kimber, B., Zarifeh, J., Kennedy, M., and Cameron, V. (2014). Broken heart syndrome - is it a psychosomatic disorder? J Psychosom Res 77, 158-160. 20. Chan, C., Elliott, J., Troughton, R., Frampton, C., Smyth, D., Crozier, I., and Bridgman, P. (2013). Acute myocardial infarction and stress cardiomyopathy following the Christchurch earthquakes. PLoS One 8, e68504. 21. Chan, C., Troughton, R., Elliott, J., Zarifeh, J., and Bridgman, P. (2014). One-year follow-up of the 2011 Christchurch Earthquake stress cardiomyopathy cases. N Z Med J 127, 15-22. 22. Bridgman, P. G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent earthquake stress cardiomyopathy with a differing wall motion abnormality. Echocardiography 29, E26-27. 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake-induced stress cardiomyopathy. myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G. Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847		
 Inoue, K., Yagi, T., Komaru, T., et al. (2013). Effect of the Great East Japan Earthquake on cardiovascular diseasesreport from the 10 hospitals in the disaster area. Circ J 77, 490-493. Bridgman, P. G., Finsterer, J., Lacey, C., Kimber, B., Parkin, P.J., Miller, A.L., and Kennedy, M.A. (2016). CTG-repeat expansions in the DMPK gene do not cause takotsubo syndrome. Int J Cardiol 203, 107-108. I.acey, C., Mulder, R., Bridgman, P., Kimber, B., Zarifeh, J., Kennedy, M., and Cameron, V. (2014). Broken heart syndrome - is it a psychosomatic disorder? J Psychosom Res 77, 158-160. 20. Chan, C., Elliott, J., Troughton, R., Frampton, C., Smyth, D., Crozier, I., and Bridgman, P. (2013). Acute myocardial infarction and stress cardiomyopathy following the Christchurch earthquakes. PLoS One 8, e68504. 21. Chan, C., Troughton, R., Elliott, J., Zarifeh, J., and Bridgman, P. (2014). One-year follow-up of the 2011 Christchurch Earthquake stress cardiomyopathy cases. N Z Med J 127, 15-22. 22. Bridgman, P. G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent earthquake stress cardiomyopathy with a differing wall motion abnormality. Echocardiography 29, E26-27. 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake induced stress cardiomyopathy, myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsub cardiomyopathy: catecholaminergis stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857.		
 Earthquake on cardiovascular diseasesreport from the 10 hospitals in the disaster area. Circ J 77, 490-493. Bridgman, P.G., Finsterer, J., Lacey, C., Kimber, B., Parkin, P.J., Miller, A.L., and Kennedy, M.A. (2016). CTG-repeat expansions in the DMPK gene do not cause takotsubo syndrome. Int J Cardiol 203, 107-108. I.acey, C., Mulder, R., Bridgman, P., Kimber, B., Zarifeh, J., Kennedy, M., and Cameron, V. (2014). Broken heart syndrome - is it a psychosomatic disorder? J Psychosom Res 77, 158-160. Chan, C., Elliott, J., Troughton, R., Frampton, C., Smyth, D., Crozier, I., and Bridgman, P. (2013). Acute myocardial infarction and stress cardiomyopathy following the Christchurch earthquakes. PLoS One 8, e68504. Chan, C., Troughton, R., Elliott, J., Zarifeh, J., and Bridgman, P. (2014). One-year follow-up of the 2011 Christchurch Earthquake stress cardiomyopathy cases. N Z Med J 127, 15-22. Zhridgman, P.G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent earthquake stress cardiomyopathy with a differing wall motion abnormality. Echocardiography 29, E26-27. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake chase cardiomyopathy. myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine-mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: Catecholamine-mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine-mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine-mediated myocardial stunni		
 18. Bridgman, P.G., Finsterer, J., Lacey, C., Kimber, B., Parkin, P.J., Miller, A.L., and Kennedy, M.A. (2016). CTG-repeat expansions in the DMPK gene do not cause takotsubo syndrome. Int J Cardiol 203, 107-108. 19. Lacey, C., Mulder, R., Bridgman, P., Kimber, B., Zarifeh, J., Kennedy, M., and Cameron, V. (2014). Broken heart syndrome - is it a psychosomatic disorder? J Psychosom Res 77, 158-160. 20. Chan, C., Elliott, J., Troughton, R., Frampton, C., Smyth, D., Crozier, I., and Bridgman, P. (2013). Acute myocardial infarction and stress cardiomyopathy following the Christchurch earthquakes. PLoS One 8, e68504. 21. Chan, C., Troughton, R., Elliott, J., Zarifeh, J., and Bridgman, P. (2014). One-year follow-up of the 2011 Christchurch Earthquake stress cardiomyopathy cases. N Z Med J 127, 15-22. 22. Bridgman, P.G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent earthquake stress cardiomyopathy with a differing wall motion abnormality. Echocardiography 29, E26-27. 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake-induced stress cardiomyopathy, myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 26. Wittstein, I.S. (2012). Stress cardi	686	Earthquake on cardiovascular diseasesreport from the 10 hospitals in the
 Kennedy, M.A. (2016). CTG-repeat expansions in the DMPK gene do not cause takotsubo syndrome. Int J Cardiol 203, 107-108. Lacey, C., Mulder, R., Bridgman, P., Kimber, B., Zarifeh, J., Kennedy, M., and Cameron, V. (2014). Broken heart syndrome - is it a psychosomatic disorder? J Psychosom Res 77, 158-160. Chan, C., Elliott, J., Troughton, R., Frampton, C., Smyth, D., Crozier, I., and Bridgman, P. (2013). Acute myocardial infarction and stress cardiomyopathy following the Christchurch earthquakes. PLoS One 8, e68504. Chan, C., Troughton, R., Elliott, J., Zarifeh, J., and Bridgman, P. (2014). One-year follow-up of the 2011 Christchurch Earthquake stress cardiomyopathy cases. N Z Med J 127, 15-22. Bridgman, P.G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent earthquake stress cardiomyopathy with a differing wall motion abnormality. Echocardiography 29, E26-27. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake-induced stress cardiomyopathy, myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. Scoupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W.,		
 cause takotsubo syndrome. Int J Cardiol 203, 107-108. 19. Lacey, C., Mulder, R., Bridgman, P., Kimber, B., Zarifeh, J., Kennedy, M., and Cameron, V. (2014). Broken heart syndrome - is it a psychosomatic disorder? J Psychosom Res 77, 158-160. 20. Chan, C., Elliott, J., Troughton, R., Frampton, C., Smyth, D., Crozier, I., and Bridgman, P. (2013). Acute myocardial infarction and stress cardiomyopathy following the Christchurch earthquakes. PLoS One 8, e68504. 21. Chan, C., Troughton, R., Elliott, J., Zarifeh, J., and Bridgman, P. (2014). One-year follow-up of the 2011 Christchurch Earthquake stress cardiomyopathy cases. N Z Med J 127, 15-22. 22. Bridgman, P.G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent earthquake stress cardiomyopathy with a differing wall motion abnormality. Echocardiography 29, E26-27. 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake-induced stress cardiomyopathy, myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S. (2012). Stress cardiomyopat		
 19. Lacey, C., Mulder, R., Bridgman, P., Kimber, B., Zarifeh, J., Kennedy, M., and Cameron, V. (2014). Broken heart syndrome - is it a psychosomatic disorder? J Psychosom Res 77, 158-160. 20. Chan, C., Elliott, J., Troughton, R., Frampton, C., Smyth, D., Crozier, I., and Bridgman, P. (2013). Acute myocardial infarction and stress cardiomyopathy following the Christchurch earthquakes. PLoS One 8, e68504. 21. Chan, C., Troughton, R., Elliott, J., Zarifeh, J., and Bridgman, P. (2014). One-year follow-up of the 2011 Christchurch Earthquake stress cardiomyopathy cases. N Z Med J 127, 15-22. 22. Bridgman, P.G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent earthquake stress cardiomyopathy with a differing wall motion abnormality. Echocardiography 29, E26-27. 23. Zarifeh, J.A, Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake-induced stress cardiomyopathy, myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? C		
 Cameron, V. (2014). Broken heart syndrome - is it a psychosomatic disorder? J Psychosom Res 77, 158-160. 20. Chan, C., Elliott, J., Troughton, R., Frampton, C., Smyth, D., Crozier, I., and Bridgman, P. (2013). Acute myocardial infarction and stress cardiomyopathy following the Christchurch earthquakes. PLoS One 8, e68504. 21. Chan, C., Troughton, R., Elliott, J., Zarifeh, J., and Bridgman, P. (2014). One-year follow-up of the 2011 Christchurch Earthquake stress cardiomyopathy cases. N Z Med J 127, 15-22. 22. Bridgman, P.G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent earthquake stress cardiomyopathy with a differing wall motion abnormality. Echocardiography 29, E26-27. 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake-induced stress cardiomyopathy, myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase a		
 disorder? J Psychosom Res 77, 158-160. 20. Chan, C., Elliott, J., Troughton, R., Frampton, C., Smyth, D., Crozier, I., and Bridgman, P. (2013). Acute myocardial infarction and stress cardiomyopathy following the Christchurch earthquakes. PLoS One 8, e68504. 21. Chan, C., Troughton, R., Elliott, J., Zarifeh, J., and Bridgman, P. (2014). One-year follow-up of the 2011 Christchurch Earthquake stress cardiomyopathy cases. N Z Med J 127, 15-22. 22. Bridgman, P.G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent earthquake stress cardiomyopathy with a differing wall motion abnormality. Echocardiography 29, E26-27. 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake-induced stress cardiomyopathy, myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional 		
 Bridgman, P. (2013). Acute myocardial infarction and stress cardiomyopathy following the Christchurch earthquakes. PLoS One 8, e68504. 21. Chan, C., Troughton, R., Elliott, J., Zarifeh, J., and Bridgman, P. (2014). One-year follow-up of the 2011 Christchurch Earthquake stress cardiomyopathy cases. N Z Med J 127, 15-22. 22. Bridgman, P.G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent earthquake stress cardiomyopathy with a differing wall motion abnormality. Echocardiography 29, E26-27. 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake-induced stress cardiomyopathy, myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomypathy: intraindividual structural analysis in the acute phase and after functional 		
 cardiomyopathy following the Christchurch earthquakes. PLoS One 8, e68504. 21. Chan, C., Troughton, R., Elliott, J., Zarifeh, J., and Bridgman, P. (2014). One-year follow-up of the 2011 Christchurch Earthquake stress cardiomyopathy cases. N Z Med J 127, 15-22. 22. Bridgman, P.G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent earthquake stress cardiomyopathy with a differing wall motion abnormality. Echocardiography 29, E26-27. 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake-induced stress cardiomyopathy, myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine-mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine-mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine-mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine-mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual		
 697 e68504. 698 21. Chan, C., Troughton, R., Elliott, J., Zarifeh, J., and Bridgman, P. (2014). One-year 699 follow-up of the 2011 Christchurch Earthquake stress cardiomyopathy 699 cases. N Z Med J 127, 15-22. 701 22. Bridgman, P.G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent 697 earthquake stress cardiomyopathy with a differing wall motion abnormality. 698 Echocardiography 29, E26-27. 704 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). 705 Psychology of earthquake-induced stress cardiomyopathy, myocardial 706 infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 707 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- 708 mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 709 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., 710 Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single 711 pathophysiological pathway in Takotsubo cardiomyopathy: 712 Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 713 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- 714 mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 715 27. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- 714 mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 715 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., 716 Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. 717 (2005). Neurohumoral features of myocardial stunning due to sudden 718 emotional stress. N Engl J Med 352, 539-548. 719 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., 720 Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: 721 intraindividual structural analysis in the acute phase and after functional 		
 21. Chan, C., Troughton, R., Elliott, J., Zarifeh, J., and Bridgman, P. (2014). One-year follow-up of the 2011 Christchurch Earthquake stress cardiomyopathy cases. N Z Med J 127, 15-22. 22. Bridgman, P.G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent earthquake stress cardiomyopathy with a differing wall motion abnormality. Echocardiography 29, E26-27. 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake-induced stress cardiomyopathy, myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional 		
 follow-up of the 2011 Christchurch Earthquake stress cardiomyopathy cases. N Z Med J 127, 15-22. 22. Bridgman, P.G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent earthquake stress cardiomyopathy with a differing wall motion abnormality. Echocardiography 29, E26-27. 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake-induced stress cardiomyopathy, myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Morteff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional 		
 cases. N Z Med J 127, 15-22. 22. Bridgman, P.G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent earthquake stress cardiomyopathy with a differing wall motion abnormality. Echocardiography 29, E26-27. 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake-induced stress cardiomyopathy, myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional 		
 22. Bridgman, P.G., Chan, C.W., and Elliott, J.M. (2012). A case of recurrent earthquake stress cardiomyopathy with a differing wall motion abnormality. Echocardiography 29, E26-27. 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake-induced stress cardiomyopathy, myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional 		
 702 earthquake stress cardiomyopathy with a differing wall motion abnormality. 703 Echocardiography 29, E26-27. 704 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). 705 Psychology of earthquake-induced stress cardiomyopathy, myocardial 706 infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 707 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- 708 mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 709 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., 710 Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single 711 pathophysiological pathway in Takotsubo cardiomyopathy: 712 Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 713 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- 714 mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 715 27. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- 714 mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 715 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., 716 Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. 717 (2005). Neurohumoral features of myocardial stunning due to sudden 718 emotional stress. N Engl J Med 352, 539-548. 719 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., 720 Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: 721 intraindividual structural analysis in the acute phase and after functional 		e de la construcción de la constru
 For a cardiography 29, E26-27. 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake-induced stress cardiomyopathy, myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine-mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine-mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine-mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional 		
 23. Zarifeh, J.A., Mulder, R.T., Kerr, A.J., Chan, C.W., and Bridgman, P.G. (2012). Psychology of earthquake-induced stress cardiomyopathy, myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional 		
 Psychology of earthquake-induced stress cardiomyopathy, myocardial infarction and non-cardiac chest pain. Intern Med J 42, 369-373. 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional 		
 24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional 		
 mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional 	706	infarction and non-cardiac chest pain. Intern Med J 42, 369-373.
 25. Coupez, E., Eschalier, R., Pereira, B., Pierrard, R., Souteyrand, G., Clerfond, G., Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional 		24. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine-
 Citron, B., Lusson, J.R., Mansencal, N., and Motreff, P. (2014). A single pathophysiological pathway in Takotsubo cardiomyopathy: Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional 		
 pathophysiological pathway in Takotsubo cardiomyopathy: Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional 		
 712 Catecholaminergic stress. Arch Cardiovasc Dis 107, 245-252. 713 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 715 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., 716 Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. 717 (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 719 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., 720 Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional 		
 26. Wittstein, I.S. (2012). Stress cardiomyopathy: a syndrome of catecholamine- mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional 		
 714 mediated myocardial stunning? Cell Mol Neurobiol 32, 847-857. 715 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., 716 Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. 717 (2005). Neurohumoral features of myocardial stunning due to sudden 718 emotional stress. N Engl J Med 352, 539-548. 719 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., 720 Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: 721 intraindividual structural analysis in the acute phase and after functional 		
 715 27. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P., 716 Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. 717 (2005). Neurohumoral features of myocardial stunning due to sudden 718 emotional stress. N Engl J Med 352, 539-548. 719 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., 720 Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: 721 intraindividual structural analysis in the acute phase and after functional 		
 716 Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C. 717 (2005). Neurohumoral features of myocardial stunning due to sudden 718 emotional stress. N Engl J Med 352, 539-548. 719 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., 720 Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: 721 intraindividual structural analysis in the acute phase and after functional 		
 717 (2005). Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352, 539-548. 719 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional 		
 emotional stress. N Engl J Med 352, 539-548. 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: intraindividual structural analysis in the acute phase and after functional 		
 719 28. Nef, H.M., Mollmann, H., Kostin, S., Troidl, C., Voss, S., Weber, M., Dill, T., Rolf, A., 720 Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: 721 intraindividual structural analysis in the acute phase and after functional 		
 720 Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy: 721 intraindividual structural analysis in the acute phase and after functional 		
		Brandt, R., Hamm, C.W., et al. (2007). Tako-Tsubo cardiomyopathy:
722 recovery. Eur Heart J 28, 2456-2464.		•
	722	recovery. Eur Heart J 28, 2456-2464.

723	29. Prasad, A., Lerman, A., and Rihal, C.S. (2008). Apical ballooning syndrome
724	(Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial
725	infarction. Am Heart J 155, 408-417.
726	30. Summers, M.R., Lennon, R.J., and Prasad, A. (2010). Pre-morbid psychiatric and
727	cardiovascular diseases in apical ballooning syndrome (tako-tsubo/stress-
728	induced cardiomyopathy): potential pre-disposing factors? J Am Coll Cardiol
729	55, 700-701.
730	31. Wright, P.T., Tranter, M.H., Morley-Smith, A.C., and Lyon, A.R. (2014).
731	Pathophysiology of takotsubo syndrome. Circ J 78, 1550-1558.
732	32. Nef, H.M., Mollmann, H., Akashi, Y.J., and Hamm, C.W. (2010). Mechanisms of
733	stress (Takotsubo) cardiomyopathy. Nat Rev Cardiol 7, 187-193.
734	33. Maron, B.J., Maron, M.S., and Semsarian, C. (2012). Genetics of hypertrophic
735	cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol 60,
736	705-715.
737	34. McNally, E.M., Golbus, J.R., and Puckelwartz, M.J. (2013). Genetic mutations and
738	mechanisms in dilated cardiomyopathy. J Clin Invest 123, 19-26.
739	35. Musumeci, B., Saponaro, A., Pagannone, E., Proietti, G., Mastromarino, V., Conti,
740	E., Tubaro, M., Volpe, M., and Autore, C. (2013). Simultaneous Takotsubo
741	syndrome in two sisters. Int J Cardiol 165, e49-50.
742	36. Ikutomi, M., Yamasaki, M., Matsusita, M., Watari, Y., Arashi, H., Endo, G.,
743	Yamaguchi, J., and Ohnishi, S. (2014). Takotsubo cardiomyopathy in siblings.
744	Heart Vessels 29, 119-122.
745	37. Pison, L., De Vusser, P., and Mullens, W. (2004). Apical ballooning in relatives.
746	Heart 90, e67.
747	38. Sharkey, S.W., Lips, D.L., Pink, V.R., and Maron, B.J. (2013). Daughter-mother
748	tako-tsubo cardiomyopathy. Am J Cardiol 112, 137-138.
749	39. Cherian, J., Angelis, D., Filiberti, A., and Saperia, G. (2007). Can takotsubo
750	cardiomyopathy be familial? Int J Cardiol 121, 74-75.
751	40. Kumar, G., Holmes, D.R., Jr., and Prasad, A. (2010). "Familial" apical ballooning
752	syndrome (Takotsubo cardiomyopathy). Int J Cardiol 144, 444-445.
753	41. Subban, V., Ramachandran, S., Victor, S.M., Gnanaraj, A., and Ajit, M.S. (2012).
754	Apical ballooning syndrome in first degree relatives. Indian Heart J 64, 607-
755	609.
756	42. Goodloe, A.H., Evans, J.M., Middha, S., Prasad, A., and Olson, T.M. (2014).
757	Characterizing genetic variation of adrenergic signalling pathways in
758	Takotsubo (stress) cardiomyopathy exomes. Eur J Heart Fail 16, 942-949.
759	
	43. Schultz, T., Shao, Y., Redfors, B., Sverrisdottir, Y.B., Ramunddal, T., Albertsson, P.,
760 761	Matejka, G., and Omerovic, E. (2012). Stress-induced cardiomyopathy in
761 762	Sweden: evidence for different ethnic predisposition and altered cardio-
762	circulatory status. Cardiology 122, 180-186.
763	44. Pilgrim, T.M., and Wyss, T.R. (2008). Takotsubo cardiomyopathy or transient
764	left ventricular apical ballooning syndrome: A systematic review. Int J
765	Cardiol 124, 283-292.
766	45. Limongelli, G., D'Alessandro, R., Masarone, D., Maddaloni, V., Vriz, O., Minisini, R.,
767	Citro, R., Calabro, P., Russo, M.G., Calabro, R., et al. (2013). Takotsubo
768	cardiomyopathy: do the genetics matter? Heart Fail Clin 9, 207-216, ix.
769	46. d'Avenia, M., Citro, R., De Marco, M., Veronese, A., Rosati, A., Visone, R., Leptidis,
770	S., Philippen, L., Vitale, G., Cavallo, A., et al. (2015). A novel miR-371a-5p-
771	mediated pathway, leading to BAG3 upregulation in cardiomyocytes in

772	response to epinephrine, is lost in Takotsubo cardiomyopathy. Cell death $\&$
773	disease 6, e1948.
774	47. Figtree, G.A., Bagnall, R.D., Abdulla, I., Buchholz, S., Galougahi, K.K., Yan, W., Tan,
775	T., Neil, C., Horowitz, J.D., Semsarian, C., et al. (2013). No association of G-
776	protein-coupled receptor kinase 5 or beta-adrenergic receptor
777	polymorphisms with Takotsubo cardiomyopathy in a large Australian
778	cohort. Eur J Heart Fail 15, 730-733.
779	48. Sharkey, S.W., Maron, B.J., Nelson, P., Parpart, M., Maron, M.S., and Bristow, M.R.
780	
	(2009). Adrenergic receptor polymorphisms in patients with stress (tako-
781	tsubo) cardiomyopathy. J Cardiol 53, 53-57.
782	49. Handy, A.D., Prasad, A., and Olson, T.M. (2009). Investigating genetic variation
783	of adrenergic receptors in familial stress cardiomyopathy (apical ballooning
784	syndrome). Journal of cardiology 54, 516-517.
785	50. Spinelli, L., Trimarco, V., Di Marino, S., Marino, M., Iaccarino, G., and Trimarco, B.
786	(2010). L41Q polymorphism of the G protein coupled receptor kinase 5 is
787	associated with left ventricular apical ballooning syndrome. European
788	journal of heart failure 12, 13-16.
789	51. Vriz, O., Minisini, R., Citro, R., Guerra, V., Zito, C., De Luca, G., Pavan, D., Pirisi, M.,
790	Limongelli, G., and Bossone, E. (2011). Analysis of beta1 and beta2-
791	adrenergic receptors polymorphism in patients with apical ballooning
792	cardiomyopathy. Acta Cardiol 66, 787-790.
793	52. Novo, G., Giambanco, S., Guglielmo, M., Arvigo, L., Sutera, M.R., Giambanco, F.,
794	Evola, S., Vaccarino, L., Bova, M., Lio, D., et al. (2014). G-protein-coupled
795	receptor kinase 5 polymorphism and Takotsubo cardiomyopathy. J
796	Cardiovasc Med (Hagerstown).
797	53. Munafo, M.R., and Flint, J. (2004). Meta-analysis of genetic association studies.
798	Trends Genet 20, 439-444.
799	54. Pizzino, G., Bitto, A., Crea, P., Khandheria, B., Vriz, O., Carerj, S., Squadrito, F.,
800	Minisini, R., Citro, R., Cusma-Piccione, M., et al. (2017). Takotsubo syndrome
801	and estrogen receptor genes: partners in crime? J Cardiovasc Med
802	(Hagerstown) 18, 268-276.
803	55. Ng, S.B., Turner, E.H., Robertson, P.D., Flygare, S.D., Bigham, A.W., Lee, C.,
804	Shaffer, T., Wong, M., Bhattacharjee, A., Eichler, E.E., et al. (2009). Targeted
805	capture and massively parallel sequencing of 12 human exomes. Nature 461,
806	272-276.
807	56. Bamshad, M.J., Ng, S.B., Bigham, A.W., Tabor, H.K., Emond, M.J., Nickerson, D.A.,
808	and Shendure, J. (2011). Exome sequencing as a tool for Mendelian disease
809	gene discovery. Nature reviews Genetics 12, 745-755.
810	57. Yang, Y., Muzny, D.M., Reid, J.G., Bainbridge, M.N., Willis, A., Ward, P.A., Braxton,
811	A., Beuten, J., Xia, F., Niu, Z., et al. (2013). Clinical whole-exome sequencing
812	for the diagnosis of mendelian disorders. N Engl J Med 369, 1502-1511.
813	58. Chugh, S.S., and Huertas-Vazquez, A. (2014). Inherited arrhythmia syndromes:
814	exome sequencing opens a new door to diagnosis. J Am Coll Cardiol 63, 267-
815	268.
816	59. Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with
817	Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
818	60. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A.,
819	Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The Genome
010	darimena, m, monaler, D., dabrier, S., Dary, M., Ctal. (2010). The denome

820	Analysis Toolkit: a MapReduce framework for analyzing next-generation
821	DNA sequencing data. Genome research 20, 1297-1303.
822 823	61. Schwarz, J.M., Cooper, D.N., Schuelke, M., and Seelow, D. (2014).
824	MutationTaster2: mutation prediction for the deep-sequencing age. Nat
	Methods 11, 361-362.
825 826	62. Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu,
827	X., and Ruden, D.M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of
828	Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80-92.
829	
830	63. Goecks, J., Nekrutenko, A., Taylor, J., and Galaxy, T. (2010). Galaxy: a comprehensive approach for supporting accessible, reproducible, and
831	transparent computational research in the life sciences. Genome Biol 11,
832	R86.
833	64. Durbin, R.M., Abecasis, G.R., Altshuler, D.L., Auton, A., Brooks, L.D., Gibbs, R.A.,
834	Hurles, M.E., and McVean, G.A. (2010). A map of human genome variation
835	from population-scale sequencing. Nature 467, 1061-1073.
836	65. Landrum, M.J., Lee, J.M., Riley, G.R., Jang, W., Rubinstein, W.S., Church, D.M., and
837	Maglott, D.R. (2014). ClinVar: public archive of relationships among
838	sequence variation and human phenotype. Nucleic Acids Res 42, D980-985.
839	66. Ellis, K.L., Frampton, C.M., Pilbrow, A.P., Troughton, R.W., Doughty, R.N.,
840	Whalley, G.A., Ellis, C.J., Skelton, L., Thomson, J., Yandle, T.G., et al. (2011).
841	Genomic risk variants at 1p13.3, 1q41, and 3q22.3 are associated with
842	subsequent cardiovascular outcomes in healthy controls and in established
843	coronary artery disease. Circ Cardiovasc Genet 4, 636-646.
844	67. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D.,
845	Maller, J., Sklar, P., de Bakker, P.I., Daly, M.J., et al. (2007). PLINK: a tool set
846	for whole-genome association and population-based linkage analyses. Am J
847	Hum Genet 81, 559-575.
848	68. Team, R.C. (2016). R: A language and environment for statistical computing.(R
849	Foundation for Statistical Computing, Vienna, Austria).
850	69. Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in
851	multiple testing under dependency. Ann Stat 29, 1165-1188.
852	70. Neill, N.J., Torchia, B.S., Bejjani, B.A., Shaffer, L.G., and Ballif, B.C. (2010).
853	Comparative analysis of copy number detection by whole-genome BAC and
854	oligonucleotide array CGH. Molecular cytogenetics 3, 11.
855	71. Firth, H.V., Richards, S.M., Bevan, A.P., Clayton, S., Corpas, M., Rajan, D., Van
856	Vooren, S., Moreau, Y., Pettett, R.M., and Carter, N.P. (2009). DECIPHER:
857	Database of Chromosomal Imbalance and Phenotype in Humans Using
858	Ensembl Resources. Am J Hum Genet 84, 524-533.
859	72. MacDonald, J.R., Ziman, R., Yuen, R.K., Feuk, L., and Scherer, S.W. (2014). The
860	Database of Genomic Variants: a curated collection of structural variation in
861	the human genome. Nucleic Acids Res 42, D986-992.
862	73. Kearney, H.M., Thorland, E.C., Brown, K.K., Quintero-Rivera, F., South, S.T., and
863	Working Group of the American College of Medical Genetics Laboratory
864	Quality Assurance, C. (2011). American College of Medical Genetics
865	standards and guidelines for interpretation and reporting of postnatal
866	constitutional copy number variants. Genet Med 13, 680-685.
867	74. Riggs, E.R., Church, D.M., Hanson, K., Horner, V.L., Kaminsky, E.B., Kuhn, R.M.,
868	Wain, K.E., Williams, E.S., Aradhya, S., Kearney, H.M., et al. (2012). Towards

869	an evidence-based process for the clinical interpretation of copy number
870	variation. Clin Genet 81, 403-412.
871	75. Hanemaaijer, N.M., Sikkema-Raddatz, B., van der Vries, G., Dijkhuizen, T.,
872	Hordijk, R., van Essen, A.J., Veenstra-Knol, H.E., Kerstjens-Frederikse, W.S.,
873	Herkert, J.C., Gerkes, E.H., et al. (2012). Practical guidelines for interpreting
874	copy number gains detected by high-resolution array in routine diagnostics.
875	Eur J Hum Genet 20, 161-165.
876	76. Breckpot, J., Thienpont, B., Arens, Y., Tranchevent, L.C., Vermeesch, J.R., Moreau,
877	Y., Gewillig, M., and Devriendt, K. (2011). Challenges of interpreting copy
878	number variation in syndromic and non-syndromic congenital heart defects.
879	Cytogenet Genome Res 135, 251-259.
880	77. Mills, R.E., Walter, K., Stewart, C., Handsaker, R.E., Chen, K., Alkan, C., Abyzov, A.,
881	Yoon, S.C., Ye, K., Cheetham, R.K., et al. (2011). Mapping copy number
882	variation by population-scale genome sequencing. Nature 470, 59-65.
883	78. Cooper, G.M., Coe, B.P., Girirajan, S., Rosenfeld, J.A., Vu, T.H., Baker, C., Williams,
884	C., Stalker, H., Hamid, R., Hannig, V., et al. (2011). A copy number variation
885	morbidity map of developmental delay. Nat Genet 43, 838-846.
886	79. Coe, B.P., Witherspoon, K., Rosenfeld, J.A., van Bon, B.W., Vulto-van Silfhout, A.T.,
887	Bosco, P., Friend, K.L., Baker, C., Buono, S., Vissers, L.E., et al. (2014). Refining
888	analyses of copy number variation identifies specific genes associated with
889	developmental delay. Nat Genet 46, 1063-1071.
890	80. Shaikh, T.H., Gai, X., Perin, J.C., Glessner, J.T., Xie, H., Murphy, K., O'Hara, R.,
891	Casalunovo, T., Conlin, L.K., D'Arcy, M., et al. (2009). High-resolution
892	mapping and analysis of copy number variations in the human genome: a
893	data resource for clinical and research applications. Genome Res 19, 1682-
894	1690.
895	81. Vogler, C., Gschwind, L., Rothlisberger, B., Huber, A., Filges, I., Miny, P., Auschra,
896	B., Stetak, A., Demougin, P., Vukojevic, V., et al. (2010). Microarray-based
897	maps of copy-number variant regions in European and sub-Saharan
898	populations. PLoS One 5, e15246.
899	82. Kircher, M., Witten, D.M., Jain, P., O'Roak, B.J., Cooper, G.M., and Shendure, J.
900	(2014). A general framework for estimating the relative pathogenicity of
901	human genetic variants. Nat Genet 46, 310-315.
902	83. Picardi, E., and Pesole, G. (2012). Mitochondrial genomes gleaned from human
903	whole-exome sequencing. Nat Methods 9, 523-524.
904	84. Chua, E.W., Cree, S., Barclay, M.L., Doudney, K., Lehnert, K., Aitchison, A., and
905	Kennedy, M.A. (2015). Exome sequencing and array-based comparative
906	genomic hybridisation analysis of preferential 6-methylmercaptopurine
907	producers. Pharmacogenomics J In press.
908	85. Li, Y.I., Sanchez-Pulido, L., Haerty, W., and Ponting, C.P. (2015). RBFOX and
909	PTBP1 proteins regulate the alternative splicing of micro-exons in human
910	brain transcripts. Genome Res 25, 1-13.
911	86. Irimia, M., Weatheritt, R.J., Ellis, J.D., Parikshak, N.N., Gonatopoulos-Pournatzis,
912	T., Babor, M., Quesnel-Vallieres, M., Tapial, J., Raj, B., O'Hanlon, D., et al.
913	(2014). A highly conserved program of neuronal microexons is misregulated
914	in autistic brains. Cell 159, 1511-1523.
915	87. Zhao, W.W. (2013). Intragenic deletion of RBF0X1 associated with
916	neurodevelopmental/neuropsychiatric disorders and possibly other clinical
917	presentations. Molecular cytogenetics 6, 26.

918	88. Lale, S., Yu, S., and Ahmed, A. (2011). Complex congenital heart defects in
919	association with maternal diabetes and partial deletion of the A2BP1 gene.
920	Fetal Pediatr Pathol 30, 161-166.
921	89. Lal, D., Trucks, H., Moller, R.S., Hjalgrim, H., Koeleman, B.P., de Kovel, C.G.,
922	Visscher, F., Weber, Y.G., Lerche, H., Becker, F., et al. (2013). Rare exonic
923	deletions of the RBF0X1 gene increase risk of idiopathic generalized
924	epilepsy. Epilepsia 54, 265-271.
925	90. Gao, C., Ren, S., Lee, J.H., Qiu, J., Chapski, D.J., Rau, C.D., Zhou, Y., Abdellatif, M.,
926	Nakano, A., Vondriska, T.M., et al. (2016). RBFox1-mediated RNA splicing
927	regulates cardiac hypertrophy and heart failure. J Clin Invest 126, 195-206.
928	91. Earle, N.J., Poppe, K.K., Pilbrow, A.P., Cameron, V.A., Troughton, R.W., Skinner,
929	J.R., Love, D.R., Shelling, A.N., Whalley, G.A., Ellis, C.J., et al. (2015). Genetic
930	markers of repolarization and arrhythmic events after acute coronary
931	syndromes. Am Heart J 169, 579-586 e573.
932	92. Arking, D.E., Reinier, K., Post, W., Jui, J., Hilton, G., O'Connor, A., Prineas, R.J.,
933	Boerwinkle, E., Psaty, B.M., Tomaselli, G.F., et al. (2010). Genome-wide
934	association study identifies GPC5 as a novel genetic locus protective against
935	sudden cardiac arrest. PLoS One 5, e9879.
936	93. Rosenberg, R.D., Shworak, N.W., Liu, J., Schwartz, J.J., and Zhang, L. (1997).
937	Heparan sulfate proteoglycans of the cardiovascular system. Specific
938	structures emerge but how is synthesis regulated? J Clin Invest 100, S67-75.
939	94. Gunteski-Hamblin, A.M., Song, G., Walsh, R.A., Frenzke, M., Boivin, G.P., Dorn,
940	G.W., 2nd, Kaetzel, M.A., Horseman, N.D., and Dedman, J.R. (1996). Annexin
941	VI overexpression targeted to heart alters cardiomyocyte function in
942	transgenic mice. Am J Physiol 270, H1091-1100.
943	95. Song, G., Harding, S.E., Duchen, M.R., Tunwell, R., O'Gara, P., Hawkins, T.E., and
944	Moss, S.E. (2002). Altered mechanical properties and intracellular calcium
945	signaling in cardiomyocytes from annexin 6 null-mutant mice. FASEB J 16,
946	622-624.
947	96. Camors, E., Monceau, V., and Charlemagne, D. (2005). Annexins and Ca2+
948	handling in the heart. Cardiovasc Res 65, 793-802.
949	97. Meadows, S.M., and Cleaver, O. (2015). Annexin A3 Regulates Early Blood Vessel
950	Formation. PLoS One 10, e0132580.
951	98. Adhikari, N., Guan, W., Capaldo, B., Mackey, A.J., Carlson, M., Ramakrishnan, S.,
952	Walek, D., Gupta, M., Mitchell, A., Eckman, P., et al. (2014). Identification of a
953	new target of miR-16, Vacuolar Protein Sorting 4a. PLoS One 9, e101509.
954	99. Porrello, E.R., Johnson, B.A., Aurora, A.B., Simpson, E., Nam, Y.J., Matkovich, S.J.,
955	Dorn, G.W., 2nd, van Rooij, E., and Olson, E.N. (2011). MiR-15 family
956	regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 109, 670-679.
957	100. Hullinger, T.G., Montgomery, R.L., Seto, A.G., Dickinson, B.A., Semus, H.M.,
958	Lynch, J.M., Dalby, C.M., Robinson, K., Stack, C., Latimer, P.A., et al. (2012).
959	Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 110,
960	71-81.
961	101. Venkateswaran, A., Sekhar, K.R., Levic, D.S., Melville, D.B., Clark, T.A., Rybski,
962	W.M., Walsh, A.J., Skala, M.C., Crooks, P.A., Knapik, E.W., et al. (2014). The
963	NADH oxidase ENOX1, a critical mediator of endothelial cell
964	radiosensitization, is crucial for vascular development. Cancer Res 74, 38-
965	43.

966	102. Weng, L., Hubner, R., Claessens, A., Smits, P., Wauters, J., Tylzanowski, P., Van
967	Marck, E., and Merregaert, J. (2003). Isolation and characterization of
968	chondrolectin (Chodl), a novel C-type lectin predominantly expressed in
969	muscle cells. Gene 308, 21-29.
970	103. Coppinger, J., McDonald-McGinn, D., Zackai, E., Shane, K., Atkin, J.F., Asamoah,
971	A., Leland, R., Weaver, D.D., Lansky-Shafer, S., Schmidt, K., et al. (2009).
972	Identification of familial and de novo microduplications of 22q11.21-q11.23
973	distal to the 22q11.21 microdeletion syndrome region. Hum Mol Genet 18,
974	1377-1383.
975	104. Wentzel, C., Fernstrom, M., Ohrner, Y., Anneren, G., and Thuresson, A.C. (2008).
976	Clinical variability of the 22q11.2 duplication syndrome. Eur J Med Genet 51,
977	501-510.
978 070	105. Coe, B.P., Witherspoon, K., Rosenfeld, J.A., van Bon, B.W., Vulto-van Silfhout,
979	A.T., Bosco, P., Friend, K.L., Baker, C., Buono, S., Vissers, L.E., et al. (2014).
980	Refining analyses of copy number variation identifies specific genes
981	associated with developmental delay. Nat Genet 46, 1063-1071.
982	106. Pipes, L., Li, S., Bozinoski, M., Palermo, R., Peng, X., Blood, P., Kelly, S., Weiss,
983	J.M., Thierry-Mieg, J., Thierry-Mieg, D., et al. (2013). The non-human primate
984	reference transcriptome resource (NHPRTR) for comparative functional
985	genomics. Nucleic Acids Res 41, D906-914.
986	107. Vadas, O., Dbouk, H.A., Shymanets, A., Perisic, O., Burke, J.E., Abi Saab, W.F.,
987	Khalil, B.D., Harteneck, C., Bresnick, A.R., Nurnberg, B., et al. (2013).
988	Molecular determinants of PI3Kgamma-mediated activation downstream of
989	G-protein-coupled receptors (GPCRs). Proc Natl Acad Sci U S A 110, 18862-
990	18867.
991	108. Izumi, Y. (2013). Drug-induced takotsubo cardiomyopathy. Heart Fail Clin 9,
992	225-231, ix-x.
993	109. Ueyama, T. (2004). Emotional stress-induced Tako-tsubo cardiomyopathy:
994	animal model and molecular mechanism. Ann N Y Acad Sci 1018, 437-444.
995	110. Kido, K., and Guglin, M. (2017). Drug-Induced Takotsubo Cardiomyopathy.
996	Journal of cardiovascular pharmacology and therapeutics,
997	1074248417708618.
998	111. Schreyer, S., Ledwig, D., Rakatzi, I., Kloting, I., and Eckel, J. (2003). Insulin
999	receptor substrate-4 is expressed in muscle tissue without acting as a
1000	substrate for the insulin receptor. Endocrinology 144, 1211-1218.
1001	112. Fantin, V.R., Lavan, B.E., Wang, Q., Jenkins, N.A., Gilbert, D.J., Copeland, N.G.,
1002	Keller, S.R., and Lienhard, G.E. (1999). Cloning, tissue expression, and
1003	chromosomal location of the mouse insulin receptor substrate 4 gene.
1004	Endocrinology 140, 1329-1337.
1005	113. Mertens, F., Moller, E., Mandahl, N., Picci, P., Perez-Atayde, A.R., Samson, I.,
1006	Sciot, R., and Debiec-Rychter, M. (2011). The t(X;6) in subungual exostosis
1007	results in transcriptional deregulation of the gene for insulin receptor
1008	substrate 4. Int J Cancer 128, 487-491.
1009	114. Duenez-Guzman, E.A., and Haig, D. (2014). The evolution of reproduction-
1010	related NLRP genes. J Mol Evol 78, 194-201.
1011	115. Snoep, J.D., Gaussem, P., Eikenboom, J.C., Emmerich, J., Zwaginga, J.J., Holmes,
1012	C.E., Vos, H.L., de Groot, P.G., Herrington, D.M., Bray, P.F., et al. (2010). The
1012	minor allele of GP6 T13254C is associated with decreased platelet activation
	minor ancie of all of 12020 for bassociated with decreased plattice activation

1014	and a reduced risk of recurrent cardiovascular events and mortality: results
1015	from the SMILE-Platelets project. J Thromb Haemost 8, 2377-2384.
1016	116. Bray, P.F., Howard, T.D., Vittinghoff, E., Sane, D.C., and Herrington, D.M. (2007).
1017	Effect of genetic variations in platelet glycoproteins Ibalpha and VI on the
1017	risk for coronary heart disease events in postmenopausal women taking
1019	hormone therapy. Blood 109, 1862-1869.
1020	117. Lorenz, K., Schmitt, J.P., Schmitteckert, E.M., and Lohse, M.J. (2009). A new type
1021	of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat Med 15,
1022	75-83.
1023	118. Dimassi, S., Labalme, A., Lesca, G., Rudolf, G., Bruneau, N., Hirsch, E.,
1024	Arzimanoglou, A., Motte, J., de Saint Martin, A., Boutry-Kryza, N., et al.
1025	(2014). A subset of genomic alterations detected in rolandic epilepsies
1026	contains candidate or known epilepsy genes including GRIN2A and PRRT2.
1027	Epilepsia 55, 370-378.
1028	119. Zhao, Y.Y., Sawyer, D.R., Baliga, R.R., Opel, D.J., Han, X., Marchionni, M.A., and
1029	Kelly, R.A. (1998). Neuregulins promote survival and growth of cardiac
1030	myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult
1031	ventricular myocytes. J Biol Chem 273, 10261-10269.
1032	120. Berg, R.W., Leung, E., Gough, S., Morris, C., Yao, W.P., Wang, S.X., Ni, J., and
1033	Krissansen, G.W. (1999). Cloning and characterization of a novel beta
1034	integrin-related cDNA coding for the protein TIED ("ten beta integrin EGF-
1035	like repeat domains") that maps to chromosome band 13q33: A divergent
1036	stand-alone integrin stalk structure. Genomics 56, 169-178.
1030	121. Wheeler, H.E., Shah, K.P., Brenner, J., Garcia, T., Aquino-Michaels, K.,
1037	Consortium, G.T., Cox, N.J., Nicolae, D.L., and Im, H.K. (2016). Survey of the
1038	
	Heritability and Sparse Architecture of Gene Expression Traits across
1040	Human Tissues. PLoS Genet 12, e1006423.
1041	122. Wittstein, I.S., Thiemann, D.R., Lima, J.A., Baughman, K.L., Schulman, S.P.,
1042	Gerstenblith, G., Wu, K.C., Rade, J.J., Bivalacqua, T.J., and Champion, H.C.
1043	(2005). Neurohumoral features of myocardial stunning due to sudden
1044	emotional stress. N Engl J Med 352, 539-548.
1045	123. Voight, B.F., Kang, H.M., Ding, J., Palmer, C.D., Sidore, C., Chines, P.S., Burtt, N.P.,
1046	Fuchsberger, C., Li, Y., Erdmann, J., et al. (2012). The metabochip, a custom
1047	genotyping array for genetic studies of metabolic, cardiovascular, and
1048	anthropometric traits. PLoS Genet 8, e1002793.
1049	124. Eitel, I., Moeller, C., Munz, M., Stiermaier, T., Meitinger, T., Thiele, H., and
1050	Erdmann, J. (2017). Genome-wide association study in takotsubo syndrome
1051	- Preliminary results and future directions. Int J Cardiol 236, 335-339.
1052	125. Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., Fiegler,
1053	H., Shapero, M.H., Carson, A.R., Chen, W., et al. (2006). Global variation in
1054	copy number in the human genome. Nature 444, 444-454.
1055	126. McCarroll, S.A., and Altshuler, D.M. (2007). Copy-number variation and
1056	association studies of human disease. Nat Genet 39, S37-42.
1057	127. Stranger, B.E., Forrest, M.S., Dunning, M., Ingle, C.E., Beazley, C., Thorne, N.,
1058	Redon, R., Bird, C.P., de Grassi, A., Lee, C., et al. (2007). Relative impact of
1059	nucleotide and copy number variation on gene expression phenotypes.
1060	Science 315, 848-853.
1061	128. Purcell, S.M., Moran, J.L., Fromer, M., Ruderfer, D., Solovieff, N., Roussos, P.,
1062	O'Dushlaine, C., Chambert, K., Bergen, S.E., Kahler, A., et al. (2014). A

1063	polygenic burden of rare disruptive mutations in schizophrenia. Nature 506,
1064	185-190.
1065	129. Helbig, I., Swinkels, M.E., Aten, E., Caliebe, A., van 't Slot, R., Boor, R., von
1066	Spiczak, S., Muhle, H., Jahn, J.A., van Binsbergen, E., et al. (2014). Structural
1067	genomic variation in childhood epilepsies with complex phenotypes. Eur J
1068	Hum Genet 22, 896-901.
1069	130. Hooli, B.V., Kovacs-Vajna, Z.M., Mullin, K., Blumenthal, M.A., Mattheisen, M.,
1070	Zhang, C., Lange, C., Mohapatra, G., Bertram, L., and Tanzi, R.E. (2014). Rare
1071	autosomal copy number variations in early-onset familial Alzheimer's
1072	disease. Mol Psychiatry 19, 676-681.
1073	131. Gilissen, C., Hehir-Kwa, J.Y., Thung, D.T., van de Vorst, M., van Bon, B.W.,
1074	Willemsen, M.H., Kwint, M., Janssen, I.M., Hoischen, A., Schenck, A., et al.
1075	(2014). Genome sequencing identifies major causes of severe intellectual
1076	disability. Nature 511, 344-347.
1077	132. Mefford, H.C., Yendle, S.C., Hsu, C., Cook, J., Geraghty, E., McMahon, J.M., Eeg-
1078	Olofsson, O., Sadleir, L.G., Gill, D., Ben-Zeev, B., et al. (2011). Rare copy
1079	number variants are an important cause of epileptic encephalopathies. Ann
1080	Neurol 70, 974-985.
	133. Hitz, M.P., Lemieux-Perreault, L.P., Marshall, C., Feroz-Zada, Y., Davies, R., Yang,
1082	S.W., Lionel, A.C., D'Amours, G., Lemyre, E., Cullum, R., et al. (2012). Rare
1083	copy number variants contribute to congenital left-sided heart disease. PLoS
1084	Genet 8, e1002903.
	134. White, P.S., Xie, H.M., Werner, P., Glessner, J., Latney, B., Hakonarson, H., and
1086	Goldmuntz, E. (2014). Analysis of chromosomal structural variation in
1087	patients with congenital left-sided cardiac lesions. Birth Defects Res A Clin
1088	Mol Teratol.
	135. Fakhro, K.A., Choi, M., Ware, S.M., Belmont, J.W., Towbin, J.A., Lifton, R.P.,
1090	Khokha, M.K., and Brueckner, M. (2011). Rare copy number variations in
1091	congenital heart disease patients identify unique genes in left-right
1092	patterning. Proc Natl Acad Sci U S A 108, 2915-2920.
	136. Glessner, J.T., Bick, A.G., Ito, K., Homsy, J.G., Rodriguez-Murillo, L., Fromer, M.,
1094	Mazaika, E., Vardarajan, B., Italia, M., Leipzig, J., et al. (2014). Increased
1095	frequency of de novo copy number variants in congenital heart disease by
1096	integrative analysis of single nucleotide polymorphism array and exome
1097	sequence data. Circ Res 115, 884-896.
	137. Barc, J., Briec, F., Schmitt, S., Kyndt, F., Le Cunff, M., Baron, E., Vieyres, C.,
1099	Sacher, F., Redon, R., Le Caignec, C., et al. (2011). Screening for copy number
1100	variation in genes associated with the long QT syndrome: clinical relevance.
1101	J Am Coll Cardiol 57, 40-47.
	138. Silversides, C.K., Lionel, A.C., Costain, G., Merico, D., Migita, O., Liu, B., Yuen, T.,
1103	Rickaby, J., Thiruvahindrapuram, B., Marshall, C.R., et al. (2012). Rare copy
1104	number variations in adults with tetralogy of Fallot implicate novel risk
1105	gene pathways. PLoS Genet 8, e1002843.
	139. Roberts, J.L., Hovanes, K., Dasouki, M., Manzardo, A.M., and Butler, M.G. (2014).
1107	Chromosomal microarray analysis of consecutive individuals with autism
1108	spectrum disorders or learning disability presenting for genetic services.
1109	Gene 535, 70-78.
	140. Battaglia, A., Doccini, V., Bernardini, L., Novelli, A., Loddo, S., Capalbo, A.,
1111	Filippi, T., and Carey, J.C. (2013). Confirmation of chromosomal microarray

1112 1113 1114 1115	as a first-tier clinical diagnostic test for individuals with developmental delay, intellectual disability, autism spectrum disorders and dysmorphic features. Eur J Paediatr Neurol 17, 589-599. 141. Chong, W.W., Lo, I.F., Lam, S.T., Wang, C.C., Luk, H.M., Leung, T.Y., and Choy,
1116	K.W. (2014). Performance of chromosomal microarray for patients with
1117	intellectual disabilities/developmental delay, autism, and multiple
1118	congenital anomalies in a Chinese cohort. Molecular cytogenetics 7, 34.
1119	142. Mc Cormack, A., Claxton, K., Ashton, F., Asquith, P., Atack, E., Mazzaschi, R.,
1120	Moverley, P., O'Connor, R., Qorri, M., Sheath, K., et al. (2016). Microarray
1121	testing in clinical diagnosis: an analysis of 5,300 New Zealand patients.
1122	Molecular cytogenetics 9, 29.
1123	143. Ruusala, A., and Aspenstrom, P. (2004). Isolation and characterisation of
1124	DOCK8, a member of the DOCK180-related regulators of cell morphology.
1125	FEBS Lett 572, 159-166.
1126	144. Engelhardt, K.R., McGhee, S., Winkler, S., Sassi, A., Woellner, C., Lopez-Herrera,
1127	G., Chen, A., Kim, H.S., Lloret, M.G., Schulze, I., et al. (2009). Large deletions
1128	and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the
1129	autosomal-recessive form of hyper-IgE syndrome. J Allergy Clin Immunol
1130	124, 1289-1302 e1284.
1131	145. Al Mutairi, M., Al-Mousa, H., AlSaud, B., Hawwari, A., AlJoufan, M., AlWesaibi, A.,
1132	AlHalees, Z., and Al-Mayouf, S.M. (2014). Grave aortic aneurysmal dilatation
1133	in DOCK8 deficiency. Mod Rheumatol 24, 690-693.
1134 1135	146. Sterneckert, J.L., Reinhardt, P., and Scholer, H.R. (2014). Investigating human
1135	disease using stem cell models. Nat Rev Genet 15, 625-639. 147. Ma, D., Wei, H., Lu, J., Ho, S., Zhang, G., Sun, X., Oh, Y., Tan, S.H., Ng, M.L., Shim,
1130	W., et al. (2013). Generation of patient-specific induced pluripotent stem
1138	cell-derived cardiomyocytes as a cellular model of arrhythmogenic right
1130	ventricular cardiomyopathy. Eur Heart J 34, 1122-1133.
1140	vena lealar caralomyopadiy. Eur ficarej 57, 1122 1155.
1141	
1142	
1143	

1144 Figure titles and legends

1145

1146 Figure 1. CNV detected in EqSCM case 01. A: Chromosomal location of the 1147 CNV at the RBFOX1 locus of chromosome 16. B: Enlargement of the fifteen 1148 probe deletion (139kb, delimited by vertical green lines and blue shading) 1149 illustrating loss of the fMet-containing exon (pale blue vertical bar) for three 1150 major RBFOX1 isoforms. DGV track of known CNVs shown at bottom of figure, 1151 beneath the genes2 and regions of interest tracks. Graphical views from 1152 Genoglyphix (PerkinElmer) software. 1153 1154

Figure 2. Genome wide distribution of CNVs. CNVs detected in 12 (of 28)
EqSCM individuals by aCGH analysis. Numbers beside arrows relate to EqSCM patient number. Red arrows denote deletions, blue arrows duplications. Note that EqSCM 03, EqSCM 06, EqSCM 11 carry two rare CNVs, while EqSCM 19 contains three.

- 1162
- 1163

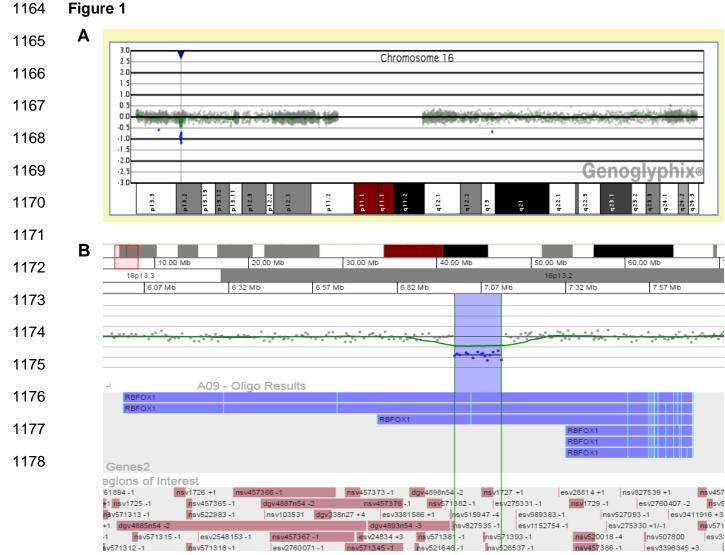
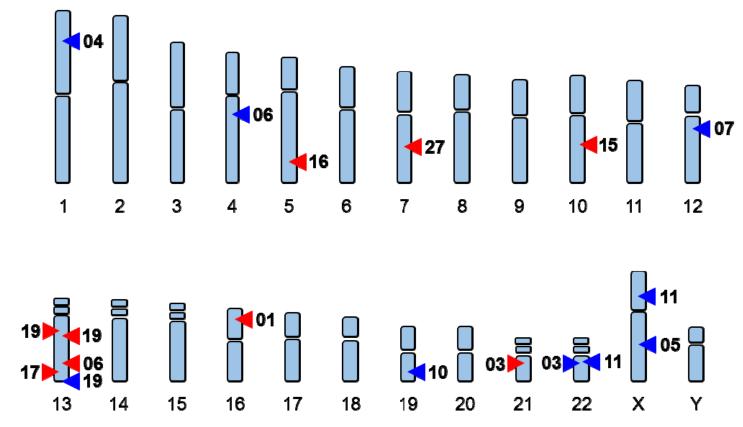



Figure 1

Page 40

bioRxiv preprint doi: https://doi.org/10.1101/144675; this version posted May 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Page 41

1183 Table titles and legends

1184

1185 **Table 1.** SNP markers removed from Cardio-MetaboChip analysis in quality

1186 control

1187

Stage of analysis	Number of SNPs	Comments
Assayed	196,725	
No genotype	10,927	
Mono allelic	28,367	
MAF <0.004	44,424	SNPs with only 1 minor allele found
Missing > 0.02 of	36,884	
samples		
HWE fail	130	HWE_P <1e-20 and 1.5x more
		heterozygotes than expected
Total Removed	65,622	Note that SNPs could fail on two
		or more of the criteria above
SNPs remaining in analysis	131,103	
anarysis		

Case ID	Prediction*	Location	Del/Dup	Key genes**	Size	Frequency	Location
EqSCM 01	UCS	16p13.2	DEL	RBFOX1**	139kb	1/20000	HG19 chr16:7,054,481-7,193,526
EqSCM 03	UCS	21q21.1	DEL	CHODL**	96kb	1/9000	HG19 chr21:19,537,178-19,633,275
	CS	22q11.26.1	DUP		2Mb		HG19 chr22:23,055,148-24,991,669
EqSCM 04	UCS	1p34.1	DUP	IPP** PIK3R3 (+3 others)	455kb	1/7000	HG19 chr1:46,144,479-46,599,815
EqSCM 05	UCS	Xq22.3	DUP	IRS4** COL4A5**	113kb	1/2000	HG19 chrX:107,896,435-108,009,609
EqSCM 06	UCS	13q31.5	DEL	GPC5**	207kb	1/5000	HG19 chr13:92,075,673-92,283,600
	UCS	4q21.21	DUP	FRAS1 ANX3** LINC01094	329kb	1/29000	HG19 chr4:79,281,048-79,610,796
EqSCM 07	UCS	12q13.13	DUP	17 Keratin genes	411kb	0	HG19 chr12:52,657,396-53,069,013
EqSCM 10	UCS	19q13.42	DUP	GP6**	130kb	1/15000	HG19 chr19:55,439,927-55,570,442
EqSCM 11	UCS	22q11.21	DUP	YPEL1** (+ 2 others)	180kb	0	HG19 chr22:22,008,249-22,189,094
	UCS	Xp11.4	DUP	TSPAN7**	140kb	1/1000	HG19 chrX:38,485,991-38,626,762
EqSCM 15	UCS	10q23.1	DUP	upstream NRG3**	78kb	0	HG19 chr10:83,506,502-83,585,097
EqSCM 17	UCS	13q33.1	DEL	ITGBL1**	148kb	0	HG19 chr13:102,148,514-102,296,766
EqSCM 19	?CS	13q14.2	DEL	KCNRG (+ 6 others)	886kb	0	HG19 chr13:50,585,186-51,452,033
	UCS	13q34	DUP	LINC00346, ANKRD10	146kb	0	HG19 chr13:111,385,673-111,532,564
	UCS	13q14.11	DUP	ENOX1**	149kb	0	HG19 chr13:89,219,432-89,359,036
EqSCM 27	UCS	7q31.1	DEL	LRRN3** IMMP2L	105kb	1/12000	HG19 chr7:110,744,611-110,849,681

Table 2. Rare CNVs detected in a cohort of 28 EqSCM cases.

*UCS = unclear clinical significance, ?CS = potential clinical significance. **Genes with clear cardiovascular association. Frequency calculations are based on larger (>1000 individuals) studies included in the DGV.

A full list of all CNVs detected for each individual is presented in Supplementary Table 1.

bioRxiv preprint doi: https://doi.org/10.1101/144675; this version posted May 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Supplemental data

Table S1: Complete CNV detection list of EqSCM cases in this study. (Separate Excel spreadsheet).

Figure S1: CNV interpretation algorithm (Separate word file doc)