
Reproducible Bioconductor Workflows Using

Browser-based Interactive Notebooks and

Containers

Reem Almugbel1, #, Ling-Hong Hung1,#, Jiaming Hu1, Abeer Almutairy1,

Nicole Ortogero2, Yashaswi Tamta1, Ka Yee Yeung1, *

1Institute of Technology, University of Washington, Tacoma, WA, USA

2Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA

#Co-first authors

*Corresponding author: Ka Yee Yeung (kayee@uw.edu)

Keywords: Bioconductor workflows, containers, reproducibility, automated, data science

Article type: Research and Applications

Word count: 3925 words

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

ABSTRACT

Objective:

Bioinformatics publications typically include complex software workflows that are difficult to

describe in a manuscript. We describe and demonstrate the use of interactive software

notebooks to document and distribute bioinformatics research. We provide a user-friendly tool,

BiocImageBuilder, to allow users to easily distribute their bioinformatics protocols through

interactive notebooks uploaded to either a GitHub repository or a private server.

Materials and methods:

We present three different interactive Jupyter notebooks using R and Bioconductor workflows to

infer differential gene expression, analyze cross-platform datasets and process RNA-seq data.

These interactive notebooks are available on GitHub. The analytical results can be viewed in a

browser. Most importantly, the software contents can be executed and modified. This is

accomplished using Binder, which runs the notebook inside software containers, thus avoiding

the need for installation of any software and ensuring reproducibility. All the notebooks were

produced using custom files generated by BiocImageBuilder.

Results:

BiocImageBuilder facilitates the publication of workflows with a point-and-click user interface.

We demonstrate that interactive notebooks can be used to disseminate a wide range of

bioinformatics analyses. The use of software containers to mirror the original software

environment ensures reproducibility of results. Parameters and code can be dynamically

modified, allowing for robust verification of published results and encouraging rapid adoption of

new methods.

Conclusion:

Given the increasing complexity of bioinformatics workflows, we anticipate that these interactive

software notebooks will become as ubiquitous and necessary for documenting software

methods as traditional laboratory notebooks have been for documenting bench protocols.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

BACKGROUND AND SIGNIFICANCE
Bioinformatics is an interdisciplinary research area focused on developing and applying

computational methods derived from mathematics, computer science, and statistics to analyze

biological data [1]. Workflows typically involve the execution of a series of computational tasks.

Documenting workflows has become increasingly difficult given the growing complexity of

workflows and rapidly evolving methodologies. Traditional “Materials and Methods” sections are

not well suited for describing methodologies that are strongly dependent on code and

parameters. Recently, public software repositories such as GitHub have made it relatively

straightforward to distribute and update code. Data science notebooks such as Jupyter are the

software analogs to laboratory notebooks and document the parameters and code along with

the results. Formal descriptors of workflows such as Common Workflow Language [1] that

describe how different software components interact are also gaining acceptance. While these

steps go a long way to documenting computational workflows, it is estimated that more than

25% of computational workflows cannot be reproduced [2].

The problem is that even when using the correct version of each code component, executing

them in the correct order, with the correct parameters on identical data, is still not sufficient to

ensure that the same results are obtained [3]. Running the same software in a different

hardware and software environment can affect the outcome. Even if this were not the case, from

a practical viewpoint, these dependencies can make installation of the exact version of the

same components problematic on a different system. Using software suites such as

Bioconductor [4] has become a popular method to manage multiple packages and ensure

proper installation and interoperability. However, the rapid development of new tools has made

it increasingly difficult to define a base setup that is compatible with the growing number of

components that are potentially written in different programming languages.

A solution to this problem is to package software inside software computers that provide all the

requisite software dependencies. Docker is a very popular software container technology and

has been used for large scale deployment and re-analyses of biomedical big data [5].

JupyterHub [6] allows users to run Jupyter notebooks inside software containers deployed

locally or through a server. Binder [7] takes this a step further and generates and deploys

Docker images of notebooks from GitHub on their public servers. This allows users to view and

interact with notebooks in GitHub repositories without the need to compile code or install

software. However, using Binder or Jupyter requires writing custom Dockerfiles to specify the

elements present in the Docker container.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

In this paper, we demonstrate the utility of live notebooks for documenting and distributing

bioinformatics workflows by presenting three notebooks on GitHub that use Bioconductor. In

addition, we present a framework and a graphical user interface (GUI) designed to automatically

generate a Dockerfile for a custom Bioconductor installation. This allows a user without any

technical knowledge of Docker, to generate and publish live Bioconductor notebooks.

Reproducibility of Bioinformatics workflows using Bioconductor

Reproducibility is essential for verification and advancement of scientific research. This is true

for computational analyses, which are not reproducible in more than 25% of publications [2].

Reproducibility in bioinformatics research refers to the ability to re-compute the data analytics

results given a dataset and knowledge of the data analysis workflow [8]. For this to happen,

three requirements must be available: (i) datasets (ii) code and scripts used to perform the

computational analyses (iii) metadata; details about how to obtain and process datasets,

including description of software and hardware environment setup [9 10]. Gentleman and Lang

proposed a compendium software framework for the distribution of dynamic documents

containing text, code, data, and any auxiliary content to re-create the computations [11]. Their

framework forms the foundation of the Bioconductor project [4] that provides an online

repository for software packages, data, metadata, workflows, papers and training materials, as

well as a large and well-established user community. Bioconductor also works with the broader

R repository, the Comprehensive R Archive Network (CRAN) [12] which also contains useful

bioinformatics packages that are not included with Bioconductor.

Using Software Containers to Enhance Reproducibility of Bioinformatics Workflows

Unfortunately, re-running published code and data to reproduce published results is non-trivial

even when using Bioconductor. Bioconductor is not static: new packages are constantly being

added and other packages deprecated. Correct versioning is thus essential for reproducibility.

Although Bioconductor is cross-platform, it achieves this by cross-compilation which does not

completely insulate the computation from differences in local hardware and software. The

solution is to run the software in a virtual environment that is the same regardless of the

underlying hardware or host operating system.

Docker is a well-established container technology to increase reproducibility of bioinformatics

workflows [3 10 13]. The Docker platform allows for virtualized application deployments within a

lightweight, Linux-based wrapper or container [14]. Essentially, containers are virtual

environments that encapsulate only the minimum necessary dependencies, which can be

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

quickly deployed on most major platforms in a reproducible fashion [14]. Docker uses a

Dockerfile that contains all the instructions to build a Docker image starting from scratch or from

another Docker image. Docker images can be downloaded from repositories like Docker Hub

(https://hub.docker.com/).

While Docker provides an easy, modular method to build, distribute and replicate complex

pipelines and workflows across multiple platforms, widespread adoption in the biomedical field

has been hampered by the level of technical knowledge presently required to use the

technology. Docker was developed for computer professionals with programming and systems

administration experience who are able to write a Dockerfile to script the installation of the

software environment for a container. Our group has worked on enabling graphical interfaces to

interact with containers to make Docker more accessible to less technical users [10 15 16].

Data Science Notebooks

All laboratories use notebooks to document the experimental procedures and protocols. The

software counterparts are data science notebooks that combine text, code, data, mathematical

equations, visualizations, and rich media into a single document that can be accessed through a

web browser. These software notebooks first gained popularity in mathematics research, and

the Jupyter open source project has expanded the scope/audience to include many heavily

computational research areas such as bioinformatics, neuroscience and genomics [17]. Project

Jupyter was a spinoff project from IPython that supports the Python programming language and

now maintains multiple kernels for over 50 programming languages including Ruby, Javascript,

C++ and Perl [18 19]. Each Jupyter notebook document is divided into individual cells that can

be run independently [18]. This format records every step of a computational analysis along with

the scientific narrative, which makes it easier to understand, share, reproduce and extend a

published computational workflow.

To facilitate notebook sharing and reusability, Jupyter project supports nbconvert, a tool to

convert notebooks to various formats such as HTML, PDF and LaTex [20]. It also supports

nbviewer, a similar web service to view and download any Jupyter notebook publically published

on the web [21]. In 2015, GitHub (https://github.com/), a web-based version control code

repository, started supporting Jupyter notebook format by making it possible to render Jupyter

notebooks written in any programming language on GitHub [22], which brings GitHub’s features

of sharing, version control and collaboration into the Jupyter platform. Today, there are more

than 940,000 Jupyter notebooks rendered on GitHub [23].

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sharing live notebooks using Binder

While static Jupyter notebooks can be shared and viewed using a browser without any setup via

nbviewer and GitHub, sharing interactive dynamic Jupyter notebooks in which the user can

execute and modify the analyses requires the notebooks to be downloaded and installation of

Jupyter. To address this limitation, the Binder open source project (http://mybinder.org/) offers a

browser-based executable environment to run Jupyter notebooks hosted on GitHub. The Binder

environment allows scientists to share live interactive Jupyter notebooks that are reproducible

and verifiable using a web browser, with no data download or software installation requirements

[17]. To manage computational environments, Binder’s underlying architecture takes advantage

of two open source projects: Docker, which builds the environments from a project’s

dependencies, and Kubernetes, which schedules resources for these environments on a

Google Compute Engine cluster [24]. To build and launch an executable binder, a Jupyter

notebook must be uploaded to a public GitHub repository, along with an environment

specification such as a Dockerfile [7]. Scientists have used Binder as a publishing medium to

share reproducible computational workflows [25]. However, most of the use cases of Binder

have been limited to the iPython kernel. An example is the Laser Interferometer Gravitational-

Wave Observatory (LIGO) that used iPython Jupyter notebooks and Binder to demonstrate the

computational workflow corresponding to the first direct detection of gravitational waves that

Einstein predicted decades ago [26 27].

Although many bioinformatics workflows use R and Bioconductor, the use of interactive

notebooks has been mostly restricted to Python-based workflows due to the difficulties in setup.

The software dependencies required for Binder must be reconciled with the strict dependencies

required for the base installation R and Bioconductor. Any customization steps must also be

included in the setup files. To enable more widespread adoption of interactive notebooks in

bioinformatics, we need a more accessible method to prepare an interactive notebook as

provided by BiocImageBuilder.

OUR CONTRIBUTIONS
We present a novel software tool, BiocImageBuilder, that automates the technical step of

creating Dockerfiles for live Jupyter notebooks using Bioconductor. A web-based graphical

interface allows the user to choose the Bioconductor packages that need to be installed and

whether the Dockerfile is to be used with Binder on GitHub or is to be used in a local installation.

Additional R packages from CRAN can also be included. The tool then builds the appropriate

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

Dockerfile for the user to upload with their notebook. We illustrate the feasibility of our tool in

three case studies: differential expression analyses for ectopic pregnancy, pattern discovery of

gene expression data across human cell lines and a published RNA sequencing workflow. All

of our case studies use the R programming language and software packages from

Bioconductor/CRAN. Figure 1 shows an overview of our approach.

AUTOMATIC GENERATION OF DOCKERFILES FOR BIOCONDUCTOR
WORKFLOWS
Bioconductor compiles and tests each component of its suite on a set of stock Windows,

MacOS and Linux machines. This ensures that all components in Bioconductor are compatible

Figure 1. Overview of our approach. The author of the Bioconductor workflow uses
BiocImagebuilder to generate a Dockerfile that describes the Bioconductor and CRAN packages
installed. The Dockerfile and the notebook files are uploaded to a server or GitHub repository. A
custom container is then built with the default Linux base-image for Bioconductor, dependencies
for Jupyter, JuptyerHub and/or Binder and the Bioconductor packages. For GitHub installations,
the Binder server builds the container and provides a link to run the container on their public
cluster. JupyterHub provides the same functionality locally or on a private server. Using the
container, the end-user is able to view the notebook, execute, modify and save the code on their
local machine regardless of whether it uses Linux, MacOS or Windows. In the case, where the
container is run remotely, no additional installation of software is required on the part of the end-
user.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

and should install on most hardware configurations. In addition, the Bioconductor core team

provides Docker containers for the release and development versions of the complete suite [28].

No facility exists however, for building custom images with a specified set of Bioconductor

components.

We have developed a GUI-based tool, BiocImageBuilder, for this purpose. BiocImageBuilder

starts with a base-image that is based on the stock Linux test machine. The base-image is

modified to include components for Binder compatibility if desired, and the kernels necessary to

run R. For images to be run by Binder, the Linux Conda utility is used to install the Bioconductor

and CRAN packages. Otherwise, Bioconductor’s biocLite utility is used install the components.

The user simply starts up the container with BiocImageBuilder and points their browser to a

local URL. They will then see a form for choosing the desired starting image, the desired

components and the option of running a custom startup script (see Figure 2 and

Supplementary File 1). BiocImageBuilder will then produce a Dockerfile. This can be uploaded

to GitHub, along with a Jupyter notebook file to create a repository that distributes an interactive

notebook that can be viewed using Binder. Alternatively, a Dockerfile can be produced that is

suitable for private deployment using JupyterHub. Users can also use the Dockerfile to directly

build an actual image themselves of their notebook to use, store or distribute on DockerHub and

other repositories. Currently, we support R 3.4 and Bioconductor 3.5. We intend to add support

for other versions in the future so that deprecated packages can be run. Containerizing Jupyter

notebooks ensures that they will always be viewable, insulating the user from future changes to

Bioconductor or R.

BiocImageBuilder is written in Python3 using PyQt5 (https://wiki.python.org/moin/PyQt) which is

a Python binding for the Quicktime engine that renders the graphical interface. Although PyQt5

is meant to be cross-compatible over different platforms, there are many dependencies and

installation can be quite complicated for some user environments. To avoid these problems,

BiocImageBuilder is packaged using our GUIdock-noVNC container [15]. This container creates

a mini-webserver that serves the rendered graphics through a local port, and can be run on any

Docker compatible platform (Windows, MacOS, Linux). Most modern browsers that support

HTML5 (e.g. Chrome, Firefox, Safari, Opera) can be used to access the BiocImageBuilder.

Note that BiocImageBuilder is designed for those wishing to author an interactive Bioconductor

notebook - it is not required for end users wishing to interact with a published notebook. The

source code of BiocImageBuilder is publicly available at https://github.com/Bioconductor-

notebooks/BiocImageBuilder and its Docker image is publicly available at

https://hub.docker.com/r/biodepot/bioc-builder/.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

CASE STUDIES
In this section, we present three case studies in which we illustrate the use of R and

Bioconductor packages within Jupyter notebooks. Static snapshots of these notebooks are

included as Supplementary Files 2-4. The corresponding fully interactive notebooks are

available from https://github.com/Bioconductor-notebooks. BiocImageBuilder was used to

automatically generate the necessary Dockerfiles for Binder. In Case Study 1, we extended the

published differential expression analyses of ectopic pregnancy. In Case Study 2, we created

our own workflows for cross-platform omics data. In Case Study 3, we replicated a published

RNA-seq workflow in our proposed framework.

Figure 2. Screenshot of BiocImageBuilder. The user selects from a menu the Bioconductor and
Cran packages required for their notebook. BiocImageBuilder then generates the Dockerfile
describing a minimal Linux container that contains these packages. The Dockerfile can be uploaded
to GitHub where it can be viewed interactively using Binder.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

Case Study 1: Identification of differentially expressed genes for ectopic
pregnancy

Motivation and overview. When a woman's pregnancy test result is positive, initial testing of

the uterus is visualized on a transvaginal ultrasound scan (TVS). As shown in Figure 3, the

possible outcomes of the TVS are: (i) Intrauterine pregnancy (IUP) which is the case of normal

pregnancy with fertilized egg implanted inside the uterus (ii) Ectopic Pregnancy (EP) where the

fertilized egg can be seen in the TVS scan, but it is implanted outside the uterus (iii) Pregnancy

of Unknown Location (PUL) when the pregnancy test is positive but no evidence of pregnancy is

seen on TVS [29].

Cases of pregnancy of unknown locations (PUL) can subsequently lead to one of the following

outcomes: (i) Failing PUL (miscarriage): majority of cases (50-70%) (ii) Normal IUP: fertilized

egg is too early to be visualized on TVS (iii) Ectopic pregnancy: 7-20% of the PUL cases, the

EP was not seen on the initial TVS examination [29 30].

Figure 3. Outcome of initial TVS scan. PUL = Pregnancy of unknown location; TVS = Transvaginal
ultrasound scan; EP= Ectopic pregnancy.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

In the case of PUL, close surveillance is required, consisting of serial office visits, ultrasounds

and blood draws over a period as long as a six weeks [31]. During this surveillance period, no

medical or surgical intervention is taken until a conclusive diagnosis of ectopic pregnancy is

reached, and the non-viability of the embryo is concluded [31]. Thus, the clinicians’ objectives

are to: (1) Diagnose ectopic pregnancy as early as possible to avoid health risks, (2) Ensure

that this early diagnosis is correct, to avoid ending a viable pregnancy erroneously [32]. Delayed

diagnosis of EP is the most common life-threatening emergency in early pregnancy [31].

Despite the high frequency of this serious condition, early diagnosis of EP can be challenging.

In practice, there are several methods used to detect EP in the case of PUL, and they largely

depend on biochemical markers such as serum progesterone levels [33] and serum human

chorionic gonadotrophin (hCG) levels [34]. However, the biochemical markers used are not

consistent [35], and the International Society of Ultrasound in Obstetrics and Gynecology is

encouraging the use of mathematical models to expedite EP detection [36].

In this case study, we aim to identify differentially expressed genes among patients with EP by

analyzing of gene expression data. Differentially expressed genes are the subset of genes that

exhibit expression patterns associated with a EP medical condition.
Data. Duncan et. al collected gestation-matched endometrium from women with EP (n = 11)

and intrauterine pregnancies (IUP) (n = 13), and samples were profiled using the Affymetrix

Human Genome U133 Plus 2.0 platform [37]. The CEL files were normalized using RMA

(Robust Multiarray Average) [37], and are publicly available from ArrayExpress

(http://www.ebi.ac.uk/arrayexpress) with accession number E-MTAB-680.

Analysis. We filtered the RMA normalized gene expression data to keep the probe sets that

are common with prospective validation samples profiled using Affymetrix genechip Human

Gene 2.0 ST. AnnotationDbi [38] and Stringr [39] Bioconductor packages were used to access,

map, and process gene identifiers in specific chip annotation databases [40 41]. Duncan et al.

identified genes differentially expressed in EP versus IUP using the t-test with multiple

comparison correction using the Benjamini-Hochberg false discovery detection method with a

corrected P-value of <0.05 [37]. In our analysis, we started by performing a standard t-test

without corrections, with a range of varying threshold values. We also performed other multiple

test correction methods including the Bonferroni correction, SAM [42], and LIMMA [43]. Our

resulting lists of differentially expressed genes showed considerable overlap with the results

from Duncan et al. In particular, Duncan's top up-regulated gene CSH1 resulted from most of

our differential expression analyses, and Duncan's top down-regulated gene CRISP3 resulted

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

from SAM analysis and Benjamini-Hochberg detection method. We also generated heatmaps to

visualize these differentially expressed genes. We observed that EP and IUP samples were

mostly assigned to distinct clusters with the exception of two IUP samples that clustered with EP

samples, which Duncan et al. referred it to the effect of decidualization degree. Furthermore, we

performed Gene Set Enrichment Analysis (GSEA) [44] to identify pathways and functional

categories among the differentially expressed genes. The details of the analyses are provided in

Supplemental File 2.

Case Study 2: Cross-platform analyses of human cell line genomics data

Motivation and overview. The LINCS (Library of Integrated Network based Cellular

Signatures) program, funded by the National Institutes of Health, generates different types of

data, including gene expression, proteomic, and cell imaging data, in response to drug and

genetic perturbations (http://lincsproject.org/) [45]. One of the main objectives of the LINCS

program is to study gene signatures resulted from perturbations applied to human cell lines. In

particular, the LINCS L1000 gene expression data measure the expression level of

approximately 1000 landmark genes in response to drug and genetic perturbation experiments

across multiple human cell lines. We aim to study the similarity patterns in the L1000 data

across different cell lines. The LINCS L1000 gene expression data are publicly available from

the Gene Expression Omnibus (GEO) database with accession number GSE70138.

Our goal is to study the consistency of cell line similarities across the LINCS L1000 data and

other data sources. In particular, we used the LINCS L1000 gene expression data to explore

similarities between different cell lines using different analysis methods, including clustering and

dimension reduction techniques. Our work is inspired by Zhang et al [46] in which multiple

datasets, including the Cancer Cell Line Encyclopedia (CCLE) data [47] and Cancer Genome

Project (CGP) data [48] were used to explore the similarity of cell lines and drugs. The results of

this study suggested that similar cell lines are expected to have similar drug responses, and

similar drugs are expected to have similar effects on a cell line.
Data. We used the L1000 data processed by the L1K++ pipeline, an alternative data

processing pipeline for the L1000 gene expression data, that we developed at the University of

Washington Tacoma. L1K++ is implemented in C++ using linear algorithms to make it over

1000x faster than the available pipelines [49]. We substantiated our results from L1K++

processed data using published cell line gene expression data generated using microarray and

RNA-sequencing technology. The Cancer Cell Line Encyclopedia (CCLE) gene expression data

used Affymetrix microarrays to profile the genome-wide transcription activities across

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

approximately 1000 human cancer cell lines [47]. The CCLE data is publicly available from the

GEO database with accession number GSE36133. Similarly, Klijn et al. [50] used RNA-

sequencing technology to profile the expression across 675 untreated human cancer cell lines.

This data is publicly available from ArrayExpress database with accession number E-MTAB-

2706 https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2706/.

Analysis. In the Jupyter notebook (see Supplementary File 3), we read the three datasets

(L1K++, CCLE, RNAseq) including all cell lines and genes. Then, we standardized each one of

the three datasets separately by computing the z-score for gene expressions across all cell

lines. In order to compare the results from the L1K++ data to those from the other two datasets,

we first computed the intersection of genes and cell lines in common between L1K++ and

CCLE, which resulted in 55 cell lines and the landmark genes. For L1K++ and RNAseq, we

found 41 cell lines in common. Subsequently, we calculated the pairwise distances (including

Euclidean distances and squared Mahalanobis distances) and correlation coefficients (including

Pearson’s correlation and rank-based Kendall’s correlation) between each pair of cell lines

based on their gene expression profiles. We then applied hierarchical clustering and model-

based clustering [51] to cluster L1K++ vs. CCLE and L1K++ vs. RNA-seq cell lines.

Case Study 3: Alignment and differential analyses of RNA-seq analysis workflows

Motivation and overview. With the rapidly decreasing costs of sequencing technology, RNA

sequencing (RNA-seq) has become a well-established technology to measure gene expression.

Here, we demonstrate the feasibility and merits of using an interactive Jupyter notebook to

document a published RNA-seq data analyses workflow in Bioconductor [52]

(https://www.bioconductor.org/help/workflows/rnaseqGene/).

Data. We used the RNA-seq data from the Bioconductor “airway” package in which airway

smooth muscle cells were treated with dexamethasone, a synthetic glucocorticoid steroid with

anti-inflammatory effects [53]. Glucocorticoids are used, for example, by patients with asthma to

reduce inflammation of the airways. In the experiment, four primary human airway smooth

muscle cell lines were treated with 1 µM dexamethasone for 18 hours. For each of the four cell

lines, we have a treated and an untreated sample. The data are also publicly available in the

GEO database with accession number GSE52778.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

Analysis. We followed the steps of analyses published by Love et al. [52]. In particular, we

started with the BAM files that provide the alignment data in a binary format. After normalizing

the table of read counts, we performed differential expression analyses using DESeq [54],

visualization using heatmaps for sample distances, and a mean average plot for the estimated

model coefficients.

DISCUSSION
We present a web-based framework and a graphical user interface (GUI) designed to

automatically generate a Dockerfile to create and publish live R and Bioconductor notebooks for

bioinformatics workflows without any technical knowledge of Docker containers. These web-

based notebooks can be published and viewed with modifiable and executable code in a

browser without the installation of any software. We demonstrate the applications of these

interactive notebooks using three case studies in which we show the revolutionary aspects of

dynamic live notebooks compared to traditional static reports and visualization for data analysis.

Notebooks generated in our framework ensure reproducibility of analyses through the use of

software containers. Our interactive notebooks enable clinicians and biomedical scientists to

visually interact with the analyses while exploring the results through different types of

interactive visualizations (e.g. Plotly [55] in case study 2). In addition, parameters can be

modified easily. Our approach and BiocImageBuilder is not limited to bioinformatics

applications that use Bioconductor software packages, but can be used for any applications that

use the R programming language and software packages from CRAN.

A limitation of Jupyter notebooks is that each notebook is limited to one kernel supporting a

single programming language. All of our three case studies used the IRkernel that assumes a R

programming environment. However, modern bioinformatics workflows consist of modules that

are potentially written in different programming languages. For future work, we would like to

extend these notebooks to allow for a modular structure consisting of different computing

environments.

SUPPLEMENTARY FILES
Supplementary File 1: BiocImageBuilder demo video, publicly available at

https://youtu.be/HftUChnYytw

Supplementary File 2: Full executable version of the notebook is available at:

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

https://github.com/Bioconductor-notebooks/Identification-of-Differentially-Expressed-Genes-for-

Ectopic-Pregnancy

Supplementary File 3: Full executable version of the notebook is available at:

https://github.com/Bioconductor-notebooks/Cross-platform-Analyses-of-Human-Cell-Line-

Genomics-Data

Supplementary File 4: Full executable version of the notebook is available at:

https://github.com/Bioconductor-notebooks/Dynamic-Re-analysis-RNA-seq-differential-

expression-workflow

FUNDING
L.H.H., and K.Y.Y. are supported by National Institutes of Health grant U54-HL127624.

Almugbel and Almutairy gratefully acknowledge the full sponsorship from the Saudi Arabian

Cultural Mission (SACM) scholarship program 2015–2017.

AUTHOR CONTRIBUTIONS
R.A. drafted the manuscript and was primarily responsible for figuring out how Binder works.

J.H. implemented and wrote documentation for BiocImageBuilder. L.H.H. added the noVNC

container to BiocImageBuilder and refined the container. K.Y.Y. designed and coordinated the

study. R.A., A.A. and Y.T. created the Jupyter notebooks for case study 1, 2 and 3 respectively.

R.A. and N.O. performed the analyses of the ectopic pregnancy data. J.H., L.H.H. and R.A.

created the figures. J.H. created the movie uploaded as Supplementary File 1. All authors

tested BiocImageBuilder and edited the manuscript.

ACKNOWLEDGEMENT
We would like to thank Mr. Yuvi Panda and Mr. Chris Holdgraf from the Berkeley Institute of

Data Science for providing access to the latest version of Binder.

REFERENCES

1. Peter A, Michael R. C, Nebojša T, et al. Common Workflow Language, v1.0, 2016.

2. Freedman LP, Cockburn IM, Simcoe TS. The Economics of Reproducibility in Preclinical
Research. PLoS biology 2015;13(6):e1002165 doi: 10.1371/journal.pbio.1002165.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

3. Meiss T, Hung L-H, Xiong Y, Sobie E, Yeung KY. Software solutions for reproducible RNA-
seq workflows. bioRxiv 2017 doi: 10.1101/099028.

4. Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for
computational biology and bioinformatics. Genome biology 2004;5(10):R80 doi: 10.1186/gb-
2004-5-10-r80.

5. Vivian J, Rao A, Nothaft FA, et al. Rapid and efficient analysis of 20,000 RNA-seq samples
with Toil. bioRxiv 2016 doi: 10.1101/062497.

6. Ragan-Kelley M, Kelley K, Kluyver T. JupyterHub: Deploying Jupyter notebooks for students
and researchers. Secondary JupyterHub: Deploying Jupyter notebooks for students and
researchers 2016. https://github.com/minrk/jupyterhub-pydata-2016.

7. Binder. Secondary Binder. http://docs.mybinder.org/.

8. Leek JT, Peng RD. Opinion: Reproducible research can still be wrong: adopting a prevention
approach. Proceedings of the National Academy of Sciences of the United States of America
2015;112(6):1645-6 doi: 10.1073/pnas.1421412111.

9. Buffalo V. Bioinformatics Data Skills: Reproducible and Robust Research with Open Source
Tools O'Reilly Media, 2015.

10. Hung LH, Kristiyanto D, Lee SB, Yeung KY. GUIdock: Using Docker Containers with a
Common Graphics User Interface to Address the Reproducibility of Research. PloS one
2016;11(4):e0152686 doi: 10.1371/journal.pone.0152686.

11. Gentleman RC, Lang DT. Statistical Analyses and Reproducible Research. Journal of
Computational and Graphical Statistics 2007;16(1):1-23

12. The Comprehensive R Archive Network (CRAN). Secondary The Comprehensive R Archive
Network (CRAN). https://cran.r-project.org/.

13. Boettiger C. An introduction to Docker for reproducible research. ACM SIGOPS Operating
Systems Review, Special Issue on Repeatability and Sharing of Experimental Artifacts
2015;49(1):71-79

14. Schulz WL, Durant TJ, Siddon AJ, Torres R. Use of application containers and workflows for
genomic data analysis. Journal of pathology informatics 2016;7:53 doi: 10.4103/2153-
3539.197197.

15. Mittal V, Hung LH, Keswani J, Kristiyanto D, Lee SB, Yeung KY. GUIdock-VNC: Using a
graphical desktop sharing system to provide a browser-based interface for containerized
software. Gigascience 2017;6(4):1-6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

16. Hung L-H, Meiss T, Keswani J, Xiong Y, Sobie E, Yeung KY. Building containerized
workflows for RNA-seq data using the BioDepot-workflow-Builder (BwB). bioRxiv 2017 doi:
10.1101/099010.

17. Kluyver T, Ragan-Kelley B, Pérez F, et al. Jupyter Notebooks – a publishing format for
reproducible computational workflows. In: Loizides F, Schmidt B, eds. Positioning and Power in
Academic Publishing: Players, Agents and Agendas, 2016:87-90.

18. Perez F, Granger BE. IPython: A System for Interactive Scientific Computing. Computing in
Science and Engg. 2007;9(3):21-29 doi: 10.1109/mcse.2007.53.

19. Jupyter kernels. Secondary Jupyter kernels. https://github.com/jupyter/jupyter/wiki/Jupyter-
kernels.

20. Jupyter Notebook Conversion. Secondary Jupyter Notebook Conversion.
https://github.com/jupyter/nbconvert

21. nbviewer: A simple way to share Jupyter Notebooks. Secondary nbviewer: A simple way to
share Jupyter Notebooks. https://nbviewer.jupyter.org/.

22. Rendering Notebooks on GitHub. Secondary Rendering Notebooks on GitHub.
http://blog.jupyter.org/2015/05/07/rendering-notebooks-on-github/.

23. Search results on GitHub. Secondary Search results on GitHub.
https://github.com/search?l=&q=nbformat+extension%3Aipynb&ref=advsearch&type=Code&utf
8=%E2%9C%93.

24. Toward publishing reproducible computation with Binder. Secondary Toward publishing
reproducible computation with Binder 2016. https://elifesciences.org/elife-news/toward-
publishing-reproducible-computation-binder.

25. Sofroniew NJ, Vlasov YA, Hires SA, Freeman J, Svoboda K. Neural coding in barrel cortex
during whisker-guided locomotion. eLife 2015;4 doi: 10.7554/eLife.12559.

26. Collaboration LS, Virgo C, Abbott BP, et al. GW151226: Observation of Gravitational Waves
from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters
2016;116(24):241103

27. PyCBC: Python Software for Astrophysical Analysis of Gravitational Waves from Compact
Object Coalescence. Secondary PyCBC: Python Software for Astrophysical Analysis of
Gravitational Waves from Compact Object Coalescence. https://github.com/ligo-cbc/.

28. Docker containers for Bioconductor. Secondary Docker containers for Bioconductor.
https://http://www.bioconductor.org/help/docker/.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

29. Kirk E, Bourne T. Predicting outcomes in pregnancies of unknown location. Women's health
2008;4(5):491-9 doi: 10.2217/17455057.4.5.491.

30. Banerjee S, Aslam N, Woelfer B, Lawrence A, Elson J, Jurkovic D. Expectant management
of early pregnancies of unknown location: a prospective evaluation of methods to predict
spontaneous resolution of pregnancy. BJOG : an international journal of obstetrics and
gynaecology 2001;108(2):158-63

31. Goldner TE, Lawson HW, Xia Z, Atrash HK. Surveillance for ectopic pregnancy--United
States, 1970-1989. MMWR. CDC surveillance summaries : Morbidity and mortality weekly
report. CDC surveillance summaries 1993;42(6):73-85

32. Boyraz G, Bozdag G. Pregnancy of unknown location. Journal of the Turkish German
Gynecological Association 2013;14(2):104-8 doi: 10.5152/jtgga.2013.74317.

33. Mol BW, Lijmer JG, Ankum WM, van der Veen F, Bossuyt PM. The accuracy of single
serum progesterone measurement in the diagnosis of ectopic pregnancy: a meta-analysis.
Human reproduction 1998;13(11):3220-7

34. Kadar N, Bohrer M, Kemmann E, Shelden R. The discriminatory human chorionic
gonadotropin zone for endovaginal sonography: a prospective, randomized study. Fertility and
sterility 1994;61(6):1016-20

35. Silva C, Sammel MD, Zhou L, Gracia C, Hummel AC, Barnhart K. Human chorionic
gonadotropin profile for women with ectopic pregnancy. Obstetrics and gynecology
2006;107(3):605-10 doi: 10.1097/01.AOG.0000198635.25135.e7.

36. Condous G, Timmerman D, Goldstein S, Valentin L, Jurkovic D, Bourne T. Pregnancies of
unknown location: consensus statement. Ultrasound in obstetrics & gynecology : the official
journal of the International Society of Ultrasound in Obstetrics and Gynecology 2006;28(2):121-
2 doi: 10.1002/uog.2838.

37. Duncan WC, Shaw JL, Burgess S, McDonald SE, Critchley HO, Horne AW. Ectopic
pregnancy as a model to identify endometrial genes and signaling pathways important in
decidualization and regulated by local trophoblast. PloS one 2011;6(8):e23595 doi:
10.1371/journal.pone.0023595.

38. AnnotationDbi: Annotation Database Interface [program]. R package version 1.36.2. version,
2017.

39. stringr: Simple, Consistent Wrappers for Common String Operations [program]. R package
version 1.2.0 version, 2017.

40. hgu133plus2.db: Affymetrix Human Genome U133 Plus 2.0 Array annotation data (chip
hgu133plus2). [program]. R package version 3.2.3. version, 2016.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

41. hugene20stprobeset.db: Affymetrix hugene20 annotation data (chip hugene20stprobeset).
[program]. R package version 8.5.0. version, 2016.

42. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing
radiation response. Proceedings of the National Academy of Sciences of the United States of
America 2001;98(9):5116-21 doi: 10.1073/pnas.091062498.

43. Smyth GK. Linear models and empirical bayes methods for assessing differential expression
in microarray experiments. Statistical applications in genetics and molecular biology
2004;3:Article3 doi: 10.2202/1544-6115.1027.

44. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles. Proceedings of the National
Academy of Sciences of the United States of America 2005;102(43):15545-50 doi:
10.1073/pnas.0506580102.

45. Musa A, Ghoraie LS, Zhang SD, et al. A review of connectivity map and computational
approaches in pharmacogenomics. Briefings in bioinformatics 2017 doi: 10.1093/bib/bbw112.

46. Zhang N, Wang H, Fang Y, Wang J, Zheng X, Liu XS. Predicting Anticancer Drug
Responses Using a Dual-Layer Integrated Cell Line-Drug Network Model. PLoS computational
biology 2015;11(9):e1004498 doi: 10.1371/journal.pcbi.1004498.

47. Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line Encyclopedia enables
predictive modelling of anticancer drug sensitivity. Nature 2012;483(7391):603-7 doi:
10.1038/nature11003.

48. Cancer Genome Project. Secondary Cancer Genome Project.
http://www.sanger.ac.uk/science/groups/cancer-genome-project.

49. Hung LH. L1K++: A Fast Pipeline that Increases the Accuracy of L1000 Gene Expression
Data. YouTube video from BD2K-LINCS. 2015 https://www.youtube.com/watch?v=jcpEagg1iaQ

50. Klijn C, Durinck S, Stawiski EW, et al. A comprehensive transcriptional portrait of human
cancer cell lines. Nature biotechnology 2015;33(3):306-12 doi: 10.1038/nbt.3080.

51. Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL. Model-based clustering and data
transformations for gene expression data. Bioinformatics 2001;17(10):977-87

52. Love MI, Anders S, Kim V, Huber W. RNA-Seq workflow: gene-level exploratory analysis
and differential expression. F1000Research 2015;4:1070 doi: 10.12688/f1000research.7035.1.

53. Himes BE, Jiang X, Wagner P, et al. RNA-Seq transcriptome profiling identifies CRISPLD2
as a glucocorticoid responsive gene that modulates cytokine function in airway smooth muscle
cells. PloS one 2014;9(6):e99625 doi: 10.1371/journal.pone.0099625.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

54. Anders S, Huber W. Differential expression analysis for sequence count data. Genome
biology 2010;11(10):R106 doi: 10.1186/gb-2010-11-10-r106.

55. Plotly: visualize data together [program].

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted June 1, 2017. ; https://doi.org/10.1101/144816doi: bioRxiv preprint

https://doi.org/10.1101/144816
http://creativecommons.org/licenses/by-nc-nd/4.0/

