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ABSTRACT  

Objective: 

Bioinformatics publications typically include complex software workflows that are difficult to 

describe in a manuscript. We describe and demonstrate the use of interactive software 

notebooks to document and distribute bioinformatics research. We provide a user-friendly tool, 

BiocImageBuilder, to allow users to easily distribute their bioinformatics protocols through 

interactive notebooks uploaded to either a GitHub repository or a private server.  

Materials and methods: 

We present three different interactive Jupyter notebooks using R and Bioconductor workflows to 

infer differential gene expression, analyze cross-platform datasets and process RNA-seq data. 

These interactive notebooks are available on GitHub. The analytical results can be viewed in a 

browser.  Most importantly, the software contents can be executed and modified. This is 

accomplished using Binder, which runs the notebook inside software containers, thus avoiding 

the need for installation of any software and ensuring reproducibility.  All the notebooks were 

produced using custom files generated by BiocImageBuilder. 

Results: 

BiocImageBuilder facilitates the publication of workflows with a point-and-click user interface.  

We demonstrate that interactive notebooks can be used to disseminate a wide range of 

bioinformatics analyses. The use of software containers to mirror the original software 

environment ensures reproducibility of results. Parameters and code can be dynamically 

modified, allowing for robust verification of published results and encouraging rapid adoption of 

new methods.  

Conclusion: 

Given the increasing complexity of bioinformatics workflows, we anticipate that these interactive 

software notebooks will become as ubiquitous and necessary for documenting software 

methods as traditional laboratory notebooks have been for documenting bench protocols. 
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BACKGROUND AND SIGNIFICANCE  
Bioinformatics is an interdisciplinary research area focused on developing and applying 

computational methods derived from mathematics, computer science, and statistics to analyze 

biological data [1]. Workflows typically involve the execution of a series of computational tasks. 

Documenting workflows has become increasingly difficult given the growing complexity of 

workflows and rapidly evolving methodologies. Traditional “Materials and Methods” sections are 

not well suited for describing methodologies that are strongly dependent on code and 

parameters. Recently, public software repositories such as GitHub have made it relatively 

straightforward to distribute and update code. Data science notebooks such as Jupyter are the 

software analogs to laboratory notebooks and document the parameters and code along with 

the results. Formal descriptors of workflows such as Common Workflow Language [1] that 

describe how different software components interact are also gaining acceptance. While these 

steps go a long way to documenting computational workflows, it is estimated that more than 

25% of computational workflows cannot be reproduced [2]. 

The problem is that even when using the correct version of each code component, executing 

them in the correct order, with the correct parameters on identical data, is still not sufficient to 

ensure that the same results are obtained [3]. Running the same software in a different 

hardware and software environment can affect the outcome. Even if this were not the case, from 

a practical viewpoint, these dependencies can make installation of the exact version of the 

same components problematic on a different system. Using software suites such as 

Bioconductor [4] has become a popular method to manage multiple packages and ensure 

proper installation and interoperability. However, the rapid development of new tools has made 

it increasingly difficult to define a base setup that is compatible with the growing number of 

components that are potentially written in different programming languages. 

A solution to this problem is to package software inside software computers that provide all the 

requisite software dependencies. Docker is a very popular software container technology and 

has been used for large scale deployment and re-analyses of biomedical big data [5]. 

JupyterHub [6] allows users to run Jupyter notebooks inside software containers deployed 

locally or through a server. Binder [7] takes this a step further and generates and deploys 

Docker images of notebooks from GitHub on their public servers. This allows users to view and 

interact with notebooks in GitHub repositories without the need to compile code or install 

software. However, using Binder or Jupyter requires writing custom Dockerfiles to specify the 

elements present in the Docker container. 
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In this paper, we demonstrate the utility of live notebooks for documenting and distributing 

bioinformatics workflows by presenting three notebooks on GitHub that use Bioconductor. In 

addition, we present a framework and a graphical user interface (GUI) designed to automatically 

generate a Dockerfile for a custom Bioconductor installation. This allows a user without any 

technical knowledge of Docker, to generate and publish live Bioconductor notebooks. 

 

Reproducibility of Bioinformatics workflows using Bioconductor 

Reproducibility is essential for verification and advancement of scientific research. This is true 

for computational analyses, which are not reproducible in more than 25% of publications [2]. 

Reproducibility in bioinformatics research refers to the ability to re-compute the data analytics 

results given a dataset and knowledge of the data analysis workflow [8]. For this to happen, 

three requirements must be available: (i) datasets (ii) code and scripts used to perform the 

computational analyses (iii) metadata; details about how to obtain and process datasets, 

including description of software and hardware environment setup [9 10].  Gentleman and Lang 

proposed a compendium software framework for the distribution of dynamic documents 

containing text, code, data, and any auxiliary content to re-create the computations [11].  Their 

framework forms the foundation of the Bioconductor project [4] that provides an online 

repository for software packages, data, metadata, workflows, papers and training materials, as 

well as a large and well-established user community. Bioconductor also works with the broader 

R repository, the Comprehensive R Archive Network (CRAN) [12] which also contains useful 

bioinformatics packages that are not included with Bioconductor.  

 

Using Software Containers to Enhance Reproducibility of Bioinformatics Workflows 

Unfortunately, re-running published code and data to reproduce published results is non-trivial 

even when using Bioconductor.  Bioconductor is not static: new packages are constantly being 

added and other packages deprecated. Correct versioning is thus essential for reproducibility. 

Although Bioconductor is cross-platform, it achieves this by cross-compilation which does not 

completely insulate the computation from differences in local hardware and software. The 

solution is to run the software in a virtual environment that is the same regardless of the 

underlying hardware or host operating system.  

Docker is a well-established container technology to increase reproducibility of bioinformatics 

workflows [3 10 13].  The Docker platform allows for virtualized application deployments within a 

lightweight, Linux-based wrapper or container [14]. Essentially, containers are virtual 

environments that encapsulate only the minimum necessary dependencies, which can be 
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quickly deployed on most major platforms in a reproducible fashion [14].  Docker uses a 

Dockerfile that contains all the instructions to build a Docker image starting from scratch or from 

another Docker image.  Docker images can be downloaded from repositories like Docker Hub 

(https://hub.docker.com/).   

While Docker provides an easy, modular method to build, distribute and replicate complex 

pipelines and workflows across multiple platforms, widespread adoption in the biomedical field 

has been hampered by the level of technical knowledge presently required to use the 

technology. Docker was developed for computer professionals with programming and systems 

administration experience who are able to write a Dockerfile to script the installation of the 

software environment for a container.  Our group has worked on enabling graphical interfaces to 

interact with containers to make Docker more accessible to less technical users [10 15 16]. 

 

Data Science Notebooks 

All laboratories use notebooks to document the experimental procedures and protocols. The 

software counterparts are data science notebooks that combine text, code, data, mathematical 

equations, visualizations, and rich media into a single document that can be accessed through a 

web browser.  These software notebooks first gained popularity in mathematics research, and 

the Jupyter open source project has expanded the scope/audience to include many heavily 

computational research areas such as bioinformatics, neuroscience and genomics [17]. Project 

Jupyter was a spinoff project from IPython that supports the Python programming language and 

now maintains multiple kernels for over 50 programming languages including Ruby, Javascript, 

C++ and Perl [18 19]. Each Jupyter notebook document is divided into individual cells that can 

be run independently [18]. This format records every step of a computational analysis along with 

the scientific narrative, which makes it easier to understand, share, reproduce and extend a 

published computational workflow.  

To facilitate notebook sharing and reusability, Jupyter project supports nbconvert, a tool to 

convert notebooks to various formats such as HTML, PDF and LaTex [20]. It also supports  

nbviewer, a similar web service to view and download any Jupyter notebook publically published 

on the web [21].  In 2015, GitHub (https://github.com/), a web-based version control code 

repository, started supporting Jupyter notebook format by making it possible to render Jupyter 

notebooks written in any programming language on GitHub [22], which brings GitHub’s features 

of sharing, version control and collaboration into the Jupyter platform. Today, there are more 

than 940,000 Jupyter notebooks rendered on GitHub [23]. 
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Sharing live notebooks using Binder 

While static Jupyter notebooks can be shared and viewed using a browser without any setup via 

nbviewer and GitHub, sharing interactive dynamic Jupyter notebooks in which the user can 

execute and modify the analyses requires the notebooks to be downloaded and installation of 

Jupyter.  To address this limitation, the Binder open source project (http://mybinder.org/) offers a 

browser-based executable environment to run Jupyter notebooks hosted on GitHub. The Binder 

environment allows scientists to share live interactive Jupyter notebooks that are reproducible 

and verifiable using a web browser, with no data download or software installation requirements 

[17]. To manage computational environments, Binder’s underlying architecture takes advantage 

of two open source projects: Docker, which builds the environments from a project’s 

dependencies, and Kubernetes, which schedules resources for these environments on a 

Google Compute Engine cluster [24]. To build and launch an executable binder, a Jupyter 

notebook must be uploaded to a public GitHub repository, along with an environment 

specification such as a Dockerfile [7]. Scientists have used Binder as a publishing medium to 

share reproducible computational workflows [25].  However, most of the use cases of Binder 

have been limited to the iPython kernel.  An example is the Laser Interferometer Gravitational-

Wave Observatory (LIGO) that used iPython Jupyter notebooks and Binder to demonstrate the 

computational workflow corresponding to the first direct detection of gravitational waves that 

Einstein predicted decades ago [26 27].  

Although many bioinformatics workflows use R and Bioconductor, the use of interactive 

notebooks has been mostly restricted to Python-based workflows due to the difficulties in setup. 

The software dependencies required for Binder must be reconciled with the strict dependencies 

required for the base installation R and Bioconductor. Any customization steps must also be 

included in the setup files. To enable more widespread adoption of interactive notebooks in 

bioinformatics, we need a more accessible method to prepare an interactive notebook as 

provided by BiocImageBuilder. 

 
OUR CONTRIBUTIONS  
We present a novel software tool, BiocImageBuilder, that automates the technical step of 

creating Dockerfiles for live Jupyter notebooks using Bioconductor. A web-based graphical 

interface allows the user to choose the Bioconductor packages that need to be installed and 

whether the Dockerfile is to be used with Binder on GitHub or is to be used in a local installation. 

Additional R packages from CRAN can also be included. The tool then builds the appropriate 
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Dockerfile for the user to upload with their notebook. We illustrate the feasibility of our tool in 

three case studies: differential expression analyses for ectopic pregnancy, pattern discovery of 

gene expression data across human cell lines and a published RNA sequencing workflow.  All 

of our case studies use the R programming language and software packages from 

Bioconductor/CRAN.  Figure 1 shows an overview of our approach. 

 
AUTOMATIC GENERATION OF DOCKERFILES FOR BIOCONDUCTOR 
WORKFLOWS  
Bioconductor compiles and tests each component of its suite on a set of stock Windows, 

MacOS and Linux machines. This ensures that all components in Bioconductor are compatible 

 
Figure 1. Overview of our approach. The author of the Bioconductor workflow uses 
BiocImagebuilder to generate a Dockerfile that describes the Bioconductor and CRAN packages 
installed. The Dockerfile and the notebook files are uploaded to a server or GitHub repository. A 
custom container is then built with the default Linux base-image for Bioconductor, dependencies 
for Jupyter, JuptyerHub and/or Binder and the Bioconductor packages. For GitHub installations, 
the Binder server builds the container and provides a link to run the container on their public 
cluster. JupyterHub provides the same functionality locally or on a private server. Using the 
container, the end-user is able to view the notebook, execute, modify and save the code on their 
local machine regardless of whether it uses Linux, MacOS or Windows. In the case, where the 
container is run remotely, no additional installation of software is required on the part of the end-
user. 
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and should install on most hardware configurations. In addition, the Bioconductor core team 

provides Docker containers for the release and development versions of the complete suite [28]. 

No facility exists however, for building custom images with a specified set of Bioconductor 

components. 

We have developed a GUI-based tool, BiocImageBuilder, for this purpose. BiocImageBuilder 

starts with a base-image that is based on the stock Linux test machine. The base-image is 

modified to include components for Binder compatibility if desired, and the kernels necessary to 

run R. For images to be run by Binder, the Linux Conda utility is used to install the Bioconductor 

and CRAN packages. Otherwise, Bioconductor’s biocLite utility is used install the components. 

The user simply starts up the container with BiocImageBuilder and points their browser to a 

local URL. They will then see a form for choosing the desired starting image, the desired 

components and the option of running a custom startup script (see Figure 2 and 

Supplementary File 1). BiocImageBuilder will then produce a Dockerfile. This can be uploaded 

to GitHub, along with a Jupyter notebook file to create a repository that distributes an interactive 

notebook that can be viewed using Binder. Alternatively, a Dockerfile can be produced that is 

suitable for private deployment using JupyterHub. Users can also use the Dockerfile to directly 

build an actual image themselves of their notebook to use, store or distribute on DockerHub and 

other repositories. Currently, we support R 3.4 and Bioconductor 3.5. We intend to add support 

for other versions in the future so that deprecated packages can be run. Containerizing Jupyter 

notebooks ensures that they will always be viewable, insulating the user from future changes to 

Bioconductor or R. 

BiocImageBuilder is written in Python3 using PyQt5 (https://wiki.python.org/moin/PyQt) which is 

a Python binding for the Quicktime engine that renders the graphical interface. Although PyQt5 

is meant to be cross-compatible over different platforms, there are many dependencies and 

installation can be quite complicated for some user environments. To avoid these problems, 

BiocImageBuilder is packaged using our GUIdock-noVNC container [15]. This container creates 

a mini-webserver that serves the rendered graphics through a local port, and can be run on any 

Docker compatible platform (Windows, MacOS, Linux).  Most modern browsers that support 

HTML5 (e.g. Chrome, Firefox, Safari, Opera) can be used to access the BiocImageBuilder.   

Note that BiocImageBuilder is designed for those wishing to author an interactive Bioconductor 

notebook - it is not required for end users wishing to interact with a published notebook. The 

source code of BiocImageBuilder is publicly available at https://github.com/Bioconductor-

notebooks/BiocImageBuilder and its Docker image is publicly available at 

https://hub.docker.com/r/biodepot/bioc-builder/. 
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CASE STUDIES 
In this section, we present three case studies in which we illustrate the use of R and 

Bioconductor packages within Jupyter notebooks. Static snapshots of these notebooks are 

included as Supplementary Files 2-4. The corresponding fully interactive notebooks are 

available from https://github.com/Bioconductor-notebooks.  BiocImageBuilder was used to 

automatically generate the necessary Dockerfiles for Binder.  In Case Study 1, we extended the 

published differential expression analyses of ectopic pregnancy.  In Case Study 2, we created 

our own workflows for cross-platform omics data.  In Case Study 3, we replicated a published 

RNA-seq workflow in our proposed framework. 

 
Figure 2. Screenshot of BiocImageBuilder. The user selects from a menu the Bioconductor and 
Cran packages required for their notebook.  BiocImageBuilder then generates the Dockerfile 
describing a minimal Linux container that contains these packages. The Dockerfile can be uploaded 
to GitHub where it can be viewed interactively using Binder. 
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Case Study 1: Identification of differentially expressed genes for ectopic 
pregnancy  

Motivation and overview. When a woman's pregnancy test result is positive, initial testing of 

the uterus is visualized on a transvaginal ultrasound scan (TVS). As shown in Figure 3, the 

possible outcomes of the TVS are: (i) Intrauterine pregnancy (IUP) which is the case of normal 

pregnancy with fertilized egg implanted inside the uterus (ii) Ectopic Pregnancy (EP) where the 

fertilized egg can be seen in the TVS scan, but it is implanted outside the uterus (iii) Pregnancy 

of Unknown Location (PUL) when the pregnancy test is positive but no evidence of pregnancy is 

seen on TVS [29]. 

Cases of pregnancy of unknown locations (PUL) can subsequently lead to one of the following 

outcomes: (i) Failing PUL (miscarriage): majority of cases (50-70%) (ii) Normal IUP: fertilized 

egg is too early to be visualized on TVS (iii) Ectopic pregnancy: 7-20% of the PUL cases, the 

EP was not seen on the initial TVS examination [29 30].  

 

 

   

 
Figure 3. Outcome of initial TVS scan. PUL = Pregnancy of unknown location; TVS = Transvaginal 
ultrasound scan; EP= Ectopic pregnancy. 
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In the case of PUL, close surveillance is required, consisting of serial office visits, ultrasounds 

and blood draws over a period as long as a six weeks [31]. During this surveillance period, no 

medical or surgical intervention is taken until a conclusive diagnosis of ectopic pregnancy is 

reached, and the non-viability of the embryo is concluded [31]. Thus, the clinicians’ objectives 

are to: (1) Diagnose ectopic pregnancy as early as possible to avoid health risks, (2) Ensure 

that this early diagnosis is correct, to avoid ending a viable pregnancy erroneously [32]. Delayed 

diagnosis of EP is the most common life-threatening emergency in early pregnancy [31]. 

Despite the high frequency of this serious condition, early diagnosis of EP can be challenging. 

In practice, there are several methods used to detect EP in the case of PUL, and they largely 

depend on biochemical markers such as serum progesterone levels [33] and serum human 

chorionic gonadotrophin (hCG) levels [34]. However, the biochemical markers used are not 

consistent [35], and the International Society of Ultrasound in Obstetrics and Gynecology is 

encouraging the use of mathematical models to expedite EP detection [36]. 

In this case study, we aim to identify differentially expressed genes among patients with EP by 

analyzing of gene expression data. Differentially expressed genes are the subset of genes that 

exhibit expression patterns associated with a EP medical condition. 
Data.  Duncan et. al collected gestation-matched endometrium from women with EP (n = 11) 

and intrauterine pregnancies (IUP) (n = 13), and samples were profiled using the Affymetrix 

Human Genome U133 Plus 2.0 platform [37].  The CEL files were normalized using RMA 

(Robust Multiarray Average) [37], and are publicly available from ArrayExpress 

(http://www.ebi.ac.uk/arrayexpress) with accession number E-MTAB-680.  

 

Analysis.  We filtered the RMA normalized gene expression data to keep the probe sets that 

are common with prospective validation samples profiled using Affymetrix genechip Human 

Gene 2.0 ST. AnnotationDbi [38] and Stringr [39] Bioconductor packages were used to access, 

map, and process gene identifiers in specific chip annotation databases [40 41]. Duncan et al. 

identified genes differentially expressed in EP versus IUP using the t-test with multiple 

comparison correction using the Benjamini-Hochberg false discovery detection method with a 

corrected P-value of <0.05 [37].  In our analysis, we started by performing a standard t-test 

without corrections, with a range of varying threshold values. We also performed other multiple 

test correction methods including the Bonferroni correction, SAM [42], and LIMMA [43]. Our 

resulting lists of differentially expressed genes showed considerable overlap with the results 

from Duncan et al.  In particular, Duncan's top up-regulated gene CSH1 resulted from most of 

our differential expression analyses, and Duncan's top down-regulated gene CRISP3 resulted 
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from SAM analysis and Benjamini-Hochberg detection method. We also generated heatmaps to 

visualize these differentially expressed genes. We observed that EP and IUP samples were 

mostly assigned to distinct clusters with the exception of two IUP samples that clustered with EP 

samples, which Duncan et al. referred it to the effect of decidualization degree. Furthermore, we 

performed Gene Set Enrichment Analysis (GSEA) [44] to identify pathways and functional 

categories among the differentially expressed genes. The details of the analyses are provided in 

Supplemental File 2.  

Case Study 2: Cross-platform analyses of human cell line genomics data 

Motivation and overview.  The LINCS (Library of Integrated Network based Cellular 

Signatures) program, funded by the National Institutes of Health, generates different types of 

data, including gene expression, proteomic, and cell imaging data, in response to drug and 

genetic perturbations (http://lincsproject.org/) [45].  One of the main objectives of the LINCS 

program is to study gene signatures resulted from perturbations applied to human cell lines. In 

particular, the LINCS L1000 gene expression data measure the expression level of 

approximately 1000 landmark genes in response to drug and genetic perturbation experiments 

across multiple human cell lines. We aim to study the similarity patterns in the L1000 data 

across different cell lines. The LINCS L1000 gene expression data are publicly available from 

the Gene Expression Omnibus (GEO) database with accession number GSE70138. 

Our goal is to study the consistency of cell line similarities across the LINCS L1000 data and 

other data sources.  In particular, we used the LINCS L1000 gene expression data to explore 

similarities between different cell lines using different analysis methods, including clustering and 

dimension reduction techniques.  Our work is inspired by Zhang et al [46] in which multiple 

datasets, including the Cancer Cell Line Encyclopedia (CCLE) data [47] and Cancer Genome 

Project (CGP) data [48] were used to explore the similarity of cell lines and drugs. The results of 

this study suggested that similar cell lines are expected to have similar drug responses, and 

similar drugs are expected to have similar effects on a cell line. 
Data. We used the L1000 data processed by the L1K++ pipeline, an alternative data 

processing pipeline for the L1000 gene expression data, that we developed at the University of 

Washington Tacoma.  L1K++ is implemented in C++ using linear algorithms to make it over 

1000x faster than the available pipelines [49].  We substantiated our results from L1K++ 

processed data using published cell line gene expression data generated using microarray and 

RNA-sequencing technology. The Cancer Cell Line Encyclopedia (CCLE) gene expression data 

used Affymetrix microarrays to profile the genome-wide transcription activities across 
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approximately 1000 human cancer cell lines [47]. The CCLE data is publicly available from the 

GEO database with accession number GSE36133.  Similarly, Klijn et al. [50] used RNA-

sequencing technology to profile the expression across 675 untreated human cancer cell lines.  

This data is publicly available from ArrayExpress database with accession number E-MTAB-

2706 https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2706/.  

 

Analysis. In the Jupyter notebook (see Supplementary File 3), we read the three datasets 

(L1K++, CCLE, RNAseq) including all cell lines and genes. Then, we standardized each one of 

the three datasets separately by computing the z-score for gene expressions across all cell 

lines. In order to compare the results from the L1K++ data to those from the other two datasets, 

we first computed the intersection of genes and cell lines in common between L1K++ and 

CCLE, which resulted in 55 cell lines and the landmark genes. For L1K++ and RNAseq, we 

found 41 cell lines in common.  Subsequently, we calculated the pairwise distances (including 

Euclidean distances and squared Mahalanobis distances) and correlation coefficients (including 

Pearson’s correlation and rank-based Kendall’s correlation) between each pair of cell lines 

based on their gene expression profiles. We then applied hierarchical clustering and model-

based clustering [51] to cluster L1K++ vs. CCLE and L1K++ vs. RNA-seq cell lines.  

 

Case Study 3: Alignment and differential analyses of RNA-seq analysis workflows  

Motivation and overview.  With the rapidly decreasing costs of sequencing technology, RNA 

sequencing (RNA-seq) has become a well-established technology to measure gene expression. 

Here, we demonstrate the feasibility and merits of using an interactive Jupyter notebook to 

document a published RNA-seq data analyses workflow in Bioconductor [52] 

(https://www.bioconductor.org/help/workflows/rnaseqGene/). 

 

Data. We used the RNA-seq data from the Bioconductor “airway” package in which airway 

smooth muscle cells were treated with dexamethasone, a synthetic glucocorticoid steroid with 

anti-inflammatory effects [53]. Glucocorticoids are used, for example, by patients with asthma to 

reduce inflammation of the airways. In the experiment, four primary human airway smooth 

muscle cell lines were treated with 1 µM dexamethasone for 18 hours. For each of the four cell 

lines, we have a treated and an untreated sample.  The data are also publicly available in the 

GEO database with accession number GSE52778. 
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Analysis. We followed the steps of analyses published by Love et al. [52].  In particular, we 

started with the BAM files that provide the alignment data in a binary format. After normalizing 

the table of read counts, we performed differential expression analyses using DESeq [54],  

visualization using heatmaps for sample distances, and a mean average plot for the estimated 

model coefficients.  
 
DISCUSSION 
We present a web-based framework and a graphical user interface (GUI) designed to 

automatically generate a Dockerfile to create and publish live R and Bioconductor notebooks for 

bioinformatics workflows without any technical knowledge of Docker containers.  These web-

based notebooks can be published and viewed with modifiable and executable code in a 

browser without the installation of any software.  We demonstrate the applications of these 

interactive notebooks using three case studies in which we show the revolutionary aspects of 

dynamic live notebooks compared to traditional static reports and visualization for data analysis.  

Notebooks generated in our framework ensure reproducibility of analyses through the use of 

software containers.  Our interactive notebooks enable clinicians and biomedical scientists to 

visually interact with the analyses while exploring the results through different types of 

interactive visualizations (e.g. Plotly [55] in case study 2). In addition, parameters can be 

modified easily.  Our approach and BiocImageBuilder is not limited to bioinformatics 

applications that use Bioconductor software packages, but can be used for any applications that 

use the R programming language and software packages from CRAN. 

 

A limitation of Jupyter notebooks is that each notebook is limited to one kernel supporting a 

single programming language.  All of our three case studies used the IRkernel that assumes a R 

programming environment. However, modern bioinformatics workflows consist of modules that 

are potentially written in different programming languages.  For future work, we would like to 

extend these notebooks to allow for a modular structure consisting of different computing 

environments. 
 
SUPPLEMENTARY FILES 
Supplementary File 1: BiocImageBuilder demo video, publicly available at 

https://youtu.be/HftUChnYytw 

Supplementary File 2:  Full executable version of the notebook is available at: 
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https://github.com/Bioconductor-notebooks/Identification-of-Differentially-Expressed-Genes-for-

Ectopic-Pregnancy 

Supplementary File 3: Full executable version of the notebook is available at: 

https://github.com/Bioconductor-notebooks/Cross-platform-Analyses-of-Human-Cell-Line-

Genomics-Data 

Supplementary File 4: Full executable version of the notebook is available at: 

https://github.com/Bioconductor-notebooks/Dynamic-Re-analysis-RNA-seq-differential-

expression-workflow 
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