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Abstract 

How a neuronal cell type is defined and how this relates to its transcriptome are still open 

questions. The Drosophila olfactory projection neurons (PNs) are among the best-

characterized neuronal types: Different PN classes target dendrites to distinct olfactory 

glomeruli and PNs of the same class exhibit indistinguishable anatomical and physiological 

properties. Using single-cell RNA-sequencing, we comprehensively characterized the 

transcriptomes of 40 PN classes and unequivocally identified transcriptomes for 6 classes. 

We found a new lineage-specific transcription factor that instructs PN dendrite targeting. 

Transcriptomes of closely-related PN classes exhibit the largest difference during circuit 

assembly, but become indistinguishable in adults, suggesting that neuronal subtype 

diversity peaks during development. Genes encoding transcription factors and cell-surface 

molecules are the most differentially expressed, indicating their central roles in specifying 

neuronal identity. Finally, we show that PNs use highly redundant combinatorial molecular 

codes to distinguish subtypes, enabling robust specification of cell identity and circuit 

assembly. 

 

Introduction 

The nervous system comprises many types of neurons with varied locations, input and output 

connections, neurotransmitter phenotypes, intrinsic properties, and physiological and behavioral 

functions. Recent transcriptome analyses, especially from single cells, have provided important 

criteria to define a cell type. Indeed, single-cell RNA-sequencing (RNA-seq) has been used to 

classify neurons in various parts of the mammalian nervous system (e.g., Darmanis et al., 2015; 

Johnson et al., 2015; Usoskin et al., 2015; Zeisel et al., 2015; Foldy et al., 2016; Fuzik et al., 

2016; Shekhar et al., 2016; Tasic et al., 2016), but the extent to which it is useful to define 

subtypes of neurons and the relationship between cell type and neural connectivity is unclear in 

most cases. Indeed, what constitutes a neuronal type in many parts of the nervous system is still 

an open question (Johnson and Walsh, 2017). 

The Drosophila olfactory circuit offers an excellent system to investigate the relationship 

between transcriptomes and neuronal cell types. 50 classes of olfactory receptor neurons (ORNs) 
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form one-to-one connections with 50 classes of second-order projection neurons (PNs) in the 

antennal lobe in 50 discrete glomeruli, forming 50 parallel information processing channels 

(Figure 1A; Vosshall and Stocker, 2007; Su et al., 2009; Wilson, 2013). Each ORN class is 

defined by expression of 1–2 unique olfactory receptor gene(s) and by the glomerulus to which 

their axons converge (Gao et al., 2000; Vosshall et al., 2000; Couto et al., 2005; Silbering et al., 

2011). Correspondingly, each PN class is also defined by the glomerulus within which their 

dendrites elaborate (Stocker et al., 1990; Jefferis et al., 2001), which correlates strongly with the 

axonal arborization patterns at the lateral horn, a higher olfactory center (Marin et al., 2002; 

Wong et al., 2002; Jefferis et al., 2007). Furthermore, while on average ~60 ORNs and ~3 PNs 

form many hundreds of synapses within a single glomerulus (Mosca and Luo, 2014), every ORN 

forms synapses with every PN to convey the same type of olfactory information (Kazama and 

Wilson, 2009; Tobin et al., 2017). Indeed, PNs that project to the same glomerulus exhibit 

indistinguishable electrophysiological properties and olfactory responses (Kazama and Wilson, 

2009). Thus, one can define each class of PN as a specific neuronal type (or subtype, if all PNs 

are collectively considered a cell type) with confidence that each class has unique connectivity, 

physiological response properties, and function, whereas individual PNs within the same class 

most likely do not differ. In other words, the ground truth of cell types for fly PNs is one of the 

best defined in the nervous system.  

 While single-cell RNA-seq has been increasingly applied to study mammalian neurons 

(Johnson and Walsh, 2017), to our knowledge it has not been systematically applied to the 

Drosophila nervous system. This is likely due to the small size of fly cell bodies (3–4 µm 

diameter for a typical neuron), making it difficult to obtain enough mRNA from single cells for 

reliable cDNA library preparation (Crocker et al., 2016). Recent technical advances have 

significantly increased cDNA library yield from small amounts of RNA (Goetz and Trimarchi, 

2012; Picelli et al., 2014), providing an opportunity to interrogate Drosophila olfactory neurons 

using single-cell RNA-seq. Here, we have established a robust single-cell RNA-seq protocol for 

neurons and glial cells in the Drosophila brain. We sequenced 1,277 single cells of 40 classes of 

PNs, focusing mostly on a developmental stage when PNs are establishing wiring specificity. 

Using an unsupervised machine-learning algorithm that we developed, we could assign these 

PNs to 30 distinct clusters. Based on known and newly identified specific markers, we 

unambiguously mapped 6 PN classes derived from two neuroblast lineages to specific clusters. 
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We also identified new lineage-specific transcription factors, finding that the homeodomain-

containing C15 instructs lineage-specific dendrite targeting. By comparing transcriptomes of 

identified PN classes across developmental stages, we found that two closely-related PN classes 

have distinct transcriptome signatures at stages when they are establishing wiring specificity, but 

their transcriptomes become indistinguishable in adults. Systematic analyses revealed that PN 

ensembles employ a combinatorial, redundant code to distinguish different subtypes, and that 

genes encoding transcription factors and cell-surface molecules are among the most differentially 

expressed in different PN subtypes and are highly informative for distinguishing subtypes. 

 

Results 

A Robust Single-cell RNA-seq Protocol for the Drosophila Pupal Brain 

We developed an RNA-seq protocol for single cells dissociated from the Drosophila pupal brain 

(Figure 1B; Experimental Procedures). Briefly, pupal brains containing cells labeled by 

mCD8GFP driven from specific GAL4 lines were manually dissected, and single-cell 

suspensions were prepared following a method modified after Tan et al. (2015). We confirmed 

using phase-contrast microscopy that nearly all individual cells were separated (Figure S1A). 

Single GFP-positive cells were sorted into individual wells of 96-well plates using Fluorescence 

Activated Cell Sorting (FACS). We reverse transcribed poly(A)-RNA and amplified full-length 

cDNA using a modified SMART-seq2 protocol with an increased number of PCR cycles to 

offset the small amount of mRNA in each cell (Picelli et al., 2014). We prepared sequencing 

libraries from cDNA using tagmentation (Nextera XT) and sequenced them using the Illumina 

platform.  

In pilot experiments, we sequenced a small number of cells from Drosophila pupal brains 

that were labeled by the pan-neuronal driver elav-GAL4 (Lin and Goodman, 1994) or by the 

astrocyte driver alrm-GAL4 (Doherty et al., 2009) (Figure 1C). We analyzed them together with 

a much larger number of olfactory PNs labeled by the GH146-GAL4 driver, which is expressed 

in 40 of 50 PN classes (Stocker et al., 1997; Jefferis et al., 2001). Approximately 5% of GFP-

labeled cells within the brain could be recovered as single cells sorted into plates after brain 

dissociation and FACS, and 90% of neurons yielded high-quality cDNA after reverse 
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transcription (Figure S1B and S1D). Cells from all three drivers were sequenced to a depth of ~1 

million reads per cell and 1000–4000 genes were detected in each cell (Figure S1C). To evaluate 

the quality of RNA-seq data, we examined expression of 5 known neuronal markers (brp, nSyb, 

elav, Syt1, and CadN) and 4 known astrocyte markers (alrm, Eaat1, Gat, and Gs2) (Doherty et 

al., 2009; Sinakevitch et al., 2010; Stork et al., 2014), and found that they were specifically 

expressed in the corresponding cell types (Figure 1D). In addition, we identified 5 new genes 

(Msr-110, tre1, Cyp4g15, mfas, Obp44a) that were expressed in pupal astrocytes but not in 

neurons (Figure 1D). Unbiased clustering based on transcriptome profiles readily distinguished 

neurons and astrocytes (Figure 1E). These data support the reliability of our single-cell RNA-seq 

protocol for analyzing cell types and transcriptomes in Drosophila pupal brain (Figure S1D), and 

suggest that it would be applicable to other tissues and developmental stages. 

 

Single-cell RNA-seq Analysis of GH146-GAL4+ Projection Neurons (PNs)  

We previously showed that GH146-GAL4+ (GH146+ hereafter) PNs are derived from three 

separate neuroblast lineages whose cell bodies are located anterodorsal, lateral, or ventral to the 

antennal lobe neuropil (Figure 2A; Jefferis et al., 2001). The anterodorsal and lateral lineages 

give rise to uniglomerular excitatory PNs (adPNs and lPNs) that target to complementary 

glomeruli (Jefferis et al., 2001), whereas the ventral lineage produces GABAergic inhibitory PNs 

(vPNs) (Liang et al., 2013). We sequenced 1046 single GH146+ PNs at 24–30 hours after 

puparium formation (h APF). At this stage, PNs are refining their dendrite targeting in the 

antennal lobe; their dendrites further serve as targets for ORN axons that will invade the antennal 

lobe and establish one-to-one connections in the next 24 hours (Jefferis et al., 2004). 946 cells 

passed the filter of expressing at least 4 out of 6 markers (mCD8GFP and 5 neuronal markers in 

Figure 1D). Housekeeping genes (e.g., Act5C and Rp49) were reliably detected in all cells.  

About 50% of cells co-expressed male-specific genes, RNA on the X 1 and RNA on the X 2 

(Meller et al., 1997) (Figure S2A), as expected given that we did not discriminate sex.  

We tried to distinguish PN subtypes using conventional dimensional reduction and 

clustering methods based on Principal Component Analysis (PCA) and t-distributed Stochastic 

Neighbor Embedding (tSNE) (van der Maaten and Hinton, 2008). This approach identified only 

~12 distinct clusters of PNs (Figure 2B). The inability to resolve more distinct clusters is likely 
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due to the limited sensitivity of these analysis methods to distinguish cell types having highly 

similar transcriptomes, which is likely the case for different PN classes. To address this 

challenge, we developed an unsupervised machine-learning algorithm, which we call Iterative 

Clustering for Identifying Markers (ICIM), to identify genes that distinguish PN classes (see 

Experimental Procedures). Briefly, this algorithm searches for genes having the highest 

expression variability within a cell population, partitions the cells into two subpopulations using 

clustering based on these genes, then iteratively repeats the search on each subpopulation. 

Iteration continues until distinct subpopulations cannot be separated because gene expression 

patterns within the population are homogeneous (Figure 2C). Stopping criteria are defined in an 

unbiased manner without supervision. Genes identified using ICIM were then used for 

dimensionality reduction using tSNE and clustering using HDBSCAN, a hierarchical density-

based clustering algorithm (Campello et al., 2013). Applying ICIM to the transcriptomes of 

GH146+ PNs, we identified 561 genes that segregate the 946 GH146+ cells into 33 distinct 

clusters (Figure S2B and S2C).  

Based on known markers, we assigned cell type identities to three clusters. Among the 33 

clusters, two clusters comprising 11 cells expressed known markers for vPNs [Gad1+, which 

encodes a GABA biosynthetic enzyme, and Lim1+, which encodes a transcription factor that is 

expressed in vPNs but not adPNs or lPNs (Komiyama and Luo, 2007)] (Figure S2B). Besides 

PNs, GH146-GAL4 also labels the anterior paired lateral (APL) neurons in the central brain 

(Figure S2D). A third cluster, comprising 33 neurons, expressed VGlut robustly (Figure S2C). 

We observed that VGlut-GAL4 (after intersecting with GH146-Flp; see below for details of this 

intersectional strategy) specifically labeled APL neurons but not PNs (Figure S2E), suggesting 

that this VGlut+ population consists of APL neurons. Because we were interested primarily in 

GH146+ adPNs and lPNs, we removed vPNs and APL neurons from subsequent analysis. 

We focused our analysis on the 902 identified GH146+ adPNs and lPNs, each of which 

targets dendrites to a single glomerulus (Jefferis et al., 2001). Collectively, GH146+ adPNs and 

lPNs target 40 glomeruli. Clustering analysis using ICIM and tSNE identified 30 distinct clusters 

(Figure 2D). The number of cells belonging to each cluster varied from 5 to 108, partly reflecting 

the fact that different PN classes contain different cell numbers ranging from 1 to 7 per antennal 

lobe. Among the 40 GH146+ PN classes, 17 have only a single cell per antennal lobe (Yu et al., 
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2010; Lin et al., 2012). It is likely that we did not sample a sufficient number of cells to separate 

these rare PN classes into distinct clusters, contributing to our inability to identify 40 clusters 

corresponding to the 40 PN classes.  

We previously showed that two transcription factors, Abnormal chemosensory jump 6 

(Acj6) and Ventral veins lacking (Vvl; also known as Drifter), are expressed in adPNs and lPNs, 

respectively (Figure 2A), and instruct lineage-specific dendrite targeting (Komiyama et al., 

2003). The expression of Acj6 in adPNs persists in all pupal and adult stages, while the 

expression of Vvl can be detected in all lPNs in the early pupa but begins to decrease from 18h 

APF (Komiyama et al., 2003). Indeed, our single-cell RNA-seq analysis revealed that acj6 and 

vvl were expressed in a mutually exclusive manner (Figure 2E and S2F). Among the 30 clusters 

of adPNs and lPNs, 18 clusters (60%) expressed acj6 but not vvl, and thus represent adPNs 

(Figure 2E and S2F). The remaining 12 clusters expressed either vvl alone, or neither acj6 nor vvl 

(Figure 2E and S2F), and were likely lPNs since the Vvl protein is specifically expressed in lPNs 

and its expression declines after 18h APF.  

In summary, single-cell RNA-seq revealed 30 distinct clusters of GH146+ adPNs and 

lPNs expressing lineage markers in a manner consistent with previous knowledge. Transcription 

factors, which at the protein level are thought to be generally present in low-abundance 

(Ghaemmaghami et al., 2003), were reliably detected within these cells and could be used to 

assign lineage identity, supporting the specificity and sensitivity of our method.  

 

Matching Clusters to PN Classes Using Known Markers 

Next we attempted to map the correspondence between transcriptome-based PN clusters and 

glomerular-target-based PN classes by leveraging drivers that label specific PN classes. In 

principle, we could use a driver that labels one specific PN class among the GH146+ PNs to 

conduct single-cell RNA-seq and map the cells into the clusters identified among the GH146+ 

PNs. If the cells labeled by the driver could be unambiguously mapped into specific GH146+ PN 

cluster(s), we could unequivocally assign the PN class identity to the cluster(s). Drivers used for 

this strategy must be turned on early enough, allowing cell collection at 24–30h APF, the same 

stage as the sequenced GH146+ PNs. Drivers must also be expressed later (>48h APF) when PN 
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wiring is largely complete and glomeruli can be identified based on their stereotyped size, shape, 

and location (Jefferis et al., 2004).  

We tested this strategy first using 91G04-GAL4 from the Janelia GAL4 collection (Jenett 

et al., 2012); we found this driver to be robustly expressed in PNs at 24h APF from a GAL4 

screen. To limit expression only to PNs, we utilized an intersectional strategy by combining 

91G04-GAL4 with GH146-Flp (Potter et al., 2010) and UAS-FRT-STOP-FRT-mCD8GFP (Hong 

and Luo, 2009), such that only cells that express both 91G04-GAL4 and GH146-Flp will express 

mCD8GFP (we refer to this strategy as intersecting with GH146-Flp hereafter). This intersection 

resulted in expression of mCD8GFP in just two adPNs per brain hemisphere, both of which 

project dendrites to the DC2 glomerulus (Figure 3A). We sequenced 23 91G04+ PNs at 24–30h 

APF and performed clustering analysis using ICIM and tSNE together with the GH146+ cells. 

We found that all 91G04+ PNs mapped to one GH146+ cluster (Figure 3C; Cluster #1). All of 

the 91G04+ cells could also be unambiguously mapped to this GH146+ cluster using a random 

forest classifier (data not shown). We conclude that Cluster #1 corresponds to DC2 PNs. 

We next focused on a second driver, Mz19-GAL4 (Jefferis et al., 2004), which is 

expressed from 24h APF to adulthood (Figure 3B). After intersecting with GH146-Flp, Mz19-

GAL4 labels three classes of PNs: adPNs that project to VA1d and DC3 (acj6+), and lPNs that 

project to DA1 (acj6–). We sequenced 123 Mz19+ cells at 24–30h APF, and performed 

clustering analysis together with GH146+ cells. We found that the Mz19+ cells mapped to four 

clusters of GH146+ cells (Figure 3C). The Mz19+/acj6– cells, corresponding to DA1 PNs, 

mapped to two clusters (#2 and #2’). One of these clusters (#2) contained substantially more 

cells than the other (#2’). This finding suggests that both clusters correspond to DA1 PNs, a 

notion that we explore further in the next section. The Mz19+/acj6+ cells, corresponding to 

VA1d and DC3 PNs, mapped to two clusters of GH146+ cells (#3 and #4) (Figure 3C). We 

conclude that Clusters #3 and #4 correspond to VA1d and DC3 PNs. In the next section, we 

present results that establish a one-to-one correspondence between these clusters and PN classes 

using further experiments. Together, these results demonstrate that single-cell RNA-seq and 

existing genetic drivers can be harnessed to rapidly map PN classes to transcriptome identities.  

 

Matching Clusters to PN Classes Using Newly Identified Markers 
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To map additional PN transcriptome clusters to glomerular classes, we asked whether we could 

identify new markers and genetic drivers based on single-cell transcriptome data. While 

searching for marker genes which were predominantly expressed in a single cluster, we 

identified terribly reduced optic lobes (trol; Figure 4A). We examined reporter expression driven 

by a trol driver in PNs by intersecting an existing trol-GAL4 (NP5103-GAL4, inserted into an 

intron of trol) with GH146-Flp. We found that trol-GAL4 was expressed in 2–3 adPNs at both 

24h APF and 72h APF, and these PNs all sent dendrites to the VM2 glomerulus at 72 h APF 

(Figure 4B). We hypothesized that if trol-GAL4 recapitulated the endogenous expression of trol, 

we could then assign the trol+ cluster to VM2 PNs. To verify this, we sequenced 28 trol-GAL4+ 

cells (after intersecting with GH146-Flp). We found that these cells indeed mapped to the 

original trol+ Cluster #5 (Figure 4C). These data indicate that trol-GAL4 mimics endogenous 

trol expression and that the Cluster #5 corresponds to VM2 PNs.  

Using Mz19-GAL4, we mapped two Mz19+/acj6+ clusters to VA1d and DC3 in a two-

to-two manner (Figure 3C; Clusters #3 and #4), but we were not able to resolve which cluster 

belonged to which PN class. VA1d and DC3 PNs are closely related: VA1d PNs are born 

immediately after DC3 PNs from the same anterodorsal neuroblast lineage (Yu et al., 2010), and 

the two classes target their dendrites to neighboring glomeruli, both postsynaptic to ORNs 

originating from trichoid sensilla (Couto et al., 2005). We sought to establish a one-to-one 

mapping between PN classes and transcriptome clusters by identifying markers that distinguish 

these two PN classes. We searched for differentially expressed genes and found a few that were 

robustly expressed in only one of the two clusters. Among them, CG31676 exhibited the 

strongest differential expression (Figure 4D; compare Clusters #3 and #4).  

To examine patterns of reporter expression driven by a CG31676 driver, we generated 

CG31676-GAL4 using a CRISPR/Cas9-based method (Diao et al., 2015). The transgene cassette, 

inserted into the first intron of CG31676, contained a splice acceptor (SA) sequence followed by 

T2A peptide sequence and the GAL4 coding sequence (Figure 4E).  This straightforward method 

generates a driver that is highly likely to recapitulate endogenous gene expression (Diao et al., 

2015). After intersecting with GH146-Flp, CG31676-GAL4 labeled a similar number of PNs at 

24h, 48h, and 72h APF (Figure 4F). Notably, it labeled VA1d but not DC3 at both 48h and 72h 
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APF (Figure 4F). This finding enabled us to unambiguously map the Mz19+/acj6+/CG31676+ 

Cluster #3 to VA1d PNs and the Mz19+/acj6+/CG31676– Cluster #4 to DC3 PNs. 

In addition to DA1 (#2 and #2’) and VA1d (#3), CG31676-GAL4 also strongly labeled 

DL3, which is targeted by acj6– lPNs (Figure 4F and S3A) (Jefferis et al., 2001). Among the 30 

clusters, only two clusters (#6 and #6’) were CG31676+/acj6– (Figure 4D and S3B), and these 

two clusters display highly similar transcriptomes as reflected in their close proximity in the 

tSNE projection. We therefore mapped Clusters #6 and #6’ to DL3 PNs. CG31676-GAL4 

transiently labeled two other glomeruli, DL2a and DA4l (Figure S3A); both are targeted by 

acj6+ adPNs, but we could not unambiguously assign them to corresponding clusters.  

Among the 6 glomerular classes we have mapped, four correspond to a single 

transcriptome cluster each, but DA1 and DL3 PNs each corresponded to two clusters (Figure 4D 

and Figure 4G). All PN classes are born in a stereotyped order within a specific lineage, and 

most PN classes are born consecutively within a single time window (Jefferis et al., 2001; Yu et 

al., 2010; Lin et al., 2012). Interestingly, however, DA1 and DL3 PNs are the only two 

exceptions: they are born in two time windows separated by more than 24 and 12 hours, 

respectively (Figure S3D; Lin et al., 2012). We speculate that this birth timing difference may 

contribute to the transcriptome heterogeneity of DA1 and DL3 PNs. For DA1 PNs, we found that 

fruitless (fru), encoding a transcription factor and a key regulator of male sexual behavior as a 

result of sex-specific alternative splicing (Baker et al., 2001; Dickson, 2008), was expressed only 

in the large cluster (#2). This is consistent with a previous finding that NP21-GAL4 (GAL4 

inserted into a fru intron near the sexually dimorphic splicing site) only labels DA1 PNs after 

intersecting with GH146-Flp (Kimura et al., 2005; Stockinger et al., 2005; Potter et al., 2010). 

On the other hand, CG45263 was only expressed in the small cluster (#2’) (Figure S3C). For 

DL3 PNs that also matched with two clusters, we identified genes that were expressed only in 

one of the DL3 clusters, including a transcription factor mirror (mirr) and CG7358 (Figure S3B). 

It will be interesting to investigate in the future whether the transcriptional differences between 

Clusters #2 and #2’ and between Clusters #6 and #6’ reflect only differences in birth timing, or 

potential differences in biological functions. 

In summary, by using a combination of existing markers and new markers discovered 

using single-cell RNA-seq, we have unambiguously mapped 6 PN classes (those targeting to the 
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DC2, DA1, VA1d, DC3, VM2, and DL3 glomeruli) to corresponding transcriptome clusters 

(Figure 4G). Our results demonstrate that the combination of genetic drivers and single-cell 

RNA-seq offers a simple strategy for mapping transcriptome clusters to cell types. 

 

Identification of New Lineage-specific Transcription Factors that Regulate Dendrite 

Targeting 

Transcription factors (TFs) play important roles in determining cell fate and wiring specificity, 

including in Drosophila PNs (Komiyama et al., 2003; Zhu et al., 2006; Komiyama and Luo, 

2007). Our single-cell transcriptome analysis identified TFs that were differentially expressed in 

different clusters. For example, Prospero was predicted to be expressed in a majority of PNs 

including all Mz19+ PNs, whereas Cut was predicted to be expressed in a few PNs, all of which 

were Mz19– (Figure S4A). Indeed, antibody staining validated these predictions (Figure S4B), 

and the expression of Cut is consistent with our previous finding (Komiyama and Luo, 2007). 

In addition to acj6 and vvl, single-cell transcriptome analysis also suggested several new 

TFs that were expressed in a lineage-specific manner. Specifically, C15 and knot were predicted 

to be expressed only in adPNs and unplugged (unpg) was predicted to be expressed only in lPNs 

(Figure 5A). We confirmed these predictions by immunostaining using antibodies against C15 

and Knot, and a lacZ reporter for unpg (Figure 5B). knot has been shown to play a critical role in 

controlling dendrite development of Drosophila class IV dendritic arborization (da) neurons 

(Jinushi-Nakao et al., 2007), and unpg is a marker for specific neuroblast sublineages in the 

Drosophila embryonic ventral nerve cord (Cui and Doe, 1995; Urbach and Technau, 2003). C15, 

encoding a homeobox-containing protein, is a homolog of human Hox11 gene critical in 

regulating a gene network in the developing Drosophila leg (Campbell, 2005), but its role in the 

nervous system has not been explored. We tested whether C15 plays a role in controlling PN 

dendrite targeting using loss-of-function and gain-of-function analyses.  

For the loss-of-function experiment, we used a previously established RNAi-based 

genetic screening platform (Ward et al., 2015). Specifically, we used elav-GAL4 to knockdown 

C15 in all neurons, Mz19-QF-driven QUAS-mCD8GFP to monitor dendrite targeting of VA1d 

and DA1 PNs [note that Mz19-QF labels DA1 and VA1d, but not DC3 PNs in wild type (Hong 
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et al., 2012)], and Or88a enhancer/promoter fused with myristolated tdTomato (Or88a-mtdT) to 

monitor axon targeting of VA1d ORNs. We first tested the efficiency of two UAS-RNAi lines 

against C15 using qRT-PCR following pan-neural expression, and found that they reduced C15 

mRNA by 40% and 80%, respectively (Figure S4C). Pan-neuronal knockdown of C15 using the 

stronger RNAi line caused a highly penetrant position shift of the VA1d glomerulus (visualized 

by Or88a-mtdT+ axons) to a dorsal- and medial-region without affecting DA1 dendrite targeting 

(Figure 5C, 5D, and S4D). We also observed the loss of dendrites in the VA1d glomerulus 

(visualized by QUAS-mCD8GFP driven by Mz19-QF). The loss of VA1d dendrites could be 

because (1) C15 controls the expression of Mz19-QF in VA1d PNs, (2) VA1d neurons are not 

born or die, or (3) VA1d dendrites mistarget to the DA1 glomerulus.  

For the gain-of-function experiment, we used the Mz19-GAL4-based MARCM system to 

misexpress C15. In wild type, Mz19+ adPNs target to the VA1d and DC3 glomeruli and Mz19+ 

lPNs target to the DA1 glomerulus (Figure 5E, left panels; Figure 3B). However, when C15 was 

misexpressed, Mz19+ lPNs (which are DA1 PNs only) sent their dendrites to regions outside the 

DA1 glomerulus, which included VA1d, DC3, DA3, and DA4l that are all normally targeted by 

adPNs, while Mz19+ adPNs still targeted dendrites correctly (Figure 5E, right panels; S4E and 

S4F). These data suggest that the transcription factor C15, as with Acj6 and Vvl (Komiyama et 

al., 2003), instructs lineage-specific PN dendrite targeting.  

 

Transcriptomes of Closely Related PN Classes Exhibit the Largest Differences during 

Circuit Assembly 

How do neuronal transcriptomes change as development proceeds? By mapping clusters from 

single-cell RNA-seq data to specific PN classes at different developmental stages, we can 

address this key question at the resolution of single PN classes. Here, we focused our analyses on 

the three classes of Mz19+ adPNs and lPNs, which have been unequivocally mapped to specific 

transcriptome clusters (Figure 4D).  

Following the coarse patterning of PN dendrites at 24h APF, ORN axons invade the 

antennal lobe beginning around 30h APF to identify their PN partners, until they match with 

cognate PNs and establish discrete glomerular compartments that are first visible around 48h 
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APF (Jefferis et al., 2004). Following further expansion of terminal branches of ORN axons, PN 

dendrites, and synaptogenesis after 48h APF, pupae become adults at around 100h APF. Using 

the intersection of Mz19-GAL4 and GH146-Flp, which labels three PN classes, we sequenced 

and analyzed 485 single cells from five time points (~100 cells each): 24–30h APF, 36–42h 

APF, 48-54h APF, 72–78h APF, and 1–2d adult (Figure 6A).  

We performed clustering analysis using ICIM and tSNE, which revealed that 

Mz19+/acj6+ (VA1d and DC3) and Mz19+/acj6– (DA1) cells were clearly separable at all time 

points (Figure 6B). Interestingly, VA1d PNs and DC3 PNs formed distinct clusters at the four 

pupal stages, but merged into a single cluster in the adult (Figure 6B and 6C), suggesting that the 

transcriptomes of VA1d and DC3 PNs become more similar during cell maturation and 

ultimately converge on a common state in adulthood. To test this idea quantitatively, we 

calculated cell type identity scores using the 23 most differentially expressed (DE) genes (genes 

having differential expression P values < 10–5) between VA1d and DC3 PNs, and found that the 

difference between the transcriptional states of these two PN classes was maintained from 24h to 

48h APF, but began to shrink at 72h APF, and in the adult the two classes were indistinguishable 

(Figure 6D). To quantify the similarity between the transcriptional states of VA1d and DC3 PNs 

in an alternative, unbiased genome-wide fashion, we calculated the Pearson correlation between 

the expression profiles of all pairs of cells based on 497 genes identified by ICIM. This analysis 

revealed a similar result, confirming that transcriptome differences between VA1d and DC3 PNs 

disappeared in the adult (Figure 6E). Indeed, clustering analyses using only adult VA1d and DC3 

PNs failed to find distinct populations (data not shown). Collectively, these data indicate that 

VA1d and DC3 PNs, which are born consecutively from a common neuroblast in the adPN 

lineage and target dendrites to neighboring glomeruli, have peak transcriptome differences 

during early pupal stages (24–48h APF) when PNs are refining their dendrite targeting and 

presenting cues for partner ORNs to match. These differences progressively diminish in late 

pupal and adult stages, until the two PN classes are transcriptionally indistinguishable (Figure 

6F).  

These observations suggest that PN subtype identity genes, which distinguish VA1d and 

DC3 during the wiring stages, are down-regulated once wiring specificity is established. To test 

this idea, we systematically identified genes that were differentially expressed at different pupal 
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and adult stages in all Mz19+ PNs. Gene ontology (GO) analysis indeed revealed that down-

regulated genes consisted of factors associated with development and differentiation, whereas 

most up-regulated genes were associated with metabolic processes (Figure S5A). Clustering of 

genes based on their dynamic expression pattern revealed waves of gene expression consisting of 

genes that are coordinately turned down or up at different developmental stages (Figure S5B). 

Interestingly, many more TFs and cell-surface and secreted molecules (CSMs) were down-

regulated than up-regulated (Figure S5B). Our RNA-seq data showed that CG31676, which is 

expressed in VA1d but not DC3 PNs at 24h APF (Figure 4D, G), was turned off in both PN 

classes in adult while its expression in DA1 persisted (Figure S5C); this was validated with 

CG31676-GAL4 expression analysis across developmental stages (Figure S5D). 

Next we asked whether transcriptomes of PN classes from the same neuroblast lineage 

are more similar than those from different lineages. We found that the transcriptome differences 

between VA1d and DC3 PNs (both adPNs) were consistently smaller than that between VA1d 

and DA1 PNs (adPNs and lPNs, respectively) across developmental stages (Figure 6G). 

Similarly, the transcriptome differences at 24h APF between DA1 and DL3 lPNs (we only have 

DL3 data at 24h APF) were similar to those between VA1d and DC3 but smaller than those 

between VA1d and DA1 PNs. All four PN classes target to adjacent glomeruli in the dorsolateral 

antennal lobe (Figure 6A, right). Thus, lineage origin appears to contribute more to transcriptome 

similarities than dendrite targeting position.  

 

PN Subtype Identity is Specified by a Combinatorial Molecular Code, Not Unique Subtype-

specific Marker Genes 

How is cell type identity encoded in the transcriptome? Cell type identity could be specified in 

two alternative ways: (1) each cell type expresses at least one unique gene, or (2) each cell type 

expresses a unique combination of genes. The strategy used for specifying cell type identity in 

the nervous system remains an unresolved question. To comprehensively address how neuronal 

subtype identity is encoded in PNs, we approximated the 30 GH146+ transcriptome clusters as 

30 subtypes, and searched for marker genes that are uniquely expressed in a single subtype. We 

designed two criteria for identifying such marker genes: 1) the gene must be robustly expressed 

within a cluster (>7 CPM, or log2(CPM+1) > 3,  in >50% of the cells of a cluster); 2) the gene 
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must not be expressed in any other cluster (>7 CPM in <10% of the cells of any other cluster). 

Using these criteria, we identified only six unique marker genes (Figure S6A). These genes were 

sufficient to specify only 5 of the 30 GH146+ PN clusters. When we relaxed the search criteria 

(see Experimental Procedures), we quickly entered a regime where the identified genes were 

expressed in multiple clusters, indicating that they were not unique (Figure S6B). 

We note that identification of unique marker genes is limited by technical artifacts such 

as transcript dropouts. We calculated the dropout rate as a function of expression level (Figure 

S6C), and based on this we estimate that the probability that we failed to detect marker genes in 

all 25 out of the 30 GH146+ PN subtypes due to dropout events is < 10–62 (Experimental 

Procedures). Moreover, the unique markers that we identified were found in clusters represented 

by few cells in our data set, rather than those having many cells, arguing further that dropout 

does not account for our inability to detect unique markers in most subtypes. Thus, with few 

exceptions, GH146+ PNs lack marker genes that uniquely specify subtypes.  

Next, we sought to identify combinatorial molecular codes for cell type identity. We 

searched for a minimal set of genes that can uniquely specify PN subtypes using an information 

theory-based approach. We calculated the information content of each gene with respect to PN 

subtype identity, formally defined as the mutual information between the binarized expression 

state of the gene (ON/OFF) and PN cluster identity (Experimental Procedures). We ranked genes 

by their information content, and then selected a minimal set of genes by greedy search, 

iteratively drafting the gene carrying the most non-redundant information about identity into the 

set until 95% of the uncertainty of subtype identity was explained. The result of this search is a 

set of genes for which knowledge of their expression states (ON/OFF) alone is sufficient to 

classify subtype identity with high accuracy. 

We first applied this strategy to the three Mz19+ PN classes that were unequivocally 

mapped to specific glomeruli. We found that only two genes, C15 and CG31676, were sufficient 

to distinguish these three subtypes (Figure 7A). Based on these two genes alone, 92% of the 

uncertainty of classification of individual Mz19+ PN cells into subtypes was explained. 

Interestingly, both C15 and CG31676 were independently identified and characterized earlier in 

our study (Figure 4D and Figure 5). This finding demonstrates that this approach can identify 

sets of genes that robustly encode cell type identity in a combinatorial manner. 
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We then applied this strategy to the 30 GH146+ PN subtypes described in this study. We 

identified 11 genes whose expression states uniquely identified every PN subtype (Figure 7C and 

Figure S7C). Knowledge of the expression states of these genes alone is sufficient to resolve 

95% of the uncertainty in classification of individual GH146+ PN cells into subtypes (Figure 7B, 

pink line). While we used log2(CPM+1) = 3 as the threshold for binarization of expression state 

(ON/OFF), similar results were obtained using a range of different thresholds (Figure S7A, B). 

Together, these analyses demonstrate that GH146+ PN subtype identity can be specified using a 

combinatorial code composed of expression states of only 11 genes. This code is more compact 

than a code specifying each subtype using a unique marker (30 genes required), but substantially 

above the theoretical minimum of 5 genes (which can specify 25 or 32 binary states).  

 

TFs and CSMs Redundantly Specify PN Subtypes and Are Highly Enriched Among 

Differentially Expressed Genes  

What types of genes distinguish neuronal subtypes? It is widely thought that transcription factors 

(TFs) establish and maintain cell type identity, while cell-surface and secreted molecules (CSMs) 

determine wiring specificity. But there has not been, to our knowledge, genome-wide analysis to 

show this in an unbiased manner. Strikingly, 8 of the 11 genes in the minimal combinatorial code 

identified by our information theory-based analysis above were TFs (Figure 7C), supporting a 

central role for TFs in encoding cell type identity. To further explore the roles of TFs and CSMs 

in class identity, we searched for minimal codes for cell type identity consisting only of TFs or 

CSMs using our information theory-based approach. We used previously annotated lists of TFs 

(www.FlyTF.org) and CSMs (Kurusu et al., 2008), each containing about 1000 genes. We found 

minimal codes consisting of 13 TFs (Figure 7D and Figure S7C) or 12 CSMs (Figure 7E and 

Figure S7C). Each of these codes was sufficient to resolve 95% of the uncertainty in 

classification of GH146+ cells into PN subtypes (Figure 7B). That is, the GH146+ cells can be 

classified into PN subtypes based on the expression states of either 13 TFs alone or 12 CSMs 

alone. The compactness of these minimal codes was similar to that of the most compact code 

obtained in our genome-wide search, which had 11 genes (Figure 7C). Thus, PN subtypes can be 

redundantly encoded by TFs or CSMs. Similar results were obtained when we examined 
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combinatorial codes based on gene expression levels after discretization into four states (Off, 

Low, Medium, High) instead of binary states (ON/OFF) (data not shown).  

We next directly quantified the information content and redundancy of individual genes. 

To measure redundancy, we compared the information gained when the gene was added to the 

minimal combinatorial code consisting of 11 genes to the information carried by the gene 

individually when it is alone (its information content). Highly redundant genes added little 

information beyond that already carried by the code. We found widespread redundancy in the 

encoding of cell identity encompassing both TFs and CSMs. There were many highly 

informative genes that were highly redundant (Figure 7F). Among the 134 highly informative 

and redundant genes (which individually reduced uncertainty about cell type classification by 

>20%, but >50% of this information was already contained in the minimal code), TFs and CSMs 

were highly enriched (30 TFs and 54 CSMs, comprising 22% and 40% of these genes, 

respectively) (Figure 7F). This result indicates that many genes in the most compact 

combinatorial code could be substituted with other genes. Indeed, by including these genes 

alongside the compact code, one can design a robust code for which removing any particular 

gene alone does not impair the ability to classify cells, similar to the design of error-correcting 

codes for digital communication over noisy channels. The existence of redundancy among both 

TFs and CSMs suggests that error-correction mechanisms could be employed in specification of 

cell fate and wiring specificity. 

To evaluate whether TFs and CSMs are particularly informative with respect to subtype 

identity, we measured the amount of information contained within minimal combinatorial codes 

built from other genes (not TFs or CSMs) chosen at random from the genome (sampling 1,000 

genes at random with 100 replicates). Randomly chosen genes carried significantly less 

information than TFs or CSMs (Figure 7B). This was reflected in the lower amount of 

information carried by minimal codes of various sizes constructed from randomly chosen non-TF 

and non-CSM genes compared with codes constructed from TFs or CSMs. These findings 

indicate that, on average, TFs and CSMs carry more information about GH146+ subtype identity 

than other genes. 

To test this idea further, we asked whether TFs and CSMs are enriched among genes that 

are differentially expressed among PN subtypes. We focused initially on Mz19+ adPNs and lPNs 
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that have been unequivocally mapped to specific transcriptome clusters. Analyses of differential 

expression comparing VA1d versus DA1 PNs, and VA1d versus DC3 PNs, revealed that TFs 

and CSMs accounted for a large proportion of differentially expressed genes (Figure 7G). 

Representation of CSMs peaked during the circuit assembly state (24–48h APF), consistent with 

a role for differential expression of CSMs in determining wiring specificity. To comprehensively 

test whether this hypothesis holds for all GH146+ PNs, we analyzed differentially expressed 

genes separating every pair of 30 clusters, comprising 435 (30 x 29 / 2) pairs altogether. For 

every pair of clusters, TFs and CSMs were highly enriched among differentially expressed 

genes, with the strongest enrichment found among the most significantly differentially expressed 

genes (Figure 7H). This finding supports the notion that expression of TFs and CSMs plays key 

roles in establishing PN subtype identity and determining their wiring specificity. 

 

Discussion 

In recent years, single-cell RNA-seq has emerged as a powerful technique to investigate cellular 

heterogeneity, discover new cell types, and identify cell type-specific markers (reviewed by 

Saliba et al., 2014; Johnson and Walsh, 2017). While widely used to profile mammalian 

including human cells, it has not been systematically applied to invertebrate genetic model 

organisms such as Drosophila. Here we establish a robust single-cell RNA-seq protocol for cells 

from Drosophila brains across pupal and adult stages. By focusing on olfactory projection 

neurons (PNs), one of the best characterized cell types in the nervous system, our analyses shed 

new light on the relationship between the transcriptome, neuronal cell type, and development. 

Several lines of evidence support the sensitivity and reliability of our single-cell RNA-

seq protocol. First, differential gene expression identified by single-cell RNA-seq is highly 

consistent with previous literature. For example, we found highly correlated expression of two 

male-specific RNAs (Meller et al., 1997) at the level of individual cells (Figure S2A), and 

mutually exclusive expression of two lineage-specific transcription factors (Figure S2F) as 

previously reported (Komiyama et al., 2003). Second, we experimentally validated five 

differentially expressed transcription factors predicted from single-cell RNA-seq data (Figure 

5A, B; Figure S4A, B). Third, sequencing of cells marked by known or newly identified PN 

class-specific markers matched well with specific transcriptome clusters (Figure 3; Figure 4), 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 3, 2017. ; https://doi.org/10.1101/145045doi: bioRxiv preprint 

https://doi.org/10.1101/145045


	 19	

which not only provided validation of the transcriptome analysis, but also helped us to match 

transcriptome clusters with glomerular classes. Indeed, the protocol is sensitive enough to 

capture transcriptome differences within the same glomerular classes of PNs separated by birth 

timing (Figure S3). The fact that we have validated differential expression of many transcription 

factors, considered relatively less abundantly expressed (Ghaemmaghami et al., 2003), further 

support the sensitivity of our protocol. We note that the reliability of generating full-length 

cDNA material from single glia (30%) was not as high as from single neurons (90%; Figure 

S1D), suggesting that individual glia may contain fewer mRNA molecules, or the dissociation 

and sorting procedure may cause more damage to glia than to neurons. We expect that this 

approach can be generally applied to single-cell transcriptome analysis of many tissues and 

developmental stages in Drosophila and other organisms with small cell size, thus expanding the 

use of single-cell transcriptomics for addressing diverse biological questions.     

We have developed a machine-learning algorithm called ICIM for unbiased identification 

of genes that distinguish subtypes. Because this algorithm recursively examines finer-grained 

subpopulations, it is capable of detecting genes that distinguish small subpopulations. This 

approach is conceptually similar to previously described iterative analysis methods (Usoskin et 

al. 2014; Zeisel et al. 2015; Tasic et al. 2016; Gokce et al. 2016). However, our approach may 

discriminate highly similar cell types with greater sensitivity than methods based on PCA 

(Usoskin et al. 2014; Tasic et al. 2016; Gokce et al. 2016) because it reduces the feature space to 

only those genes that are informative for distinguishing cell types. Use of this approach allowed 

us to distinguish 30 clusters of GH146+ PNs. Our classification is limited by sampling depth. 

While GH146-GAL4 labels 40 PN classes, at least 17 of these classes contain only 1 cell per 

hemisphere. Many of our 30 clusters likely correspond to a single glomerular class. However, 

some of these clusters must contain cells representing more than one class. Sequencing of many 

more cells may resolve these classes into distinct clusters, resulting in a more complete 

description of PN transcriptome diversity. 

Our analyses of transcriptome changes of identified PN classes across developmental 

stages provide, to our knowledge, the first demonstration that transcriptomes of neuronal 

subtypes exhibit the largest difference during development, coincident with circuit assembly. 

This could be because two key determinants for different PN classes are 1) from which neurons 
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they receive information, and 2) to which neurons they send information. Once different PN 

classes establish differential connectivity during development, they may use largely the same 

neuronal machineries—such as neurotransmitter receptors to receive input from cholinergic 

ORNs and GABAergic or glutamatertic local interneurons as well as neurotransmission 

apparatus to send output (Wilson, 2013)—to convey different olfactory information in adults. 

Indeed, in the case of VA1d and DC3 PNs, even though they have clearly distinct transcriptomes 

during development, their transcriptomes become indistinguishable in adults (Figure 6). This 

finding has important implications for using single-cell RNA-seq to classify neuronal types, 

since most studies have exclusively focused on adults (e.g., Johnson et al., 2015; Usoskin et al., 

2015; Zeisel et al., 2015; Foldy et al., 2016; Fuzik et al., 2016; Shekhar et al., 2016; Tasic et al., 

2016); however, see (Darmanis et al., 2015; Hanchate et al., 2015; Pollen et al., 2015)]. While 

these studies have been highly successful in classifying major neuronal types, some functionally 

distinct subtypes may have been overlooked, resulting in an under-estimate of the diversity of 

neuronal types. 

Transcription factors (TFs) and cell-surface and secreted molecules (CSMs) are widely 

considered to be key determinants of cell fate and wiring specificity, respectively. Our single-cell 

transcriptome analyses provided several objective criteria to support these notions. First, TFs and 

CSMs together account for more than 50% of the top 30 differentially expressed genes, whether 

between identified PN classes (Figure 7G) or among all GH146+ clusters (Figure 7H). Second, 

information theory-based analyses revealed that among the top 11 information-rich genes for 

distinguishing different PN subtypes, 8 are TFs. Third, TFs or CSMs alone contain nearly as 

much information in distinguishing different PN subtypes as all genes (Figure 7B). The TF and 

CSM codes are redundant in distinguishing different PN subtypes, consistent with the notion that 

differential expression of CSMs is a consequence of differential expression of TFs. Indeed, a key 

readout of TFs in determining neuronal subtype may be the control of differential expression of 

CSMs, such that different subtypes differentially respond to a common extracellular environment 

to achieve their wiring specificity. Supporting a role for TFs in regulating wiring specificity, we 

show that a newly identified lineage-specific TF, the homeobox-containing C15, can instruct 

lineage-specific dendrite targeting (Figure 5).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 3, 2017. ; https://doi.org/10.1101/145045doi: bioRxiv preprint 

https://doi.org/10.1101/145045


	 21	

Finally, our analyses of PN transcriptomes shed light on the nature of the coding 

strategies that distinguish closely related neuronal subtypes. We found a very small number of 

markers that are uniquely expressed in single PN subtypes; instead, the identity of PN subtypes is 

largely determined by a combinatorial code that utilizes a number of genes between the number 

of subtypes and the theoretical minimum for a maximally compact code, suggesting redundancy. 

Our analyses reveal that highly informative genes in distinguishing PN subtypes are also highly 

redundant, such that the loss of any individual gene alone can in theory be compensated by 

remaining genes with little impact on PN subtype identity. We found that the transcriptomes of 

closely related PN classes, which become indistinguishable in adults, differed substantially 

during development (Figure 7G), consistent with a recent report showing that closely related 

retinal cells have dozens of differentially expressed CSMs (Tan et al., 2015). These findings may 

potentially explain why almost all previously identified genes that regulate PN dendrite targeting 

yielded only partially penetrant loss-of-function phenotypes even when null alleles were used. 

Such redundancy can provide robustness to wiring precision, and at the same time creates 

challenges for dissecting genetic control of wiring specificity using single gene manipulation 

(Hong and Luo, 2014). The transcriptomes of identified PN classes can inform design of more 

precise experiments in which simultaneous manipulation of multiple genes through loss- and 

gain-of-function approaches allows experimental testing of the combinatorial TF and CSM 

codes.  

 

Experimental Procedures 

Fly Stocks  

The following fly lines were used in this study: elav-GAL4 (Bloomington Drosophila stock 

center, BL#458), Mz19-GAL4 (BL#34497) (Jefferis et al., 2004), C15-RNAi (line1, BL#27649), 

C15-RNAi (line2, BL#35018), Alrm-GAL4 (BL# 67032). Mz19-QF (Hong et al., 2012), GH146-

GAL4 (Stocker et al., 1997), UAS-STOP-mCD8GFP (Hong et al., 2009), GH146-Flp (Potter et 

al., 2010), unpg-lacZ (Doe, 1992), trol-GAL4 (NP5103-GAL4, Kyoto Stock Center #113584), 

UAS-C15 (gift from Dr. Gerard Campbell) (Campbell, 2005) , and 91G04-GAL4 (gift from Gerry 

Rubin) (Jenett et al., 2012). 
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CG31676-GAL4 was generated using CRISPR/Cas9 based insertion of SA-T2A-GAL4 

into the first intron of CG31676 gene following the method described by Diao et al. (2015). In 

brief, a 2.5kb DNA fragment, containing a PAM site in the middle, within the first intron of the 

CG31676 gene was PCR amplified from wild-type genomic DNA, and inserted into Blunt TOPO 

vector (Invitrogen). Then, SA-T2A-GAL4 was PCR amplified from the pT-GEM(1) plasmid 

(addgene# 62893) and was assembled (NEBuilder HiFi DNA assemble kit) into TOPO-

CG31676-intron construct three-nucleotide before the PAM site of the intron. This construct and 

gRNA plasmid (pU6-BbsI-ChiRNA, addgene# 45946) containing 20-nt target sequence before 

the PAM inserted into the BbsI site were co-injected to nos-Cas9 (gift from Dr. Ben White) 

(Diao et al., 2015) embryos to obtain transgenic flies.  

MARCM Analysis 

hsFlp based MARCM analyses were performed as previously described (Lee and Luo, 1999; 

Jefferis et al., 2001; Komiyama et al., 2004). Mz19-GAL4 was used to label VA1d, DC3 and 

DA1 PNs. Larvae (24h to 48h after hatching) were heat shocked for 1h at a 37oC water bath. 

Both single cell and neuroblast clones could be observed in this fashion.  

Immunostaining 

Tissue dissection and immunostaining were performed following previously described methods 

(Wu and Luo, 2006). Primary antibodies used in this study include rat anti-DNcad (DN-Ex #8; 

1:40; DSHB), mouse anti-Prospero (1:200; DSHB), mouse anti-Cut (2B10; 1:50; DSHB), mouse 

anti-β-gal (1:500; Promega), chicken anti-GFP (1:1000; Aves Labs), rabbit anti-DsRed (1:250; 

Clontech), mouse anti-ratCD2 (OX-34; 1:200; AbD Serotec), rat anti-C15 (1:200; gift from Dr. 

Gerard Campbell) (Campbell, 2005), and guinea pig anti-knot (1:200; gift from Dr. Adrian 

Moore) (Jinushi-Nakao et al., 2007). Secondary antibodies were raised in goat or donkey against 

rabbit, mouse, rat, and chicken antisera (Jackson Immunoresearch), conjugated to Alexa 405, 

488, FITC, Cy3, Cy5, or Alexa 647. 

Quantitative PCR (qPCR) 

Total RNA from 3–5 day old adult fly heads was extracted using MiniPrep kit (Zymo Research, 

R1054). Complementary DNA was synthesized using an oligo-dT primer. qPCR was performed 

on a Bio-Rad CFX96 detection system. Relative expression was normalized to Actin5C.  
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Actin5C (F): 5’-CTCGCCACTTGCGTTTACAGT-3’ 

Actin5C (R): 5’-TCCATATCGTCCCAGTTGGTC-3’ 

C15 (F): 5’- AGCGCTTCCACAAGCAAAAG-3’ 

C15 (R): 5’- CCGTCTGTCGTCTCCACTTG-3’ 

 

Imaging and Quantification Procedure 

Confocal images were collected with a Zeiss LSM 780 and processed with ImageJ and Adobe 

Illustrator. For quantification of the angles in Figure 5C, the vertical line was drawn based on the 

position of two antennal lobes and the intersecting line was drawn through the centers of gravity 

of the VA1d and DA1 glomeruli, then the intervening angle was measured using ImageJ.  

Single-Cell RNA-sequencing  

Drosophila brains with mCD8GFP-labeled cells using specific GAL4 drivers were manually 

dissected, and two optical lobes were removed. Single-cell suspension was prepared following 

Tan et al. (2015) with several modifications. Detailed protocol is available upon request. Single, 

labeled cells were sorted using Fluorescence Activated Cell Sorting (FACS) into individual wells 

of 96-well plates containing lysis buffer. Full-length poly(A)-tailed RNA was reverse transcribed 

and amplified using PCR following the SMART-seq2 protocol (Picelli et al., 2014) with several 

modifications. To increase cDNA yield and detection efficiency, we increased the number of 

PCR cycles to 25. To reduce the amount of primer dimer PCR artifacts, we digested the reverse 

transcribed first-strand cDNA using lambda exonuclease (New England Biolabs) (37oC for 30 

min) prior to PCR amplification. Sequencing libraries were prepared from amplified cDNA 

using tagmentation (Nextera XT). Sequencing was performed using the Illumina Nextseq 

platform with paired end 75 bp reads.  

RNA-seq Data Analysis 

We first provide an overview of our methods, then describe how these methods were applied to 

create each figure. All analysis was performed in Python using Numpy, Scipy, Pandas, scikit-

learn, and a custom single-cell RNA-seq module. Sequencing reads will be deposited in the 

Sequence Read Archive. Preprocessed sequence data and code for analysis will be deposited to 

Data Dryad. 
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Sequence alignment and preprocessing. Reads were aligned to the Drosophila melanogaster 

genome (r6.10) using STAR (2.4.2a) (Dobin et al., 2013) with the ENCODE standard options, 

except "--outFilterScoreMinOverLread 0.4 --outFilterMatchNminOverLread 0.4 --

outFilterMismatchNmax 999 --outFilterMismatchNoverLmax 0.04". Uniquely mapped reads that 

overlap with genes were counted using HTSeq-count (0.7.1) (Anders et al., 2015) with default 

settings except "-m intersection-strict". Cells having fewer than 300,000 uniquely mapped reads 

were removed. To normalize for differences in sequencing depth across individual cells, we 

rescaled gene counts to counts per million (CPM). All analyses were performed after converting 

gene counts to logarithmic space via the transformation Log2(CPM+1). Cells that were labeled 

with neuron-specific GAL4 drivers (C155+, GH146+, Mz19+, 91G04+, Trol+, and CG31676+ 

cells) were filtered for expression of canonical neuronal genes (elav, brp, Syt1, nSyb, CadN, and 

mCD8-GFP), retaining only those cells that expressed at least 4/6 genes at >15 CPM.  

Dimensionality reduction and clustering analyses using PCA/tSNE. Single-cell RNA-seq 

yields high dimensional gene expression data. To visualize and interpret these data, we obtained 

two-dimensional projections of the cell population by first reducing the dimensionality of the 

gene expression matrix using principal component analysis (PCA), then further reducing the 

dimensionality of these components using t-distributed Stochastic Neighbor Embedding (tSNE) 

(van der Maaten and Hinton, 2008). We note that tSNE is a nonlinear embedding that does not 

preserve distances, so one cannot interpret the distances in the projected space as distances 

between gene expression profiles (i.e., the pre-transformation space).  

We performed PCA on a reduced gene expression matrix composed of the top 500 

overdispersed genes (as described below). To identify significant principal components (PCs), 

we examined the distribution of eigenvalues obtained by performing PCA after shuffling the 

gene expression matrix (with 100 replicates). A PC was considered significant if the magnitude 

of its associated eigenvalue exceeded the maximum magnitude of eigenvalues observed in the 

shuffled data. Significant components (typically 7–12 PCs) were used for further analysis. We 

further reduced these components using tSNE to project them into a two-dimensional space. 

Dimensionality reduction and clustering analyses using ICIM. ICIM is an unsupervised 

machine learning algorithm that identifies a set of genes which distinguishes transcriptome 

clusters, which may correspond to cell types (described below). In our analysis of GH146+ PNs, 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 3, 2017. ; https://doi.org/10.1101/145045doi: bioRxiv preprint 

https://doi.org/10.1101/145045


	 25	

this set typically includes ~500 genes. To visualize and interpret the single-cell gene expression 

data, we further reduced its dimensionality using tSNE to project the reduced gene expression 

matrix (consisting of only the genes identified by ICIM) into a two-dimensional space. 

Overdispersion analysis. Genes that are highly variable within a population often carry 

important information for distinguishing cell types. We were interested in identifying such genes 

and using them for dimensionality reduction and clustering analyses. Variability of gene 

expression depends strongly on the mean expression level of a gene. This motivates the use of a 

metric called dispersion, which measures the variability of a gene's expression level in 

comparison with other genes that are expressed at a similar level. Overdispersed genes are those 

that display higher variability than expected based on their mean expression level. 

To identify overdispersed genes, we binned genes into 20 bins based on their mean 

expression across all cells. We then calculated a log-transformed Fano factor D(x) of each gene x 

 D(x) = log10[σ2(x) / µ(x) ] 

where σ2(x) is the variance and µ(x) is the mean of the expression level of the gene across cells. 

Finally, we calculated the dispersion d(x) as the Z-score of the Fano factor within its bin 

 d(x) = D(x) - Mean(D(x)) / Std(D(x)) 

where Mean(D(x)) is the mean log-transformed Fano factor within the bin and Std(D(x)) is the 

standard deviation of the log-transformed Fano factor within the bin. We then rank genes by their 

dispersion and select the top genes for downstream analysis. 

Iterative Clustering for Identifying Markers (ICIM). To identify subpopulations of cells 

corresponding to PN subtypes, we developed an unsupervised machine-learning algorithm, 

which we call ICIM. We observed that standard dimensionality reduction and clustering methods 

using PCA and tSNE failed to discriminate subpopulations that corresponded to known PN 

lineages and molecular features. We attributed the failure of these methods to the high degree of 

similarity of transcriptional states among PN subtypes, which represent closely-related neurons 

having similar functions. All PN subtypes are born from one of the two common progenitor cells 

(neuroblasts) and have similar functional roles in the adult fly. Thus, PN subtypes may be 

distinguished by a small number of genes. 
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 In the language of machine learning, the performance of dimensionality reduction and 

clustering methods depends critically on feature selection. Selection of informative genes that 

vary among cell types can improve discrimination in dimensionality reduction and clustering 

analysis. 

We developed ICIM as a strategy to identify the most informative genes for 

distinguishing subpopulations within a population of closely-related cells in an unbiased way. 

Starting with a population of cells, we first identify the top 100 overdispersed genes within this 

population. Next we expand this set of genes by finding genes whose expression profiles are 

strongly correlated with the overdispersed genes (Pearson correlation > 0.5). We also filter this 

set of genes by (1) removing those having fewer than 2 correlated partners, and (2) those that are 

expressed in >80% of cells. Filter (1) removes noisy genes based on the idea that genes that carry 

information about cell type are expressed within gene modules and therefore have expression 

profiles that are correlated with at least one other gene. Filter (2) removes housekeeping genes 

that are detected in nearly all cells, and have variation in expression levels due to biological and 

technical noise, but this variation is not informative for purposes of distinguishing cell types. 

Cells are then clustered based on their expression profiles of these genes (average-linkage 

clustering using correlation metric). We cut the dendrogram at the deepest branch and partition 

the population into two subpopulations. The same steps are then performed iteratively on each 

subpopulation. Iteration continues until a population cannot be split into subpopulations because 

it is “homogeneous”. The termination condition is defined as the minimum terminal branch 

length (the most similar nearest-neighbor correlation distance between the expression profiles of 

cells) being larger than 0.2. This condition arises when the algorithm attempts to discover genes 

within a homogeneous population and finds a very large number of genes (typically >1000 

genes) that vary in an incoherent manner between cells. When the algorithm terminates, we 

collect all genes that were identified at any stage. The result of this analysis is a set of genes that 

discriminate subpopulations within a population, which can be used for dimensionality reduction 

(as described above). We note that this algorithm identifies informative genes in an unbiased 

manner without knowledge of the ground truth of the number of cell types and their differences. 

The results of the algorithm were robust across a wide range of parameters. 

Differential expression analyses. To find differentially expressed genes, we used the Mann-
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Whitney U test, a non-parametric test that detects differences in the level of gene expression 

between two populations. The Mann-Whitney U test is advantageous for this application because 

it makes very general assumptions: (1) observations from both groups are independent and (2) 

the gene expression levels are ordinal (i.e., can be ranked). Thus the test applies to distributions 

of gene expression levels across cells, which rarely follow a normal distribution. Using the 

Mann-Whitney U test, we compared the distributions of expression levels of every gene 

separately. P values were adjusted using the Bonferroni correction for multiple testing. Different 

significance thresholds for determining whether a gene is differentially expressed were used for 

various analyses in this work. 

Single-cell analyses to distinguish neurons and glia in Figure 1. We formed a population 

consisting of 946 GH146-GAL4+ cells, 12 elav-GAL4+ cells, and 67 alrm-GAL4+ cells. We 

performed dimensionality reduction and clustering analysis using PCA and tSNE as described 

above. We identified the top 500 overdispersed genes in the population. We used PCA to reduce 

dimensionality, retaining 10 significant PCs. Then we projected the population into a two-

dimensional space using tSNE with perplexity 30 and learning rate 500 (Figure 1E). We also 

performed hierarchical clustering using complete linkage and a Euclidean metric based on 

manually selected neuronal and glial marker genes (Figure 1D). 

Removal GH146+ vPNs and APL neurons. We initially formed a population consisting of 946 

GH146+ cells. Using ICIM, we identified 158 genes that distinguish subtypes. We then 

projected the population into a two-dimensional space using tSNE. We observed several distinct 

subpopulations corresponding to GH146+ neuronal types that do not belong to the adPN or lPN 

lineages. Specifically, two clusters were composed of ventral PNs (vPNs), which robustly 

express several specific markers (Gad1, Lim1, and toy). Three other clusters were composed of 

APL neurons, which robustly express other specific markers (Wnt4, VGlut, and fd102C), and are 

arranged adjacent to one another by tSNE, reflecting the similarity of expression profiles among 

these cells. For subsequent analyses of GH146+ adPNs and lPNs, we removed these cells by 

excluding cells expressing 2/3 of these marker genes at >15 CPM. 

Single-cell analyses to distinguish PN subtypes among GH146+ cells in Figure 2. We initially 

attempted to identify distinct subpopulations representing PN subtypes using PCA and tSNE for 

the 946 GH146+ PNs (including vPNs and APL neurons). We began by identifying the top 500 
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overdispersed genes and performing PCA to reduce the gene expression data to 10 significant 

PCs. Then we projected the population into a two-dimensional space using tSNE with perplexity 

30 and learning rate 500. We observed that this analysis fails to separate distinct subpopulations 

(Figure 2B). 

We next attempted to distinguish subpopulations corresponding to PN subtypes using 

ICIM and tSNE. Using ICIM (Figure 2C), we identified 561 genes for the 902 GH146+ PNs 

(after removing vPNs and APL neurons as described above). We projected these cells into a two-

dimensional space using tSNE using as a distance matrix the pairwise Pearson correlation of the 

expression profiles of these genes and perplexity 10, learning rate 250, and early exaggeration 

4.0 (Figure 2D). We classified cells into clusters in an unbiased manner using HDBSCAN with 

min_cluster_size=5 and min_samples=3. Because tSNE computes a nonlinear embedding that 

does not preserve distances in the original space, the distances between cells cannot be directly 

interpreted in terms of similarity of expression profiles. As a consequence, there are cases where 

cells belonging to the same cluster are separated by larger distances than cells belonging to 

different clusters. 

Matching clusters to PN classes using known markers in Figure 3. We formed a population 

consisting of 902 GH146+ cells, 123 Mz19+ cells, and 23 91G04+ cells. Using the 561 genes 

identified using ICIM on GH146+ cells, we projected this population into a two-dimensional 

space using tSNE with perplexity 15 and learning rate 1000. For visualization, we colored the 

cells according to their genotype, revealing that the Mz19+ and 91G04+ cells belong exclusively 

to 5 classes (Figure 3C). 

Matching clusters to PN classes using newly identified markers in Figure 4. We formed a 

population consisting of 902 GH146+ cells and 41 trol-GAL4+ cells. trol-GAL4+ cells that were 

not expressing trol (CPM < 7) were removed. Using the 561 genes identified using ICIM on 

GH146+ cells, we projected this population into a two-dimensional space using tSNE with 

perplexity 15 and learning rate 1000. For visualization, we colored the cells according to their 

genotype, revealing that the trol+ cells belong exclusively to 1 class (Figure 4C). 

Analyses of transcriptome changes during development in Figure 6. To understand how 

transcriptional state changes during development and maturation of PN subtypes, we collected 

Mz19+ cells from flies at 5 stages of development: 24h, 36h, 48h, and 72h after puparium 
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formation (APF), and 1–2 day adults. We formed a population consisting of 123, 83, 92, 92, and 

95 cells after filtering to remove low quality cells and those not expressing neuronal markers. 

Using ICIM, we identified 497 genes that distinguish cell types and developmental stages. We 

projected this population into a two-dimensional space based on these genes using tSNE with 

perplexity 10 and learning rate 500. Cells formed several distinct subpopulations corresponding 

to different PN subtypes and developmental stages (Figures 6B and 6C). We assigned 

subpopulations to subtypes (DA1, VA1d, and DC3) based on the expression of key lineage 

factors (Figure 6B). 

To quantify transcriptome changes in the closely related PN subtypes VA1d and DC3 

during development, we devised a metric called the type identity score, which is the scaled sum 

of expression levels of genes that distinguish VA1d and DC3 cells. We identified these genes 

using differential expression analysis comparing VA1d and DC3 populations at all times that the 

two populations are distinct as determined by ICIM and tSNE (24h, 36h, 48h, and 72h APF). 78 

cells were included in the VA1d group and 64 cells were included in the DC3 group. This 

analysis yielded 23 genes of which 13 are highly expressed in VA1d and 9 are highly expressed 

in DC3 cells at a significance level of P < 10–5 after the Bonferroni adjustment for multiple 

testing. We rescaled expression levels of these genes to the range 0 to 1 (by dividing each 

expression level by the maximum among the population), then calculated the type identity score 

I of each cell as the mean normalized expression level, 

I = [sum over x in X_VA1d (x) / |X_VA1d| ] – [ sum over x in X_DC3 (x) / |X_DC3|] 

where X_VA1d is the set of genes that are highly expressed in VA1d and X_DC3 is the set of 

genes that are highly expressed in DC3, and |X_VA1d| and |X_DC3| are the cardinalities of these 

sets respectively. We then plotted the type identity scores of each cell at each developmental 

stage (Figure 6D). 

As an alternative method to analyze transcriptome differences, we also examined 

correlations in transcriptome states in an unbiased genome-wide manner. This method has the 

advantage that it does not require the choice of a P value cutoff for determining significance. We 

formed a population consisting of Mz19+ adPNs (belonging to both subtypes VA1d and DC3) at 

each stage of development. Then we calculated the Pearson correlation of the expression profiles 

of the 497 genes identified by ICIM for every pair of cells (Figure 6E). These plots revealed a 
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bimodal distribution consisting of two distinct peaks, which correspond to pairs of cells that both 

belong to the same subtype (more similar) and pairs of cells which belong to different subtypes 

(more distinct). As development proceeds, the transcriptome similarity of these two subtypes 

diminishes until vanishing, as reflected in the merging of these two distinct peaks and the 

emergence of a unimodal distribution in adulthood. 

Finally, to characterize transcriptome changes distinguishing PNs in the wiring stages of 

development from PNs in adulthood, we performed differential expression analysis comparing 

the population of Mz19+ PNs at 24h APF to the population of Mz19+ PNs in adults. We found 

1097 differentially expressed genes at significance level of P < 10–5 after the Bonferroni 

adjustment for multiple testing. This included 592 genes that were highly expressed in 24h APF 

cells, and 478 genes that were highly expressed in adult cells. We performed Gene Ontology 

(GO) analysis on these genes using Flymine and removed the redundant GO terms using 

REVIGO (Supek et al., 2011). We report the number of genes corresponding to and the P value 

of enrichment of each term (Figure S5A). 

Characterizing genes that distinguish PN subtypes in Figure 7. To identify genes that 

distinguish closely related PN subtypes, we performed differential expression analysis 

comparing the Mz19+ VA1d and DA1 populations and the Mz19+ VA1d and DC3 populations 

at each developmental stage. Because the significance level of expression level differences 

depends on the number of cells involved in the comparison and the number of cells varies across 

developmental stages, we analyzed the top 30 differentially expressed genes regardless of their 

significance level. We note that the significance values of these genes were nearly all P < 10–4. 

We calculated the fraction of these genes that are transcription factors (TFs) or cell surface 

molecules (CSMs) based on the lists given in (www.FlyTF.org) or (Kurusu et al., 2008) (1048 

TFs, 1062 CSMs) (Figure 7G). 

We next performed a similar differential expression analysis comparing all pairs of 

subtypes. For each subtype, we formed a population consisting of GH146+ cells belonging to 

that subtype at 24h APF. For each pair of subtypes we calculated differential expression for each 

gene and ranked the genes by their significance level (P value). We then calculated the fraction 

of TFs or CSMs among the top N genes for varying N from 30 to 1000. We calculated the 

enrichment of TFs or CSMs compared to their genomic representation by dividing the fraction of 
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TFs or CSMs by the genomic fraction of TFs (6.8%) or CSMs (6.8%). We plotted the 

distribution of these enrichment values for various values of N (Figures 7H).  

Identification of unique marker genes for PN subtypes in Figure 7. We sought to identify 

unique markers for each GH146+ PN subtype. We formed populations that each consist of 

GH146+ cells belonging to a cluster identified using ICIM and t-SNE (Figure 2D). We then 

performed differential expression analysis comparing each cluster to all other GH146+ cells. We 

selected genes that were differentially expressed at a significance level of P < 0.05 after the 

Bonferroni adjustment for multiple testing and having median expression within the cluster of 

interest of >7 CPM, resulting in 1103 genes. We then filtered for genes that were identified as 

significantly enriched in only one cluster, resulting in 257 genes. This step was necessary 

because some genes were identified as significantly enriched in multiple clusters, which is 

consistent with reuse of genes as identity factors within a combinatorial code. Finally, we 

identified genes that were robust and unique markers for a single cluster. To do this, we 

calculated the fraction of cells within each cluster expressing a given gene at >7 CPM. We then 

filtered for genes that were expressed in >50% of the cells within a given cluster and in <10% of 

the cells in any other cluster. We plotted the distribution of expression levels of these genes in 

each cluster (Figure S6A). We also tried different ways to relax the criteria. For example, Figure 

S6B shows the result when we required that the gene is expressed in >50% of the cells (>7 CPM) 

within a given cluster and in <25% of the cells in any other cluster.  

Technical artifacts such as dropouts can hinder the identification of unique markers. We 

therefore estimated the probability that our failure to identify unique markers can be accounted 

for by dropout. To do so, we assumed that each of the 30 molecularly distinct GH146+ PN 

subtypes expresses a single unique marker gene at a low level of expression (7 CPM). In our 

data, genes expressed at an average level of 7 CPM are not detected in ~60% of cells. We may 

fail to detect a gene because (1) the cell is not expressing the gene or (2) because of noise in gene 

expression or technical dropout. We therefore can place an upper bound on the probability of 

dropout of a gene that is expressed at 7 CPM at 60%. Our method for identifying unique markers 

requires that the gene is detected in 80% of cells within a cluster. The probability of failure to 

detect the marker gene for a given cluster is given by the probability of dropouts in 20% of the 

cells in a cluster. This probability is: 

Pfailure = Pdropout ^ Ndropouts 
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where Pdropout is estimated to be 60% and Ndropouts = 0.2 * Ncells is the number of cells in 

which the gene must drop out. We calculated this probability based on the number of cells Ncells 

in every cluster, ranging from 5 to 108. Then we calculated the probability that 25 out of 30 

clusters do not have a unique marker gene by multiplying the probabilities of failure in 25 

randomly sampled clusters. We performed this sampling 10,000 times and report the average 

(10–62). This value represents the probability of failing to detect a unique marker gene for 25 out 

of 30 clusters given that each cluster is expressing a single unique marker at 7 CPM. 

We note that these calculations are conservative in several regards. First, we assumed that 

each cluster expresses a single marker gene. Realistically, each subtype may express multiple 

unique markers. This would increase the probability of detecting at least one of them. Second, 

unique markers may be expressed at levels higher than 7 CPM. We observed that the unique 

marker genes that we discovered are expressed at levels well above 7 CPM and biologically it is 

unlikely that a type identity factor would be expressed at extremely low levels. Thus, we 

estimate that our failure to detect marker genes can be explained by dropouts alone is very small. 

Information theory-based analyses of cell type identity related to Figure 7. We sought to 

identify a minimal sets of genes that can encode the subtype identity of GH146+ PNs in a 

combinatorial fashion. Our motivation was to determine by direct search whether such a 

molecular combinatorial code exists. We also sought to characterize the redundancy of minimal 

combinatorial codes and the redundancy of individual genes in the context of such minimal 

codes. 

To address this, we devised an algorithm that finds a minimal set of genes that is 

sufficient to encode the subtype identity of cells in a combinatorial manner based on ideas from 

information theory. An introduction to information theory is outside the scope of this work. 

Nevertheless, we provide a brief description of the basic concepts. Then we describe the 

algorithm and how it was applied in this work. 

Entropy measures the uncertainty of a random variable (Shannon, 1948, Cover and 

Thomas 2006). Conditional entropy measures the uncertainty of a random variable given the 

knowledge of another variable (i.e., after conditioning on another variable). Conditioning on data 

never increases uncertainty (on average), which agrees with our intuition that additional 

information never hurts.  
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We use the notion of entropy H(C) to describe the uncertainty of cell type classification 

C. We use conditional entropy to describe the reduced uncertainty in classification due to 

knowledge of the expression state of a gene, H(C|G). The information gain due to knowledge of 

the expression state of the gene is the mutual information between the gene and the classification 

I(G;C), which can be defined as 

I(G;C) = H(C) – H(C|G), 

where H(C) is the entropy of cell type classification (without knowledge of the expression states 

of any genes) and H(C|G) is the entropy of cell type classification after conditioning on the 

expression state of gene G. Mutual information I(G;C) describes how much our uncertainty 

about classification C decreases when we observe the gene G. Mutual information I(G;C) can 

also be calculated directly from the probability distributions of cell type classes and expression 

states. For two discrete random variables G and C with their joint probability density function 

(pdf) p(x,y), the mutual information of G and C is defined as 

 I(G;C) = sum over g, sum over c, p(g,c) log p(g,c) / (p(c)p(g)) 

 = H(C) – H(C|G). 

We often calculate the information content of a gene G with respect to the cell type classification 

C using this equation. Throughout this work, the base of the logarithm is 2 and so the unit of 

entropy and information is bit. 

Information can be redundant. When we observe the expression state of a gene G, it may 

reduce the uncertainty of classification by an amount up to the information of that gene I(G;C). 

However, if we have already observed the expression states of other genes G’, then the 

additional observation of gene G may reduce the uncertainty of classification by an amount less 

than I(G;C), 

I(G;C|G’) = H(C|G’) – H(C|G”), 

where G” is the set of genes containing G and G’. This is consistent with our intuition that the 

information carried by a gene G may be redundant with information that is already carried by 

genes G’. We define the redundancy R of a gene G in the context of a set of genes G’ 

R = [I(G;C) – I(G;C|G’)] / I(G;C). 
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This describes the fraction of the information carried by the gene alone that it actually 

contributes when it is added to an existing set of genes (i.e., an existing code). R typically ranges 

from 0 to 1, where R = 0 means no redundancy and R = 1 means complete redundancy. In some 

special cases, there is synergy in the multivariate mutual information which causes R < 0. 

 We now describe the algorithm for finding a minimal combinatorial code. This problem 

is closely related to the Feature Reduction n-k (FRn-k) problem in machine learning (Battiti 

1994). To solve this problem, we employ a greedy algorithm using mutual information similar to 

that described in (Kwak and Choi, 2002). The problem is formulated as follows: 

Given an initial set F with n features and set C of all output classes, find the subset S � F 

with k features that minimizes H(C|S), which is equivalent to maximizing the mutual information 

I(C;S). 

Our algorithm is as follows: 

(1) Initialize S as the empty set and F as the initial set of n features. 

(2) For all fi in F, compute I(C;fi). 

(3) Find the feature fi that maximizes I(C; fi). Add fi to set S. Remove fi from set F. 

(4) Repeat until the desired number of features k is selected: 

 (1) For all fi in F, compute I(C;fi|S). 

 (2) Find the feature fi that maximizes I(C; fi|S). Add fi to set S. Remove fi from set F. 

(5) Return the set S containing the selected features. 

We repeat this computation with increasing k until the output set S explains a chosen amount of 

uncertainty in the classification C. Typically, we choose this termination condition as 99% of the 

entropy H(C) of classification C. 

 We note that the computation of mutual information is dramatically more efficient when 

G and C are discrete. We therefore binarized expression levels using a cutoff of log2(CPM+1) = 

3. This cutoff was chosen based on the minimum in the distribution of expression levels across 

all genes and all cells (Figure S7A). We varied the cutoff value between 2 and 6 and found that 
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our results were essentially unchanged. The compactness of the minimal codes for GH146+ PN 

subtype identity and the genes included in the code were nearly identical to that obtained using 

the cutoff of 3 (data not shown). We also calculated the correlation between the information 

carried by each gene under different values of the cutoff with the information carried under the 

cutoff of 3 (Figure S7B) . This analysis revealed that the information content of genes is not very 

sensitive to the precise choice of cutoff for binarization across the range of 2 to 6. We also found 

that other discretization schemes, such as a different number of levels of expression (e.g. Off, 

Low, Medium, High), yielded similar results (data not shown). All calculations related to 

information theoretic analyses were performed using binarized expression levels with a cutoff of 

log2(CPM+1) = 3. 

Application of information theory-based approaches to combinatorial coding of PN 

subtype identity in Figure 7. We initially applied the algorithm to Mz19+ PN cells to test 

whether it is capable of identifying a set of genes that is sufficient for a combinatorial code of 

cell type identity. We formed a population consisting of the 175 GH146+ cells that belong to the 

classes labeled by Mz19-GAL4 (108 DA1, 35 VA1d, and 32 DC3 cells). We created a binary 

expression matrix consisting of the ON/OFF states of all 15,522 genes that remained after 

removing genes that were not detected in any cells. We calculated the mutual information of 

each gene with respect to the GH146+ subtype classification. We then used the greedy algorithm 

described above to find a minimal set of genes for encoding GH146+ subtype identity (Figure 

7A). The initial set of features F was the top 30 most informative genes among the 15,522 genes 

in the expression matrix. 

 We next applied this approach to all GH146+ PNs. We formed a population consisting of 

the 902 GH146+ cells belonging to the adPN and lPN lineages (Figure 2D). We created a binary 

expression matrix consisting of the ON/OFF states of all 15,522 genes that remain after 

removing genes that are not detected in any cells. We calculated the mutual information of each 

gene with respect to the GH146+ subtype classification (Figure 2D). We used the greedy 

algorithm described above to find minimal sets of genes for encoding GH146+ subtype identity 

with k varying from 1 to 20. The initial set of features F was the top 30 most informative genes 

among all 15,522 genes (genome-wide), among the 1062 TFs, or among the 1048 CSMs. We 

plotted the uncertainty explained by the minimal codes obtained with each value of k (Figure 
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7B). We then chose minimal codes that explained 95% of the uncertainty of GH146+ subtype 

classification (Figures 7C–E). 

To evaluate whether TFs and CSMs carry more information than other genes, we found 

minimal sets of genes using an initial set of features F consisting of 1,000 genes chosen at 

random from among the 13,608 expressed in the genome after excluding the genes annotated as 

TFs and CSMs. We performed this search with 100 replicates. We plotted the mean uncertainty 

explained at various values of k and the standard deviation across the replicates (Figure 7B). 

We assessed the redundancy of individual genes in the context of the minimal code. To 

do this, we calculated the redundancy R when each gene was added to the minimal code 

identified from all genes (genome-wide). The redundancy R is defined as the fraction of the 

information carried by the gene alone I(G;C) that it actually contributes when it is added to the 

minimal code I(G;C|G’), 

R = [I(G;C) – I(G;C|G’)] / I(G;C), 

where G’ is the set of genes in the minimal code. R typically ranges from 0 to 1, where R = 0 

indicates no redundancy and R = 1 indicates complete redundancy. However, in rare cases, genes 

had negative redundancy, indicating synergy in the multivariate mutual information. All of these 

genes had low information (I(G;C) < 0.05 bits). We excluded these genes from the visualization 

(Figure 7F). We calculated the fraction of highly informative and redundant genes that were 

annotated as TFs or CSMs. 
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Figure Legends 

 

Figure 1. Single-cell RNA-seq Protocol for the Drosophila Pupal Brain 

(A) Schematic of the fly olfactory system organization. Olfactory receptor neurons (ORNs), 

whose cell bodies are located in the antenna and maxillary palp, expressing the same receptor 

(same color) target their axons to the same glomerulus in the antennal lobe. Projection neuron 

(PN) dendrites also target to single glomeruli, and their axons project to the mushroom body 

(MB) and lateral horn (LH).  

(B) Schematic of single cell RNA-seq protocol for Drosophila brain cells. See text for details. 

(C) Representative confocal images of Drosophila central brains that are labeled by UAS-

mCD8GFP crossed with pan-neuronal driver elav-GAL4 (24h APF), olfactory projection neuron 

driver GH146-GAL4 (24h APF), and astrocyte driver alrm-GAL4 (72h APF). N-cadherin (Ncad) 

staining was used to label neuropil (red). Scale bar, 50 µm. 

(D) Heat map showing expression levels of genes that are specific for neurons or astrocytes. 

Each column is an individual cell. 12 elav-GAL4+, 67 alrm-GAL4+, and 946 GH146-GAL4+ 

cells are shown, and the driver used to label the cell is indicated by the color above the column. 

Cell type-specific genes are enriched in astrocytes (top 9) and neurons (bottom 5). Expression 

levels are indicated by the color bar (CPM, counts per million). Cells and genes were ordered 

using hierarchical clustering. 

(E) Visualization of astrocyte and neuron populations using t-distributed Stochastic Neighbor 

Embedding (tSNE). Each dot is one cell. Color indicates the driver used to label the cell. 

See also Figure S1. 

 

Figure 2. Single-cell RNA-seq Analysis for GH146+ Projection Neurons 

(A) Representative image (confocal projection) and schematic of GH146-GAL4+ olfactory 

projection neurons (PNs), which include (per antennal lobe) 50 adPNs (acj6+), 35 lPNs (vvl+; 

expression of vvl begins to decrease in lPNs from 18h APF) and 6 vPNs (Lim1+). The cell bodies 

of adPNs, lPNs, and vPNs are located respectively anterodorsal, lateral, and ventral to the 
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antennal lobe neuropil (circled), which was labeled by N-cadherin (Ncad) staining in red. All 

GH146+ adPNs and lPNs send dendrites to a single, specific glomerulus. The schematic shows 

the stereotyped locations of a large subset of glomeruli (named according to their locations; 

Laissue et al., 1999) in a 2D projection, color-coded according to whether they are targeted by 

adPNs or lPNs. Scale bar, 20 µm. D, dorsal; L, lateral.  

(B) Visualization of GH146+ PN cells using dimensional reduction by PCA followed by tSNE. 

Each dot is one cell. Cells are arranged according to transcriptome similarity.  

(C) Schematic of Iterative Clustering for Identifying Markers (ICIM), an unsupervised machine-

learning algorithm for identifying genes that distinguish cell types. See text for details. 

(D) Visualization of GH146+ PN cells using tSNE based on 561 genes identified using ICIM. 

Each dot is one cell. Cells are arranged according to similarity of expression profiles of the 

selected genes. Cells are colored by cluster identity, as determined using HDBSCAN. GH146+ 

adPNs and lPNs form 30 distinct clusters.  

(E) Visualization of GH146+ PN cells arranged using ICIM and tSNE as in Figure 2D and 

colored according to acj6 and vvl expression level (CPM, counts per million). acj6 and vvl 

(encoding lineage-specific transcription factors for adPNs and lPNs, respectively) are expressed 

in GH146+ PNs in a mutually exclusive manner. ~60% of GH146-GAL4+ cells are acj6+ (see 

Figure 2A), consistent with previous findings (Komiyama et al., 2003).  

See also Figure S2.  

 

Figure 3. Assign Clusters to PN Classes Using Known Markers 

(A and B) Intersecting GH146-Flp with 91G04-GAL4 (A) or with Mz19-GAL4 (B) labels only 

one PN class (DC2) or 3 PN classes (VA1d and DC3 that are acj6+ adPNs; DA1 that are acj6– 

lPNs), respectively. Both intersections label similar numbers of PNs at 24h APF and in adults. N-

cadherin (Ncad) staining was used to label neuropil (red). Schematics of these two drivers are 

shown on the right. Scale bar for (A), 20 µm; for (B), 50 µm, 50 µm and 20 µm. 

(C) Visualization of GH146+, 91G04+, and Mz19+ PN cells using tSNE based on 561 genes 

previously identified using ICIM (Figure 2D). Each dot is one cell. Cells are arranged according 

to similarity of expression profiles of the selected genes. In the left panel, cells are colored 
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according to driver. In the right panel, cells are colored by expression level of acj6 (CPM, counts 

per million). We mapped Cluster #1 to DC2 PNs, corresponding to 91G04+ cells. DA1 PNs 

(Mz19+/acj6-) map to two clusters, #2 and #2’. VA1d and DC3 PNs  (Mz19+/acj6+) map to two 

clusters, #3 and #4; we elucidated which glomerulus corresponds to which cluster in Figure 4. 

 

Figure 4. Assign Clusters to PN Classes Using Newly Identified Markers 

(A) Visualization of GH146+ PN cells using tSNE based on 561 genes previously identified 

using ICIM (Figure 2D) showing expression of trol (CPM, counts per million) enriched in one 

cluster (#5). Clusters #1–4 from Figure 3 are also indicated. 

(B) After intersecting with GH146-Flp, trol-GAL4 labels 2–3 PNs in each hemisphere at both 

24h and 72h APF. These PNs all project dendrites to the VM2 glomerulus as shown at 72h APF. 

Scale bar, 20 µm. 

(C) Visualization of GH146+ and trol+ PN cells using tSNE based on 561 genes previously 

identified using ICIM (Figure 2D). In the left panel, cells are colored according to driver. In the 

right panel, cells are colored by expression level of trol (see color bar in Figure 4A; CPM, counts 

per million). trol-GAL4+ PNs map to one GH146+ PN cluster (left), which displays high 

expression of the endogenous gene trol (right). This cluster (#5) is mapped to VM2 PNs. Note 

that because of the stochastic nature of tSNE the arrangement of cells and clusters changes when 

a new group of cells is added (compare cluster #5 on Figure 3A and 3C).  

(D) Visualization of GH146+ PN cells using tSNE as in Figure 4A showing expression of 

CG31676 (CPM, counts per million; see color bar in Figure 4A). CG31676 is highly expressed 

in one of two Mz19+/acj6+ clusters (VA1d and DC3, clusters #3 and #4). Several other clusters 

also express CG31676, including the DA1 clusters (#2 and #2’). Clusters #6 and #6’ also express 

for CG31676, but are acj6– (see Figure S3B). 

(E) Schematic of CRISPR/Cas9 mediated insertion of T2A-GAL4 into the first intron of 

CG31676.  

(F) CG31676-GAL4 expression in PNs after intersecting with GH146-Flp. Similar numbers of 

PNs are labeled at 24h, 48h, and 72h APF. VA1d, but not DC3, is labeled, enabling us to map 

Cluster #3 to VA1d (CG31676+) and Cluster #4 to DC3 (CG31676-). In addition, DA1 and DL3 
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are labeled. Therefore, the remaining acj6–/CG31676+ cells (Clusters #6 and #6’; see Figure S3 

B) correspond to DL3 PNs. Scale bar, 20 µm. 

(G) Summary of the mapping of 6 PN classes (4 from the adPN lineage and 2 from the lPN 

lineage) to corresponding transcriptome clusters. Markers used for unambiguous mapping 

(Figures 3, 4A–D, and S3B, C) are listed.  

N-cadherin (Ncad) staining was used to label neuropil (red).  

See also Figure S3.  

 

Figure 5. Identification of New Lineage-specific Transcription Factors from Single-cell 

RNA-seq 

(A) Visualization of GH146+ PN cells using tSNE as in Figure 2E showing expression of acj6, 

C15, knot, and unpg. adPNs are outlined and remaining cells are lPNs (as determined based on 

acj6 expression). C15 and knot are only expressed in adPNs, and unpg is only expressed in lPNs.  

(B) Expression of C15 and Knot (antibody staining in white) in GH146+ PNs is restricted to 

adPNs (GH146+ cells are green, the adPN and lPN lineages are outlined in yellow). unpg 

(visualized using a lacZ reporter) is restricted to lPNs at 24h APF, consistent with RNA-seq data 

in (A).  

(C) Loss-of-function analysis of C15 using elav-GAL4 driven UAS-C15-RNAi (line #2, about 

80% reduction of C15 mRNA; see Figure S4C). elav-GAL4 crossed with w1118 flies were used as 

wild type (WT) control. When C15 is knocked down, the VA1d glomerulus (visualized by VA1d 

ORN axons labeled by Or88a-mtdT) displays a dorsal shift. In addition, GFP signal in VA1d PN 

dendrites (visualized by Mz19-QF driven QUAS-mCD8GFP) is undetectable. Scale bar, 20 µm. 

(D) Quantification of position shift of the VA1d glomerulus due to C15 knockdown seen in (C). 

θ is the angle between a line drawn from the center of VA1d and DC3 and the vertical line 

demarcating the dorsoventral axis. Error bars are SEM.  ***, P < 0.001 (t test). Sample numbers 

are indicated.  

(E) Gain-of-function analysis of C15 in Mz19-GAL4+ overexpression MARCM clones. In WT 

control, dendrites of adPN neuroblast (adNB) clones target the VA1d and DC3 glomeruli and 
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lPN neuroblast (lNB) clones target the DA1 glomerulus. When C15 is misexpressed, dendrite 

targeting of adNB clones is not affected, whereas dendrite targeting of lNB clones is affected 

with 100% penetrance, as quantified at the right. Scale bar, 20 µm. 

N-cadherin (Ncad) staining was used to label neuropil (red). 

See also Figure S4.  

 

Figure 6. Transcriptome Analysis of Mz19+ PNs across Developmental Stages 

(A) Representative confocal images (projections) of Mz19+ PNs (Mz19-GAL4 intersected with 

GH146-Flp) from 5 different stages. Schematic (right panel) shows the three classes of Mz19+ 

PNs, which belong to the adPN (acj6+) and lPN lineages (acj6-). N-cadherin (Ncad) staining 

was used to label neuropil (red). D, dorsal; L, lateral. Scale bar, 20 µm. 

(B) Visualization of Mz19+ PNs from developmental stages ranging from 24h APF to adult 

using tSNE based on 497 genes identified using ICIM. Color shows expression of acj6 and 

CG31676 (CPM, counts per million). acj6+ cells are adPNs (VA1d and DC3, outlined), and 

acj6– cells are lPNs (DA1). Within adPNs, CG31676+ cells are VA1d PNs, and CG31676– cells 

are DC3 PNs. Note that CG31676 is turned off in all adult adPNs (see Figure 6C for 

developmental stages of these cells). 

(C) Visualization of Mz19+ PNs from different developmental stages, as in (B), with color 

indicating developmental stages. acj6 and CG31676 expression patterns (Figure 6B) enabled 

unambiguous identification of three PN classes, which are labeled. Dashed lines indicate the 

developmental trajectories of these classes. VA1d and DC3 PNs are distinct at all pupal stages, 

but merge to form one cluster in the adult. The densely and sparsely dashed red lines represent 

the trajectories of Cluster 2 and 2’ respectively, which become indistinguishable by 72h APF and 

remain so in the adult.  

(D) Type identity score of VA1d and DC3 PNs from five developmental stages. Each dot 

represents one cell. Colors show developmental stages, as in (C). The identity score is calculated 

as a scaled sum of the 23 most significantly differentially expressed genes between VA1d and 

DC3 PNs (P < 10–5; Experimental Procedures). 13 genes are highly expressed in VA1d PNs, but 

not in DC3 PNs, and these contribute positively to the score. 9 genes displayed the opposite 
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expression pattern, and these genes contribute negatively to the score. Scores range from –1 to 1, 

where –1 indicates high expression of the DC3 signature genes and no expression of the VA1d 

signature genes, and +1 indicates the opposite expression profile.  

(E) Violin plot showing the distribution of transcriptome similarity between all pairs of Mz19+ 

adPNs. Transcriptome similarity was calculated as the Pearson correlation of expression levels of 

the 497 genes identified in an unbiased manner by using ICIM on Mz19+ PNs. Peaks are 

indicated by asterisks. The upper peak (higher similarity) consists of pairs of cells in which both 

cells belong to the same class (i.e., both VA1d or both DC3). The lower peak consists of pairs of 

cells in which the two cells belong to different classes (i.e., VA1d and DC3). In the adult, the 

distribution is unimodal, reflecting the dissipation of transcriptome differences between the two 

classes. 

(F) Schematic model of Mz19+ adPN development. VA1d and DC3 PNs are derived from a 

common neuroblast (NB) lineage. Our data indicate that the transcriptomes of these two PN 

classes are distinct at pupal stages and become indistinguishable in the adult.  

(G) Differentially expressed genes between PN classes belonging either to the same lineage 

(VA1d and DC3 from the adPN lineage, or DL3 and DA1 from the lPN lineage) or to different 

lineages (VA1d and DA1). Adult data does not exist for VA1d vs DC3 PNs, as they are 

indistinguishable at adult. For DL3 PNs, we only have data for 24h APF.  

See also Figure S5.  

 

Figure 7. Combinatorial Molecular Codes of PN Subtype Identity  

(A) Minimal combinatorial code for subtype identity among Mz19+ PNs identified using an 

information theory-based approach. Left panel shows median expression level of each gene 

among cells belonging to each Mz19+ class. Right panel shows binarized expression levels 

(ON/OFF) of the same genes (using a cutoff of 7 CPM, or log2(CPM+1) = 3). Each Mz19+ PN 

class expresses a distinct combination of these two genes. 

(B) Information contained in minimal combinatorial codes for GH146+ subtype identity of 

varying sizes and origins. Horizontal axis is the number of genes included in the code. Vertical 

axis is the amount of uncertainty (entropy) of cell type classification that is explained by the 
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code. Colors denote codes constructed from different sets of genes. The genome-wide code 

(pink) is constructed from all genes, while the TF (green) or CSM (orange) codes use only 1048 

TF or 1062 CSM genes. Gray denotes codes constructed from 1,000 randomly chosen non-TF 

and non-CSM genes, with the line indicating the median of and the shading indicating the 

standard deviation across 100 replicates, respectively. 

(C–E) Minimal combinatorial codes for GH146+ subtype identity constructed from (C) all genes, 

(D) TFs, or (E) CSMs. Heat map indicates the binary expression state of the gene in a cluster, 

where brown denotes the ON state and white denotes the OFF state (using a cutoff of 7 CPM, or 

log2(CPM+1) = 3). Clusters and genes are arranged by hierarchical clustering.  

(F) Redundancy and information content of individual genes with respect to GH146+ PN 

subtype identity. Each dot is a gene. Information of a gene is the mutual information of its 

binarized expression level and cluster identity. Redundancy of a gene is the fraction of its 

information that is contained in the minimal combinatorial code (Figure 7C). Genes are colored 

to indicate their type (TFs, green; CSMs, orange; other, gray). Squares indicate genes that are 

included in the minimal combinatorial code. 

(G) Representation of TFs and CSMs among the top 30 differentially expressed genes between 

Mz19+ PN subtypes. Top panel shows VA1d and DA1 cells, while bottom panel shows VA1d 

and DC3 cells. Vertical axis shows the fraction of the 30 most significantly differentially 

expressed genes that are TFs (green), CSMs (orange), or TF + CSM (blue) at each 

developmental stage. Adult stage is absent from the VA1d versus DC3 comparison because these 

two PN classes cannot be distinguished based on their transcriptomes. 

(H) Enrichment of TFs and CSMs among the top differentially expressed genes between pairs of 

clusters of GH146+ cells. Horizontal axis shows the number of significantly differentially 

expressed genes under consideration. Vertical axis shows the distribution of enrichment among 

pairs of 30 clusters (435 pairs). Enrichment is calculated relative to the genomic representation 

of TFs (6.8%) and CSMs (6.8%), which is indicated by the horizontal line. 

See also Figures S6 and S7. 
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Figure S1. Single-cell RNA-seq Protocol for the Drosophila Pupal Brain, related to Figure 

1. 

(A) Image of single-cell suspension after brain dissociation. Pupal brains were dissected and 

dissociated. Sample was imaged using epifluorescence microscopy. DNA was stained using 

Hoescht 33342 (blue).  Scale bar, 50 µm. 

(B) Representative image of cDNA size distribution for 96 wells as measured using the Fragment 

Analyzer automated capillary electrophoresis system (Advanced Analytical).  

(C) Distributions of the number of uniquely mapped reads (left) and genes detected (right) per 

cell. On average, 1 million reads mapped uniquely to the Drosophila genome per cell, and 3000 

genes were detected (CPM > 3).  

(D) Summary of efficiency for key steps of the single-cell RNA-seq protocol based on PNs. The 

efficiency of obtaining high-quality cDNA (x/m) from astrocytes is lower (~30%). 

	

Figure S2. Single-cell RNA-seq Analysis for GH146+ Projection Neurons, related to Figure 

2. 

(A) Heat map showing expression of the male-specific genes roX1 and roX2 in individual cells. 

Each column is one cell. As expected, ~50% of GH146-GAL4+ cells express these genes. Cells 

were ordered using hierarchical clustering. 

(B) Visualization of GH146+ PN cells using tSNE based on 158 genes identified using ICIM. 

Each dot is one cell. Cells are arranged according to similarity of expression profiles of the 

selected genes. Cells are colored by expression levels of Lim1 (left), Gad1 (middle) (see C for 

color bar; CPM, counts per million), and by HDBSCAN, which is a hierarchical density-based 

clustering algorithm (right). Two distinct clusters express Gad1, one of which expresses Lim1; 

both are unique to vPNs, indicating that these clusters correspond to GH146+ vPNs. 

(C) Visualization of GH146+ PN cells as in Figure S2B with cells colored according to 

expression of VGlut (CPM, counts per million). One distinct cluster expresses VGlut (outlined), 

which is a unique marker for anterior paired lateral (APL) neurons, indicating that this cluster 

contains APL neurons. 
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(D) Confocal images showing that APL neurons (indicated by arrows) are labeled by GH146-

GAL4 driven UAS-mCD8GFP. Scale bar, 50 µm. 

(E) Confocal image showing that APL neurons (arrow) are labeled by VGlut-GAL4 (after 

intersecting with GH146-Flp). Ncad staining labels neuropil (red), and antennal lobes are 

outlined.  

(F) Heat map showing expression of the lineage-specific transcription factors acj6 and vvl in 

GH146+ adPN and lPN cells (after removal of vPNs and APL neurons)  (CPM, counts per 

million). Cells are ordered by acj6 expression, and then by vvl expression. 

 

Figure S3. Assign Clusters to PN Classes Using Newly Identified Markers, related to Figure 

4.  

(A) Systematic characterization of CG31676-GAL4 expression in PNs after intersecting with 

GH146-Flp at 48h and 72h APF, as well as 10d adult. Expression patterns are summarized in the 

table: +, expressed; –, not expressed; +/–, expressed in a subset of flies. CG31676-GAL4 stably 

labels DA1 and DL3 from pupa to adult. Note that CG31676-GAL4 also transiently labels DL2a 

and DA4l adPNs (as summarized in the table), but we could not unambiguously map them to 

corresponding clusters. N-cadherin (Ncad) staining was used to label neuropil (red). Scale bar, 

20 µm. 

(B) Visualization of GH146+ PN cells using tSNE as in Figure 4A showing expression levels of 

acj6, mirr, and CG7358 (CPM, counts per million). Clusters #6 and #6’ are both acj6–. Cluster 

#6’, but not Cluster #6, is mirr+ and CG7358+. 

(C) Visualization of GH146+ PN cells using tSNE as in Figure 4A showing expression levels of 

fru and CG45263 (CPM, counts per million; see color bar in Figure S3B). fru is expressed in 

Cluster #2, but not Cluster #2’, while CG45263 is expressed in Cluster #2’, but not Cluster #2. 

Both Clusters #2 and #2’ map to DA1 PNs. 

(D) Schematic summary of birth order and timing of the lateral neuroblast (NB) lineage. Both 

DA1 and DL3 PNs are born in two different periods, separated by antennal mechanosensory and 

motor center (AMMC) neurons (Lin et al., 2012). ALH, after larval hatching.  

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 3, 2017. ; https://doi.org/10.1101/145045doi: bioRxiv preprint 

https://doi.org/10.1101/145045


	 51	

Figure S4. Validation of Transcription Factor Expression Patterns, related to Figure 5.  

(A) Visualization of GH146+ PN cells using tSNE as in Figure 4A showing expression of 

prospero (pros) and cut (ct). pros is expressed in Mz19+ PNs, while ct is not.  

(B) Antibody staining shows that Mz19+ PNs (arrowheads) express Pros but not Cut at 24 APF, 

consistent with RNA-seq data, as shown in (A).  

(C) Quantitative PCR (qPCR) measurement of the knockdown efficiency of two UAS-C15-RNAi 

lines. elav-GAL4 was crossed with either W1118 (control) or two C15-RNAi lines, and mRNA was 

extracted from 5-day-old adult fly heads (N = 3 x 10 heads for each condition). Expression levels 

are normalized to actin5C. Error bars show SEM.  *, P < 0.05; ***, P < 0.001 (t test). 

(D) Two additional examples of dendrite targeting of Mz19-QF+ PNs in WT and C15 

knockdown, as in Figure 5C. DA1 and VA1d glomeruli are outlined in yellow.  

(E) Three additional examples of gain-of-function analysis of C15 misexpression in Mz19-

GAL4+ MARCM lateral neuroblast (NB) clones, as in Figure 5E. Mistargeted regions are 

outlined and corresponding glomeruli are indicated.  

(F) Summary of mistargeting phenotypes for UAS-C15 lNB clones. ++, fully targeted; –, not 

targeted; +/–, partially targeted. Lower panel is a schematic of mistargeting phenotypes. Note 

that all mistargeted glomeruli are normally innervated by adPNs. 

N-cadherin (Ncad) staining was used to label neuropil (red). Scale bar, 20 µm. 

 

Figure S5. Analysis of Mz19+ PN Development and Maturation, related to Figure 6. 

(A) Gene Ontology (GO) analysis of genes that were upregulated and downregulated between 

24h APF and adult in Mz19+ PNs (P < 10–5). For the top 10 most significantly enriched GO 

terms, the significance of enrichment and the number of genes corresponding to each term are 

shown.  

(B) Expression dynamics of the genes identified in (A) spanning the 24h, 36h, 48h, and 72h 

APF, and adult stages. Genes were classified based on their dynamical profiles (Experimental 

Procedures). This approach identified 7 distinct dynamical patterns of expression among the 

down-regulated genes (waves 1–7) and 6 such patterns among up-regulated genes (waves 1–6). 
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For individual genes, the median expression level at each developmental stage is shown in gray 

(normalized to maximum expression across developmental stages). The mean expression profile 

across the genes assigned to a wave is shown in black. For each wave, the number and fraction of 

genes that were TFs and CSMs are indicated.  

(C) Visualization of Mz19+ PN cells from developmental stages ranging from 24h APF to adult 

as in Figure 6B showing expression of CG31676 (CPM, counts per million). In DA1 PNs, 

CG31676 is expressed at all stages. In VA1d PNs, CG31676 is expressed at all pupal stages, but 

is turned off in adult. 

(D) Confocal images (anterior stacks) showing CG31676-GAL4 expression after intersecting 

with GH146-Flp, at various pupal and adult stages. DA1 and VA1d glomeruli are outlined and 

adPN cell bodies are indicated (arrow). Consistent with our RNA-seq data (Figure S5C), 

CG31676 is expressed at all time points in DA1 PNs, while in VA1d PNs CG31676 is expressed 

at all pupal stages and then turned off in 10 day old adult flies. We observed very weak 

expression in 3-day-old adult flies, likely due to perdurance of mCD8GFP. Scale bar, 20 µm. 

 

Figure S6. Searching for Unique Markers of Individual PN Subtypes, related to Figure 7 

(A) Violin plots showing expression of genes identified as unique marker genes among cells 

within each GH146+ PN cluster. These 6 genes were identified using the criteria: (1) >50% cells 

within the cluster express the gene, and (2) <10% cells in any other cluster express the gene. 

Expression was defined as >7 CPM, or log2(CSM+1) > 3. These genes specify 5 distinct PN 

clusters. 

(B) Violin plots showing expression of genes that were identified as unique markers using less 

stringent criteria. The criteria used here were: (1) >50% of the cells in the cluster express the 

gene, and (2) <25% of the cells in any other cluster express the gene. Expression was defined as 

>7 CPM, or log2(CSM+1) > 3. 20 genes were found, but many of these genes are clearly not 

unique to a single cluster. This indicates that relaxing the stringency of our search results in 

many genes being discovered which are not in fact unique markers. See (A) for labels of the 

expression level. 
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(C) Estimation of an upper bound on dropout rate in our single-cell RNA-seq measurement. Each 

dot is a gene. The mean expression level of the gene across all GH146+ PNs is plotted against 

the fraction of cells in which the gene is not detected (<7 CPM, or log2(CPM+1) < 3). Detection 

failure events can occur because either (1) the gene is not expressed in the cell, or (2) failure to 

detect expression of the gene despite the presence of mRNA transcripts due to technical artifact 

(called dropouts). Thus, the fraction of detection failure events offers an upper bound on dropout 

rate. We used this upper bound to calculate the probability that we failed to detect unique 

markers for 25 PN classes due to dropout alone (Experimental Procedures). 

 

Figure S7. Combinatorial Molecular Codes of PN Subtype Identity, related to Figure 7 

(A) Distribution of expression levels across all genes and all GH146+ cells (CPM, counts per 

million). We chose to binarize expression levels using a cutoff of log2(CPM+1) = 3 (equivalent 

to CPM = 7) because the distribution exhibits a distinct minimum at this value. 

(B) Robustness of information to the choice of binary cutoff. We calculated the Pearson 

correlation between the mutual information of a gene under various binarization cutoffs and the 

mutual information at the binarization cutoff that we chose (log2(CPM+1) = 3). For binarization 

cutoffs ranging from 2 to 6, the mutual information was highly similar (ρ > 0.95), indicating that 

the precise choice of binarization threshold does not affect our results. 

(C) Expression levels of genes in the minimal combinatorial codes for GH146+ PN subtype 

identity. Each column is a cluster and each row is a gene. Color indicates the median expression 

of the gene among the GH146+ cells within the cluster (CPM, counts per million). These plots 

correspond to Figures 7C–E before binarization. Cells and genes are arranged by hierarchical 

clustering on binarized expression states (dendrograms shown in Figures 7C–E). 
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