Whole-ganglion imaging of voltage in the medicinal leech

using a double-sided microscope

Yusuke Tomina¹ and Daniel A. Wagenaar¹

¹Division of Biology and Biological Engineering

California Institute of Technology

Caltech 139-74, Pasadena, California, 91125 USA

Correspondence to: Dr. Yusuke Tomina, Division of Biology and Biological Engineering, California Institute of Technology, Caltech 139-74, Pasadena, California, 91125 USA. E-mail: tominaye@caltech.edu

1 Abstract

2 Studies of neuronal network emergence during sensory processing and motor 3 control are greatly promoted by technologies that allow us to simultaneously record the 4 membrane potential dynamics of a large population of neurons in single cell resolution. 5 To achieve whole-brain recording with the ability to detect both small synaptic 6 potentials and action potentials, we developed a voltage-sensitive dye (VSD) imaging 7 technique based on a double-sided microscope that can image two sides of a nervous 8 system simultaneously. We applied this system to the segmental ganglia of the 9 medicinal leech. Double-sided VSD imaging enabled simultaneous recording of 10 membrane potential events from almost all of the identifiable neurons. Using data 11 obtained from double-sided VSD imaging we analyzed neuronal dynamics in both 12 sensory processing and generation of behavior and constructed functional maps for 13 identification of neurons contributing to these processes.

14

15

16

1 Introduction

2	One of the principal goals in neuroscience is to clarify how neuronal circuits
3	process sensory information and control behavior. Sensory information and behavioral
4	states are represented as dynamic activity patterns of neuronal populations in large
5	neuronal networks. To clarify the neuronal mechanisms underlying sensory processing
6	and behavioral generation, it is necessary to determine which neurons are involved in
7	functionally relevant neuronal dynamics and how those neuronal components interact
8	with each other within the larger network. Technological advances in neuroimaging
9	have enabled brain-wide recording of neuronal activity with sufficiently fine spatial
10	resolution to identify individual neurons within a population ¹ . Researchers can perform
11	pan-neuronal Ca ²⁺ imaging in selected animals with small size nervous systems,
12	including larval zebrafish 1 and <i>C. elegans</i> $^{2-4}$.
12 13	including larval zebrafish ¹ and <i>C. elegans</i> ^{2.4} . Although Ca^{2+} imaging is a convenient tool for detecting neuronal activity, it
13	Although Ca ²⁺ imaging is a convenient tool for detecting neuronal activity, it
13 14	Although Ca^{2+} imaging is a convenient tool for detecting neuronal activity, it is limited to intracellular events that are associated with a change in Ca^{2+} concentration.
13 14 15	Although Ca ²⁺ imaging is a convenient tool for detecting neuronal activity, it is limited to intracellular events that are associated with a change in Ca ²⁺ concentration. Thus, Ca ²⁺ imaging measures neither subthreshold depolarizing nor hyperpolarizing
13 14 15 16	Although Ca ²⁺ imaging is a convenient tool for detecting neuronal activity, it is limited to intracellular events that are associated with a change in Ca ²⁺ concentration. Thus, Ca ²⁺ imaging measures neither subthreshold depolarizing nor hyperpolarizing synaptic events. Accordingly, it is difficult to observe synaptic integration processes
13 14 15 16 17	Although Ca^{2+} imaging is a convenient tool for detecting neuronal activity, it is limited to intracellular events that are associated with a change in Ca^{2+} concentration. Thus, Ca^{2+} imaging measures neither subthreshold depolarizing nor hyperpolarizing synaptic events. Accordingly, it is difficult to observe synaptic integration processes using Ca^{2+} indicators. In contrast, voltage sensitive dyes (VSDs) can detect both action

1	Hirudo verbana ⁸⁻¹⁰ . The segmental ganglion of the leech is particularly well suited for
2	comprehensive recording using VSD imaging for two reasons: It consists of only about
3	400 identifiable neurons ¹¹ arranged in a well-preserved geometry in a single spherical
4	shell surrounding a central neuropil, and it functions as a basic unit of sensory
5	processing and control of several behaviors ¹² . In the leech segmental ganglion, multiple
6	neuronal circuits responsible for reflexive and voluntary locomotor behaviors have
7	already been characterized by electrophysiology and VSD imaging ^{8-10, 12} . However,
8	existing technology only allowed imaging one side of a ganglion at a time, and hence
9	captured the activity of at most half of the full ensemble of neurons.
10	To overcome this limitation, we developed a double-sided microscope for
11	VSD imaging, consisting of precisely aligned upright and inverted fluorescent
12	microscopes. This microscope enabled us to record from all cell bodies of a leech
13	ganglion regardless of their location, and allowed us, for the first time, to directly
14	analyze functional relationships between neurons located on opposite surfaces. We
15	combined this double-sided neuronal imaging system with simultaneous
16	electrophysiological recording and stimulation, which allowed us to monitor motor
17	outputs, to verify agreement of VSD signals with actual membrane potentials, and to
18	activate or inhibit selected target cells by injecting current.
10	To demonstrate the utility of the newly developed VOD increased at
19	To demonstrate the utility of the newly developed VSD imaging method, we
20	addressed the following two questions. (1) How are individual identifiable neurons that

21 exhibit higher discriminability for the different sensory stimuli distributed across

1 different surfaces of the ganglion? (2) To what extent are neural circuit components

2 unique or shared between different behaviors?

3

4 **Results**

5 VSD imaging using double-sided microscopy system

6	Double-sided VSD imaging requires simultaneously focusing two fluorescent
7	microscopes. We achieved this by mounting the fluorescence train of an Olympus BX
8	upright microscope with a custom focus rack on top of the body of an Olympus IX
9	inverted microscope. Both microscopes were equipped with 20x objectives. An
10	optically stabilized high-power LED ¹³ provided excitation light through the top
11	objective, which operated in epifluorescence mode. The top objective also functioned as
12	a condenser lens for imaging with the bottom objective, which thus operated in
13	transfluorescence mode (Fig. 1a). Because of the high NA of the top objective,
14	inhomogeneities in the imaged tissue did not cause substantive deviations from uniform
15	illumination of the bottom focal plane.
16	The two microscopes were first coarsely aligned (to within about 200 μm) by
17	moving the upright microscope's body and its objective turret, after which
18	micro-alignment was achieved by fine-tuning the position of the upright microscope's
19	objectives in their turret. We used highly sensitive CCD cameras (Photometrics
20	QuantEM 512SC) to image neuronal activity with single cell resolution throughout the

ganglion (Fig. 1b). We suppressed mechanical vibration noise by replacing the internal

2	fans of the CCD cameras with external blowers. Photon noise was not substantially
3	different between the top and the bottom image (Top: 72 ± 3 ppm; Bottom: 65 ± 3 ppm
4	(mean ± SEM over 10 areas size-matched to typical cells).
5	We imaged neural activity with a new-generation voltage sensitive dye,
6	VF2.1(OMe).H ¹⁴ , which is sensitive enough to record subthreshold events and fast
7	enough to detect action potentials with accurate timing. The dye was loaded into
8	somatic membranes on both aspects of a ganglion by bath application and a perfusion
9	pump for targeted delivery ⁸ . In leech ganglia, the sensitivity reached $2.7\% \pm 0.3\%$
10	(mean \pm SD across five ganglia in two leeches) at resting potential (-50 mV)
11	(Supplementary Fig.1). Microscopic motion artifacts can have outsized effects on VSD
12	signals compared to Ca ²⁺ signals because of the limited relative change in fluorescence
13	of VSDs and their location in the cell membrane. Accordingly, we applied a custom
14	motion correction algorithm to all imaging data (Supplementary Fig.2 & Materials and
15	Methods). Bleaching artifacts in the optical signals were corrected using locally fitted
16	cubic polynomials ¹⁵ (Supplementary Fig.3) and global fluctuations were subtracted
17	away ¹⁶ (Materials and Methods). The voltage sensor faithfully detected various types of
18	membrane potential change, including action potentials, excitatory and inhibitory
19	postsynaptic potentials, and rhythmic oscillation during fictive behaviors (Fig. 1d).

1

2 Panneuronal VSD imaging and functional mapping based on coherence analysis

3	We established a mapping between cells seen in the fluorescent images (Fig.
4	1b) and identified neurons on a canonical map (Fig. 1c) using a semi-automated
5	procedure in a custom user interface (Materials and Methods). One of the major
6	advantages of VSDs is that recorded traces can be directly compared to intracellular
7	voltage recordings. This allowed us to identify selected cells in our recordings by
8	comparing our data to previously published intracellular activity of those neurons in the
9	same behaviors.

10 Optically recorded signals simultaneously recorded from both sides of the 11 ganglion closely matched typical patterns of fictive behaviors that have been previously 12well characterized by electrophysiology and single-sided VSD imaging^{9, 12}. We first 13 focused on fictive swimming, which we induced by electrically stimulating a DP nerve 14 root of a posterior ganglion⁹ (typically, M13). We then imaged ganglion M10 with our 15 double-sided microscope and simultaneously recorded intracellularly from selected cells 16 (Fig. 2a). Rhythmic activity associated with swimming was readily observed, and we 17 determined which cells were involved in this rhythm by calculating the phase and 18 magnitude of coherence⁹ for each cell at the frequency with the greatest spectral power 19 in the rhythm (Fig. 2b, c). The optical signal of dorsal inhibitor motor neuron DI-1 20 exhibits a well-understood swimming oscillation and was used as the phase reference

1	for other cells. Using the VF2.1(OMe).H dye, we were able to confirm the oscillatory
2	behavior of neurons previously studied using an earlier-generation dye ⁹ . In addition, we
3	were able to detect weaker oscillations in many other neurons on both sides of the
4	ganglion.

5	Results from coherence analysis obtained from doubly desheathed ganglia
6	imaged using either camera in our double-sided microscope closely matched results
7	from conventional single-sided imaging, as evidenced by the consistency of the
8	coherence maps computed from either method (Fig. 2b and Supplementary Fig.4). The
9	measured amplitudes of swim oscillations in motor neuron DI-1, the noise levels in
10	those recordings, and the coherence between bilateral homologues of DI-1 were also
11	indistinguishable between single-sided and double-sided imaging experiments
12	(Supplementary Fig.4), indicating that double-sided imaging does not entail any
13	compromises from an imaging quality perspective.

15 Encoding of stimulus identity by individual neurons

We used double-sided VSD imaging to record the activity of all neurons in isolated single ganglia during a fictive reflexive behavior known as local bending, a withdrawal response to tactile stimulation in which the leech bends its body away from the stimulated location ¹². Local bending can be induced readily in isolated single ganglia by stimulating one of four pressure-sensitive sensory neurons (P cells). Stimulating P cells causes a combination of excitation and inhibition in identified "local
 bend interneurons" (LBIs) ^{12, 17}. The LBIs synapse onto several motor neurons to
 produce an appropriate pattern of contraction and relaxation in the local area of the body
 wall that depends on which location (or which P cell) was stimulated^{12, 17, 18}.

5	We induced local bending by stimulating the left and right ventral P cells (P_v^L
6	and P_V^{R}) with trains of depolarizing pulses (20 Hz, 50% duty cycle, 1 s), which reliably
7	evoked action potentials in those cells (Fig. 3a, b). Stimuli were presented in order of
8	LRRLLR, for a total of 10 stimuli per P cell. From each of the resulting VSD traces,
9	we extracted the average fluorescence change ($\Delta F/F$) during the first 0.5 s of the
10	stimulus as well as during a control phase (1-0.5 s before stimulus onset), both relative
11	to a reference phase (0.5–0.1 s before stimulus onset; Fig. 3c). Using a leave-one-out
12	procedure, we calculated for each of the cells how reliably their activity could be used
13	to "predict" which of the P cells had been stimulated (Fig. 3d). We then established a
14	mapping between cells in the VSD images and identified neurons on the canonical maps
15	to determine for all identified neurons to what degree their activity encoded stimulus
16	identity (Fig. 3e).

17 On average across eight experiments, 113 ± 11 (mean \pm SD) cells on the 18 ventral surface and 129 ± 6 on the dorsal surface could be mapped to identified neurons 19 (Fig. 3f). Among those, 28% of ventral cells [35 ± 11 , mean \pm SD] and 36% of dorsal 20 cells (52 ± 18) encoded stimulus identity with prediction success higher than 75% 21 during the first 0.5 s of the stimulus. This included one ventral LBI, all dorsal LBIs, and

1	most motor neurons (MNs; Fig. 3g). (All other ventral LBIs had prediction success in
2	the range 65%–75%. In contrast, the average prediction success in the control period
3	was at chance level: 50.9 % \pm 1.3% (mean \pm SEM) for both ventral and dorsal cells.)
4	The other neurons with high prediction success were AP cells and Leydig cells, as well
5	as cells provisionally identified as cells 56, 61, 251, and 152 on the ventral surface and
6	cells 9, 10, 22, 28, 107, and 123 on the dorsal surface.

8 Involvement of individual neurons in multiple behaviors

9 To further establish the utility of double-sided VSD imaging, we set out to 10 determine to what extent neural circuit components are unique or shared between three 11 behaviors: local bending, swimming, and crawling. To do so, we evoked the 12 corresponding fictive behaviors in isolated whole nerve cords using electrical 13 stimulation⁹. Specifically, local bending was activated by intracellular stimulation of a single P_v^L or P_v^{R} swimming was elicited by stimulating a DP nerve from either 14 15 ganglion 11, 12, or 13; and crawling was elicited by stimulating tail brain nerve roots. Motor patterns of local bending and swimming were confirmed based on extracellular 16 recordings of DP nerves or intracellular recording of AE cells^{9, 10, 20}. Crawling patterns 17 18 were confirmed based on by simultaneous intracellular recordings from two different 19 motor neurons: the AE and CV cells9. All three behaviors could be induced in each of 20 six animals (Supplementary Videos 1-4).

1	We calculated the phase and magnitude of the coherence of each imaged
2	neuron to the stimulus train (0.5 Hz) during local bending; to the optical signal of motor
3	neuron DI-1during swimming; and to the intracellular trace of an AE cell during
4	crawling. Results from all behaviors in one animal are shown in Fig. 4a-d and
5	Supplementary Videos 1-4. Optical signals from representative cells located on both
6	surfaces confirmed stereotyped activity patterns that were highly distinctive for each of
7	the behaviors (Fig. 4e-h).
8	We established identities of imaged neurons as before. On average over six
9	preparations, we were able to assign 126 ± 11 cells on the ventral surface and 121 ± 10 on
10	the dorsal surface. This allowed us to construct summary maps showing which neurons
11	were consistently involved in which behaviors (Fig.4j and Materials and Methods).
12	Approximately 10% cells were involved in all three behaviors, 33% in two out of the
13	three behaviors, and 42% in a single behavior (Fig. 4j). For the remaining 15% of cells,
14	involvement in any of the behaviors could not be established.
15	Finally, we calculated a correlation matrix between the recorded activity of
16	each of the cells, separately during each of the three behaviors, and performed
17	automated clustering based on these correlations (Fig. 5a). For each of the cells in a
18	recording, we then calculated what fraction of the cells in the same cluster were located
19	on the ventral or the dorsal side of the ganglion. We found that during crawling and
20	especially during local bending, most clusters were largely confined to only one side of
21	the ganglion, whereas during swimming they more commonly spanned sides (Fig. 5b),

1	which indicates that swimming involves correlated activity among cells located on both
2	surfaces whereas local bending largely does not. We quantified this by calculating an
3	"integration coefficient" (Materials and Methods) which is equal to zero if all clusters
4	are either wholly on the dorsal or wholly on the ventral side, and equal to one if all
5	clusters are equally spread between the two sides (Fig. 5c).

7 **Discussion**

8	We constructed a double-sided microscope that can record fluorescence
9	signals from two sides of a biological preparation. This technique should be broadly
10	applicable to experimental questions that require simultaneous imaging from two
11	widely spaced cell layers in Drosophila ²¹ , sea slugs ^{5,6} and other organisms. The optical
12	system can be assembled from conventional optic parts and devices. In our
13	implementation, we used microscope parts from Olympus, but an equivalent system
14	could now be constructed using, e.g., Thorlabs CERNA parts.
15	By combining our microscope with next-generation voltage-sensitive dyes
16	(VF2.1(OMe).H ¹⁴ , we achieved simultaneous large-scale neuronal recording from two
17	widely spaced cell layers at single-cell resolution, capturing not only action potentials

- 18 but also small excitatory and inhibitory synaptic potentials. A primary feature of the
- 19 system is its ability to acquire these signals at high speed, and without delay for image
- 20 capture between the two focal planes. At present, this cannot be achieved by wide-brain

1	volumetric Ca^{2+} imaging as previously established for <i>C</i> . <i>elegans</i> ^{2,3} . With our newly
2	developed microscope, we simultaneously recorded, for the first time, the activity of the
3	majority of neurons in a leech ganglion. While beyond the scope of this study, the fact
4	that VSD recordings contain both spikes and postsynaptic potentials makes it possible
5	to infer network connectivity among the different individual, identifiable cells. This
6	offers a notable advantage over techniques that only give access to spike events or
7	intracellular Ca ²⁺ concentration.

8 The leech has 21 nearly identical segmental ganglia containing approximately 9 400 neurons that are arranged in a highly conserved geometry¹². For 148 of these 10 neurons, functional descriptions have been published. (A gateway to the relevant 11 literature is available online, at http://www.danielwagenaar.net/ganglion.) The 12 ganglionic neurons are distributed in a single layer on the surface of the ganglion, but 13 this layer wraps around both the dorsal and ventral sides, so that at best half of the 14 neurons can be simultaneously imaged with conventional microscopy. Our double-sided 15 microscope, in contrast, has access to all of them, although surface curvature means that 16 not all neurons can simultaneously be in sharp focus (Fig. 1b). A single light source was 17 sufficient for illuminating both top and bottom surfaces, because the leech nervous 18 system is sufficiently translucent to permit even lighting onto both sides.

In many leech ganglionic neurons, the somata exhibit both action potentials and synaptic potentials not greatly attenuated from their origin in the neuropil, a notable difference from typical monopolar neurons in invertebrate central nervous systems¹².

1	Hence, a low-noise imaging system using sensitive voltage sensors potentially enables
2	us to analyze synaptic integration even in small neurons in the leech. In addition, our
3	double-sided microscope is compatible with both intra- and extracellular electrode
4	placement, enabling detailed electrophysiological interrogation of selected specific
5	neurons along with optical imaging from the population.
6	Intriguing features that we observed using our pan-neuronal imaging system
7	are (1) widespread distribution of neurons that are differentially involved in left and
8	right ventral local bending (Fig. 3c, d), and (2) involvement in multiple behaviors of a
9	large fraction of identifiable neurons (Fig. 4i, j).
10	With respect to (1), we found that not only the local bend interneurons and the
10	with respect to (1), we found that not only the focal bend internetions and the
11	motor neurons previously reported ¹⁷ discriminate between the stimuli, but so did many
11	motor neurons previously reported ¹⁷ discriminate between the stimuli, but so did many
11 12	motor neurons previously reported ¹⁷ discriminate between the stimuli, but so did many other neurons that had not previously been implicated in local bending. It has long been
11 12 13	motor neurons previously reported ¹⁷ discriminate between the stimuli, but so did many other neurons that had not previously been implicated in local bending. It has long been known that the neural mechanism of local bending involves population coding ²²⁻²⁷ , but
11 12 13 14	motor neurons previously reported ¹⁷ discriminate between the stimuli, but so did many other neurons that had not previously been implicated in local bending. It has long been known that the neural mechanism of local bending involves population coding ²²⁻²⁷ , but its exact algorithm and computation remain unknown. Although the calculation of
11 12 13 14 15	motor neurons previously reported ¹⁷ discriminate between the stimuli, but so did many other neurons that had not previously been implicated in local bending. It has long been known that the neural mechanism of local bending involves population $\operatorname{coding}^{22-27}$, but its exact algorithm and computation remain unknown. Although the calculation of discriminability here was based on stimulus category (P_V^L vs. P_V^R) instead of actual
11 12 13 14 15 16	motor neurons previously reported ¹⁷ discriminate between the stimuli, but so did many other neurons that had not previously been implicated in local bending. It has long been known that the neural mechanism of local bending involves population $\operatorname{coding}^{22-27}$, but its exact algorithm and computation remain unknown. Although the calculation of discriminability here was based on stimulus category (P_V^L vs. P_V^R) instead of actual local bend patterns in the leech's body wall, the population dynamics of the highly

1	With respect to (2), we observed that 43% of identifiable neurons on the
2	ventral and dorsal surfaces were involved in at least two of the three behaviors tested
3	(local bending, swimming, and crawling). This result indicates that the neural circuits
4	for those behaviors share many components while generating unique motor patterns for
5	each behavior. The percentage of circuit components shared between swimming and
6	crawling identified in this study differed from previous work9; in particular, the number
7	of cells we identified as involved in crawling (56) was lower than in the previous study
8	(188). The reason is probably that crawl episodes in our experiments were somewhat
9	shorter (typically only 3-4 cycles) than in the older study, resulting in a weaker
10	coherence signal. Double-sided imaging revealed a previously unappreciated difference
11	between the swim rhythm and local bending: The cell assemblies that are
12	simultaneously active in the former span both sides of the ganglion, whereas in local
13	bending, they are mostly confined to either the dorsal or the ventral side.
14	In this study, we identified imaged cells with known neurons using a
15	semi-automatic mapping algorithm based on cell size and location along with an
16	expert's assessment based on the physiological properties of cells along with this
17	geometrical information. To gain more insight into the neuronal networks responsible
18	for behavior, it will be necessary to carry out more accurate neurocartography, which
19	we will achieve by combining functional mapping using machine learning methods ¹⁰
20	with a connectomic approach using serial block face scanning electron microscopy ¹¹ .
21	The combination of those techniques with double-sided VSD imaging will pave the way

- 1 for future investigations on how the activity of all neurons in a central nervous system is
- 2 recruited to process sensory information and to generate distinctive behaviors from
- 3 overlapping neuronal circuits.

1 Materials and Methods

2 *Optical recording by double-sided microscope*

3	We acquired fluorescence images simultaneously from two focal planes using
4	a custom double-sided microscope consisting of the fluorescence train of an upright
5	microscope (Olympus BX, Tokyo, Japan) mounted on top of an inversed microscope
6	(Olympus IX). The top microscope was used to image the upper focal plane while the
7	bottom microscope imaged the lower focal plane. We used a 20x, 1.0 numerical
8	aperture (NA), water-immersion objective for the upright and a 20x, 0.7 NA objective
9	with cover-slip adjustment collar for the inverted microscope (both Olympus). The
10	alignment of those two objectives was fine-adjusted manually so that cameras attached
11	to the top and bottom microscopes saw the same field of view to within about 300 nm
12	when the two focal planes were at the same depth.
13	The two objectives served as condenser for each other, so that blue excitation
14	light delivered through the top objective for epifluorescence imaging also served as a
15	transfluorescence light source for the bottom objective. Further, a red LED illuminator
16	attached to the bottom microscope provided wide-field transillumination that enabled us
17	to use the upright objective to visualize intracellular electrodes. Both objectives were
18	mounted on standard turrets so that they could be rotated out of the way to make place
19	for 5x objectives used to visualize extracellular suction electrodes.

1	For VSD imaging, we used excitation light (bandpass filtered to 470 ± 15 nm)
2	from a high-power blue LED (LedEngin LZ1-10B200) controlled with optical
3	stabilization ¹³ . In both the upright and inverted microscopes, we used a 490-nm dichroic
4	mirror and 505-nm LP emission filter. Images were acquired with two cooled CCD
5	cameras (QuantEM 512SC; Photometrics, Tucson, AZ) at a resolution of 512 x 128
6	pixels. The frame rate was set depending on which behavior was recorded: for local
7	bending and swimming, images were acquired at 50 Hz; for crawling, images were
8	acquired at 20 Hz. Imaging data were acquired using custom software VScope ²⁸ . Optical
9	and electrical recordings were synchronized by connecting frame timing signals from
10	each camera to a data acquisition board that also recorded electrophysiology signals (see
11	below).
12	(\mathcal{T}) VSD imaging is highly sensitive to even sub-micrometer motions. Because
13	VSDs are located in cell membranes rather than the cytosol, a movement of
14	less than 1% of a cell diameter can cause a signal change of well over 1% due
15	to bright edge pixels moving out of a pre-defined region of interest (ROI).
16	Since typical VSD signals are themselves far less than 1%, this can cause
17	dramatic motion artifacts. To mitigate this problem, we replaced cooling fans
18	inside each CCD camera with external blowers, since we determined that
19	internal fans in cameras caused significant vibrations of the microscope
20	objectives relative to the sample. After removing these fans, the noise in
21	image sequences was dominated by shot noise.

1 Animal maintenance and sample preparation

2	Medicinal leeches (Hirudo verbana) were obtained from Niagara Leeches
3	(Niagara Falls, NY) and maintained in artificial pond water at 15 °C. In experiments
4	where only local bending was the target behavior, we dissected out short chains of
5	ganglia from segments 8 through 12. In experiments involving swimming or crawling,
6	we isolated whole nerve cords (Supplementary Fig 5), including the head brain, all 21
7	segmental ganglia, and the tail brain. In all cases, the blood sinus surrounding the
8	nervous system was dissected away around segmental ganglion 10. We removed the
9	sheath from the ventral and dorsal surface of this ganglion before applying
10	voltage-sensitive dyes. To induce swimming, a dorsal posterior (DP) nerve root in one
11	of ganglia 11 through 13 was stimulated through a suction electrode. Brief electrical
12	pulses (3 ms) were delivered at 50 Hz in a 3-s-long train, with an amplitude of 7–8 V.
13	To elicit crawling, several nerves from the tail brain were stimulated using the same
14	stimulus parameters as for DP nerve stimulation. Isolated leech ganglia can move
15	slightly move because muscle cells are embedding in the nerve cord. We therefore
16	stablized the ganglion to be imaged by tightly pinning down blood sinus tissue to the
17	PDMS (Sylgard 184, Dow Corning, Midland, MI) substrate and by sandwiching
18	adjacent connectives between small pieces of medical dressing (Tegaderm, 3M,
19	Maplewood, MN) which was also pinned down, to minimize any motion artifacts.
20	Throughout the dissection and during imaging, preparations were maintained in
21	chambers filled with cold leech saline consisting of the following (in mM): 115 NaCl, 4

1	KCl, 1.8 CaCl2, 2 MgCl2, 10 glucose, and 10 HEPES, at pH 7.4. Only before crawling
2	was induced, we temporarily replaced the cold saline with room temperature (20–23 $^{\circ}$ C)
3	saline to obtain the most natural crawling rhythm. We bath loaded 800 μM
4	VF2.1(OMe).H ¹⁴ (provided by Evan Miller) in leech saline containing 1% Pluronic acid
5	(PowerloadTM Concentrate 100x, Thermo Fisher Scientific, Waltham, MA). To help
6	with dye penetration into the cell membranes, we circulated the solution using a pair of
7	peristaltic pumps (approximately 1.1 mL/min flow rate) with outflows directed at the
8	dorsal and ventral surfaces of the ganglion, for 20 minutes total.
9	
10	Electrophysiology
11	We recorded intracellularly from up to three neurons simultaneously using
12	20–50 M Ω glass microelectrodes filled with 3 M potassium acetate and 60 mM
13	potassium chloride, using Neuroprobe amplifiers (Model 1600; A-M systems, Sequim,
14	WA). Intracellular recordings provided additional information regarding the behavioral

15 state of the preparation as well as confirmation of the corresponding optical signals. We

16 recorded extracellularly using suction electrodes and a four-channel differential

- 17 amplifier (Model 1700; A-M Systems). All electrical signals were digitized at 10 kHz
- 18 using a 16-bit analog-to-digital board (NI USB-6221; National Instruments, Austin, TX)

19 and VScope software²⁸.

2 Basic data processing

3	We outlined the images of individual cell bodies manually as regions of
4	interest using VScope. Pixel values within each cellular outline were then averaged in
5	each frame, yielding a raw fluorescence signal. Signals were processed to remove
6	artifacts from micromotion (next section), and to correct for slow reduction of overall
7	fluorescence intensity due to dye bleaching. The latter was achieved by subtracting
8	locally fitted third-order polynomials using the SALPA algorithm ¹⁵ with a time constant
9	of 1 to 15 s. In addition, brightness averaged across the areas of the ganglion outside of
10	ROIs was subtracted for each frame to reduce global noise due to fluorescent crosstalk
11	among top and bottom images ¹⁶ . Finally, signals were normalized to their average value
12	and expressed as a percent change in fluorescence ($\Delta F/F$).
13	
14	Motion correction
15	As mentioned above, motion artifacts were reduced by removing fans from
16	CCD cameras and by pinning down ganglia tightly on the PDMS substrate. However,
17	even very small motions can cause highly detrimental artifacts in VSD recordings.

18 To correct for small motions, we designated the middle frame of any recording as a

19 reference frame, and generated a pair of artificial frames by shifting the reference frame

one pixel to the left or to the right. Let \mathbf{I}_{R} and \mathbf{I}_{L} be vectors consisting of the intensity values of the pixels in the right- and left-shifted reference frames, and let \mathbf{I}' be the intensity vector of an arbitrary frame in the recording. As long as the motion is small (less than or approximately equal to one pixel),

5
$$\Delta x = 2 \left(\mathbf{I'} - \mathbf{I}_{\mathrm{L}} \right) \cdot \left(\mathbf{I}_{\mathrm{R}} - \mathbf{I}_{\mathrm{L}} \right) / \|\mathbf{I}_{\mathrm{R}} - \mathbf{I}_{\mathrm{L}}\|^{2} - 1,$$

6 where \cdot is the vector product and $\|\mathbf{I}\|$ is the vector norm, is a good estimate for the 7 motion in the x-direction between the frame under study and the reference frame. (The 8 reason is that an image shifted by Δx pixels can be approximated as

9
$$\mathbf{I}' = [(1 - \Delta x) \mathbf{I}_{L} + (1 + \Delta x) \mathbf{I}_{R}] / 2,$$

10 as long as $|\Delta x| \lesssim 1$. The first equation is derived from the second by minimizing with 11 respect to Δx .)

12	The same method can of course be used for motion in the y-direction. More
13	interestingly, the method can be used for other affine distortions as well. For instance, if
14	we calculate artificial frames by rotating the reference frame by $\pm 0.1^{\circ}$, the above
15	procedure would yield estimates of image rotation (in units of 0.1°).
16	Using this method, we estimated and corrected for small motions that may

Using this method, we estimated and corrected for small motions that may occur with the preparation or even due to vibrations in the microscope, thus preventing motion artifacts in the extracted VSD traces (Supplemental Figure 2).

2 Calculation of prediction success

3	In our experiments on the encoding of stimulus identity by individual neurons,
4	we performed 10 trials stimulating the left P_v cell and 10 stimulating the right P_v cell, in
5	order (LR)(RL)(LR)(RL) To calculate how well each cell "predicted" the stimulus
6	identity (i.e., "left" or "right"), we calculated the average $\Delta F/F$ during the first 0.5 s of
7	each stimulus relative to the preceding reference phase, separately for each trial. Taking
8	each trial in turn, we then took that trial and its "partner" trial out, and calculated the
9	average $\Delta F/F$ for the 9 "left" stimuli out of the remaining 18 trials and also for the
10	"right" stimuli. The "partner" trial was the next trial for odd-numbered trials, and the
11	preceding trial for even-numbered trials. If the Δ F/F in the trial under consideration was
12	closer to the average $\Delta F/F$ of the "left" trials in the training set than to the average of
13	the "right" trials, the neuron was considered correct in its "prediction" of stimulus
14	identity if the trial under consideration was in fact a "left" trial, and conversely for
15	"right" trials. The percentage of trials in which a cell correctly predicted stimulus
16	identity in this sense was used as a measure of prediction success. Any cell that
17	correctly predicted stimulus identity in at least 75% of trials (50% being change
18	performance) was considered to encode stimulus identity.

2 Coherence analysis

3	We used multitaper spectral analysis ²⁹ to estimate the coherence between
4	optical signals from individual cells with a common reference. That reference was the
5	stimulus train for local bending, the optical signal of a DI-1 motor neuron for swimming,
6	or the intracellular electrode signal of an AE motor neuron for crawling. For each
7	recording, we calculated the 95% confidence interval for the magnitude of estimated
8	coherence under the null hypothesis that a signal was not coherent with the reference ³⁰ .
9	A cell was considered to be involved in the behavior expressed during a given trial if its
10	measured coherence exceeded this confidence interval.

11

12 Canonical mapping

The overall layout of neurons within leech ganglia is highly conserved between ganglia within an animal as well as between animals, but the precise geometry does vary. In order to identify cells seen in the VSD image sequence (Supplementary Fig.5a) with neurons in the canonical map, we developed a graphical user interface that allows us to proceed as follows. First, we mark all the visible cells as regions of interest on the image (Supplementary Fig.5b). Then, we overlay the canonical map over this (Supplementary Fig.5c). To the trained eye, the identification of many of the larger cells

1	is immediately obvious, so we register these identities (using a drag-and-drop
2	mechanism in the GUI; (Supplementary Fig.5d)). This partial mapping of ROIs to
3	identified neurons allows the program to do a coarse alignment between the canonical
4	map and the actual image using affine transformations local to each of the four packets
5	of cells (Supplementary Fig.5e). (The ganglion is divided by giant glial cells into
6	several packets ¹² , the boundaries of which are indicated on the canonical map.) This
7	preliminary alignment enables us to identify several other neurons with high confidence,
8	after which the computer can perform a local alignment step. Finally, the computer
9	assigns putative identities to the remaining ROIs, leading to a nearly complete mapping
10	between ROIs (orange dots in Supplementary Fig.5f) and identified neurons (cross
11	marks).
	marks).
11 12	marks).
	marks). Determination of which cells are consistently involved in a behavior
12 13	Determination of which cells are consistently involved in a behavior
12	
12 13	Determination of which cells are consistently involved in a behavior
12 13 14	Determination of which cells are consistently involved in a behavior For each neuron in each animal, we determined whether its coherence
12 13 14 15	Determination of which cells are consistently involved in a behavior For each neuron in each animal, we determined whether its coherence exceeded the 95% confidence interval of the null hypothesis that a given neuron was not
12 13 14 15 16	Determination of which cells are consistently involved in a behavior For each neuron in each animal, we determined whether its coherence exceeded the 95% confidence interval of the null hypothesis that a given neuron was not involved in a given behavior. If a neuron exceeded that threshold for a given behavior in

1 Clustering and calculation of integration coefficients

2	We clustered cells based on the matrix of the correlation coefficients of their
3	activity patterns, separately for each behavior (by constructing a dendrogram based on
4	the correlation distance followed by tree cutting). We then assigned a dorsoventrality
5	index (DVI) to each cell, which was equal to the fraction of dorsally localted cells in
6	that cell's cluster. This is what is shown in the histograms of Fig. 5b. Cells in clusters
7	with fewer than three members were ignored for this calculation; the results did not
8	change qualitatively if this threshold was changed to two or five. Based on the DVI, we
9	calculated the integration coefficient (CI) of Fig. 5c as:
10	$CI = \langle 1 - 2 DVI - \frac{1}{2} \rangle,$
11	where $\left \cdot\right $ denotes absolute value and (\cdot) denotes the average across all cells (except
12	those not in clusters of size three or more).
13	
14	Software for data analysis
15	All data processing and statistical analysis were performed in GNU Octave,
16	version 4.0.0.
17	

1 References

- 2 1. Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M. & Keller, P.J. Whole-brain
- 3 functional imaging at cellular resolution using light-sheet microscopy. *Nat. Methods* 10,

4 413–420 (2013).

5 2. Schrödel, T., Prevedel, R., Aumayr, K., Zimmer, M. & Vaziri, A. Brain-wide 3D

6 imaging of neuronal activity in *Caenorhabditis elegans* with sculpted light. *Nat*

- 7 *Methods* 10, 1013-1020 (2013).
- 8 3. Kato, S., Kaplan, H. S., Schrödel, T. Skora, S. Lindsay, T. H., Yemini, E., Lockery, S.
- 9 and Zimmer, M. Global brain dynamics embed the motor command sequence of
- 10 *Caenorhabditis elegans. Cell* 163, 656-669 (2015).
- 11 4. Nguyen, J. P., Shipley, F. B., Lider, A. N., Plummer, G. S., Liu, M., Setru, S. U.,
- 12 Shaevitz, J. W. & Leifer, A. M. Whole-brain calcium imaging with cellular resolution in
- 13 freely behaving Caenorhabditis elegans. Proc. Nati. Acad. Sci. USA 113(8) 1074-1081
- 14 (2016).
- 15 5. Bruno, A. M., Frost, W. N. & Humphries, M. D. Modular deconstruction reveals the
- 16 dynamical and physical building blocks of a locomotion motor program. *Neuron* 86(1),
 17 304-318 (2015).

1	6. Hill, E. S. Vasireddi, S. K., Wang, J., Bruno, A. M. & Frost, W. M. Memory
2	formation in Tritonia via recruitment of variably committed neurons. Curr. Biol. 25
3	2879-2888 (2015).

4 7. Hill, E. S., Bruno, A. M. & Frost, W. N. Recent developments in VSD imaging of

5 small neuronal networks. *Learn. Mem.* 86(1). 499-505 (2014).

- 6 8. Briggman, K. L., Abarbanel, H. D. I. & Kristan, W. B. Optical imaging of neuronal
- 7 populations during decision-making. *Science* 307, 896-901(2005).
- 8 9. Briggman, K. L. & Kristan, W. B. Imaging dedicated and multifunctional neural
- 9 circuits generating distinct behaviors. J. Neurosci. 26(42). 10925-10933 (2006).
- 10 10. Frady, P., Kapoor, A., Horvitz, E. & Kristan, W. B. Scalable semisupervised
- 11 functional neurocartography reveals canonical neurons in behavioral networks. *Neural*
- 12 *Comp.* 28(8). 1453-1497 (2016).
- 13 11. Pipkin, J. E., Bushong, E. A., Ellisman, M. H. & Kristan, W. B. Patterns and
- 14 distribution of presynaptic and postsynaptic elements within serial electron microscopic
- 15 reconstructions of neuronal arbors from the medicinal leech *Hirudo verbena*. J. Comp.
- 16 Neurol. 524(18). 3677-3695 (2016).
- 17 12. Kristan, W. B. M., Calabrese, R. L. & Friesen, W.O. Neuronal control of leech
- 18 behavior. Prog. Neurobiol. 76. 279-327 (2005).

1	13. Wagenaar, D. A. An optically stabilized fast-switching light emitting diode as a
2	light source for functional neuroimaging. PloS ONE. 7(1). E29822 (2012).
3	14. Woodford, C. R. Frady, E. R., Smith, R. S., Morey, B., Canzi, G., Palida, S. F.,
4	Aranda, R. C., Kristan, W. B., Kubiak, C. P., Miller, E. W. & Tsien, R. Y. Improved
5	PeT molecules for optically sensing voltage in neurons. J. Am. Chem. Soc. 137.
6	1817-1824 (2015).
7	15. Wagenaar, D. A. & Potter, S. M. Real-time multi-hannel stimulus artifact
8	suppression by local curve fitting. J. Neurosci. Methods. 120(2). 113-120 (2002).
9	16. Lippert, M., Takagaki, K., Xu, W., Huang X. & Wu, JY. Methods for
10	voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio. J .
11	Neurophisol. 98(1). 502-512 (2007).
12	17. Lockery, S. & Kristan, W. B. Distributed processing of sensory information in the
13	leech. II. Identification of Interneurons contributing to the local bending reflex. J .
14	Neurosci. 10(6). 1816-1829 (1990).
15	18. Baljon P. L. & Wagenaar, D. A. Response to conflicting stimuli in a simple
16	stimulus-response pathway. J. Neurosci. 35(5) 2398-2406 (2015).
17	19. Kristan, W. B. Sensory and motor neurons responsible for the local bending
18	response in leeches. J. Exp. Biol. 96. 161–180 (1982).

- 1 20. Gu, X., Muller, K. & Young, S. Synaptic integration at a sensory-motor reflex in the
- 2 leech. J. Physiol. 441. 733-754 (1991).
- 3 21. Kohsaka, H., Guertin, P. A. & Nose, A. Neural circuits underlying fly larva
- 4 locomotion. Curr. Pharm. Des. 23. 1722-1733 (2017)
- 5 22. Lewis, J. E. & Kristan, W. B. A neuronal network for computing population vectors
 6 in the leech. *Nature* 391. 76–79 (1998).
- 7 23. Lewis, J. E. & Kristan, W. B. Representation of touch location by a population of
- 8 leech sensory neurons. J. Neurophysiol. 80. 2584–2592 (1998).
- 9 24. Lewis, J. E. & Kristan, W. B. Quantitative analysis of a directed behavior in the
- medicinal leech: implications for organizing motor output. *J. Neurosci.* 18. 1571–1582
 (1998).
- 12 25. Lewis, J. E. Sensory processing and the network mechanisms for reading neuronal
- 13 population codes. J. Comp. Physiol. A. 185. 373–378 (1999).
- 14 26. Thomson, E. E. & Kristan, W. B. Encoding and decoding touch location in the leech
 15 CNS. *J Neurosci.* 8009-8016 (2006).
- 16 27. Kretzberg, J., Pirschel, F., Fathiazar, E. & Hilgen, G. Encoding of tactile stimuli by
- 17 mechanoreceptors and interneurons of the medicinal leech. Front. Physiol. 7(506) doi*
- 18 10.3389/fphys.2016.00506 (2016).

1	28. Wagenaar, D. A., 2017.	VScope - A software	e package for the acquisition and
---	----------------------------	---------------------	-----------------------------------

- 2 analysis of data from multiple cameras as well as electrophysiology.
- 3 https://doi.org/10.5281/zenodo.437901. Manuscript submitted.
- 4 29. Taylor, A. L., Cottrell, G. W., Kleinfield, D. & Kristan, W. B. Imaging reveals
- 5 synaptic targets of a swim-terminating neuron in the leech CNS. J. Neurosci. 23(36)

6 11402-11410 (2003).

- 7 30. Cacciatore, T. W., Brodfuehrer, P. D., Gonzalez, J. E., Jiang, T., Adams, S. R.,
- 8 Tsien, R. Y., Kristan, W. B. & Kleinfeld, D. Identification of neural circuits by imaging
- 9 coherent electrical activity with FRET-based dyes. *Neuron* 23. 449-459 (1999).

10

11

1 Acknowledgments

2	We thank Evan Miller for sharing of the VF2.1(OMe).H dye; Annette
3	Stowasser for her role in developing a prototype of the double-sided microscope and
4	many helpful conversations; and Angela Bruno for useful discussions regarding data
5	analysis. This work was supported by the Burroughs Welcome Fund through a Career
6	Award at the Scientific Interface and by the National Institute of Neurological Disorders
7	and Stroke through grant R01 NS094403 (both to DAW). YT was supported by JSPS
8	Overseas Research Fellowships.
9	

10 **Competing Interests**

11 The authors declare no competing interests.

1 Figures

2 Figure 1

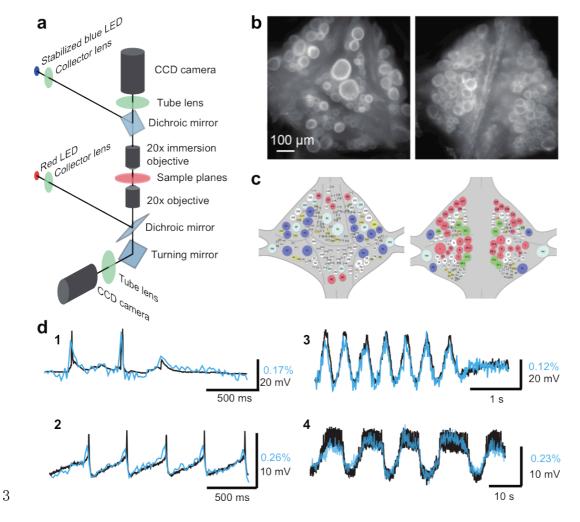
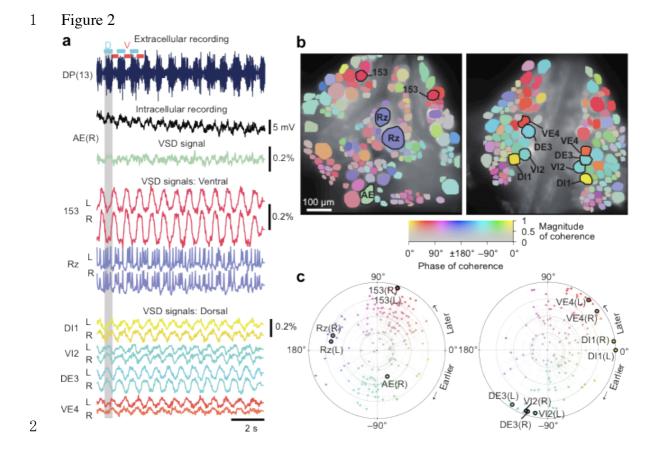
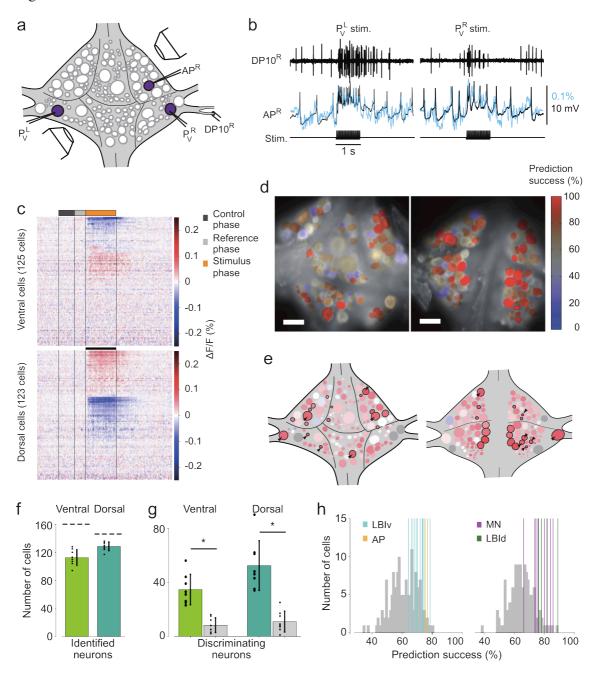
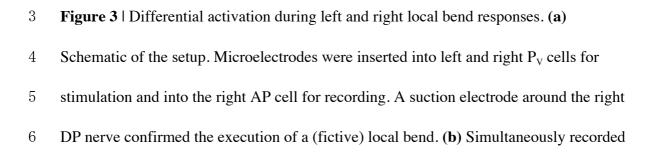



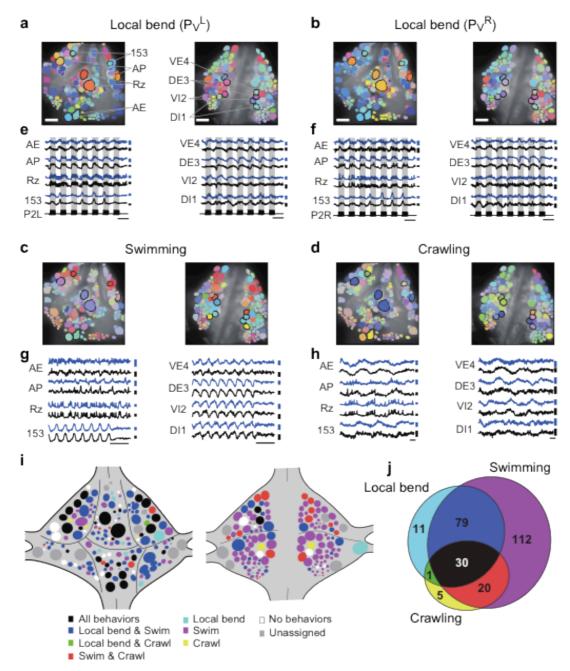
Figure 1 | Double-sided voltage sensitive dye imaging. (a) Schematic of the double-sided microscope. (b) Images of the ventral (*left*) and dorsal (*right*) aspects of a leech ganglion simultaneously acquired using this microscope. (c) Canonical maps of the ventral (*left*) and dorsal (*right*) aspects of the ganglion. (d) Single-sweep recordings of neuronal activity. Optical signals from VSD imaging (*blue*) are overlaid with simultaneous intracellular recordings (*black*). 1. Action potentials and subthreshold

- 1 potentials in a Retzius cell; **2.** Spontaneous regular firing in an AP cell; **3.** Swimming
- 2 pattern in a DE-3 motor neuron; **4.** Crawling pattern in an AE cell.




3 Figure 2 | Neuronal activity during fictive swimming. (a) Selected electrophysiological 4 and VSD traces during fictive swimming. Extracellular recording from a nerve root in a 5 posterior segment (DP(13)) showed rhythmic dorsal motor neuron bursts characteristic 6 of swimming (top). Intracellular recording and simultaneous optical signal from an AE 7 neuron show matching membrane potential oscillations. VSD signals from the ventral 8 surface: bilateral cells 153 (a sensory neuron) and the Retzius cell (a neuromodulatory 9 neuron). VSD signals from the dorsal surface: dorsal and ventral inhibitory and 10 excitatory motor neurons DI-1, VI-2, DE-3, and VE-4. (b) Coherence of the optically 11 recorded signals of all cells on the ventral (left) and dorsal (right) surfaces of the 12 ganglion with the swim rhythm. Cells used in (a) are marked. (c) Magnitude (radial axis 13 from 0 to 1) and phase (angular coordinate) of the coherence of each neuron's activity

- 1 with the swim rhythm; same data as in (b). Error bars indicate confidence intervals
- 2 based on a multi-taper estimate.


1 Figure 3

1	motor activity from the DP nerve (top), membrane potential from the AP neuron
2	(<i>middle</i> , <i>black</i>) and its corresponding VSD trace (<i>blue</i>) in response to stimuli to P_V^{L}
3	(<i>left</i>) and P_V^R (<i>right</i>). Stimulus duration was 1 second (<i>bottom</i>). (c) Time series of
4	averaged difference between P_V^L ($n = 10$) and P_V^R ($n = 10$) trials in the activity of all 248
5	recorded cells. Positive (red) indicates more depolarization (or less hyperpolarization)
6	in response to P_V^{R} stimulation. Scale bar: 1 second. (d) Stimulus discriminability score
7	overlaid on images of the ventral (left) and dorsal (right) aspects of the ganglion. Scale
8	bars: 100 µm. (e) Averaged discriminability results across 8 animals. Color scale as in
9	(d). Motor neurons (MNs) and LBIs are marked (<i>black circles</i>) as are other cells that
10	strongly discriminate between stimuli ($\geq 75\%$ prediction success; <i>circles and arrow</i>
11	heads). (f) Number of cells that could be mapped to identified neurons; mean and SD of
12	8 preparations and individual results (dots). Dashed lines indicate total number of cells
13	in the canonical maps. (g) Number of cells that strongly discriminate between stimuli (\geq
14	75% prediction success) compared to control (grey bars). (*: p < 10^{-4} ; Paired sample
15	T-test) (h) Discriminability scores for all neurons on the ventral (<i>left</i>) and dorsal (<i>right</i>)
16	surfaces. Colored lines mark the scores of LBIs, AP cells and MNs.

1 Figure 4

2

Figure 4 | Neuronal activity during multiple behaviors. (a–d) Coherence of optically
recorded signals of all cells on the ventral (*left*) and dorsal (*right*) surfaces of a ganglion
with (a) P_v^L-induced local bending, (b) P_v^R-induced local bending, (c) fictive swimming,
and (d) fictive crawling. Color map as in Fig. 2b. (e-h) VSD signals of cells indicated in

- 1 (a-d) during those behaviors. (i) Summary maps of the involvement of identified
- 2 neurons on the ventral (*left*) and dorsal (*right*) surface of the ganglion. Colors indicate
- 3 which behavior each neuron was involved in. (j) Venn diagram showing the total
- 4 number of identified neurons that oscillated with each individual behaviors or
- 5 combinations of behaviors. Colors as in (i).

1 Figure 5

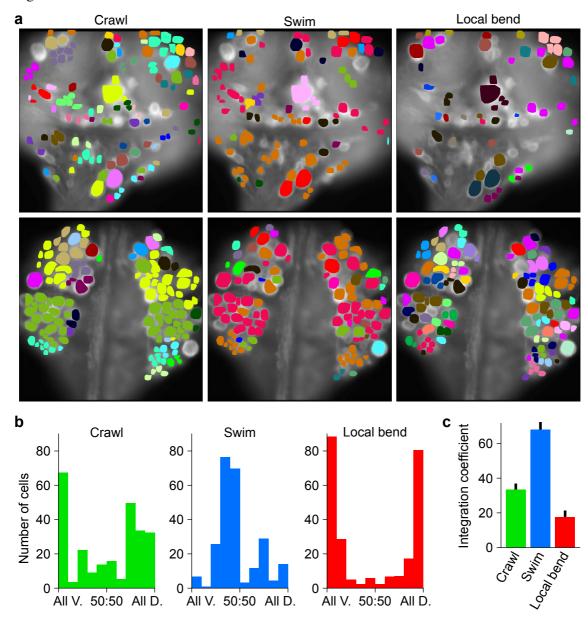


Figure 5 | Clustering cells based on their activity in different behaviors. (a) Cluster
assignments of all cells recorded in one animal based on the correlation matrix of their
activity during fictive crawling (*left*), swimming (*center*), and local bending (*right*). (b)
Degree to which cells within a cluster were fully contained on the ventral side ("All
V."), fully on the dorsal side ("All D."), or equally distributed ("50:50"). To prevent

- 1 overrepresentation of small clusters, each cell is an entry in the histogram, not each
- 2 cluster. Clusters with fewer than 3 members were excluded. Data from N = 6 leeches.
- 3 (c) Quantification of the degree to which members of clusters were distributed across
- 4 surfaces in the three behaviors tested (mean \pm SEM, N = 6). All differences were
- 5 significant (ANOVA, F(2,15) = 63.4, $p < 10^{-7}$, followed by Tukey).