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1. Abstract

The number of individuals in a random sample with close relatives in the sample is
a quantity of interest when designing Genome Wide Association Studies (GWAS) and
other cohort based genetic, and non-genetic, studies. In this paper, we develop expres-
sions for the distribution and expectation of the number of p-th cousins in sample from
a population of size N under two dioecious generalizations of the Wright-Fisher model.
We also develop simple asymptotic expressions for large values of N . For example, the
expected proportion of individuals with at least one p-th cousin in a sample of K indivi-
dals, for a non-monogamous generalization of the Wright-Fisher model, is approximately

e−(2
2p−1)N/K . Our results show that a substantial fraction of individuals in the sample will

have at least a second cousin if the sampling fraction (K/N) is on the order of 10−2. This
confirms that, for large cohort samples, relatedness among individuals cannot easily be
ignored.

2. Introduction

As genomic sequencing and genotyping techniques are becoming cheaper, the data sets
analyzed in genomic studies are becoming larger. With an increase in the proportion of
individuals in the population sampled, we might also expect an increase in the proportion
of related individuals in the sample. For example, Moltke et al. (2014) found in a sample of
2,000 Inuit from Greenland that almost half of the sample had one or more close relatives in
the sample. The census population size for Greenland Inuit is only about 60,000 individuals
and the population size might be substantially lower. Henn et al. (2012) found 5000 third-
cousin and 30,000 fourth cousin relatives in a sample of 5000 self-reported Europeans,
with nearly every individual having a detected cryptic relationship. In Genome Wide
Association Mapping Studies (GWAS), related individuals are routinely removed from the
sample, but other strategies also exist for using relatedness as a covariate in the statistical
analyses (e.g., Visscher et al. 2008). These observations raise the following question: given
a particular effective population size, how many close relatives would we expect to find in
a sample? The answer to this question may help guide study designs and strategies for
addressing relatedness in population samples and improve design for GWAS. Of particular
interest is the number of individuals in the sample without relatives, i.e. the number of
individuals remaining in the sample if individuals with relatives are removed.
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Substantial progress has been made on understanding the structure of a pedigree in a
population. For example, Chang (1999) showed that the most recent common ancestor
of all present-day individuals is expected to have lived log2(N) generations in the past if
N is the population size. A great deal of progress has also been made in understanding
the difference between genealogical processes in full diploid pedigree models versus the
approximating coalescent process (e.g., Wakeley et al. 2012; Wilton et al. 2016). However,
the distribution and expectation of the number of individuals with relatives in a random
population sample is still unknown.

In this paper we will address this question by exploring two models that both are diploid
and dioecious generalizations of the Wright-Fisher model. We will use these models to
derive distributions and expectations of the number of individuals that have, or do not
have, siblings, first, second, etc. cousins within a sample.

3. Dioecious Wright-Fisher Model

The Wright-Fisher model (Fisher 1930; Wright 1931) describes the genealogy of a
population with constant effective population size N as follows: The first generation
G = {g1, g2, . . . , gN} contains N individuals. A new generation H = {h1, h2, . . . , hN}
with N individuals is created. Then for each individual hi from H a parent gj is selected
randomly and uniformly from G. The process is then applied repeatedly to move forward
in time as far as needed.

In our study we will keep track of the two parents of an individual. To model this we
work under models similar to the Wright-Fisher model in the sense that generations do not
overlap and for each individual we choose parents from the previous generation randomly
and uniformly. In these models we assume that the population size in generation Gi is
2N and that there are exactly N male and N female individuals. Each individual from
generation Gi−1 (we enumerate generations backward in time starting from 0, i.e. G0 is
the present generation) is assigned to a parent pair (one male and one female) from Gi.

In the first model, which can be considered a monogamous model, we fix the parent pairs,
i.e. we assume each male and female is part of exactly one potential parent pair. For each
individual in H we choose a parent pair randomly and uniformly from the pool of pairs in
G. In the second model, we assume that individuals in H chose male and female parents
in G indepdenpendently of each other. We consider this second model to be a model on
non-monogamous mating. Both models are similar to each other in that the marginal
distribution of the number of offspring of each individual is binomially distributed with
mean 2. However, they differ from each other in the correlation structure among parents.
In particular, the monogamous model does not allow for half-sibs and full sibs have a very
low probability under the non-monogamous model. We note that other generalizaiotns of
the Wright-Fisher models could be considered, but most would likely have dynamics that
are somewhat intermediate between these two models.

We say that two individuals are siblings if they have at least one common parent. Sim-
ilarly, we say that two individuals are p-th cousins if they share at least on ancestor in
generation Gp+1.
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Let S be a random sample of individuals from G0 of size K. In this paper we are
interested in the number UT of individuals in S which do not have (T − 1)-order cousins
(T = 1 would stand for siblings, T = 2 for first cousins, etc.) within S and have pedigrees
with no cycles (no inbreeding). We will derive the probability distribution of U1 and
expectations of UT for T ≥ 2 in terms of Stirling numbers of the second kind.

Notice, that every genealogy has the same probability under the model. Hence our prob-
lem is equivalent to counting the number of possible genealogies with certain properties.
To enumerate different genealogies, we will use the following approach. Firstly, we divide
a sample S into subsets. Then we assume that individuals from the same subset have the
same parents, and individuals from different subsets have different parents. This approach
is a basis for our analyses and leads us to the proof of formulas for expectations of UT .

4. Stirling numbers of the second kind and their generalization

As previously mentioned, we provide a formula for expectation of UT in terms of Stirling
numbers of the second kind. In this section we provide definitions and properties of these
numbers.

The Stirling number of a second kind S(n, k) is the number of ways to partition a set
of size n into k non-empty disjoint subsets. These numbers can be computed using the
recursion (Abramowitz and Stegun 1972)

S(n, k) = kS(n− 1, k) + S(n− 1, k − 1),

with S(0, 0) = S(n, 0) = S(0, n) = 0 for n > 0. Notice that S(n, n) = 1.
An r−associated Stirling number of the second kind, Sr(n, k) (Comtet 1974), is the

number of partitions of a set of size n into k non-empty subsets of size at least r. These
numbers obey a recursion formula (Comtet 1974) similar to that for Stirling numbers of
second kind

Sr(n+ 1, k) = kSr(n, k) +

(
n

r − 1

)
Sr(n− 1, k − 1)

with Sr(n, 0) = Sr(1, 1) = 0. In particular, for r = 2

S2(n+ 1, k) = kS2(n, k) + nS2(n− 1, k − 1).

4.1. Uniformly valid approximation for S2(n, k). The following useful approximation
of Stirling numbers of the second kind is established by Temme (1993)

(1) S2(n, k) =

(
1 +O

(
1

n

))√
t0

(1 + t0)(x0 − t0)
eAkn−k

(
n

k

)
,

where t0 = n/k − 1, x0 6= 0 is the non-zero root of the equation

(2)
k

n
x = 1− e−x,

and

A = −n lnx0 + k ln(ex0 − 1)− kt0 + (n− k) ln t0.
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The following form of this approximation is known

(3) S2(n, k) =

(
1 +O

(
1

n

))√
n− k

n(1−G)

1

Gk (nk −G)n−k

(
n− k
e

)n−k (n
k

)
,

with G = −W0(−n/ke−n/k), where W0 is the main branch of Lambert W -function (Olver
et al. 2010).

We did not find a reference for this formula in the literature, so we provide briefly
the proof. Notice that −1/e < −n/ke−n/k < 0, hence G ∈ (0, 1). Let us show that
x0 = n/k −G is the non-zero root of equation 2

1−e−x0 = 1−e−
n
k e−W0(−n/ke−n/k) = 1−e−

n
k
W0(−n/ke−n/k)
−n/ke−n/k

=
k

n

(n
k

+W0(−n/ke−n/k)
)

=
k

n
x0,

where the second equality is due to the Lambert function property e−W (x) = W (x)/x.
Substituting t0 and x0 in approximation 1 by their values and simplifying the formula, one
gets the needed result. Obviously,√

t0
(1 + t0)(x0 − t0)

=

√
n− k

n(1−G)
.

Now consider eAkn−k

eAkn−k = (n/k −G)−n(en/k−G − 1)ke−k(n/k−1)(n/k − 1)n−kkn−k =

= (n/k −G)−n

(
e
n
k
−n/ke−n/k

W0(−n/ke−n/k)
− 1

)k (
n− k
e

)n−k
=

= (n/k −G)−n
(
n/k

G
− 1

)k (n− k
e

)n−k
=

= (n/k −G)−n+kG−k
(
n− k
e

)n−k
,

which finished the proof of equivalence of approximations (1) and (3).

5. Probability distribution U1

We say that two individuals are siblings if they have a common parent. In this section
we study the number of individuals U1 without siblings within a sample of a population.
We derive both the probability distribution and expectation of U1.

Theorem 1. Let U1 be a random variable representing the number of individuals in a
sample S of size K without siblings in S under monogamous dioecious Wright-Fisher model.
Then
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• • • • • • • • •

• • • • • • • • •

• • • • • • • • • •

Figure 1. Illustration to the proof of Theorem 1: the process of partition-
ing a sample into subsets and then assigning them to different couples of
parents.

• the probability distribution of U1 is

P(U1 = u) =

(
K
u

)∑bK−u
2
c

t=1 S2(K − u, t)
(
N
u+t

)
(u+ t)!∑m

t=1 S(K, t)
(
N
t

)
t!

;

• the expectation of U1 is

E(U1) = K(1− 1/N)K−1;

• if N = αK

lim
K→∞

E(U1)

K
= e−1/α.

Proof. We begin the proof by computing the number of possible partirtions of S into u
subsets of size 1 and t subsets of size ≥ 2. Each such subset corresponds to the descendants
in S of the same couple from G1. There are

(
K
u

)
S2(K − u, t) such partitions (see figure

1). Here the first multiplier corresponds to the number of choices of the first u individuals
and the second multiplier corresponds to the number of partitions of the remaining K − u
individuals into t subsets.

Now we need to assign u+ t subsets to different couples of parents from G1. There are(
N
u+t

)
possibilities for choosing couples that have descendants in S and (u+t)! permutations

which assign these particular couples to different subsets of the given partitions of S.
Finally, summing over all possible values of t we get

P(U1 = u) =

(
K
u

)∑bK−u
2
c

t=1 S2(K − u, t)
(
N
u+t

)
(u+ t)!∑m

t=1 S(K, t)
(
N
t

)
t!

,

where b·c stands for the floor integer part.
The expression for expectation of U1 is much simpler. The probability π1 that an

individual does not have any siblings in S is π1 = (1 − 1/N)K−1, as all other individuals
can be assigned to any couple except for the parents of the given individual. By linearity,
the expectation of U1 is
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E(U1) = Kπ1 = K(1− 1/N)K−1.

To prove the last statement it is enough to rewrite

E(U1)

K
= (1− 1/N)−1

(
(1− 1/N)N

)K/N
= (1− 1/N)−1

(
(1− 1/N)N

)1/α
,

because N = αK. Now notice that

lim
N→∞

(1− 1/N)N = e−1.

Hence the last statement of the theorem is proved

lim
K→∞

E(U1)

K
= e−1/α.

�

6. Expectation of U2

In this section we will provide an expression for expectation of the number U2 of indi-
viduals in a sample which do not have first cousins in this sample. We will also establish
a limit for E(U2)/K in the case of a fixed ratio between K and N .

Theorem 2. Let U1 be a random variable representing the number of individuals in a
sample S of size K without siblings in S under a monogamous dioecious Wright-Fisher
model. Then the expectation of U1 is

E(U2) = K

∑K
m=1 S(K,m)

(
N
m

)
m!N(N − 1)(N − 2)2m−2∑K

m=1 S(K,m)
(
N
m

)
m!N2m

.

Proof. Similarly to the case of E(U1), we need to find the probability π2 for a single
individual not to have first cousins within S. Then the expectation E(U2) = Kπ2. Denote
individuals from GT which have descendants in S by ST .

Choose an individual s0 ∈ S, let p01 and p02 be parents of s0. If s0 does not have first
cousins, then p01 and p02 are assigned to different couples from G2 and those couples do not
have other descendants in S1.

Similarly to derivation of distribution of U1, we first partition S into m subsets. We
choose m couples from G1 and establish a one-to-one correspondence between the subsets
and the couples. There are N possibilities to choose a couple of parents for p01, N − 1
choices for p02 and (N − 2) choices for all other 2m− 2 individuals from S1. Summing over
m we get

E(U2) = K

∑K
m=1 S(K,m)

(
N
m

)
m!N(N − 1)(N − 2)2m−2∑K

m=1 S(K,m)
(
N
m

)
m!N2m

.

�
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Our next goal is to find the limit of E(U2)/K for a fixed ratio of sample size to the
population size. We assume that N = αK for some constant α ≥ 1 and we consider the
limit of E(U2)/K for K →∞.

Theorem 3. Let α ≥ 1 and set N = αK. Then

lim
K→∞

E(U2) = e−
4
α ,

The following lemma states that the sum of the first βK terms of the series in the
formula for E(U2) is small for large values of K. This makes it possible to make further
approximations under the hypothesis that m = O(K).

Lemma 1. Let N = αK for some α > 1 and set β = (2 ln 2)−1. Then

lim
K→K

∑bβKc−1
m=1 S(K,m)

(
N
m

)
m!N2m

(
1− 1

N

) (
1− 2

N

)2m−2∑K
m=1 S(K,m)

(
N
m

)
m!N2m

= 0.

For simplicity of notations we henceforth drop the integer brackets b·c.

Proof. Denote

TK,N (m) = S(K,m)

(
N

m

)
m!N2m.

First, notice that

0 ≤ TK,N (m)

(
1− 1

N

)(
1− 2

N

)2m−2
≤ TK,N (m)

We will show that for β = (2 ln 2)−1 < 1 there exists a constant 0 < β < 1/2 such that

(4) lim
K→∞

∑βK−1
m=1 TK,N (m)

TK,N (βK)
= 0,

which will immediately prove the statement of the Lemma.
Our goal is to prove that

TK,N (m) & c1e
c2mN2m

for some constants c1, c2 and K large enough.
We begin by approximating the ratio for m ≤ βK

TK,N (m)

TK,N (m+ 1)
=

(
1 +O

(
1
K

))(
1 +O

(
1
K

))√ K −m
K(1−G1)

K(1−G2)

K −m− 1
(5)

Gm+1
2

(
K
m+1 −G2

)K−m−1
Gm1

(
K
m −G1

)K−m (
K −m
e

)K−m( e

K −m− 1

)K−m−1 (
K
m

)(
K
m+1

) 1

N −m
1

N2
,

by applying approximation 3.
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Notice that 0 < G1 < G2 < −W0(−2e−2) < 1/2. The following term is bounded by a
constant (we remind the reader that 0 < m ≤ βK < K/2)√

1−G2

1−G1
≤ 1√

2(1 +W0(−1/2e−1/2))
.

After simplification, all the factorials in the formula are of the form (constK)!, hence
they can be approximated uniformly in K by Stirling’s approximation

n! =

(
1 +O

(
1

n

))√
2πn

(n
e

)n
.

For simplicity of notations we drop all terms 1 +O(1/K) in 5. We also notice that(
K −m

K −m− 1

)K−m−1
=

(
1 +

1

K −m− 1

)K−m−1
= e+O(1/K).

So for K large enough (5) has following approximation

TK,N (m)

TK,N (m+ 1)
≈
√

K −m
K −m− 1

1−G2

1−G1

Gm+1
2

(
K
m+1 −G2

)K−m−1
Gm1

(
K
m −G1

)K−m m+ 1

N −m
1

N2
.

The derivative of G(x)1/x(x−G(x))1−1/x (x ≥ 1) with respect to x is

(6) H(x) =
G(x)

1
x (x−G(x))

x−1
x (ln(x−G(x))− lnG(x))

x2
.

H(x) has one real root x = 2 ln 2 if x ≥ 1. For x > 2 ln 2, H(x) > 0, so G(x)1/x(x −
G(x))1−1/x is an increasing function of x for x > 2 ln 2. Hence as soon as K/m > 2 ln 2, or
m < K/(2 ln 2), the following inequality holds

Gm+1
2

(
K
m+1 −G2

)K−m−1
Gm1

(
K
m −G1

)K−m < 1.

Consequently, for sufficently large K we obtain the following upper bound for (5)

TK,N (m)

TK,N (m+ 1)
≤ 1√

2(1 +W0(−1/2e−1/2))

β

α− β
1

N2
=:

A

N2

Hence, by recursion for m < βK

TK,N (m) ≤
(
A

N2

)βK−m
TK,N (βN).

Now we use the obtained inequality to prove limit (4)

(7) lim
K→∞

∑βK−1
m=1 TK,N (m)

TK,N (βK)
≤ lim

K→∞

βK−1∑
m=1

(
A

N2

)βK−m
= lim

K→∞

A

N2

(1−A/N2)βK−1

1−A/N2
= 0,
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ON THE NUMBER OF SIBLINGS AND p-TH COUSINS IN A LARGE POPULATION SAMPLE 9

where the second equality holds by summing over the geometric progression. �

Lemma 2. Let N = αK for some α > 1, set β = (2 ln 2)−1. Then for any m such that
βK ≤ m < K

TK,N (m)

TK,N (m+ 1)
≤ O

(
1

K

)
.

Proof. From the proof of Lemma 1, for K large enough and for β ≤ m/K ≤ 1

TK,N (m)

TK,N (m+ 1)
≤ C

√
1−G2

1−G1

Gm+1
2

(
K
m+1 −G2

)K−m−1
Gm1

(
K
m −G1

)K−m 1

N2
.

Notice that xex = −1 + O((x − 1)2) near x = −1. Hence 1 − G(x) = O(|x − 1|) and
x − G(x) = O(|x − 1|) for x → 1. By definition, the Lambert W -function is the inverse
function of xex. If x1 > −1 and x2 < −1 are two points in the neighbourhood of −1 such
that x1e

x1 = x2e
x2 , then |x1−x2| = O(|x1−1|) = O(|x2−1|). For x > 1, −xe−x ∈ [−1/e; 0].

The value of the main branch, W0(xe
x), is in the interval [−1, 0]. So −x and W0(−xe−x)

correspond to x1 and x2.
Hence √

1−G2

1−G1
=

1−K/(m+ 1)

1−K/m
= O(1).

Now we use mean value theorem to approximate
(8)∣∣∣∣∣Gm+1

2

(
K

m+ 1
−G2

)1−m+1
K

−Gm1
(
K

m
−G1

)1−m
K

∣∣∣∣∣ ≤
∣∣∣∣Km − K

m+ 1

∣∣∣∣ max
[K/(m+1),K/m]

|H(x)|,

where H(x) is given by expression (6). Denote ∆x = |x− 1|, and notice that

Ĥ(x) :=
H(x)

ln(x−G(x))− lnG(x)
=
G(x)

1
x (x−G(x))

x−1
x

x2

and lnG(x) are continuous near x = 1 and Ĥ(1) = 1, lnG(1) = 0. So for small ∆x

H(1 + ∆x) = O(ln ∆x),

and hence
max

[K/(m+1),K/m]
|H(x)| = |H(K/(m+ 1))| = O(lnK)

which leads to the approximation of (8) with m = O(K)∣∣∣∣∣Gm+1
2

(
K

m+ 1
−G2

)1−m+1
K

−Gm1
(
K

m
−G1

)1−m
K

∣∣∣∣∣ ≤ K

m(m+ 1)
|H(K/(m+ 1))| . lnK

K

We use this estimate and the Taylor expansion of logarithm to get

Gm+1
2

(
K
m+1 −G2

)K−m−1
Gm1

(
K
m −G1

)K−m .

(
1 +

lnK

K

)K
≈ K.
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Finally, we estimate the ratio TK,N (m)/TK,N (m+ 1) for K large enough

TK,N (m)

TK,N (m+ 1)
≤ C0

K

with some constant C0, which depend on α. �

Now we are ready to prove the theorem.

Proof. Firstly, notice that

1 ≥
(

1− 2

αK

)2m

≥
(

1− 2

αK

)2K

≥
(

1− 2

αK

) 4
α
αK
2

≥ e−
4
α ,

and (1− 1/N)(1− 2/N)2 → 1 as N →∞. Hence, the lower bound is valid for any α and
K

E2(α,K)

K
=

∑K
m=1 TK,N (m)

(
1− 1

N

) (
1− 2

N

)2m−2∑K
m=1 TK,N (m)

≥
(

1− 1

N

)(
1− 2

N

)−2
e−4/α,

where the right part trivially converges to e−4/α with K → ∞ (we remind that N = αK
for some constant α).

Now we prove that this bound is sharp by applying subsequently Lemmas 1 and 2

lim
K→∞

E2(α,K)

K
= lim

K→∞

∑K
m=1 TK,N (m)

(
1− 1

N

) (
1− 2

N

)2m−2∑K
m=1 TK,N (m)

= lim
K→∞

∑K
m=βK TK,N (m)

(
1− 1

N

) (
1− 2

N

)2m−2∑K
m=βK TK,N (m)

≤ lim
K→∞

∑K−1
m=βK TK,N (m) + TK,N (K)

(
1− 1

N

) (
1− 2

N

)2m−2∑K−1
m=βK TK,N (m) + TK,N (K)

= e−4/α,

because from Lemma 2 it follows

0 ≤ lim
K→∞

∑K−1
m=βK TK,N (m)

TK,N (K)
≤ lim

K→∞

∑K−1
m=βK

(
C0
K

)K−m
TK,N (K)

TK,N (K)
= lim

K→∞

C0

K

1−
(
C0
K

)K
1− C0

K

= 0.

�

7. General case: expectation of Up for p ≥ 1

Similarly to the expectation of U2, we can find the probability the expected numbers
U3 and U4 of individuals which do not have second and third cousins and with pedigrees
without cycles.
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Lemma 3. Let S be a set and S′ ⊂ S be a subset of size |S′| = p.The number of partitions
of a set S of size N into M disjoint subsets such that all elements of S′ are in different
subsets is

Qp(N,M) =

p∑
t=0

(
p

t

)
S(N − p,M − t)

(
M − t
p− t

)
.

Proof. Let S′′ ⊂ S′, S′′ = {e1, e2, . . . , et}, such that each element, ei ∈ S′′, makes its own
subset Pi = {ei} in the partition of S. If t = |S′′| there are

(
p
t

)
ways to choose such a

subset. Then, S \ S′ should be split into M − t non-empty subsets, Pt+1, Pt+2, . . . , PM , to
obtain a partition of S into exactly M subsets. There are S(N −p,M − t) possible ways of
doing that. Each of the p− t elements of S′ \ S′′ are then added to distinct subsets among

the remaining M − t subsets, Pi, i > t, which can be done in
(
M−t
p−t
)

ways.

Summing over all possible values of t we prove the statement. �

Remark 1. For p = 1, Lemma 3 turns into the well-known recursive formula for Stirling
numbers of the second kind.

The next theorem establishes the expression for the expectation of Up and its limit for
fixed K to N ratio in the general case. Due to the size of the formula we had to introduce
additional notations for readability.

Theorem 4. • For any natural p ≥ 1 the expectation of Up is

(9) E(Up) = K

K∑
m1=1

R1

2m1∑
m2=2

R2 . . .

2mp−2∑
mp−1=4

Rp−1︸ ︷︷ ︸
(p−1) nested summations

N2mp−1W (p)

K∑
m1=1

R1

2m1∑
m2=2

R2 . . .

2mp−2∑
mp−1=4

Rp−1︸ ︷︷ ︸
(p−1) nested summations

N2mp−1

,

where by convention we assume 2m0 := K,

R(j) = Q2j−1(2mj−1,mj)

(
N

mj

)
mj !,

and

W (p) =

(
1− 2p−1

N

)2mp−1−2p−1 2p−1∏
s=1

(
1− s

N

)
• If N = αK (i = 1, 2, . . . , p), then

(10) lim
K→∞

E(Up)

K
= lim

K→∞

(
1− 4

αK

)4K

= e−(2
2p−2)/α.
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12 VLADIMIR SHCHUR1 AND RASMUS NIELSEN1,2

Proof. To prove the first statement, we apply repeatedly the same arguments as used for
Theorem 2: for each generation, we split the ancestors of the sample into subsets of siblings
while controlling that ancestors of the given individual are not in the same subsets.

The proof of (10) is similar to the proof of Theorem 3. First we can show that we can
substitute summations over mi > βK for some constant β (see Lemma 1). Then we use
estimations for Qi that are similar to those obtained in Lemma 2. �

8. Non-monogamous Wright-Fisher model

Similar results to those obtained for the monogamous case also hold for the non-monogamous
dioecious Wright-Fisher model. However, in contrast to the monogamous case, the proba-
bility that two individuals are full siblings or full p-th cousins (i.e. sharing two ancestors) is
rather small. Most familial relationships would involve sharing only one common ancestor
at a given generation, i.e. related individuals would typically be half siblings or half p-th
cousins.

Let Vp be a random variable representing the number of individuals in a sample S
of size K without half siblings or full siblings (p = 1) or half p-th cousins or full p-th
cousins (p ≥ 2) in S under the non-monogamous Wright-Fisher model. The next theorem
established the expression for the expectation of Vp and its limit for K →∞ in the case of
fixe ratio between K and the population sizes N .

Theorem 5. • For any natural p ≥ 1, the expectation of Vp is

(11) E(Vp) = K

K∑
m1=1

P1

2m1∑
m2=2

P2 . . .

2mp−2∑
mp−1=2p−2

Pp−1︸ ︷︷ ︸
(p−1) nested summations

N2mp−1W 2(p)

K∑
m1=1

P1

2m1∑
m2=2

P2 . . .

2mp−2∑
mp−1=2p−2

Pp−1︸ ︷︷ ︸
(p−1) nested summations

N2mp−1

,

where we assume m0 = K and

Pj :=

mj−2j−1∑
n=2j−1

Q2j−1(mj−1, n)Q2j−1(mj−1,mj − n)

(
N

n

)(
N

mj − n

)
n!(mj − n)!

and

W (p) =

(
1− 2p−1

N

)mp−1−2p−1 2p−1−1∏
s=1

(
1− s

N

)
.

• If population sizes N = αK, then

lim
K→∞

E(Vp)

K
= e−(2

2p−1)/α.
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The proof of the theorem is similar to the case of monogamous model.
In particular,

E(V1) = K(1− 1/N)2(K−1).

Corollary 1. The qualitative behaviour of Ui and Vi is the same, more precisely

lim
K→∞

E(Vi)

K
=

(
lim
K→∞

E(Ui)

K

)2

.

9. Numerical results

In this section we present numerical results for expectations of Up and Vp, p = 1, 2, 3.
Every plot of figures 2 and 3 represents the behaviour of E(Up)/K or E(Vp)/K for a
particular p = 1, 2, 3. Those values are computed by formulas (9) or (11) for different
values of N (N = 20, 100, 200) as a function of the ratio K/N . We also add corresponding
limiting distribution to every plot to illustrate the convergence.

Because the effective population sizes are typically rather large (at least thousands of
individuals) we might expect a satisfactory approximation of E(Up) and E(Vp) by its
limiting distribution even for relatively small K/N ratios. One can also check that in our
proofs the errors in the estimates are of the order of 1/N , hence for the desired ratio we
can estimate the absolute error for smaller values of K,N numerically and then increase
N to get the desired precision.

10. Discussion

In this paper we analysed the expected values of the number of individuals without
siblings and p-th cousins in a large sample of a population. To do that we suggested
two extensions of Wright-Fisher model which keeps track of two parents of an individual.
The first extension corresponds to a monogamous population and the second to a non-
monogamous population. The two models represent two extremes, and we might expect
that in most other dioecious generalizations of the Wright-Fisher model, the number of
individuals without siblings or p-the cousins is somewhere in between those two regimes.

Under both models we derived expressions for these expectations under the hypothesis
that the pedigrees have no cycles (except for the one appearign in full sibs). Notice that
this restriction is not too strong, because one can easily show that the chance that an
individual has a pedigree with a cycle is a second-order effect as soon as the number of
ancestors (≤ 2p) in a generation is much smaller than the effective population size N .

The important result of the paper is the limiting distributions for E(Up)/K and E(Vp)/K.

It turns out that E(Up)/K and E(Vp)/K converge pointwise to e−cK/N where the constant
c is 22p−2 for Up and 22p−1 for Vp.

We notice that even when the sampling fraction is relative low, the proportion of in-
dividuals in the sample with no close relatives can be small. For example, for the non-
monogamous model and a sampling faction of 5%, the proportion of individuals with at
least a second cousing is approx. 70% if the population size is at least N = 200. For
a sampling fraction of 2% the proportion in individuals with at least a second cousin is
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(a) p=1, individuals without siblings.
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(b) p=2, individuals without first cousins.
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(c) p=3, individuals without second cousins.

Figure 2. E(Up)/K as a function of the K/N ratio for N = 50 (•), 100
(N), 200 (�) and the corresponding limiting distribution (?).
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ON THE NUMBER OF SIBLINGS AND p-TH COUSINS IN A LARGE POPULATION SAMPLE 15

close to 50% for reasonably large population sizes in case of random mating population or
almost 30% in case of monogamous population. For sampling fractions on the order of 0.01
or larger, we expect a large proportion of individuals to have at least one other individual
in the sample to which they are closely related. This fact should be taken into account in
all genetic, and non-genetic, epidemiological studies working on large cohorts.
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(a) p=1, individuals without siblings and half siblings.
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(b) p=2, individuals without first-cousins and half first cousins.
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(c) p=3, individuals without second cousins and half second
cousins.

Figure 3. E(Vp)/K as a function of the K/N ratio for N = 50 (•), 100
(N), 200 (�) and the corresponding limiting distribution (?).
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