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 2 

Abstract 1 

Recent evidence shows that mutations in several driver genes can cause aberrant methylation 2 

patterns, a hallmark of cancer. In light of these findings, we hypothesized that the landscapes of 3 

tumor genomes and epigenomes are tightly interconnected. We measured this relationship using 4 

principal component analyses and methylation-mutation associations applied at the nucleotide 5 

level and with respect to genome-wide trends. We found a few mutated driver genes were 6 

associated with genome-wide patterns of aberrant hypomethylation or CpG island 7 

hypermethylation in specific cancer types. We identified associations between 737 mutated driver 8 

genes and site-specific methylation changes. Moreover, using these mutation-methylation 9 

associations, we were able to distinguish between two uterine and two thyroid cancer subtypes. 10 

The driver gene mutation-associated methylation differences between the thyroid cancer subtypes 11 

were linked to differential gene expression in JAK-STAT signaling, NADPH oxidation, and other 12 

cancer-related pathways. These results establish that driver-gene mutations are associated with 13 

methylation alterations capable of shaping regulatory network functions. In addition, the 14 

methodology presented here can be used to subdivide tumors into more homogeneous subsets 15 

corresponding to their underlying molecular characteristics, which could improve treatment 16 

efficacy. 17 

 18 

Author summary 19 

Mutations that alter the function of driver genes by changing DNA nucleotides have been 20 

recognized as a key player in cancer progression. Recent evidence showed that DNA methylation, 21 

a molecular signature that is used for controlling gene expression and that consists of cytosine 22 

residues with attached methyl groups in the context of CG dinucleotides, is also highly 23 
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 3 

dysregulated in cancer and contributes to carcinogenesis. However, whether those methylation 1 

alterations correspond to mutated driver genes in cancer remains unclear. In this study, we 2 

analyzed 4,302 tumors from 18 cancer types and demonstrated that driver gene mutations are 3 

inherently connected with the aberrant DNA methylation landscape in cancer. We showed that 4 

those driver gene-associated methylation patterns can classify heterogeneous tumors in a cancer 5 

type into homogeneous subtypes and have the potential to influence the genes that contribute to 6 

tumor growth. This finding could help us to better understand the fundamental connection between 7 

driver gene mutations and DNA methylation alterations in cancer and to further improve the cancer 8 

treatment. 9 

 10 

Introduction 11 

DNA methylation (DNAm) is highly dysregulated in cancers from many organs [1, 2] where it is 12 

characterized by aberrant CpG island (CGI) hypermethylation and long-range blocks of 13 

hypomethylation. Moreover, dysregulated DNAm at specific locations within the genome often 14 

distinguishes heterogeneous tumors within cancer types into homogeneous subtypes [3, 4]. The 15 

origin of these dramatic changes in the DNAm of tumor cells remains a puzzle. On the one hand, 16 

DNAm alterations at particular CpG sites in tumors are associated with the aging process in normal 17 

cells [5, 6]. This has led some researchers to propose that cell proliferation, which drives age-18 

associated DNAm errors in normal cells, is also responsible for aberrant DNAm in cancer [7]. On 19 

the other hand, although these DNAm errors exhibit a linear association with the number of cell 20 

divisions in normal cells, in cancer cells, they are not well correlated with the mRNA expression-21 

based mitotic index in many cancer types [7]. This suggests that in tumor cells, some factor other 22 

than cell proliferation is shaping the DNAm landscape. Because tumors of the same molecular 23 
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 4 

subtype often harbor both dysregulated DNAm at particular locations in the genome and mutations 1 

in driver genes [3, 8], we decided to investigate more broadly the connection between somatic 2 

mutations and specific aberrant DNAm patterns. 3 

 4 

Several genes that are known to play a defining role in a wide variety of cancer types [9, 10], such 5 

as TP53, IDH1, BRAF, and KRAS, have been functionally linked to dysregulated DNA methylation. 6 

For example, in hepatocellular carcinoma and esophageal squamous cell carcinoma, TP53 7 

mutations are associated with extensive DNA hypomethylation [11, 12]. In glioblastoma, IDH1 8 

mutations produce widespread CGI hypermethylation, termed the CpG island methylator 9 

phenotype (CIMP), by inhibiting the TET-demethylation pathway [13, 14]. In colorectal cancer, 10 

the BRAF V600E mutation results in DNA hypermethylation and CIMP development by 11 

upregulating the transcriptional repressor MAFG, which recruits the DNA methyltransferase 12 

DNMT3B to its targets at promoter CGIs [15]. Likewise, the KRAS G13D mutation upregulates 13 

another transcriptional repressor, ZNF304, to establish a CIMP-intermediate pattern in colorectal 14 

cancer [16]. 15 

 16 

Based on these findings, we hypothesized that the genomic and epigenetic landscapes were stable 17 

and interdependent and therefore specific driver mutations would correlate with specific DNAm 18 

patterns. Thus, in this study, we systematically evaluated mutation-methylation associations across 19 

4,302 tumors from 18 cancer types, along with 727 normal tissue samples from The Cancer 20 

Genome Atlas (TCGA). By investigating DNAm alterations associated with mutated driver genes 21 

on both a genome-wide scale and a site-specific scale, we were able to show that i) mutated driver 22 

genes are tightly associated with DNAm variation in cancer; ii) some associations are present 23 
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 5 

across cancer types, whereas others are cancer type-specific; iii) mutation-methylation associations 1 

cannot be explained by cell proliferation alone; and iv) these associations can be used to classify 2 

tumors into molecular subtypes and gain insight into functional alterations. Together, these results 3 

establish that driver mutations and DNAm alterations are tightly coupled in tumor cells, and that 4 

this coupling may affect important regulatory networks related to oncogenesis. 5 

 6 

Results 7 

Association between driver gene mutations and methylation patterns in cancer 8 

To determine whether mutated driver genes were associated with methylation changes, first we 9 

performed principal component analysis (PCA) on methylation data for each of 18 different cancer 10 

types; within a given cancer type, tumor samples were projected onto the principal components 11 

(PCs). Illumina Infinium human methylation 450K array data and somatic mutation data were 12 

downloaded from TCGA (Table 1), and driver genes were predicted with MutSigCV [17] (see 13 

Materials and Methods for details). For each cancer type, a driver gene was considered to be 14 

associated with a PC if samples in which the gene was mutated were unevenly distributed toward 15 

the positive or negative extremes of that PC (q<0.05; two sided Wilcoxon rank-sum test). We 16 

assessed each driver gene for the top five DNAm PCs; examples of PC1-associated driver genes 17 

are shown in Fig 1A. 18 

 19 

A PC-associated driver gene suggests that the mutated samples at one extreme display methylation 20 

patterns distinct from the non-mutated samples at the other extreme. For instance, in stomach 21 

adenocarcinoma (STAD), TP53-mutated samples were distributed toward the positive extreme of 22 

PC1, whereas ARID1A- and PIK3CA-mutated samples were distributed toward the negative 23 
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 6 

extreme. Thus, distinct methylation patterns associated with PC1 separated the majority of TP53-1 

mutated STAD samples from ARID1A- and PIK3CA-mutated samples: ARID1A- and PIK3CA-2 

mutated samples were highly methylated at PC1-defining probes relative to TP53-mutated samples 3 

(Fig 1B). Overall, we found a significant association between 159 driver genes and one or more 4 

of the top five methylation PCs in 15 of 18 cancer types (the top three driver genes associated with 5 

each PC shown in Fig 1C). 6 

 7 

Mathematically, distinct PCs represent mutually orthogonal (uncorrelated) linear combinations of 8 

probes, or different methylation patterns (such as the pattern associated with PC1 in STAD shown 9 

in Fig 1B), with several top PCs usually capturing the majority of variance in the methylome. Thus, 10 

frequent driver gene-PC associations in almost every cancer type suggest a tight connection 11 

between driver-gene mutations and DNA methylation alterations in cancer. 12 

 13 

Next, we investigated whether the mutation-methylation connection in cancer was limited to 14 

certain CpG subsets—namely those occurring in CGIs, shores and shelves (SSs; the 4-kb regions 15 

flanking the CGIs), or open-sea regions (i.e., outside of CGIs and SSs)—as the regulatory 16 

functions of these CpG subsets often differ [18]. For example, DNAm in promoter CGIs often 17 

causes gene silencing whereas DNAm in CGI shores is frequently altered and strongly correlated 18 

to corresponding gene expression in cancer [19]. Thus, we repeated the analysis described above 19 

for each subset of probes. We observed similar driver gene-PC associations across multiple cancer 20 

types, indicating that the mutation-methylation connection is not limited to a particular CpG subset 21 

(S1 Fig). In total, 14 of 18 cancer types harbored significant associations between driver gene 22 

mutations and top five methylation PCs at CGIs, 14 of 18 at SSs, and 15 of 18 in open sea regions. 23 
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We then repeated the same analysis after stratifying probes by hypo- or hypermethylation status 1 

and found that the results did not vary appreciably (S1 Fig). Of note, in this study we identified 2 

hyper- and hypomethylated probes by comparing the methylation of tumor and control samples 3 

(q<0.05; Wilcoxon rank sum test). 4 

 5 

Driver gene mutations, methylation patterns, and cell proliferation are correlated 6 

Cell proliferation was proposed to be an important factor driving DNAm changes in cancer [7]. 7 

This was demonstrated with a set of 385 CpGs in the Illumina 450K array whose average 8 

methylation levels approximated the mitotic rate in cancer, called epiTOC (epigenetic Timer Of 9 

Cancer). The method has been proposed as an alternative to the mRNA expression-based mitotic 10 

index [7]. We calculated the mitotic index for all tumor types using epiTOC or the mRNA 11 

expression-based approach. We found these two indices were correlated with many of the top 5 12 

PCs across cancer types (q<0.05; Spearman correlation) (Fig 1C). In general, epiTOC correlated 13 

with more PCs than the mRNA expression-based index.  For example, STAD showed a significant 14 

correlation between PC1 and epiTOC scores (q=0) but not the mRNA expression-based index 15 

(q=0.22) (Fig 1B). We removed epiTOC-correlated methylation sites (q<0.05; Pearson 16 

correlation), and found that many methylation PC associated-driver genes remained in many 17 

cancer types (S2 Fig), indicating that the mutation-methylation association cannot be totally 18 

explained by epiTOC scores. We also used both methods to compare predicted cell proliferation 19 

rates. To elucidate the relationship between cell proliferation rate and mutated driver genes, we 20 

associated the presence of mutations in each driver gene with high/low score in each index. We 21 

found that mutated driver genes associated with high and low cell proliferation rates estimated by 22 

the two indices were inconsistent in most cancer types (Table 2). For example, TP53-mutated 23 
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tumors were correlated with a high cell proliferation rate in 10 cancer types and none were 1 

correlated with low cell proliferation rate using the mRNA expression-based index. In contrast, 2 

TP53-mutated tumors were correlated with low cell proliferation in HNSC and UCEC, using 3 

epiTOC. Thus DNAm and mRNA-based mitotic indices are inconsistent and could be measuring 4 

two different properties of these tumor cells. Despite their inconsistency, by using either index, 5 

our results indicate that methylome patterns in cancer are correlated with the presence of mutated 6 

driver genes and cell proliferation but the mutation-methylation association found in this study 7 

cannot be explained by cell proliferation alone.  8 

 9 

Driver gene mutations, genome-wide CGI hypermethylation, and open sea hypomethylation 10 

in tumors 11 

We next asked whether driver gene-associated methylation alterations corresponded to genome-12 

wide methylation patterns characteristic of cancer: i.e., widespread CGI hypermethylation and 13 

huge hypomethylated blocks, primarily in open sea regions [1, 2, 20]. To answer this question, we 14 

calculated the HyperZ and HypoZ indices for each sample [21]. A high HyperZ index indicates 15 

aberrant hypermethylation in many CGIs for a given sample, whereas a high HypoZ index 16 

indicates extensive open sea hypomethylation. The number of mutated driver genes that were 17 

significantly associated with either high or low HyperZ and/or HypoZ indices is shown for all 18 18 

cancer types in Table 3 (q<0.05; Wilcoxon rank sum test); it varies from 67 driver genes in COAD 19 

to 0 in PAAD, READ, and SKCM. 20 

 21 

The complete list of mutated driver genes with significant associations to HyperZ and HypoZ is 22 

shown in Table S1. Some known players appear on this list. For example, a high HyperZ index 23 
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 9 

was associated with BRAF in COAD and IDH1 in GBM; both genes are linked to CIMP in cancer 1 

[13, 22]. NSD1, which was associated with a high HypoZ index in HNSC, has also been linked to 2 

hypomethylation in cancer [23]. The associations we detected in most cancer types underscore the 3 

relationship between driver gene mutations and genome-wide methylation alterations commonly 4 

observed in cancer, whereas only a few types lack these patterns. 5 

 6 

Driver gene mutations and site-specific methylation changes in tumors 7 

Next, we investigated whether the connection between driver gene mutations and methylation 8 

alterations was methylation-site specific, in each cancer type. To do so, we calculated the 9 

associations between every driver gene and every methylation array probe for all 18 cancer types, 10 

testing whether the presence of mutations in a driver gene is associated with the high or low 11 

methylation level at a given probe site. Across almost all cancer types, many more driver genes 12 

were significantly associated with at least one probe than with the HyperZ and/or HypoZ indices, 13 

after correcting for multiple testing (q < 0.05; Wilcoxon rank-sum test; Table 3). In total, 737 14 

unique driver genes were implicated. The driver gene-methylation site associations were present 15 

genome-wide. An example of the chromosomal distribution of driver gene-associated methylation 16 

probes present in kidney renal clear cell carcinoma (KIRC) is shown in Fig S3. The numerous 17 

gene-probe associations detected here suggest that driver gene-associated methylation changes 18 

likely occur at certain CpG sites, potentially resulting from a site-targeting mechanism. 19 

 20 

The number of probes associated with each driver gene varied greatly, ranging from fewer than 10 21 

to tens of thousands (S2 Table). For each cancer type, a few (1–5) dominant driver genes accounted 22 

for the majority of associations (Fig 2A), including known oncogenes and tumor suppressor genes 23 
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such as TP53, PTEN, and PIK3CA, and known CIMP-driving genes such as BRAF, IDH1, and 1 

KRAS [15, 16, 24]. Dominant driver genes usually displayed both positive and negative 2 

associations with methylation levels in a given cancer type (Fig 2B). However, there was typically 3 

more of one type of association than the other. By definition, positive associations indicate higher 4 

methylation levels in the presence of driver gene mutations among tumor samples, whereas 5 

negative associations indicate lower methylation levels. Thus, positive associations would 6 

correspond to hypermethylation (primarily in CGIs) if control samples displayed the low 7 

methylation level at a given probe site, whereas negative associations would correspond to 8 

hypomethylation (primarily in open-sea regions) if control samples displayed the high methylation 9 

level. We found both positive and negative associations for many driver genes; however they can 10 

be largely imbalanced. For example primarily positive associations occurred for the CIMP-driving 11 

genes BRAF in COAD (5,166 positive vs. 103 negative associations) and IDH1 in GBM (31,877 12 

vs. 3,535). Other genes with predominantly positive associations included RNF43 (4,784 vs. 173) 13 

and MACF1 (2,706 vs. 95) in COAD; CASP8 (21,552 vs. 4,660) in HNSC; PBRM1 (11,831 vs. 14 

3,906), SETD2 (6,443 vs. 2,440), and BAP1 (5,162 vs. 1,240) in KIRC; SETD2 (4,300 vs. 936) in 15 

KIRP; SPOP (8,919 vs. 6,444) in PRAD; PIK3CA (58,843 vs. 2,153) in STAD; and PTEN (20,548 16 

vs. 14,496) in UCEC. These genes were also associated with a high HyperZ index, suggesting that 17 

they may play a role in genome-wide CGI hypermethylation in particular cancer types (S1 Table). 18 

 19 

By contrast, genes that primarily displayed negative associations were often associated with a high 20 

HypoZ index, suggesting that they may play a role in genome-wide open sea hypomethylation. 21 

Examples were NSD1 (1,423 positive vs. 72,475 negative associations) in HNSC, CTNNB1 (1,065 22 

vs. 23,869) in LIHC, and STK11 (3,269 vs. 33,840) and KEAP1 (4,122 vs. 31,348) in LUAD. 23 
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Interestingly, RNF43 (31,905 vs. 23,267) was associated with both high HyperZ and HypoZ 1 

indices in STAD, suggesting a dual role in genome-wide CGI hypermethylation and open sea 2 

hypomethylation. 3 

 4 

In short, a few driver genes were linked to genome-wide patterns of CGI hypermethylation and 5 

open sea hypomethylation in particular cancer types, whereas many more driver genes were linked 6 

to only a few probe sites that exhibited hyper- and hypomethylation in cancer (S2 Table). 7 

 8 

Consistency of mutated driver gene-associated methylation changes across cancer types 9 

Next, we asked whether mutated driver genes consistently displayed predominantly 10 

positive/negative associations across multiple cancer types. We investigated the proportion of 11 

positive and negative probe associations for 17 driver genes across 18 cancer types (Fig 3A). 12 

Here, we only considered driver genes linked to extensive methylation changes (more than 1,000 13 

probe associations per driver gene, for at least two cancer types). When compared to control 14 

samples, positive associations often equated to hypermethylation (primarily in CGIs) in response 15 

to mutations. Likewise, the negative associations often equated to hypomethylation (primarily in 16 

open sea regions) (Fig 3B). TP53 displayed predominantly negative associations in 9 of 18 17 

cancer types, and no predominantly positive associations were observed in connection to this 18 

gene in any cancer type, suggesting a tight connection between mutations in this gene and open 19 

sea hypomethylation across multiple cancer types. Interestingly, those negatively associated 20 

probes were shared across cancer types (from 62,951 probes shared across 2 types to 15 probes 21 

shared across 7 types) (S4 Fig). In addition to TP53, APC and CTNNB1 also displayed 22 

predominantly negative associations in two different cancer types each. 23 
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 1 

By contrast, IDH1 strongly favored positive associations in two cancer types, GBM and SKCM, 2 

consistent with reports that mutated IDH1 downregulates TET-dependent demethylation, 3 

resulting in aberrant CGI hypermethylation [25]. SETD2, PTEN, RNF43, HRAS, EPHA2, and 4 

BAP1 were also linked to primarily positive associations in more than one cancer type, 5 

suggesting that they may play a general role in CGI hypermethylation.  6 

 7 

BRAF, which mediates CIMP in colorectal cancer, displayed a high proportion of positive 8 

associations (0.98) in COAD, but low proportions in SKCM (0.02) and THCA (0.27). Its 9 

negative associations in THCA corresponded to hypomethylation across CGIs, SSs, and open sea 10 

regions (Fig 3B and S2 Table). This dramatic difference indicates that driver genes may be 11 

associated with methylation patterns in a cancer type-specific manner. Such cancer type-specific 12 

associations were also seen for PIK3CA, KRAS, GATA3, CTCF, CDH1, and ARIDA1. 13 

 14 

Identification of molecular subtypes in thyroid carcinoma and uterine corpus endometrial 15 

carcinoma based on driver gene-associated methylation patterns 16 

In previous studies, researchers have identified cancer subtypes in COAD and GBM by matching 17 

mutational profiles to methylation patterns [13, 22]; here, we asked if the site-specific mutation-18 

methylation associations would separate THCA and UCEC tumors into subtypes. We focused on 19 

the methylation patterns associated with the top three dominant driver genes which account for 20 

the most probe associations in each cancer type (as shown in Fig 2A). In THCA, the top three 21 

genes (NRAS, HRAS, or BRAF) were mutated in a mutually exclusive fashion. However, in 22 
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UCEC, mutations in TP53 were nearly mutually exclusive with PTEN and CTNNB1 mutations, 1 

which co-occurred in many tumor samples. 2 

 3 

We performed hierarchical clustering on the union of the 500 methylation probes most 4 

significantly associated with mutations in each of the top three genes (Fig 4). In THCA, two 5 

methylation subtypes emerged corresponding to NRAS- and HRAS-mutated tumors vs. BRAF-6 

mutated tumors (Fig 4A). Furthermore, we found tumors lacking any of the specified mutations 7 

co-clustered within these patterns. The selected probes primarily fell in non-CGI positions (i.e. 8 

SS and open sea regions); BRAF mutants displayed hypomethylation in open sea and some SS 9 

regions, whereas NRAS and HRAS mutants displayed methylation levels similar to controls in 10 

open sea and SSs regions, with little hypermethylation. Two methylation subtypes were also 11 

identified in UCEC, this time corresponding to TP53 vs. PTEN mutations (Fig 4B). PTEN-12 

mutated samples generally exhibited CGI hypermethylation, whereas TP53-mutated samples 13 

generally exhibited normal methylation levels, with some hypomethylation in open sea regions. 14 

Most UCEC samples with mutations in both PTEN and CTNNB1 displayed greater levels of open 15 

sea hypomethylation than samples with PTEN mutations alone, which has not been previously 16 

reported, illustrating the connectivity between mutational profiles and DNA methylation in 17 

cancer. 18 

 19 

Correlations between driver gene-associated methylation probe sites and corresponding 20 

gene expression in two thyroid carcinoma subtypes 21 

Finally, we investigated whether driver gene-associated methylation patterns shape gene 22 

regulatory networks. To investigate the three-way association between mutation, methylation, 23 
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and gene expression, we used THCA as our primary example; the mutually exclusive mutation 1 

profile present in this type of cancer minimized the complexity of the associated methylation 2 

patterns, facilitating the study of gene expression. We looked for genes whose aberrant 3 

expression levels were correlated with aberrant methylation levels (each relative to controls). We 4 

focused on CpG sites in promoter regions and gene bodies in NRAS and HRAS mutants (the 5 

NRAS-HRAS group) vs. BRAF mutants (the BRAF group). These genes were subsequently sorted 6 

into four different categories of expression change: (1) upregulation only in the BRAF group, (2) 7 

upregulation only in the NRAS-HRAS group, (3) downregulation only in the BRAF group, and (4) 8 

downregulation only in the NRAS-HRAS group. For each category, we reported the affected 9 

genes, sorted by median difference in expression between mutants and controls (S3 Table), and 10 

significantly enriched pathways (S4 Table). 11 

 12 

In all, 1,565 genes were upregulated specifically in the BRAF group (S3 Table). Gene set 13 

analysis showed that these genes were enriched in 97 canonical pathways primarily pertinent to 14 

cell-cell communication/extracellular matrix gene sets and signaling pathways (q<0.05; 15 

hypergeometric test; S4 Table). Some upregulated genes were involved in many of the 97 16 

pathways; for example, the 10 genes implicated in the most pathways were: GRB2 (present in 34 17 

out of 97 pathways), RAC1 (n=26), STAT1 (n=25), LYN (n=24), VAV1 (n=24), JAK1 (n=22), 18 

PTPN6 (n=22), ITGB1 (n=20), STAT3 (n=18), and STAT5 (n=18). We noticed that genes in JAK 19 

and STAT gene families (e.g. STAT1, JAK1, STAT3, and STAT5) were differentially regulated 20 

between two THCA subtypes and implicated in many signaling cascades, including the KEGG 21 

JAK-STAT signaling pathway (ranked 12th out of the 97 pathways; q=4.7E-5). In addition, JAK3 22 

(n=11) and STAT4 (n=4), were also upregulated and present in multiple pathways. Our results 23 
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show that this differential regulation of the JAK and STAT families may be shaped by 1 

differences in DNA methylation (Fig 5A). Specifically, STAT1 differential expression is 2 

negatively correlated with methylation levels at the SS probe of the promoter CGI, whereas 3 

JAK3 differential expression is positively correlated with methylation levels at the 3´ gene body 4 

CGI and its north shore (Figs 5B and 5C). In addition, 9 of the top 15 differentially methylated 5 

genes were involved in metastasis: KLK6, KLK7, KLK11 [27], CLDN10 [28], B3GNT3 [29], 6 

RASGRF1 [30], ST6GALNAC5 [31], TACSTD2 (also known as TROP2) [32], and CEACAM6 7 

[33] (S3 Table). 8 

 9 

By contrast, 1,043 differentially methylated genes were downregulated specifically in the BRAF 10 

group. Gene set analysis showed that these genes were enriched in five canonical pathways 11 

pertinent to amino acid catabolism, triglyceride biosynthesis, glycerophospholipid metabolism, 12 

and nucleic acid metabolism (S4 Table). 13 

 14 

The NRAS-HRAS group displayed 278 differentially methylated, upregulated genes. These genes 15 

were enriched in three canonical pathways, relevant to the neuronal system, potassium channels, 16 

and melanogenesis (S4 Table). We did not find a significant portion of differentially methylated 17 

genes implicated in tumor progression among the top differentially expressed genes (defined by 18 

median difference in expression between mutants and controls). However when we considered 19 

differentially methylated genes within the top 17 that were highly transcribed, 6 out of 17 were 20 

implicated in tumorigenesis: G protein alpha subunit (GNAS) [34], pyruvate dehydrogenase 21 

kinase 4 (PDK4) [35], NADPH reductase (NQO1) [36], and three NADPH oxidases that produce 22 

H2O2 for thyroid hormone synthesis: DUOX2, DUOXA2, and DUOX1 [37] (S3 Table). 23 
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 1 

By contrast, 447 differentially methylated genes were downregulated specifically in the NRAS-2 

HRAS group. These genes were enriched in 166 canonical pathways; interestingly, 47 genes 3 

overlapped the 97 pathways enriched in the BRAF upregulated group, including the JAK-STAT 4 

signaling pathway (ranked 13th, q = 3.5E-5). Specifically, STAT1, STAT3, STAT4, and JAK3 5 

were among the genes upregulated in the BRAF group but downregulated in the NRAS-HRAS 6 

group (Fig 5A and S3 Table). This result demonstrates that methylation changes are indeed 7 

associated with differential gene expression between BRAF-mutated and NRAS- and HRAS-8 

mutated samples in THCA. 9 

 10 

Discussion  11 

In this study, we demonstrated that driver gene mutations are tightly tied to the DNAm landscape 12 

in multiple types of cancer. Furthermore, we showed that mutated driver genes are associated with 13 

DNAm alterations in a reproducible, site-specific manner. In each cancer type, a few driver genes 14 

dominate the site-specific associations, and some potentially contribute to CGI hypermethylation 15 

and extensive hypomethylation, i.e., the hallmarks of cancer. However, we caution that these 16 

findings do not equate to causality, but point to the highly interconnected nature of the genome 17 

and epigenome. 18 

 19 

Our findings are consistent with previous research on methylation in cancer; however, they also 20 

contribute novel insights. For example, several driver genes that display primarily positive or 21 

negative methylation probe associations in this study have been linked to CGI hypermethylation 22 

or open sea hypomethylation, respectively. Driver genes associated with CGI hypermethylation in 23 
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both this study and past studies include BRAF in COAD [22], IDH1 in GBM [13], SETD2 in KIRC 1 

[38], PIK3CA in STAD [3], and PTEN in UCEC [39], whereas genes associated with 2 

hypomethylation include TP53 in LIHC [12] and NSD1 in HNSC [23]. In addition to these 3 

examples, we identified novel driver genes that may contribute to CGI hypermethylation, such as 4 

CASP8 in HNSC and SPOP in PRAD, or to open sea hypomethylation, such as CTNNB1 in LIHC 5 

and BRAF in THCA. By illuminating the driver genes associated with widespread DNAm 6 

alterations, as well as driver genes associated with more limited DNAm alterations, our 7 

comprehensive analysis provides a detailed mutation-methylation map for many types of cancer. 8 

 9 

Several mutated driver genes displayed consistent and widespread positive or negative associations 10 

across cancers corresponding to extensive DNAm alterations, whereas others showed effects that 11 

varied by cancer type. This discrepancy may be attributable to different underlying mechanisms. 12 

For example, mutations in IDH1 and SETD2 directly affect the epigenetic landscape by inhibiting 13 

TET-dependent demethylation and disturbing DNA methyltransferase targeting, respectively [14, 14 

25, 38]. Both mechanisms cause DNA hypermethylation, in line with the corresponding primarily 15 

positive associations observed in this study. By contrast, several documented mechanisms link 16 

TP53 loss to global hypomethylation, consistent with TP53 mutations and hypomethylation in this 17 

study [11, 12, 40, 41]. Moreover, probes negatively associated with TP53 were shared across 18 

cancer types, suggesting that similar CpG sites may be targeted in TP53-mutated tumors 19 

independent of tissue types. In contrast to patterns of consistency across cancer types, BRAF 20 

mutations displayed inconsistent methylation patterns between types. For example, in COAD, 21 

BRAF V600E recruits the DNA methyltransferase to CGIs targets by stimulating the MEK/ERK 22 

signaling pathway and upregulating the transcription repressor MAFG [15]. This is in line with 23 
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BRAF-associated, widespread CGI hypermethylation in COAD observed in this study. However, 1 

in THCA, BRAF-mutated samples (260/266 of which harbored the V600E mutation) largely 2 

displayed hypomethylation. Although no mechanistic explanation is yet available, it could be 3 

either that the mutation does not upregulate MAFG in THCA or that MAFG is upregulated in both 4 

types resulting CGI hypermethylation at a few binding sites but some other factor is responsible 5 

for the extensive CGI hypermethylation in COAD. 6 

 7 

It is unclear what links site-specific methylation alterations to driver gene mutations. A model of 8 

DNAm targeting proposed by Struhl [42] provides one potential mechanistic explanation. In this 9 

model, DNA methylation alterations are positioned and maintained by transcriptional circuitry that 10 

is aberrantly regulated as the result of driver gene mutations. This model was supported by the 11 

recent finding that BRAF V600E and KRAS G13D mutations in COAD upregulate the 12 

transcription factors MAFG and ZNF304, respectively, resulting in targeted promoter CGI 13 

hypermethylation near TF binding sites [15, 16]. However, in COAD, the BRAF-associated 14 

widespread CGI hypermethylation is not restricted to the published TF binding sites, making it 15 

unclear whether this model can be generalized to explain all driver gene-probe associations in 16 

COAD. On the other hand, several biological processes that can alter DNAm at specific sites have 17 

been documented recently. For example, cellular oxidative stress can produce hypermethylation 18 

in promoters of low-expression genes [43]. Hypoxia can reduce TET activity leading to 19 

hypermethylation at corresponding sites [44]. Cell proliferation accumulates aberrant DNAm in 20 

promoters of polycomb group target CpGs (pcgt) [7]. In this study, we showed that driver gene 21 

mutations correlate with the pcgt-derived mitotic index in many cancer types. The same connection 22 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 2, 2017. ; https://doi.org/10.1101/145680doi: bioRxiv preprint 

https://doi.org/10.1101/145680
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

between driver gene mutations and DNAm-altered sites may be established via other DNAm-1 

altering processes as well. 2 

 3 

Because mutation-methylation patterns are likely to reflect important oncogenic characteristics, 4 

using these patterns to separate tumors into molecular subtypes could potentially aid treatment 5 

selection. In a proof of concept portion of this study, we successfully identified molecular subtypes 6 

in THCA and UCEC based on the dominant driver gene-associated methylation patterns. These 7 

subtypes agreed with previous reports of subtypes defined by gene expression analyses [45, 46]. 8 

Though we only attempted to identify subtypes in two cancer types, these results indicate that our 9 

mutation-methylation-based approach could be useful for identifying molecular subtypes in other 10 

cancer types as well. 11 

 12 

The mutually exclusive mutations in NRAS, HRAS, and BRAF in THCA tumors have been 13 

interpreted to mean that these mutations have interchangeable effects on activating MAPK 14 

signaling, the main cancer-driving event in papillary thyroid carcinomas [46]. Our analysis, 15 

however, highlights substantial differences in DNAm between BRAF-mutated vs. NRAS- and 16 

HRAS-mutated THCA tumors; moreover, the differences in DNAm appear to profoundly shape 17 

gene expression profiles, which may contribute to thyroid tumorigenesis. In this study, DNAm 18 

alterations in BRAF-mutated tumors were correlated with the activation of JAK-STAT signaling 19 

and metastasis, whereas DNAm alterations in NRAS- and HRAS-mutated tumors were linked to 20 

potential DNA damage by H2O2 overproduction [37], activation of G-protein signaling by GNAS 21 

overexpression [34, 47], and activation of mTOR signaling by PDK4 overexpression [46]. These 22 
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differences in the molecular processes linked to different driver gene mutations may contribute to 1 

distinct pathways of tumorigenesis, yielding different prognoses and clinical phenotypes. 2 

 3 

This work has several limitations. First, all samples with mutations in the same gene were 4 

classified together. For example, although the majority of BRAF-mutated samples carried the 5 

V600E mutation (25 out of 34 BRAF-mutated tumors with BRAF V600E in COAD, 167/195 in 6 

SKCM, and 260/266 in THCA), this group also included a few non-V600E mutations. We took 7 

this approach because MutSigCV only reports driver genes but not mutations. However, different 8 

mutations in the same gene may be linked to different methylation patterns, introducing noise 9 

into our analysis and lowering our statistical power to detect mutation-methylation associations. 10 

Second, we examined the individual associations between driver genes and methylation sites. 11 

However, the combinatorial effect of driver gene mutations on methylation could exist, since 12 

several driver gene mutations can typically co-occur in a given tumor. Third, we focused only on 13 

MutSigCV-reported driver genes and were limited to the information present in TCGA data. 14 

Although MutSigCV is one of the most reliable driver gene detection tools available, limitations 15 

associated with the detection algorithm—paired with the limitations imposed by the number of 16 

tumor samples available in TCGA—may have led us to miss methylation-altering mutations that 17 

occurred in unknown driver genes. Finally, tumor purity is a potential confounding factor in 18 

analyses of cancer data. Although we were not able to exclude the possibility of confounding, the 19 

mutation-methylation associations reported here were seen in cancer types where most TCGA 20 

samples (>80%) were predicted with high purity (>70%), including GBM, KIRP, THCA, and 21 

UCEC [48]. Therefore, it seems unlikely that confounding by tumor purity level was extensive. 22 

 23 
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Conclusions 1 

This pan-cancer analysis provides the strongest evidence to date for a widespread connection 2 

between genomic and epigenomic alterations in cancer. The mutation-methylation relationships 3 

described here could potentially be used to identify tumor subtypes, thus aiding in prognosis and 4 

treatment decisions. In addition, in the future, further analysis of methylation and expression data 5 

may identify driver gene mutation-induced methylation alterations that dysregulate 6 

genes/pathways that promote tumor growth. Importantly, such dysregulation could potentially be 7 

corrected by treating patients with agents that influence the DNA methylation landscape. 8 

Demethylating agents such as 5-aza-2´-deoxycytidine, for example, have been used to reactivate 9 

epigenetically silenced tumor suppressor genes and also to decrease overexpression of oncogenes 10 

[49, 50]. By contrast, the methyl donor S-adenosylmethionine has been shown to downregulate 11 

the oncogenes c-MYC and HRAS, inhibiting cancer cell growth [51]. In summary, in light of the 12 

connection between driver gene mutations and DNA methylation shown here, it will be 13 

important to further study how coordinated genomic and epigenomic alterations result in the 14 

hallmarks of cancer. A better understanding of the molecular mechanisms underlying cancer may 15 

help us identify factors that accelerate tumor onset, predict biomarkers for early diagnosis, and 16 

assess new therapeutic targets. 17 

 18 

Materials and Methods 19 

We analyzed samples that had both somatic mutation data and DNA methylation data available. 20 

These samples represented 18 cancer types: bladder urothelial carcinoma (BLCA), breast 21 

invasive carcinoma (BRCA), colon adenocarcinoma (COAD), glioblastoma multiforme (GBM), 22 

head and neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), 23 
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kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung 1 

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), pancreatic adenocarcinoma 2 

(PAAD), prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), skin cutaneous 3 

melanoma (SKCM), stomach adenocarcinoma (STAD), testicular germ cell tumors (TGCT), 4 

thyroid carcinoma (THCA), and uterine corpus endometrial carcinoma (UCEC). The number of 5 

tumors and controls (normal tissue samples adjacent to tumors or healthy donors) for each cancer 6 

type is listed in Table 1. 7 

 8 

Data preprocessing 9 

Exome-sequenced level 2 somatic mutation data were downloaded from TCGA’s data portal 10 

(https://tcga-data.nci.nih.gov/tcga/) on February 1, 2015. 11 

 12 

TCGA level 3 DNA methylation array-based data (Illumina Infinium HumanMethylation450 13 

BeadChip array) were downloaded from the UCSC Cancer Genomics Browser (https://genome-14 

cancer.ucsc.edu) on October 26, 2015. DNA methylation levels were measured with E values. 15 

We normalized E values for type I and II probes using the E mixture quantile (BMIQ) method 16 

[52]. The following types of probes were removed from the analysis: (1) probes on the X and Y 17 

chromosomes, (2) cross-reactive probes [53], (3) probes near single nucleotide polymorphisms 18 

(SNPs), and (4) probes with missing rates ≥90% across all samples for a given cancer type. A 19 

final set of 314,421 probes was analyzed for each cancer type.  20 

 21 
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Finally, TCGA level-3 gene expression data measured by log transformed (base 2) RSEM-1 

normalized RNA-Seq (Illumina HiSeq) counts were downloaded from the UCSC Cancer 2 

Genomics Browser (https://genome-cancer.ucsc.edu) on November 4, 2015.  3 

 4 

Driver genes 5 

We defined driver genes as those reported by MutSigCV2 [17] for each of the 18 cancer types; 6 

these data were downloaded from the Broad Institute of MIT & Harvard (http://firebrowse.org). 7 

Specifically, we analyzed genes that had reported q-values < 0.05 and that were mutated in at 8 

least five samples from each cancer type. The number of driver genes for the 18 cancer types is 9 

summarized in Table 1. 10 

 11 

Hyper- and hypomethylated probes 12 

For each probe, we compared the distribution of methylation levels among tumor samples with 13 

that among control samples using one-sided Wilcoxon rank sum tests, one for each direction, 14 

stratified by cancer type. Each significant probe (q < 0.05) was classified as either 15 

hypermethylated (methylation levels in tumor samples were greater than in control samples) or 16 

hypomethylated (methylation levels in tumor samples were less than in control samples). 17 

 18 

Principal component analysis  19 

PCA was performed using the R package ‘pcaMethods,’ and missing values were imputed by 20 

probabilistic PCA. The top five PCs were computed within each cancer type for all probes and 21 

subsets of probes, including probes in CGIs, the SSs around CGIs (the 4-kb regions flanking 22 

CGIs), and open sea regions (CpGs outside CGIs and SSs). The probe sets (CGIs, SSs, and open 23 
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sea regions) were further stratified by hyper- and hypomethylation status. CGIs, SSs, and open 1 

sea regions were defined in the Illumina 450K array annotation file. 2 

  3 

HyperZ and HypoZ indices 4 

HyperZ and HypoZ indices were computed for each tumor sample within a cancer type. The 5 

HyperZ and HypoZ indices were introduced by Yang et al. [21] to measure the level of overall 6 

CGI hypermethylation and open sea hypomethylation, respectively. 7 

 8 

Association between driver gene mutations and DNA methylation 9 

We analyzed somatic mutations at the gene level. A driver gene was classified as either mutated 10 

(any mutations) or not mutated (no mutations) for each tumor sample. Associations between 11 

driver gene mutations and methylation were tested using the two-sided Wilcoxon rank sum test. 12 

To evaluate driver gene-PC associations, the test was performed for every driver gene and each 13 

of the top five methylation PCs; samples were ranked based on their coordinates on the PC, and 14 

the mutated cohort was compared with the non-mutated cohort. To evaluate site-specific 15 

associations, the test was performed for every possible driver gene-probe pair. Here, samples 16 

were ranked based on their E values at the probe, and the mutated cohort was compared with the 17 

non-mutated cohort. Finally, we performed the same association test for every driver gene and 18 

the HyperZ and HypoZ indices, to identify driver genes potentially associated with genome-wide 19 

CGI hypermethylation and open sea hypomethylation. In each case, q-values were computed by 20 

correcting for all tests performed for a given cancer type [54]. Associations were considered 21 

significant at q < 0.05. For associations between every gene-probe pair, the empirical false 22 

discovery rate was also estimated by permuting the mutation status for every driver gene. The 23 
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results showed that the empirical false discovery rate was controlled (< 0.05) at the theoretical 1 

cutoff (q < 0.05) for each cancer type (S5 Fig). 2 

 3 

Correlations between methylation PCs, mutated driver genes, and mitotic indices 4 

A DNAm-based mitotic index called epiTOC (epigenetic Timer Of Cancer) was proposed by 5 

Yang et al. to estimate tumor cell proliferation rates. Performance was validated by correlating 6 

with a mRNA expression-based mitotic index [7]. epiTOC is the average methylation level 7 

across 385 probes whereas the expression-based index is the average expression level across 9 8 

genes: CDKN3, ILF2, KDELR2, RFC4, TOP2A, MCM3, KPNA2, CKS2, and CDC2. For each 9 

index, we computed its Spearman correlation with each of the top 5 PCs for each cancer type and 10 

called statistical significance at q<0.05. To remove epiTOC-correlated probes, we removed any 11 

probes correlated with epiTOC (q<0.05; Pearson correlation) and recomputed methylation PC-12 

driver gene associations for each cancer type. Finally, we used Wilcoxon rank sum test to test the 13 

associations between mutated driver genes and each of the two indices and called statistical 14 

significance at q<0.05 for each cancer type. 15 

 16 

Differential expression analysis of thyroid carcinoma molecular subtypes 17 

First, we visually identified two THCA molecular subtypes based on driver gene mutations and 18 

DNA methylation patterns (Fig 4A): (1) BRAF-mutated tumors (the BRAF group) and (2) NRAS- 19 

and HRAS-mutated tumors (the NRAS-HRAS group). Next, we assembled four differentially 20 

expressed gene sets (up- or downregulated in one group but identical or regulated in the opposite 21 

direction in another group, compared with controls). The search was restricted to genes whose 22 

aberrant expression levels coincided with hyper- or hypomethylated probes associated with 23 
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BRAF, HRAS, and NRAS mutations (see section below). Using a hypergeometric model, genes in 1 

each of the four sets were tested for enrichment by 1,330 canonical pathways collected by 2 

MSigDB [55]. The highly transcribed, differential genes were defined by expression levels that 3 

are greater than 10 (in log2 RSEM) and at least double those of controls. 4 

 5 

Association between driver gene-associated aberrant methylation and aberrant gene 6 

expression in thyroid carcinomas 7 

We sought genes whose aberrant expression was correlated with aberrant methylation in the 8 

presence of BRAF, HRAS, or NRAS mutations. First, we identified probes that fell within 1,500 9 

bp of the transcription start site (TSS) or within gene bodies, and whose E values were 10 

significantly correlated with expression levels of the corresponding gene. Because a methylated 11 

CpG may up- or downregulate gene expression in a context-dependent manner [50, 56, 57], we 12 

computed the significance of the Spearman correlation between each individual probe’s 13 

methylation and the expression level of its corresponding gene. We considered gene-probe pairs 14 

significant at q < 0.05. Second, we analyzed the association between E values and BRAF, HRAS, 15 

and NRAS mutation status for all probes using the two-sided Wilcoxon rank sum test. For each 16 

driver gene, aberrantly methylated probes (q < 0.05) were classified as hyper- or hypomethylated 17 

relative to control samples. Third, we integrated the results from the first and second steps to 18 

identify aberrantly methylated probes whose methylation levels were significantly correlated 19 

with the expression levels of their corresponding genes for each group of BRAF-, HRAS-, and 20 

NRAS- mutated samples. Finally, for each group of mutated samples, significantly up- or 21 

downregulated genes were identified from the aberrant methylation-matched genes identified in 22 

the third step using the two-sided Wilcoxon rank sum test relative to the expression levels of 23 
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control samples (q < 0.05). For example, when we looked for genes that were upregulated in 1 

BRAF-mutated samples but exhibited no change or were downregulated in HRAS- and NRAS-2 

mutated samples, we restricted the search to genes that were hyper- (or hypo-) methylated in 3 

BRAF-mutated samples but exhibited no change or were hypo- (or hyper-) methylated in HRAS- 4 

and NRAS-mutated samples in the third step. Thus, for each driver gene, we obtained a list of 5 

aberrantly methylated probes associated with genes that were aberrantly expressed. 6 

 7 
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List of figures 1 

Fig 1. Driver gene mutations are significantly associated with DNA methylation in various 2 

cancers. (A) Examples of mutations in 15 driver genes display an uneven distribution along the 3 

first principal component (PC1) of DNAm, biased toward either the positive extreme (+) or the 4 

negative extreme (-). Tumor samples are ordered vertically by their coordinates on PC1, from 5 

small (-, bottom) to large (+, top).  A black line indicates the presence of the mutated driver gene 6 

in a sample, whereas a white line indicates its absence. Note that a sample at an extreme (+/-) of a 7 

PC does not necessarily correspond to high or low methylation. (B) Example of a cancer with 8 

driver gene mutations unevenly distributed on PC1, resulting in distinct methylation patterns: 9 

ARID1A/PIK3CA-mutated stomach adenocarcinomas (STADs) display a methylation pattern 10 

distinct from TP53-mutated STADs. Shown is a heat map of methylation levels for the top 1,000 11 

most heavily weighted probes in PC1. Each column represents a sample ordered by its PC1 12 

coordinate, from small (-, left) to large (+, right). Each row represents a probe site. Five column 13 

sidebars are shown at the top. The bottom three indicate mutation statuses for TP53, PIK3CA, and 14 

ARID1A. TP53-mutated STADs display lower methylation levels at the selected CpG sites 15 

compared with the majority of ARID1A/PIK3CA-mutated STADs. The top two indicate cell 16 

proliferation rates estimated by the DNAm-based mitotic index (epiTOC) and the mRNA 17 

expression-based mitotic index [7]. Each index is normalized to the range between 0 (white) and 18 

1 (black). Samples ordered by PC1 are significantly correlated with epiTOC (q=0) but not the 19 

mRNA expression-based index (q=0.22) [see results in (C)]. (C) In 15 of 18 cancer types examined, 20 

mutated driver genes were associated with one or more of the top five methylation PCs, shown as 21 

rows. The three driver genes most significantly associated with each PC are reported. Driver genes 22 

associated with a negative extreme of the PC are blue, whereas associations with the positive 23 
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extreme are written in red. Background colors indicate correlations (q<0.05; Spearman correlation) 1 

with two mitotic indices: DNAm-based index (epiTOC) (light green), or mRNA-based index (light 2 

yellow), or both (orange). See Table 1 for cancer type abbreviation. 3 

 4 

Fig 2. Driver gene-methylation associations and CpG subsets. (A) The total number of probes 5 

associated with any driver gene is shown for each cancer type (top of each column). Each point 6 

represents the fraction of corresponding probes associated with a driver gene (y-axis). Names are 7 

shown for the top three driver genes if they account for more than 10% of total probes (dotted line). 8 

(B) Driver genes with the most probe associations in each cancer type (gene names in panel). The 9 

bar plots show the proportion of associated probes in each of the three CpG subsets (CGIs; SSs; 10 

or open sea), stratified by the direction of association (+/-). Dashed lines indicate divisions 11 

expected if associations were proportionally distributed. No probes were associated with driver 12 

genes in BLCA, LUSC, and READ. See Table 1 for cancer type abbreviations. 13 

 14 

Fig 3. Proportions of positive and negative associations with methylation for 17 recurrently 15 

mutated driver genes. (A) Barplots show the proportion of methylation probes for each driver 16 

gene (labels at bottom) and cancer type (labels at top) displaying positive and negative 17 

associations. Positive associations are plotted above the horizontal line, negative associations are 18 

below the horizontal line. Associations are further stratified by CpG subset: CGI (CpG islands), 19 

SS (shores and shelves of CGIs; 4kb regions flanking CGIs), and open sea (regions outside CGIs 20 

and SSs). Driver genes can be classified into 3 groups based on directionality of their predominant 21 

associations (negative, positive, inconsistent). Genes in figure were associated with more than 22 

1,000 probes, in at least two cancer types. (B) Plotted as in (A), using: (1) positively associated 23 
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and hypermethylated probes and (2) negatively associated and hypomethylated probes. *Hyper- or 1 

hypomethylated probes were not identified for GBM, STAD, SKCM, and TGCT due to a lack of 2 

control samples. See Table 1 for cancer type abbreviations. 3 

 4 

Fig 4. Driver gene-associated methylation patterns can be used to identify molecular 5 

subtypes. Heat maps for (A) thyroid carcinoma (THCA) and (B) uterine corpus endometrial 6 

carcinoma (UCEC) depict hierarchical clustering of methylation values of the union set of the 500 7 

probes most significantly associated with each of the three dominant driver genes in each cancer 8 

type. Each column represents a sample, and each row represents a probe. Mutation status shown 9 

in upper panel. Left panel sidebars indicate CpG subset and average methylation level across 10 

control samples. The arrow in (B) indicates methylation probes displaying more hypomethylation 11 

in samples where PTEN and CTNNB1 mutations co-occurred than samples with PTEN mutations 12 

alone. 13 

 14 

Fig 5. Differential expression of JAK and STAT family genes correlated with differential 15 

methylation in thyroid cancer. (A) Shown are box plots for gene expression levels (top plots) 16 

and methylation levels (bottom plots) for STAT1, STAT3, STAT4, STAT5A, JAK1, and JAK3, 17 

grouped by BRAF-mutated (red), HRAS-mutated (blue), NRAS-mutated (green), and control (grey) 18 

samples. Gene names and Spearman rho (with p-value) between gene expression and methylation 19 

among tumor samples are shown on top. Probe names (where methylation levels were measured) 20 

are shown at bottom. (B) Shown are snapshots from the UCSC genome browser for STAT1 and 21 

JAK3, with CpG islands (CGIs) indicated below (green arrow: CGIs; red arrow: probes flanking 22 

the CGIs). Methylation levels of the indicated regions are shown in panel (C). (C) Box plots show 23 
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methylation levels (y-axis) at probes in STAT1 and JAK3 for BRAF-mutated, HRAS-mutated, 1 

NRAS-mutated, and control samples. The shown probes fall in the south shores and shelves [or 2 

SSs, indicated by red arrows in (B)] of the STAT1 promoter CGI and the 3´ CGI of JAK3 [indicated 3 

by green arrows in (B)]. 4 
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List of tables 1 

Table 1. Number of tumor samples, control samples, and driver genes across 18 cancer types 2 

Cancer type # tumor samples # control samples # driver genesa 
Bladder urothelial carcinoma (BLCA) 130 21 48 
Breast invasive carcinoma (BRCA) 652 102 51 
Colon adenocarcinoma (COAD) 219 38 650 
Glioblastoma multiforme (GBM) 144 2 16 
Head and neck squamous cell carcinoma (HNSC) 306 60 34 
Kidney renal clear cell carcinoma (KIRC) 245 160 14 
Kidney renal papillary cell carcinoma (KIRP) 153 45 10 
Liver hepatocellular carcinoma (LIHC) 202 50 11 
Lung adenocarcinoma (LUAD) 407 32 84 
Lung squamous cell carcinoma (LUSC) 74 43 10 
Pancreatic adenocarcinoma (PAAD) 90 10 31 
Prostate adenocarcinoma (PRAD) 261 50 22 
Rectum adenocarcinoma (READ) 80 7 7 
Skin cutaneous melanoma (SKCM) 372 3 56 
Stomach adenocarcinoma (STAD) 244 2 366 
Testicular germ cell tumor (TGCT) 142 0 25 
Thyroid carcinoma (THCA) 446 56 5 
Uterine corpus endometrial carcinoma (UCEC) 135 46 62 

a Defined as MutSigCV-reported driver genes mutated in at least five tumor samples from our data 3 

set for a given cancer type (see MutSigCV in [17]). 4 

 5 

 6 

 7 

 8 
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 10 

 11 

 12 

 13 

 14 
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Table 2. Cell proliferation rate and associated mutated driver genes  1 

a Association is computed by Wilcoxon rank sum test at q<0.05 for each cancer. 2 

b Too few (n=5) with both gene expression and mutation data for UCEC. 3 

 4 

Cancer 
type 

High proliferation 
(epiTOC) 

Low proliferation 
(epiTOC) 

High proliferation 
(mRNA) 

Low proliferation 
(mRNA) 

BLCA   RB1, TP53  
BRCA CDH1, FOXA1  BCORL1, RB1, TP53 CDH1, MAP3K1, 

PIK3CA 
COAD     
GBM     
HNSC CASP8, CTCF, EPHA2, 

HRAS 
TP53   

KIRC BAP1, PBRM1, SETD2  BAP1, PTEN, SETD2, 
TP53 

PBRM1, VHL 

KIRP NF2, SETD2  SETD2  

LIHC   RB1, TP53  

LUAD KRAS KEAP1 COL5A2, GLDC, 
KEAP1, MYH7, RB1, 
SMARCA4, STRA8, 
TP53 

KRAS 

LUSC   TP53 SLC28A1 

PAAD CDKN2A, KRAS    

PRAD SPOP  TP53  

READ     

SKCM   ALPK2, IL5RA, 
NBPF1, PTEN, TP53, 
XIRP2 

 

STAD 189 driver genes (not 
including TP53) 

 52 driver genes 
(including TP53) 

CDH1, RHOA 

TGCT MLLT3, MUC6   KIT 

THCA   BRAF NRAS 

UCEC ARID1A, ARID5B, 
BCOR, CUX1, KRAS, 
PIK3R1, PTEN, SIN3A, 
ZFHX3 

TP53 NAb NAb 
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Table 3. Associations between mutated driver genes and HyperZ and HypoZ indices or site-1 

specific methylation alterations. 2 

Cancer 
# driver genes associated with 
HyperZ and/or HypoZ 

# driver genes associated 
with any probe 

Bladder urothelial carcinoma (BLCA) 1 0 
Breast invasive carcinoma (BRCA) 2 50 
Colon adenocarcinoma (COAD) 67 189 
Glioblastoma multiforme (GBM) 3 16 
Head and neck squamous cell carcinoma (HNSC) 2 34 
Kidney renal clear cell carcinoma (KIRC) 4 14 
Kidney renal papillary cell carcinoma (KIRP) 2 10 
Liver hepatocellular carcinoma (LIHC) 2 11 
Lung adenocarcinoma (LUAD) 4 80 
Lung squamous cell carcinoma (LUSC) 1 0 
Pancreatic adenocarcinoma (PAAD) 0 7 
Prostate adenocarcinoma (PRAD) 2 12 
Rectum adenocarcinoma (READ) 0 0 
Skin cutaneous melanoma (SKCM) 0 43 
Stomach adenocarcinoma (STAD) 30 357 
Testicular germ cell tumor (TGCT) NAa 25 
Thyroid carcinoma (THCA) 4 5 
Uterine corpus endometrial carcinoma (UCEC) 4 53 

a Controls were not available to calculate HyperZ/HypoZ indices 3 
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Supporting information 1 

S1 Fig. Driver gene-methylation associations across 18 cancer types (rows), stratified by CpG 2 

subsets (columns). The numbers (1–5) indicate the top five principal components (PCs) for each 3 

probe set, whereas the color shows the significance of the strongest association between each 4 

methylation PC and any driver gene. The probe sets are methylome (all probes), CpG island (CGI) 5 

probes, shore and shelf (SS) probes, and open sea probes, further stratified by hyper- and 6 

hypomethylation status. For GBM, STAD, SKCM, and TGCT, there were not enough control 7 

samples to compute associations for hyper-/hypomethylated probes (shown in dark grey). 8 

 9 

S2 Fig. Driver gene mutations are significantly associated with epiTOC-uncorrelated DNA 10 

methylation variation in various cancers. The DNAm-based mitotic index called epiTOC 11 

(epigenetic Timer Of Cancer) was used to approximate cell proliferation rate in cancer [7]. In 10 12 

of 18 cancer types examined, driver gene mutations were associated with one or more of the top 13 

five epiTOC-uncorrelated methylation principal components (PCs). Shown is a grid depicting the 14 

three driver genes most significantly associated with each PC. A gene name in blue indicates that 15 

mutations in a given gene were significantly associated with the negative extreme of the PC, 16 

whereas red indicates association with the positive extreme of the PC. For each PC, the light green 17 

background color indicates its correlation with epiTOC (q<0.05; Spearman correlation). See Table 18 

1 for cancer type abbreviation. 19 

 20 

S3 Fig. Distribution of driver gene-associated methylation probes throughout the genome in 21 

KIRC. Chromosomes 1 to 22 are plotted on a circle, with each chromosome plotted proportional 22 

to chromosome length and labeled in the outermost track. The 14 inner tracks correspond to all 14 23 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 2, 2017. ; https://doi.org/10.1101/145680doi: bioRxiv preprint 

https://doi.org/10.1101/145680
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40 

driver genes in KIRC; gene names and the number of associated probes for each are shown. For 1 

each driver gene, associated probes are plotted as line segments in the corresponding track at the 2 

appropriate chromosome location. The chromosome length scale is labeled for chromosome 1 (a 3 

major interval indicates 90 Mb). 4 

 5 

S4 Fig. Probes that are negatively associated with TP53 are shared across cancer types. A bar 6 

plot shows the number of TP53-negatively associated probes (y-axis in log 10 scale; the number 7 

also indicated at the top of each bar) reported in at least 1-9 cancer types (x-axis). 8 

 9 

S5 Fig. Empirical false discovery rates (FDRs) are controlled by theoretical cutoffs at q=0.05 10 

for site-specific associations. The site-specific association was tested between every driver gene 11 

and every probe. Significant associations were called at the theoretical FDR (q-value) less than 12 

0.05 for each cancer type. The empirical FDR (y-axis) was estimated for the theoretical cutoff 13 

(q=0.05) using the permutation test for each cancer type (column). Here, all points are below the 14 

line (empirical FDR=0.05), indicating that empirical FDRs are controlled by the theoretical cutoffs. 15 

 16 

S1 Table. Driver genes associated with the HyperZ and HypoZ indices across 18 cancer types, 17 

stratified by direction of association 18 

 19 

S2 Table. Counts of driver gene-methylation probe associations for 18 cancer types, stratified by 20 

CpG subsets: methylome (all probes), CpG island probes, shores and shelves probes, and open sea 21 

probes, as well as by hypo- and hypermethylated status (+: positive associations, -: negative 22 

associations) 23 
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 1 

S3 Table. Sorted median expression levels of genes differentially expressed (relative to control 2 

samples) in the two thyroid carcinoma molecular subtypes identified in Figure 4A: BRAF-mutated 3 

versus NRAS-/HRAS-mutated; each Excel tab separates genes by the direction of expression 4 

dysregulation (up or down) and the group of mutated samples showing the expression 5 

dysregulation (BRAF or HRAS/NRAS) 6 

 7 

S4 Table. Pathways enriched with genes dysregulated in the two thyroid carcinoma molecular 8 

subtypes identified in Figure 4A: BRAF-mutated versus HRAS-/NRAS-mutated, stratified by the 9 

direction of expression dysregulation (up or down) and the mutant group (BRAF or HRAS/NRAS) 10 

 11 
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