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Abstract

Motivation: Gene Ontology (GO) has been widely used to anno-
tate functions of proteins and understand their biological roles. Cur-
rently only ¡1% of more than 70 million proteins in UniProtKB have
experimental GO annotations, implying the strong necessity of auto-
mated function prediction (AFP) of proteins, where AFP is a hard
multi-label classification problem due to one protein with a diverse
number of GO terms. Most of these proteins have only sequences as
input information, indicating the importance of sequence-based AFP
(SAFP: sequences are the only input). Furthermore, homology-based
SAFP tools are competitive in AFP competitions, while they do not
necessarily work well for so-called difficult proteins, which have ¡60%
sequence identity to proteins with annotations already. Thus, the vi-
tal and challenging problem now is to develop a method for SAFP,
particularly for difficult proteins.
Methods: The key of this method is to extract not only homology
information but also diverse, deep-rooted information/evidence from
sequence inputs and integrate them into a predictor in an efficient
and also effective manner. We propose GOLabeler, which integrates
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five component classifiers, trained from different features, including
GO term frequency, sequence alignment, amino acid trigram, domain-
s and motifs, and biophysical properties, etc., in the framework of
learning to rank (LTR), a new paradigm of machine learning, espe-
cially powerful for multi-label classification.
Results: The empirical results obtained by examining GOLabeler
extensively and thoroughly by using large-scale datasets revealed nu-
merous favorable aspects of GOLabeler, including significant perfor-
mance advantage over state-of-the-art AFP methods.
Contact: zhusf@fudan.edu.cn

1 Introduction

The Gene Ontology (GO) was originally launched in 1998 for the con-
sistent descriptions of gene and gene product (such as protein and
RNA) across all species [2]. Currently GO has more than 40,000 bi-
ological concepts over three domains: Molecular Function Ontology
(MFO), Biological Process Ontology (BPO) and Cellular Component
Ontology (CCO). Annotating protein function by GO is crucial and
useful for understanding the nature of biology. With the development
of next generation sequencing technology, we have seen the explo-
sive increase of protein sequences, while the number of proteins with
experimental GO annotations is limited, due to the high time and fi-
nancial cost of biochemical experiments. In fact, only less than 1%
of 70 million protein sequences in UniProtKB [29] have experimental
GO annotations. To reduce this huge gap, an imperative issue would
be efficient automated function prediction (AFP) [25, 14].

AFP is a large-scale multi-label classification problem [33] by re-
garding one GO term as a class label and also one protein as an in-
stance with multiple labels (multiple GO terms). AFP is very chal-
lenging due to: 1) structured ontology: GO terms are node labels of
a directed acyclic graph (DAG), by which one gene annotated at one
node must be labeled by GO terms of all ancestor nodes in the DAG;
2) many labels per protein: we checked GO terms in Swissprot [3]
(Oct. 2016) with 66,841 proteins and found that a human protein is
labeled by around 71 GO terms on average; 3) large variation in the
number of GO terms per protein: also we found that only 634, out of
all 10,236 GO terms in MFO (GO Ontology in Jun 2016), are associ-
ated with more than 50 proteins. This means that most of GO terms
are associated with only a small number of proteins.

To advance the development of AFP, the first and second Criti-
cal Assessment of Functional Annotation (CAFA1 and CAFA2) chal-
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lenges1 (competitions) were held in 2010–2011 and 2013–2014, respec-
tively [25, 14]. After query proteins are given initially, CAFA has
the deadline of submitting prediction. For a domain (MFO, BPO
or CCO) in question, CAFA focuses on query proteins that have no
experimental annotations before the submission deadline. A target
protein is called a limited-knowledge protein, if it has experimental
annotation in another domain; otherwise, it is called a no-knowledge
protein [14]. Importantly, this means no-knowledge proteins have on-
ly sequences and no experimental annotations for all domains before
the deadline. Obviously in practice majority (around 99% or more)
of proteins have only sequences, meaning that AFP for no-knowledge
proteins would be more important. In fact, experimental information,
such as protein-protein interactions, are more costly than sequencing,
resulting in literally limited knowledge (vastly missing information)
among the large-scale data of AFP. Also sequences are less noisy than
experimental data such as gene expression and can be the primary da-
ta available for various species. These would be also the reason why
sequence-based AFP is important and should be tackled first.

The results of CAFA for no-knowledge benchmark have shown that
simple homology-based methods with BLAST and PSI-BLAST are
very competitive [1, 9, 11]. This indicates that sequence identity is
even at the present time still a key to achieve high performance of
sequence-based AFP, and also implies that prediction would be hard
for sequences of low identities with any other sequences. For example,
the no-knowledge benchmark can be divided into two types, according
to the largest global sequence identity of the corresponding sequence
to any other sequences in the training data [14]. That is, one type,
called difficult, includes those with the largest sequence identity of less
than 60%; otherwise they are called easy. So an urgent issue for AFP
is, instead of relying on sequence homology only, to develop an ap-
proach which can predict the function of the difficult type of proteins
within the scope of sequence-based approach. An important point of
this approach would be to collect not only homology-related informa-
tion but also various types of information available from sequences as
diverse as possible and develop a method which can integrate all of
these information effectively and also efficiently.

We propose a new method which we call GOLabeler for predicting
functions of no-knowledge proteins, particularly for those in the diffi-
cult type. The basic idea of GOLabeler is to integrate different types
of sequence-based evidence in the framework of “learning to rank” (L-
TR) [17]. LTR was originally developed in information retrieval (IR)
for ranking web pages to be consistent with the relevance between

1Also currently (2016–2017), CAFA3 is on-going.
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the web pages and user queries. More generally, LTR is useful for
multi-label classification, where multiple labels can be assigned to one
instance, and LTR solves this problem by ranking labels and choosing
top of them. Ranking web pages in IR requires a ranked outcome
definitely, which is exactly the output of LTR. In AFP, currently GO
terms for one protein are not ranked, while they can be ranked by
some nature behind GO terms, such as if they are major or minor,
and/or the relevance to the corresponding protein. So for AFP, LTR is
already currently useful as a tool for multi-label classification and al-
so very promising for the future AFP. Another noteworthy advantage
of LTR is that GOLabeler can integrate multiple sequence-based evi-
dence effectively, which are generated by different types of classifiers
(or components), where all information are derived from the sequences
only. This feature makes GOLabeler predict the functions of protein-
s having sequences with global sequences identity of less than 60%
(difficult proteins) better than homology-based methods reasonably.

We examined the performance of GOLabeler extensively by using
large-scale datasets, which were generated by approximately following
the procedure of CAFA. Particularly, we compared the performance of
GOLabeler with all component methods, three ensemble approaches
and two sequence-based methods. The experimental results indicate
significant performance advantage of GOLabeler over all competing
methods in all experimental settings. In particular, the advantage
of GOLabeler could be seen in the prediction for difficult proteins.
Finally, we present a typical result by competing methods, from which
we could see that GOLabeler could predict the largest number of all
GO terms correctly as well as correctly predict the deepest GO terms
in DAG of GO, among all competing methods.

2 Related work

A lot of biological information sources, such as protein structures,
protein-protein interactions [19] and gene expression [31], are useful
for AFP, while majority of proteins have no such information except
sequences [26]. We thus focus on sequence-based approaches, in which
sequences or their parts are used in various ways, such as 1) sequence
alignment, 2) domains and motifs, and 3) features, etc., as follows:
1) sequence alignment: BLAST and/or PSI-BLAST are used to find
homologous sequences and transfer their functional annotations to the
query protein. For example, GoFDR [10], a top method in CAFA2,
uses multiple sequence alignment (MSA) to generate position-specific
scoring matrix (PSSM) for each GO term, to score the query against
the corresponding GO term. 2) domains and motifs: they are usu-
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ally functional sites of a query protein, and all of them in the query
sequence are detected by using protein domain/motif resources, such
as CATH [7], SCOP [22] and Pfam [28], to understand the function
of the query protein. 3) features: the protein query is an amino acid
sequence, from which biophysical and biochemical attributes can be
generated, which can be closely related with domains, motifs and pro-
tein families but not necessarily the same as them. ProFET (Protein
Feature Engineering Toolkit) [23] is a typical tool for extracting hun-
dreds of such sequence-derived features including elementary biophys-
ical ones. We note that these various sequence-based approaches play
different roles, being complement to each other for AFP.

Thus, integrating different types of information or classifiers trained
from them would be a key to improve the performance of AFP. In
fact in AFP, several approaches of using the idea of integrating da-
ta/classifiers have already been proposed. MS-kNN, a top method
in CAFA1 and CAFA2, predicts the function by averaging over the
prediction scores from three data sources: sequences, expression and
protein-protein interaction [16] (Note that MS-kNN is NOT a sequence-
based method). Also Jones-UCL, the top team of CAFA1, integrates
prediction scores from multiple methods by using the ‘consensus’ func-
tion (given in Eq. (1)) [6]. Recently, different data integration meth-
ods, mainly ‘one vote’, ‘weighted voting’ and ‘consensus’ (where ‘one
vote’ relies on the classifier with the maximum confidence only while
‘weighted voting’ weights over input classifiers and examples are [16]
and [15]), were compared [30]. One interesting finding of this work
was, because of extensive complementarity among classifiers, ‘one
vote’ performed very well in cross validation under their settings,
which were totally different from CAFA. It would be interesting to
check if this observation holds under practical large-scale data with
diverse species in the CAFA setting.

All such data integration methods are not based on any advanced
machine learning ideas, and this might underestimate the performance
of integration. Our proposed approach, GOLabeler, is based on Learn-
ing to Rank (LTR), a rather new paradigm in machine learning, to
integrate multiple classifiers trained from different sequence-derived
data. Recently LTR has been effectively used in a wide variety of ap-
plications, not only information retrieval (IR), from which LTR was
developed, but also particularly those in bioinformatics, such as an-
notating biomedical documents [18, 24] and predicting drug-target
interactions [32]. LTR integrates the prediction results of component
classifiers so that GO terms more relevant to the query protein should
be ranked higher. One advantage of LTR is that the prediction result-
s of components can be simply encoded as the input features of the
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model, over which any cutting edge classification/regression algorithm
can be run. Also ranking would be somewhat close to the idea of ’one
vote’ (or top multiple votes), implying suitability to excessive comple-
mentarity of diverse sequence-derived information, while integration
of classifiers is still an important feature of LTR. Thus, GOLabel-
er provides a nice framework of integrating different sequence-based
information of AFP, and also the high possibility of improving the
performance of the current AFP of no-knowledge proteins.

3 Methods

3.1 Notation

Let D be the given training data with ND proteins, i.e. |D| = ND. Let
Gi be the i-th GO term, and NGi be the number of proteins with Gi
in D (Note that this number is obtained by considering the structure
of GO. That is, if Gi is assigned to a protein, this protein is with all
GO terms of the ancestors of Gi in GO.). Let T be the given test
data (the number of proteins: NT = |T |), in which let Pj be the j-th
protein. Let I(Gi, p) be a binary indicator, showing if protein p is
with ground-truth (true) Gi. That is, if p has ground-truth (true) Gi,
I(Gi, p) is one; otherwise zero. Let S(Gi, Pj) be the score (obtained
by a method), showing that Pj is with Gi. In particular, in ensemble
methods, Sk(Gi, Pj) is the predicted score between Gi and Pj by the
k-th method (component).

3.2 Overview

Fig 1 shows the entire scheme of GOLabeler for AFP. In testing, given
the sequence of a query protein, candidate GO terms are generated
from five components, which are already trained by using different
types of information. Each candidate GO term receives prediction
scores from the five components, resulting in a feature vector of length
five. Then candidate GO terms, i.e. feature vectors, are put into the
learning to rank (LTR) model, which is also already trained by using
training data, and finally, a ranked list of GO terms is returned as the
final output of GOLabeler.

3.3 Component methods

We selected five typical, different sequence-based information for gen-
erating components. They are called Naive (GO term frequency),
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Figure 1: Entire scheme of GOLabeler with three steps for AFP.

BLAST-KNN (B-K, k-nearest neighbor using BLAST results), LR-
3mer (Logistic regression (LR) of the frequency of amino acid tri-
gram), LR-InterPro (LR of InterPro features), and LR-ProFET (LR
of ProFET features), which are all explained more below. These com-
ponents from different information sources should be complement to
each other.

3.3.1 Naive: GO term frequency

For given Pj , the score that Pj is with Gi can be computed simply by
the frequency of Gi in D, as follows (Note that this method gives the
same score for all Pj):

S(Gi, Pj) =
NGi

N

3.3.2 BLAST-KNN (B-K): sequence alignment

It is reported that using the similarity score (bit-score) between similar
proteins and the query slightly improves the performance of just using
the sequence identity [25]. So for given Pj , the score of BLAST-KNN
S(Gi, Pj) is computed by first running BLAST to have the similarity
score (bit-score) B(Pj , p) between Pj and protein p to identify a set
Hj of similar proteins to Pj in D using a certain cut-off value (set at
e-value of 0.001 in our experiments) against B(Pj , p) for all p. Finally
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the score can be obtained as follows:

S(Gi, Pj) =

∑
p∈Hj

I(Gi, p) ∗B(Pj , p)∑
p∈Hj

B(Pj , p)
.

3.3.3 LR-3mer: amino acid trigram

For each protein, we use the frequency of the types of three consecutive
amino acids (amino acid trigram or 3mer) in D, which turns into a
vector of 8,000 (= 203) features. We then use this vector as an input
of logistic regression classifier of each GO term.

3.3.4 LR-InterPro: protein families, domains and mo-
tifs

InterPro [21] combines 14 different protein and domain family databas-
es, including Pfam [28], CATH-Gene3D [27], CCD [20] and SUPER-
FAMILY [8], so covering a large number of protein families, domains
and motifs in sequences. We run InterProScan2 over a sequence in D,
resulting in a binary vector with 33,879 features, and then use this
vector as an instance of training logistic regression classifier of each
GO term.

3.3.5 LR-ProFET: sequence features including biophys-
ical properties

We run ProFET3 [23] over a sequence in D to extract features in-
cluding elementary biophysical properties, etc., resulting in a vector
of 1,170 features which is used as an input to train logistic regression
classifier of each GO term.

3.4 GOLabeler

GOLabeler has three steps for functional annotation of a query protein
(Fig. 1):

3.4.1 Step 1: Generate candidates GO terms

For a query protein, we run five component methods to have predicted
GO terms, and after choosing the top-k predicted GO terms from each
component, merge them together as the candidate GO terms (we used
k=30 in our experiments. See Section 4.3) Note that reducing k is to

2http://www.ebi.ac.uk/interpro/interproscan.html
3https://github.com/ddofer/ProFET
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focus on the most relevant GO terms to query protein and also reduce
the computational burden of the model.

3.4.2 Step 2: Generate features for ranking GO terms

We then generate features of the query protein by using the scores
(of each of the candidate GO terms) predicted by all five component
methods, resulting in a 5-dimensional feature vector for each pair of
a GO term and one query protein. Note that all score values are in
between 0 and 1.

3.4.3 Step 3: Rank GO terms by learning to rank (LTR)

Finally, we use LTR to rank all candidate GO terms of each query
protein. Note that all proteins in the training data and their candidate
GO terms are used for training the LTR model. By using LTR, we
can effectively integrate multiple sequence-based evidence for AFP of
no-knowledge proteins.

3.5 Competing methods

In our experiments, we compare GOLabeler with five methods: three
ensemble approaches with the same component outputs as GOLabeler:
one vote, weighted voting (WV) and consensus (which have been often
used in other AFP work, e.g. [30]), and two existing methods, BLAST
[1] and GoFDR [10]. We note that GoFDR was a top performer of
CAFA2.

3.5.1 One vote

One vote selects the most confident prediction out of the five compo-
nents.

S(Gi, Pj) = max
k

Sk(Gi, Pj).

3.5.2 Weighted voting (WV)

Weighted voting combines the predicted scores of component methods
linearly by using weights over components as follows:

S(Gi, Pj) =

∑
k ωk · Sk(Gi, Pj)∑

k ωk
,

9

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 3, 2017. ; https://doi.org/10.1101/145763doi: bioRxiv preprint 

https://doi.org/10.1101/145763


where ωk is the weight assigned to the k-th component. In our exper-
iments, the weights are set in proportion to the area under precision-
recall curve (AUPR) of each component. See Section 4.2 for AUPR
more.

3.5.3 Consensus

Consensus computes the score as follows:

S(Gi, Pj) = 1−
∏
k

(1− αSk(Gi, Pj)), (1)

where α ∈ [0, 1] is a constant to balance components by their impor-
tance. Here we use α = 1 that is most typical.

3.5.4 BLAST

BLAST was used as a baseline method in both CAFA1 and CAFA2,
and so we use this as a competing method. Similar to BLAST-KNN,
given query protein Pj , the similar proteins Hj in D to the query
protein are obtained by using some cut-off value (again set at e-value of
0.001 in our experiments) against similarity score (bit-score) B(Pj , p)
between Pj and protein p in Hj , by which the score by BLAST can
be obtained as follows:

S(Gi, Pj) = max
p∈Hj

I(Gi, p) ·B(Pj , p).

3.5.5 GoFDR

Among the top performance methods in CAFA2, GoFDR is only the
method having available source code4, and so we choose GoFDR as a
competing method [10]. For a query protein, GoFDR run BLAST or
PSI-BLAST to obtain multiple sequence alignment (MSA) over the
query sequence and find functionally discriminating residues (FDR)
of each GO term in the MSA which are used to generate a position-
specific scoring matrix (PSSM). GoFDR uses the PSSM to compute
the score between the query protein and a GO term.

4 Experiments

4.1 Data

Data collection approximately followed the corresponding part of CAFA1
[25] and CAFA2 [14]:

4http://gofdr.tianlab.cn
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Table 1: Data statistics (# proteins) on species with at least ten proteins for
one domain of GO for each of the four datasets.

Species Training LTR1 LTR2 Testing

MFO BPO CCO MFO BPO CCO MFO BPO CCO MFO BPO CCO

HUMAN (Homo sapiens) 9,087 11,019 15,977 150 216 718 261 454 161 42 64 67
MOUSE (Mus musculus) 5,697 9,262 8,770 169 339 237 140 137 175 100 235 146
DROME (Drosophila melanogaster) 4,646 1,0778 7,609 43 579 172 132 224 327 125 339 188
ARATH (Arabidopsis thaliana) 3,857 7,238 8,492 84 198 140 195 114 70 84 180 128
DANRE (Danio rerio) 2,173 8,374 1,500 76 722 159 108 56 50 66 380 27
RAT (Rattus norvegicus) 4,199 5,128 4,459 121 185 178 56 70 106 31 88 88
DICDI (Dictyostelium discoideum) 414 921 803 17 52 25 16 15 19 16 26 12

All species (not only the above) 45,543 77,170 71,388 724 2,387 1,679 1,081 1,206 956 497 1,340 770

1. Protein sequences
We downloaded the FASTA-format files of all proteins from U-
niProt5 [29].

2. GO terms
We downloaded protein function annotation from SwissProt6 [3],
GOA7 [12], and GO8 [2] in October 2016. Out of them we ex-
tracted all experimental annotations in: ’EXP’, ’IDA’, ’IPI’, ’IM-
P’, ’IGI’, ’IEP’, ’TAS’, or ’IC’, and then merged them to form a
full annotation dataset (Note that SwissProt did not have anno-
tation dates and so we downloaded data of SwissProt in January
2015 and January 2014 also).

We then generated the following four datasets, which are mainly
separated by the time stamps that proteins are annotated.

1. Training: training for components
All data annotated in 2014 or before.

2. LTR1: training for LTR
Among the data experimentally annotated in 2015 and not before
2015, no-knowledge proteins.

3. LTR2: training for LTR
Among the data experimentally annotated in 2015 and not before
2015, limited-knowledge proteins. Note that the input of GOLa-
beler and other competing methods are sequences only, and so
the input from LTR2 are also sequences only in our experiments.

4. Testing: testing for competing methods
All data experimentally annotated in 2016 (January to October

5http://www.uniprot.org/downloads
6http://www.uniprot.org/downloads
7http://http://www.ebi.ac.uk/GOA
8http://geneontology.org/page/download-annotations
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of 2016, since we downloaded the data in October 2016) and not
before 2016.

Note that this time-series way of separating training and testing
data is the same as CAFA. Also we used the same target species as
CAFA3, an ongoing challenge for AFP, in LTR1, LTR2 and Testing.
Table 1 shows the number of proteins in the four datasets. We used
Testing (or we call benchmark) as the test set to examine the perfor-
mance of competing methods.

4.2 Performance evaluation measures

We used three measures: AUPR (Area Under the Precision-Recall
curve), Fmax and Smin for evaluation of the predicted GO terms for
each protein, i.e. a multi-label classification setting. AUPR as well as
AUC (area under the receiver operator characteristics curve) are very
general evaluation criteria for classification. AUPR punishes false pos-
itive more than AUC, resulting in being more frequently used when
high costs are required for obtaining labels, such as experimental biol-
ogy. Fmax and Smin are less general but have been used in CAFA9. We
explain Fmax and Smin below (notation follows the Method section):

Fmax = max
τ

{
2 · pr(τ) · rc(τ)

pr(τ) + rc(τ)

}
,

where pr(τ) and rc(τ) are so-called precision and recall, respectively,
obtained at some cut-off value, τ , defined as follows:

pr(τ) =
1

h(τ)

h(τ)∑
j=1

∑
i 1(S(Gi, Pj) ≥ τ) · I(Gi, Pj)∑

i 1(S(Gi, Pj) ≥ τ)
.

rc(τ) =
1

NT

NT∑
j=1

∑
i 1(S(Gi, Pj) ≥ τ) · I(Gi, Pj)∑

i I(Gi, Pj)
,

where h(τ) is the number of proteins with the score no smaller than
τ for at least one GO term, and 1(·) is 1 if the input is true;otherwise
zero.

Smin = min
τ

{√
ru(τ)2 + mi(τ)2

}
,

9Evaluation criteria have been actively discussed, e.g. [13].
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where ru(τ) and mi(τ) are two types of errors, called remaining un-
certainty and misinformation, respectively, given as follows:

ru(τ) =
1

NT

NT∑
j=1

∑
i

ic(Gi) · 1(S(Gi, Pj) < τ) · I(Gi, Pj).

mi(τ) =
1

NT

NT∑
j=1

∑
i

ic(Gi) · 1(S(Gi, Pj) ≥ τ) · (1− I(Gi, Pj)),

where ic(Gi) is the information content of Gi, defined as follows:

ic(Gi) = log2
1

Pr(Gi|parents of Gi in GO)
,

where Pr(Gi|parents of Gi in GO) is the conditional probability of Gi
given its parents of the GO structure (see [5] for more details).

Simply AUPR, Fmax and Smin will select methods which provide
higher precision at top prediction, more balanced prediction between
precision and recall, and more balanced prediction between two error
types (and smaller errors for GO terms with higher information con-
tents), respectively. Also note that practically we evaluated the top
100 GO terms predicted by competing methods for each GO domain
(we used 100, since the number of GO terms per protein is clearly
smaller than 100, and also simply the top GO terms are important).

4.3 Implementation and parameter settings

We processed the FASTA-format data by biopython10 and used sklearn11

for running logistic regression and xgboost [4] to run LTR.

4.3.1 GOLabeler

1. BLAST-KNN
Ver. 2.3.0+ was used with default parameters for BLAST, ex-
cept that blastdb was from all proteins in D and the number of
iterations was one.

2. LTR
We used ’rank:pairwise’ as the objective loss function in xgboost.
Also the maximum depth of trees in MART (Multiple Additive
Regression Trees) was set at 4, to avoid overfitting to the training
data. We selected top 30 predictions from each component to be
merged, since this number provided the most stable performance

10http://biopython.org/
11http://scikit-learn.org/stable/index.html
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in five-fold cross validation over LTR training data (out of five
values {10,20,30,40 and 50} tested).

4.3.2 Competing methods

1. BLAST
We used the same setting as BLAST-KNN.

2. GoFDR
We ran GoFDR over all required data (i.e. all annotation with-
out ’IEA’ or ’RCA’ evidence and some annotations with IEA
evidence before 2016 from GOA [12]).

4.4 Results

We resampled the test dataset with replacement 100 times (bootstrap
with replacement) to make the experiment reliable. In addition to
the three performance evaluation measures, we used paired t-test to
statistically evaluate the performance difference between the best per-
formance method (in boldface in tables) and all other methods, where
the result was considered significant if p-value was smaller than 0.05.
Then in tables, the best performance value is underlined if the val-
ue is statistically significant (see the supplementary materials for the
detailed p-values).

4.4.1 Comparison with component methods

We first compare the five component methods, the results being shown
in Table 2, where out of the five methods, the best values in each
column are in italics with asterisks. Out of the nine (= three evalu-
ation criteria times three domains) comparison settings, LR-InterPro
achieved the best five times, being followed by BLAST-KNN which
achieved the best three times, implying that LR-InterPro and BLAST-
KNN are the two best component methods. The other three methods
are less accurate, while their high performance could be found in some
specific case: LR-3mer achieved the highest Fmax in CCO. We then
examined the performance of GOLabeler trained by LTR1, the re-
sults being shown in the same table, where GOLabeler with only two
components was also checked as well as GOLabeler (with all five com-
ponents), which are called GOLabeler (B+I) and GOLabeler (All),
respectively. The table shows that GOLabeler (All) outperformed all
competing methods in eight out of nine evaluation settings. For ex-
ample, GOLabeler (All) achieved the highest Fmax of 0.580 in MFO,
followed by GOLabeler (B+I) of 0.578, BLAST-KNN of 0.573 and
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Table 2: Performance comparison of GOLabeler with component methods.
B-K: BLAST-KNN. GOLabeler (B+I): only BLAST-KNN and LR-InterPro
were used for components in GOLabeler. GOLabeler (All): all five compo-
nents are used.

AUPR Fmax Smin

MFO BPO CCO MFO BPO CCO MFO BPO CCO

Naive 0.141 0.151 0.591 0.242 0.299 0.653 7.684 15.965 6.535
B-K 0.452 0.192 0.558 0.573* 0.339 0.620 5.157* 15.713 5.647*
LR-3mer 0.144 0.152 0.600 0.255 0.301 0.664* 7.587 15.934 6.415
LR-InterPro 0.536* 0.198* 0.636* 0.556 0.351* 0.654 5.248 15.655* 5.783
LR-ProFET 0.173 0.096 0.550 0.330 0.265 0.633 7.831 17.030 6.380

GOLabeler (B+I) 0.538 0.173 0.657 0.578 0.352 0.665 5.126 15.225 5.439
GOLabeler (All) 0.546 0.225 0.700 0.580 0.370 0.687 5.077 15.177 5.518

LR-InterPro of 0.556. This result indicates the advantage of incor-
porating all component methods in GOLabeler, compared with using
only a smaller number of components. Another finding was that a-
mong MFO, BPO and CCO, BPO is the hardest task in AFP (this is
consistent with the results of CAFA). For example, the best AUPR of
GOLabeler (All) was 0.546 and 0.700 for MFO and CCO, respective-
ly, while it was only 0.225 for BPO, implying that sequences are the
limited informative for BPO in AFP. Hereafter, we show the result by
GOLabeler (All) as that by GOLabeler.

4.4.2 Comparison with other ensemble techniques and
also performance improvement by making training size
larger

We examined the performance of recent ensemble techniques with the
same five component methods and also the performance improvement
by increasing the training data for ensemble learning, i.e. weighted
voting and GOLabeler. Table 3 shows the result summary under nine
experimental settings. When we used LTR1 only, GOLabeler achieved
the best performance among the competing methods. Weighted voting
was the next best, while the performance of one vote was lowest in
all nine settings, implying that choosing one component would not
work well. This result is inconsistent with that of [30] but might be
reasonable because of the large difference of datasets. In fact, [30]
assumes that functional annotation within the same ortholog group
(OG) should be shared and transferable, focusing on only 4,145 GO
terms. On the other hand, we followed the experimental setting of
CAFA, generating a huge number of GO terms. Thus, in our case a
single classifier would not make better prediction than ensembles, by
which our results would make sense.
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Table 3: Performance comparison of GOLabeler with ensemble techniques
and also improvement by adding LTR2 to LTR1. WV: Weighted voting.

AUPR Fmax Smin

MFO BPO CCO MFO BPO CCO MFO BPO CCO

One vote 0.423 0.193 0.651 0.543 0.335 0.682 6.116 16.237 5.883
WV (LTR1) 0.530 0.230 0.694 0.571 0.368 0.692 5.119 15.117 5.516
WV (LTR1+2) 0.530 0.232 0.694 0.571 0.370 0.692 5.114 15.101 5.506
Consensus 0.454 0.222 0.670 0.543 0.360 0.692 5.687 15.510 5.660
GOLabeler (LTR1) 0.546 0.225 0.700 0.580 0.370 0.687 5.077 15.177 5.518
GOLabeler (LTR1+2) 0.549 0.236 0.697 0.586 0.372 0.691 5.032 15.050 5.479

Table 4: Performance comparison of GOLabeler with BLAST and GoFDR.

AUPR Fmax Smin

MFO BPO CCO MFO BPO CCO MFO BPO CCO

BLAST 0.263 0.071 0.311 0.435 0.262 0.513 7.223 17.358 6.848
GoFDR 0.424 0.183 0.503 0.535 0.322 0.587 6.075 16.909 5.424
GOLabeler 0.549 0.236 0.697 0.586 0.372 0.691 5.032 15.050 5.479

By adding LTR2, the performance of GOLabeler was more pro-
nounced, achieving the best in all nine settings, except only one, while
the performance of weighted voting was increased in only five out of
all nine cases. This means that GOLabeler can take the advantage of
using a larger size of data more effectively than weighted voting. Also
this implies that the performance of GOLabeler can be rather easi-
ly improved further by increasing the annotation data in the future.
Hereafter, we show the results of GOLabeler and weighted voting with
all training data for LTR (both LTR1 and LTR2) as those by GOLa-
beler and weighted voting, respectively.

4.4.3 Comparison with BLAST and GoFDR

Table 5 shows the performance of BLAST and GoFDR. GOLabeler
outperformed both BLAST and GoFDR in all experimental settings,
except only one, being statistically significant. GoFDR is a method
that achieved the top performance in CAFA2, demonstrating the high
performance of GOLabeler, even compared with high performers in
CAFA.

4.4.4 Comparison with BLAST and GoFDR

Table 5 shows the performance of BLAST and GoFDR. GOLabeler
outperformed both BLAST and GoFDR in all experimental settings,
except only one, being statistically significant. GoFDR is a method
that achieved the top performance in CAFA2, demonstrating the high
performance of GOLabeler, even compared with high performers in
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Table 5: Performance comparison of GOLabeler with BLAST and GoFDR.

AUPR Fmax Smin

MFO BPO CCO MFO BPO CCO MFO BPO CCO

BLAST 0.263 0.071 0.311 0.435 0.262 0.513 7.223 17.358 6.848
GoFDR 0.424 0.183 0.503 0.535 0.322 0.587 6.075 16.909 5.424
GOLabeler 0.549 0.236 0.697 0.586 0.372 0.691 5.032 15.050 5.479

Table 6: Performance comparison, focusing on DROME. B-K: BLAST-KNN.
WV: Weighted voting.

AUPR Fmax Smin

MFO BPO CCO MFO BPO CCO MFO BPO CCO

B-K 0.369 0.362 0.596 0.504 0.440 0.663 3.770 12.907 5.960
InterPro 0.499 0.317 0.701 0.456 0.434 0.713 3.750 13.308 5.767
Consensus 0.358 0.373 0.695 0.394 0.449 0.716 4.490 13.031 5.840
WV 0.436 0.361 0.719 0.432 0.460 0.712 3.872 12.581 5.828
GOLabeler 0.510 0.387 0.727 0.462 0.462 0.724 3.698 12.332 5.723

Table 7: Performance comparison, focusing on MOUSE. B-K: BLAST-KNN.
WV: Weighted voting

AUPR Fmax Smin

MFO BPO CCO MFO BPO CCO MFO BPO CCO

B-K 0.391 0.142 0.527 0.526 0.365 0.619 6.956 20.346 6.562
InterPro 0.541 0.215 0.587 0.570 0.381 0.623 6.426 19.156 7.113
Consensus 0.406 0.185 0.618 0.549 0.367 0.648 7.105 19.812 6.566
WV 0.499 0.217 0.620 0.584 0.380 0.634 6.320 19.156 6.494
GOLabeler 0.506 0.215 0.632 0.576 0.388 0.678 6.425 19.203 6.427

CAFA.

4.4.5 Performance over different species

We checked the performance variation depending on different species,
particularly focusing on two species with the largest number of pro-
teins (over 100 proteins in all three GO domains), i.e. DROME and
MOUSE, for which results are summarized in Tables 6 and 7, re-
spectively. The two tables show that GOLabeler achieved the best
performance in all nine settings for DROME, except one case, while
GOLabeler was the best method for MOUSE but the best cases re-
mained four out of all nine settings. We can see species-wise slight
performance variation, although performance advantage of GOLabel-
er was clear.

4.4.6 Performance over different GO terms

We have evaluated the performance of competing methods regarding if
GO terms are predicted correctly for each protein, which is a protein-
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Table 8: Top five GO IDs in MFO by GOLabeler outperformed all other
methods

ID description AUPR

GO:0052689 carboxylic ester hydrolase activity 0.697
GO:0022891 substrate-specific transmembrane transporter activity 0.832
GO:0043565 sequence-specific DNA binding 0.614
GO:0022892 substrate-specific transporter activity 0.775
GO:0043169 cation binding 0.606

centric manner. We now evaluated the competing methods in terms
of if true proteins are correctly predicted for each GO-term, which is a
term-centric manner, or more generally binary classification, by using
AUPR. We focused on GO terms which appear no less than 10 times
in the test data. Note that GOLabeler was trained to optimize the
ranking of GO terms per protein, but even under this case, the result
shows that GOLabeler achieved the highest average AUPR of 0.659
in MFO, being followed by weighted voting of 0.646 and consensus of
0.638. Table 8 shows the top five GO terms in MFO on the difference in
AUPR of GOLabeler from that of the next best method (the difference
was all larger than 4% in AUPR).

4.4.7 Case study

Finally we show a typical example of the results obtained by GOLa-
beler and other competing methods, to illustrate the real effect of the
performance difference on annotating GO to unknown proteins. Ta-
ble 9 shows the list of predicted GO terms12 of MFO for a protein,
Wor4p (Uniprot Symbol: Q5ADX8), which is, in ground-truth, associ-
ated with 12 GO terms in MFO. Also Fig. 2 shows the directed acyclic
graph of the 12 GO terms associated with Q5ADX8. First note that
there are no homologous proteins of Q5ADX8 (set the cut-off of e-
value at 0.001), by which BLAST-KNN was unable to predict any GO
terms. Naive predicted three GO terms, out of which only one very
generally term, GO:0005488 (Binding), was correct. LR-InterPro, LR-
3mer, LR-ProFET could make more correct annotations particularly
more specific terms, such as GO:0003677 (DNA Binding). The pre-
diction by weighted voting was also at the same level of specificity
as the three component methods13. In fact, the predicted GO terms
by LR-InterPro and weighted voting were all correct, but the number
of the predicted GO terms was only four and five, respectively. On

12The GO terms by each method are determined by its own cut-off value to achieve the
best value of Fmax.

13The poor performance of weighted voting might be caused by BLAST-KNN, which
was unable to predict any GO term.
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Figure 2: Predicted GO terms of Q5ADX8 in DAG of MFO by different
methods.

Table 9: Predicted GO terms of Q5ADX8 in MFO by GOLabeler and com-
peting methods. Correctly predicted GO Terms are in bold face. WV:
Weighted voting.

Method Predicted GO terms

Naive GO:0005488, GO:0003824, GO:0005515
BLAST-KNN
LR-3mer GO:0005488, GO:0005515, GO:0003824, GO:0097159, GO:1901363, GO:0003676
LR-InterPro GO:0005488, GO:0003677, GO:1901363, GO:0097159, GO:0003676
LR-ProFET GO:0003676, GO:0097159, GO:1901363, GO:0005488, GO:0003723, GO:0003677, GO:0001010, GO:0005515
WV GO:0005488, GO:0097159, GO:1901363, GO:0003676
GOLabeler GO:0005488, GO:0003676, GO:0097159, GO:1901363, GO:0003677, GO:0005515, GO:0044212, GO:0000975, GO:0001067

Ground truth GO:0005488, GO:0097159, GO:1901363, GO:0003676, GO:0001067, GO:0003677, GO:0000975, GO:0003690, GO:0043565
GO:0044212, GO:1990837, GO:0000976

the other hand, GOLabeler predicted nine terms, out of which eight
were correct. More importantly, as shown in Fig. 2, the prediction by
GOLabeler was most specific. For example, even GO:0044212 (tran-
scription regulatory region DNA binding), which is next to the end
node in Fig. 2, was correctly annotated. From this result, we can
see that the performance advantage of GOLabeler results in sizeable
differences in quality of real function annotation.
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5 Conclusion

Sequence-based large-scale automated function prediction (SAFP) for
proteins, particularly difficult proteins, is an important and challeng-
ing problem. Many factors have made this problem difficult to solve.
First of all, in this setting, experimental data except sequences cannot
be used, while difficult proteins have very low sequence homology to
other sequences in training data, by which homology-based approach-
es do not work. Also GO protein functions themselves have mainly
two issues: 1) in a directed acyclic graph (DAG) of GO, a protein
with some GO terms must be annotated by all GO terms of ancestor
nodes. 2) So the GO structure resulting in a huge bias in the number
of GO terms per protein, making AFP a hard multi-label classifica-
tion problem. GOLabeler addresses these challenges by cutting-edge
techniques, particularly those in machine learning. 1) We use not
only sequence homology, e.g. sequence alignment, but also a variety
of sequence features, such as n-gram, domains, motifs, biophysical
properties, etc., as features to train multiple classifiers, such as k-
nearest neighbors (local information) and logistic regression (rather
global information). 2) We use all GO terms, which are generated
by considering the DAG structure of GO, as class labels of classifiers.
3) Finally the well-trained classifiers are integrated as components by
a cutting-edge machine learning technique, learning to rank (LTR),
which can rank the candidate GO terms in terms of the relevance to
each protein.

We have thoroughly examined the performance of GOLabeler ex-
tensively, showing the clear advantage in predictive performance over
state-of-the-art techniques in AFP and ensemble approaches. Again
using diverse information from sequences is very useful for AFP. GO-
Labeler currently integrates five classifiers as components which are
from GO term frequency, sequence homology, trigram, motifs and bio-
physical properties, and so on. The framework of GOLabeler or LTR
is flexible and allows to incorporate any classifiers we can use, im-
plying that further performance improvement would be possible by
adding more information from sequences. Also this could be done for
not only SAFP but also more general AFP. This would be interesting
future work. From our experimental results, we have seen the note-
worthy performance improvement of GOLabeler for difficult proteins.
Also we saw the slight performance difference depending on species.
Possible future work would be to develop GOLabeler to improve the
performance of AFP for specific species, especially those with very
few proteins, for which current AFP methods do not necessarily work
sufficiently.
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