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Abstract

An important problem in metagenomic data analysis is to identify the source organism, or at least taxon,
of each sequence. Most methods tackle this problem in two steps by using an alignment-free approach:
first the DNA sequences are represented as points of a real n-dimensional space via a mapping function
then either clustering or classification algorithms are applied. Those mapping functions require to be
genomic signatures: the dissimilarity between the mapped points must reflect the degree of phylogenetic
similarity of the source species. Designing good signatures for metagenomics can be challenging due to
the special characteristics of metagenomic sequences; most of the existing signatures were not designed
accordingly and they were tested only on error-free sequences sampled from a few dozens of species.

In this work we analyze comparatively the goodness of existing and novel signatures based on tetranu-
cleotide frequencies via statistical models and computational experiments; we also study how they are
affected by the generalized Chargaff’s second parity rule (GCSPR), which states that in a given sequence
longer than 50kbp, inverse oligonucleotides are approximately equally frequent. We analyze 38 million se-
quences of 150 bp-1,000 bp with 1% base-calling error, sampled from 1,284 microbes. Our models indicate
that GCSPR reduces strand-dependence of signatures, that is, their values are less affected by the source
strand; GCSPR is further exploited by some signatures to reduce the intra-species dispersion. Two novel
signatures stand out both in the models and in the experiments: the combination signature and the oper-
ation signature. The former achieves strand-independence without grouping oligonucleotides; this could
be valuable for alignment-free sequence comparison methods when distinguishing inverse oligonucleotides
matters. Operation signature sums the frequencies of reverse, complement, and inverse tetranucleotides;
having 72 features it reduces the computational intensity of the analysis.

1 Introduction

Metagenomics studies the genomic content of microbial communities, obtained through DNA sequencing
technologies [1]. Essentially, a metagenomic dataset is a set of DNA sequences acquired from the genomes
of an environmental sample. By bypassing the cultivation step, metagenomics is able to obtain microbial
genomes unattainable through individual sequencing, since less than 1% of the microbes present in nature
can be cultured [2]. Moreover, with metagenomics it is possible to infer the interactions occurring in a
microbial community. Unfortunately, the potentialities given by metagenomics come with a price in terms
of data analysis challenges: we do not know from which genome a sequence was sampled; in most of the
cases, the full genomes of the community members are not available; even species number is unknown.

As a consequence, an important step of metagenomic data analysis is to detect to which organism,
or at least to which taxon each sequence belongs to. This problem is tackled, for instance, by means of
clustering methods (binning) [3], by prediction models constructed using available genomes (taxonomic
assignment) [4,5], and by other similarity-based approaches that match sampled sequences with sequences
in a database of reference [6, 7].
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Many of the binning and taxonomic assignment methods tackle the problem in two steps: first the
DNA sequences are represented as points of a real n-dimensional space via a mapping function, then
either clustering [3, 8–13] or classification algorithms [14, 15] are applied to these points. Typically, the
mapping functions adopted in literature represent a given sequence with the frequency counts of a set
of oligonucleotides: among these, tetranucleotides are the most used [8, 9, 12, 15]; sometimes frequencies
of short oligonucleotides (length up to 6) are used together [11, 14]; a few tools adopted oligonucleotides
longer than 6 bases [3, 10, 16, 17]. More recent tools are based on tetranucleotides frequencies computed
on contigs assembled from the reads of the metagenome [18,19].

In order to be effective for binning and taxonomic assignment, these mapping functions have to be
genomic signatures [20]. A genomic signature is a mapping function that has the following properties:
sequences sampled from the same genome are mapped to relatively similar points; sequences sampled
from different genomes are mapped to significantly different points, and this difference is related to
the phylogenetic distance of the source genomes. Signatures are also used for alignment-free sequence
comparison [21]. The biological underlying explanation of this property of existing genomic signatures
is still unclear. It is conjectured to be the result of more contributing factors [22], like GC content
and phylogeny [23]; however the correlation between signature and phylogenetic distance appears to
be not very strong, mainly due to the absence of divergence of oligonucleotide composition in some
phylogenetically distant species [24].

Despite the relevance of genomic signatures for metagenomic data analysis, existing signatures were
not designed to take into account the special properties of metagenomic data. Signatures are usually
tested on sequences of 10,000 base pairs (bp) or more [20], while the sequencing technologies used for
metagenomics generate sequences of 50-1,000 bp. Signatures for metagenomic data cannot be based
on information extracted from source genome of a sequence, like many existing signatures do, since
composition of the sequenced community is often unknown, and new species might also be present in the
metagenome. Signatures need also to be effective with sequences containing errors, that can be generated
by sequencing machines. Moreover, signatures for metagenomic data have to be effective even with
sequences belonging to different strands of the genomes, because sequencing technologies might sample
sequences from both strands.

Furthermore, the development of binning and taxonomic assignment methods was more focused on the
algorithmic part rather than on the adopted mapping function/genomic signature. Attempts to introduce
signatures for metagenomic applications are recent and validated the signatures on error-free sequences,
sampled from a few dozens of species, and longer than real metagenomic sequences. For instance, the
binning tool MetaCluster successfully tested and implemented a signature based on tetranucleotide fre-
quencies ranking [13, 25], and showed its effectiveness for clustering metagenomic sequences. RAIphy
used a signature computable on sets of sequences [16]; MetaProb computed normalized tetranucleotide
frequencies on sequence sets [26]. Signature OFDEG was designed for error-free sequences of at least
8,000 bp [27]. Recently, ICOs signature was tested on 50,000 error-free sequences of 1,000 bp or more,
sampled from 60 species [28].

In this study, we analyze and compare theoretically the statistical distributions of some existing and
novel signatures; in particular, for each signature we study its dispersion among sequences of the same
species and the dispersion of signature’s expected values among different species. A low within-species
dispersion shows that the signature assumes similar values for sequences sampled from the same species.
A signature’s expected value for a species gives us an indication of its average values for that species;
high dispersion of species expected values indicates that the given signature maps sequences of different
species to significantly different points.

Furthermore, we investigate the biological and statistical rationales that make signatures effective
in dealing with metagenomics data. In particular, we take into account the effects of the generalized
Chargaff’s second parity rule (GCSPR) on genomic signatures. This rule states that, in a given sequence of
at least 50 kbp, an oligonucleotide and its reverse complement are approximately equally frequent [29,30];
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the rule implies that the two oligonucleotides have approximately the same total count in a genome [31].
GCSPR rule applies to all the double stranded DNAs, organelles excepted [32].

We also provide a thorough comparative experimental analysis of those signatures on data more
similar to the metagenomic ones than the ones used in signature studies [20, 27, 28], especially in terms
of number of species, sequence length, and presence of errors. Our experimental setup is a significant
extension of the one adopted in our previous work [33]: sequences have base-calling errors (1% rate);
experiments are performed for multiple sequence lengths (150 bp, 500 bp, 1000 bp); we directly compare
distributions of signatures’ distances instead of their mean values; the Area Under Precision-Recall curve
(AUPR) replaces the Area Under ROC curve as an evaluation measure, to take into account that within-
species sequence pairs are much fewer than between-species ones; the number of sequences pairs on which
within-species signatures’ distances are computed has been increased hundred-fold.

The proposed signatures take into account the special properties of metagenomic data mentioned
before. In particular, they are designed to be effective with sequences of the same genome sampled
from different strands: these strand-independent signatures assume the same value for a sequence and its
reverse complement, so that the source strand of the sequence become irrelevant for the signature. All
the signatures we study are derived from the tetranucleotide frequencies signature; we will refer to this
as the standard signature.

The most important novel signatures introduced in this study are the combination signature and
the operation signature. Combination signature is a reordering of the features of the standard tetranu-
cleotide frequencies signature; the adopted reordering makes combination signature strand-independent.
Strand-independent signatures currently used in metagenomics [18,26] are derived form the symmetrized
signature, that is obtained by summing the frequencies of reverse complementary tetranucleotides [24].
Therefore, combination signature proves that summing frequencies of inverse oligonucleotides, and thus
loosing information, is not necessary to achieve a strand-independent signature.

The 72-feature Operation signature is instead obtained by summing the frequency of a tetranucleotide
with the ones of its complement, reverse, and inverse. This was developed to study if exploiting GCSPR
and the reverse, complementarity, and inverse relations between tetranucleotides [34] can reduce feature
space dimension and increase error tolerance. In data analysis, in general, reduction of feature space
dimension can be beneficial in many aspects: performances are less dependent from the data (see bias-
variance trade-off [35]), the computational cost of the analysis is reduced, and the data can become more
interpretable [36]. Dependency from data is a very important issue for metagenomic data analysis, because
metagenomes are likely to contain novel microbes and communities: hence, an analysis method based on
fewer features can be more accurate when facing these types of data. The reduction of computational
cost is also relevant, because the size of metagenomes is growing so much that analysing them is already
becoming expensive in terms of computational power and data storage [37].

We also define and test new signatures capturing the divergence from GCSPR. Since metagenomic
sequences are much shorter than 50 kbp [29, 30] the hypotheses behind GCSPR are not completely
satisfied and hence the frequencies of reverse complementary oligonucleotides may differ. These differences
could change according to the taxonomic classification of the source genome, making them exploitable
for our purpose: indeed, previous research showed that purine-pyrimidine asymmetry in mammalian
mitochondrial DNA carries phylogenetic information [38].

2 Materials and Methods

2.1 Genomic Signatures and their Rationale

In this study we focus on signatures based on tetranucleotide (4-mer) frequencies, since previous works
had demonstrated that these features carry a significant phylogenetic signal [39]. Let w denote one
of the 256 tetranucleotides, represented as words of length 4 in the alphabet {A,C,G,T}; we denote by
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wRC the reverse complement (also called inverse) of w. Note that 16 of these 256 tetranucleotides are
palindromic, i.e, they coincide with their respective reverse complements (wRC = w). A metagenomic
sequence s is also represented as a word in the alphabet {A,C,G,T} but with no length limit; sRC still
denotes the inverse of s. For a given sequence s, we denote with fi and fRCi the frequencies with which
tetranucleotides wi and wRCi occur in s, respectively. We also denote with wC and wR the complement
and reverse of w, respectively. Note that wR and wC are reverse complement of each other. Therefore,
for the 8 distinct tetranucleotides coinciding with their reverse (w = wR), the relation wRC = wC holds;
if w is palindromic, then wC is another distinct palindromic (wC = wR). The symbols fCi and fRi denote
the frequencies of wCi and wRi in a given sequence s, respectively.

We view a signature as a function ρα mapping a sequence s to a vector ρα(s) = (a1, . . . , an) of
real numbers. A signature ρα is called strand-independent if it assumes the same value for each
possible genomic sequence s and the sequence sampled from exactly the same genomic region but on
the complementary strand, that is the inverse of s: that is, if the relation ρα(s) = ρα(sRC) holds for all
possible sequences s.

First, we introduce the signature usually adopted in metagenomic data analysis:
Standard Frequencies Signature ρT: This signature is defined by setting the i-th component ai of ρT(s)
to fi, for i = 1, . . . , 256. This signature has been used in many tools for metagenomic data analysis
[8, 9, 12, 15]; among the analyzed signatures, it is the only one that is affected by the source strand of
the sequence and does not exploit reverse complementarity of tetranucleotides. It is also affected by the
deviation from GCSPR.

All the other signatures under examination in this work are strand-independent. The first group of
signatures we examined are novel signatures that can be derived from ρT by simply reordering its features
or selecting only some of them:
Minimal and Maximal complementarity signatures ρmin and ρmax: These signatures are defined such that

ρmin(s) := (a1, . . . , a120), with ai = min(fi, f
RC
i ) and wi 6= wRCi , and ρmax(s) := (a1, . . . , a120), with

ai = max(fi, f
RC
i ) and wi 6= wRCi . These signatures are affected by the deviation from GCSPR. Notice

that in these signatures we employ only the 240 non-palindromic tetranucleotides.
Palindromic Signature ρP: This signature considers only the frequencies of the 16 palindromic tetranu-

cleotides (i.e., wi = wRCi ). That is ρP(s) := (a1, . . . , a16) with ai = fi. The introduction of this signature
is motivated by a study where the frequency distribution of palindromic tetranucleotides was shown to
exhibit highest inter-species but low intra-species variance on 10,000 bp sequences [40].
Combination Signature (ρmax, ρmin, ρP): As a combination of ρmax, ρmin and ρP, it maps a sequence

s to a vector (a1, . . . , a120, b1, . . . . . . , b120, c1, . . . , c16), where the features ai = max(fi, f
RC
i ) and bi =

min(fi, f
RC
i ) are derived from the non-palindromic 4-mers (wi 6= wRCi ), while ci = fi is computed for the

16 palindromic 4-mers. This signatures is actually a reordering of the 256 tetranucleotide frequencies
composing ρT, in a way that makes the signature strand-independent and is still affected by the deviation
from GCSPR. As a matter of fact, this combination maps a given sequence s to a permutation of the 256
components of ρT(s). Indeed, following the notation previously introduced, it can be proved that each
feature of ρT corresponds to the frequency of a certain tetranucleotide w. If w = wRC holds, than its
frequency will be a feature of ρP; if the equality does not hold, frequency of w will be a feature either of
ρmax or ρmin.

2.1.1 Signatures exploiting generalized Chargaff’s second parity rule

Other signatures we examined reduce the number of features and increase error tolerance by exploiting
GCSPR and other genomic symmetries; those signatures include a novel one called operation signature:
Symmetrized Signature ρS: This signature is obtained by summing the frequencies of distinct inverse

4-mers (see, e.g., [24], ). It is defined as ρS(s) := (a1, . . . , a136), with ai = fi + fRCi if wi 6= wRCi , and
ai = fi, otherwise. Notice that the vector ρS(s) has 136 features, since 16 tetranucleotides are palin-
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dromic, i.e, they coincide with their inverse, and 240 are not (i.e., wi 6= wRCi ).
The symmetrized signature ρS can be seen as a simplification of the combination signature (ρmax, ρmin, ρP),
and hence ρT, because ρSi is equal to ρmax

i + ρmin
i if wi 6= wRCi holds, otherwise ρSi = ρPi . Indeed, a way

to reduce the dimension of combination signature is to substitute some of its features with new features
corresponding to their sum; the side effect of this approach is that it removes the distinction between the
frequencies of the chosen tetranucleotides.
This signature exploits GCSPR to reduce feature space dimension. GCSPR states that, on sequences
of 50 kbp or longer, wi and wRCi have approximately the same frequency, i.e. the relation fi ≈ fRCi
holds. Therefore, if sequences were sampled all from the same strand, we would just need to choose one
of the two frequencies as features to build effective signatures. Since this is not possible, it is sensible
to replace those two frequencies with their sum, that corresponds also to the sum of max(fi, f

RC
i ) and

min(fi, f
RC
i ). Indeed, thanks to the previous relation, we have that max(fi, f

RC
i ) + min(fi, f

RC
i ) =

fi + fRCi ≈ 2fi ≈ 2fRCi also hold; hence it is sensible to replace each of these 120 feature pairs with
their sum max(fi, f

RC
i ) + min(fi, f

RC
i ) = fi + fRCi , thus reducing the signature to 136 features. As a

result, we obtain ρS.
Symmetrized Rank Signature ρRank: This signature is defined such that ρRank(s) is the ranking in-

duced by sorting the elements of ρS(s) in descending order. This signature was used in recent works on
metagenomic binning 1 [13,25]; however, it was not specified how ρS(s) ranking is performed when some
ρS(s) elements have the same value. We decided to perform a second ranking between features having
the same values according to the alphabetical order of the respective tetranucleotides. For example, if
the frequency of the palindromic 4-mer ’ACGT’ is equal to the sum of the frequencies of the reverse
complementary pair ’AAAA’ and ’TTTT’, then the ρRank value corresponding to the pair will be lower
than the one of the single sequence, because ’AAAA’ precedes ’ACGT’ in the alphabetic order. Our
choice of this second ranking was motivated by the simplicity of its implementation and computation.
Operation Signature ρO: This signature is obtained by summing the frequency of a tetranucleotide with
the ones of its complement, reverse, and inverse. It is inspired by a publication where the set of oligonu-
cleotides is partitioned in equivalence classes with respect to complement and reverse operations [34]. It is
defined as ρO(s) := (a1, . . . , a72), with ai = fi+f

C
i if wi = wRCi or wi = wRi , and ai = fi+f

C
i +fRi +fRCi

otherwise. Notice that the vector ρO(s) has 72 features: 8 features are given by the 8 sets {wi, wCi } for
which wi = wRCi (and wCi = wRi ); other 8 features are associated ot sets of the same form where wi = wRi
(and wCi = wRCi ); the remaining 224 tetranucleotides are all distinct, from their reverse, complement,
and inverse, thus leading to 56 features.

As ρS is a reduction of ρT, signature ρO can be seen as an additional simplification of ρS, derived
by exploiting complement and reverse relation between the tetranucleotides to further reduce feature
space dimension. Indeed, ρS can be additionally reduced by substituting some of its features with new
features corresponding to their sum, as we did before. Given a tetranucleotide w, we can observe that
its complement wC and the reverse wR are one the reverse complement of the other. Therefore we can
replace the 56 ρS feature pairs (fi + fRCi , fCi + fRi ) with their sum when the four tetranucleotides are
distinct. 8 features fi+f

C
i are obtained from the 16 palindromic tetranucleotides w = wRC and wC = wR

(e.g. w =’ACGT’, wC =’TGCA’). The remaining 8 features of ρS corresponding to the w coinciding with
their reverse (and hence wRC = wC) are not changed (e.g. w =’ACCA’, wRC =’TGGT’).

2.1.2 Signatures capturing deviation from generalized Chargaff’s second parity rule

The following novel signatures were designed to capture solely the deviation from GCSPR in the given
sequence. The deviation is computed with respect to tetranucleotide frequencies; their features are derived
from the non-palindromic tetranucleotides:

1In those works, distance between sequences was measured through Spearman footrule distance, that is equivalent to
compare the values assumed by ρRank via L1.
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Asymmetry Signature ρA: This signature is defined as ρA(s) := (a1, . . . , a120), where ai = |fi − fRCi |.
This is the only signature that measures the deviation with respect to sequence length, because of the
way fi is defined.
Skew Signature ρSkew: This signature is based on the standard relative skew index usually adopted in

literature, such as [41]. It is defined as ρSkew(s) := (a1, . . . , a120), where

ai =

{
0, if fi = fRCi = 0,
|fi−fRC

i |
fi+fRC

i
, otherwise.

Ratio Signatures ρRatio1 and ρRatio2: These signatures are defined for the 4-mers that have different

reverse complement as ρRatio1(s) = (a1, . . . , a120) and ρRatio2(s) = (b1, . . . , b120), where

ai =

{
1, if fi = fRCi = 0,

min( fi
fRC
i
,
fRC
i

fi
), otherwise,

bi =

{
1
2 , if fi = fRCi = 0,
min(fi,f

RC
i )

fi+fRC
i

, otherwise,

for wi 6= wRCi .
JS Signature ρJS: This signature is based on Jensen-Shannon divergence [42], and is defined as ρJS(s) =
(a1, . . . , a120) with

ai := fi log
fi

1
2 (fi + fRCi )

+ fRCi log
fRCi

1
2 (fi + fRCi )

.

This signature is based only on the non-palindromic tetranucleotides.
Similarity between signatures was computed by using L1 distance (also known as Manhattan dis-

tance). The choice of this distance is motivated by its use in previous methods for taxonomic assignment
of metagenomic sequences [12,19]. Moreover, the distances most often used in literature on genomic sig-
natures are based on L1 multiplied by an averaging factor [20,24,43]. Given a genomic signature ρa, the
related signature distance between two nucleotide sequences s, z is defined by computing the L1 distance
between ρa(s) and ρa(z).

We also analyzed a few combinations of pairs of signatures, such as (ρS(s), ρA(s)), (ρmin(s), ρmax(s)),
and the remaining combinations of ρmin, ρmax and ρP. Similarly, we studied the combinations
(ρSN (s), ρRank

N (s)) and (ρSN (s), ρSkewN (s)), where ρaN (s) is the normalized version of a given signature ρa(s);
ρaN (s) is defined as ρa(s) divided by the maximum value that can be achieved by the related signature
distance. This maximum distance depends on the sequence length. The maximum values of the signatures
are provided in Supplementary Material (Table 1). Performances of the sum of minimal and maximal
complementary signatures, namely ρmin + ρmax, were also analyzed.

2.2 Data acquisition and preprocessing

Complete genomes of 1,284 prokaryotes were downloaded from the NCBI ftp server2. The list of the
genomes is provided online3.

From a given genome, three sets of sequences were randomly sampled from both strands, simulating
a sequencing error of 1%. Each of these sets consists of 10,000 possibly overlapping sequences with
same length. Three sequence lengths where considered: 150 bp, 500 bp, and 1,000 bp. A sequence of
length l is sampled by copying a random sub-sequence of l consecutive bases from a strand of a genomic

2Available at ftp://ftp.ncbi.nih.gov/genomes/Bacteria/
3Available at http://cs.ru.nl/~gori/download/Table_S1_list_genomes.txt
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sequence; only sequences made exclusively of the four bases {A,C,G,T} were considered. Sequences
were sampled with a random base-calling error of 1%. The sequencing error was simulated with the
method adopted in [13]: each base had 1% of probability of been wrongly sequenced. The probability
was uniformly distributed among the other three bases (e.g A has 99% probability of being correctly
sequenced as A; A has a probability of 0.33% of being sequenced as C,G, or T, separately). This simple
error model was chosen to make results not affected by biases of specific sequencing technologies. The
NCBI taxonomy4 [44] was used as reference taxonomy of the analyzed prokaryotes. Sequence sampling,
analysis of the results and plotting were carried out using the following Python packages: Biopython [45],
SciPy [46], IPython [47], and Matplotlib [48].

2.3 Computing signatures values

Revising the methodology employed in related works [13], we generated sets of sequences and evaluated the
dissimilarity of the signature values on pairs of these sequences. Specifically, we evaluated the quality of a
signature based on its property of assuming similar values for sequences of the same genome, and different
values for sequences of different ones. We also evaluated the signatures’ performance at taxonomic levels,
by considering the taxonomic distance of two sequences as the taxonomic rank of the lowest common
ancestor of their source genomes in the taxonomy tree.

Specifically, for each of the three sequence lengths (150 bp, 500 bp, 1,000 bp) we created 9 sets of
sequence pairs, where each set corresponds to a different degree of diversity of the source genomes. Subse-
quently, signature distances between sequences for each pair of the sets were computed. From the resulting
distance values, 9 distributions of distances were obtained for each signature. A first distribution was
generated using the distances between sequences of a same genome (intra-genome signature distances):
for each genome, we computed all the pairwise signature distances between the 10,000 sequences of that
genome. These ∼ 6.42 · 1010 distances (

(
10,000

2

)
sequence pairs for 1,284 genomes) provided a distribution

of intra-genome distances for the given signature. Each distribution was stored as a histogram of distance
frequencies.

The other 8 distributions of distances were generated by computing distances between sequences from
different genomes (inter-genomic signature distances), where each of the 8 distributions was obtained by
considering a different level of taxonomic distance of the compared genomes. Specifically, we created 7
sets of organism pairs, one for each of the following taxonomic ranks: Species, Genus, Family, Order,
Class, Phylum, Superkingdom. The set of pairs associated to a rank r consisted of 1,000 different pairs
of organisms randomly selected among those whose lowest common ancestor in the taxonomy tree was
at rank r. For each pair of these organisms, we randomly selected 1,000,000 pairs of genomic sequences
from the set of all the sequences sampled from these genomes, and calculated the resulting distances.
These 109 distances (1,000,000 sequence pairs for 1,000 genome pairs) provided a distribution of inter-
genomic distances at rank r. Each distribution was stored as a histogram of distance frequencies, whose
bins were the same used for intra-genome distances histogram. Furthermore, we also created a set of
organism pairs where each element is made by a bacterium and an archaeon, the two superkingdoms of
the Prokaryotes. We computed and stored a signature distance distribution for this set of organism pairs
using the same methodology applied for the other inter-genomic distances. We refer to this distribution
as the inter-genomic signature distance distribution at prokaryotes level.

2.4 Evaluating the effectiveness of signatures experimentally

We assessed the capability of a genomic signature to preserve the taxonomic relations between the source
genomes of pairs of sequences. Specifically, for each genomic signature, we tested if the related signature
distance yielded small values for sequence pairs of taxonomically closely related source microbes, and

4Available at ftp://ftp.ncbi.nih.gov/pub/taxonomy/
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greater values for sequences of distantly related microbes. To this aim, the signature distance was
considered as a score for the sequence pair; the score quantifies the degree of relation between the source
genomes, according to the given signature. Higher scores correspond to sequences that are more likely to
belong to taxonomically distant genomes, according to the related signature.

Performances of different signatures were compared through Precision Recall (PR) curves [49]. The
performance of each signature was evaluated at different representation levels: Intra-genome, Species,
. . . , Superkingdom. For a given representation level, sequence pairs were partitioned in two sets: the
pairs having taxonomic distances up to the associated level, called “positives”, and the remaining pairs,
the “negatives”. Specifically, for intra-genome representation level, the set of positive sequence pairs
was made by the pairs sampled from the same genome; the remaining pairs formed the set of negatives.
For representation level corresponding to taxonomic rank r, instead, we considered as positives all the
sequence pairs such that the lowest common ancestor of the taxa of their source genomes was at rank r
or lower. The remaining pairs were the negatives. Having defined the set of positives and negatives, we
could compute the set of “true positives” and “false positives” for a given signature distance threshold
and derive the PR curve. Given a signature distance threshold, we considered as “true positives” the
positive pairs whose distance was below or equal to the threshold; similarly, “false positives” were made
by the negatives with distance below or equal to the threshold. Therefore, for each distance threshold t
we could compute the Precision and Recall, defined as follows:

Precision(t) =
TP(t)

TP(t) + FP(t)
, Recall(t) =

TP(t)

TP(t) + FN(t)
,

where FN(t), TP(t), and FP(t) indicate the number of false negatives, true positives and false positives
for t, respectively. Plotting Recall on the x-axis and Precision on the y-axis, a point in the PR space
is derived for a given t. Varying t among the values of our distance distributions, we produced the PR
curve for the associated signature. We used the PR curve because it can clearly show if a signature ρα

is always better than signature ρβ , namely if the PR curve of ρα is always above the one of ρβ . PR
curve was preferred to Receiver Operating Characteristic curve because it is more informative when data
are highly skewed with respect to negatives/positives abundances [49]. This property is relevant in our
case, since in a generic metagenomic dataset the sets of sequence pairs corresponding to different levels of
taxonomic diversity can have different sizes; for instance, it might happen that pairs belonging to related
genomes, i.e. the positives, would be much fewer than pairs of distantly related ones. As an index of
signature quality, we used the Area Under the PR Curve (AUPR) [49].

PR curves were derived from the histograms of distance frequencies previously obtained, simulating
the signature performances on three different community structures. The community structures are given
by the topology of the taxonomic tree of the community members. The first community structure, called
complex, is a binary taxonomic tree: the taxa of each rank have two descent taxa, and each species has
two distinct strains in the community. As shown in Supplementary Material (Section 2.2), with this
structure the number of sequence pairs with taxonomic distance at a given rank increases exponentially
with rank highness. We decided to study such a complex structure because it is known that binning
methods have problems with communities made by many species. The second community structure,
called medium, is made by a total of 11 strains distributed among 7 species (Supplementary Figure 1); 6
of these species belong to the same phylum. In this structure, there are no sequence pairs with taxonomic
distance at rank Class and Superkingdom, because no species pair has lowest common ancestor at these
ranks. The third community structure, called simple, is made by a species with 3 strains and by other
3 species with one strain each (Supplementary Figure 2). These 4 species belong to 3 phyla of the
same superkingdom. In this structure, the sequence pairs are present only for taxonomic distance at
intra-genome level and at ranks Class and Superkindom. The detailed description of these structures is
available in the Supplementary Material. To analyze the effectiveness of a signature on a given community
structure, the histograms of distance frequencies for the different ranks were rescaled: this was done to
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take into account that, for a given structure, the numbers of sequence pairs corresponding to different
levels of taxonomic diversity of the source genomes respect a certain distribution. Details about the
rescaling are provided in the Supplementary Material (Section 2.1).

For a given representation level and community structure, two histograms of distance frequencies were
derived from the rescaled histograms; these two histograms represented the distances for the positive and
the negative sequence pairs, respectively. For intra-genome representation level, the rescaled histogram
related to intra-genome distances gave us the distance frequencies for the positive sequence pairs, the
ones sampled from the same genome. The remaining rescaled histograms were added bin by bin, giving
us the distance frequencies for the negative sequence pairs. For representation level corresponding to rank
r, the rescaled histograms related to taxonomic distance at rank r or lower were added bin by bin, giving
us the distance frequencies for the positive sequence pairs, i.e., the ones such that the lowest common
ancestor of the taxa of their source genomes was at rank r or lower. The distance frequencies for the
negatives were obtained in an analogous way, using the remaining rescaled histograms.

For each signature, the PR curve was derived from the histograms of positive and negative signature
distances, respectively; the histograms shared the same bins. The PR curve was produced varying the
threshold t among the edges of the histograms. Given a histogram, the number of sequence pairs whose
distances were lower or equal than t was computed adding the histogram values for bins whose edges
were lower or equal than t. Similarly, the number of sequence pairs whose distances were higher than t
was computed using the histogram bins higher than t. Therefore, from the histograms we could compute
the number of positives, true positives and false positives and hence the PR curve.

3 Results and Discussion

3.1 Theoretical analysis on the effect of GCSPR on signatures

We analyze and compare theoretically the statistical distributions of seven signatures; in particular, we
study the signature dispersion among sequences of the same species (that should be as low as possible)
and the dispersion of its expected values among different species (that should be as high as possible). The
seven signatures under examination in this section are: four strand-independent signatures, namely the
standard signature ρT, maximal ρmax and minimal ρmin complementary signatures, combination signature
(ρmax, ρmin, ρP); two GCSPR-based signatures, namely symmetrized signature ρS and operation signature
ρO; and asymmetry signature ρA, capturing the deviation from GCSPR.

We model signatures’ features of sequences as random variables. By analyzing the statistical dispersion
of random variables corresponding to signature feature, we can assess theoretically the intra-species
dispersion of signatures: a lower dispersion would correspond to better results, because it means that
the signature assumes similar values for sequences sampled from the same species. We also analyze the
inter-species discrimination capacity of signatures by looking at their distributions of per-species expected
values: in this case, a higher dispersion indicates a better performance of the signature, because overall
the signature values for different species will be more distant between each other.

Let Vi be the random variable corresponding to the total occurrence of k-mer wi in a sequence
randomly sampled from a given strand of a given organism, for i = 1, . . . , 4k. Consistently with litera-
ture [26], we assume that V1, . . . , Vi, . . . , V4k follow a multinomial distribution with success probabilities
g1, . . . , gi, . . . , g4k , respectively. It is sensible to take gi as the total occurrence of wi in the given strand
divided by the genome size of the given organism; in particular, the sum of the success probabilities must
be equal to one:

4k∑
i=1

gi = 1 (1)
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In particular, each Vi follows the binomial distribution B(gi, n), where n := l − k + 1 is the number of
subsequences of length k in a sequence of length l. For small values of k (e.g. k = 4) it is sensible to
assume that all the gi are strictly positive (gi > 0) because each k-mer will occur multiple times in the
genome.

We now focus our attention on the random variable Xi := Vi/n, that is the relative frequency of k-mer
wi in sequences sampled from a given strand of a given organism. It is plain to see that Xi corresponds to
the i-th feature of standard signature ρTi (s). By analyzing the statistical dispersion of Xi, we can assess
whether the feature of ρT corresponding to wi tends to assume the same values for all the sequences
sampled from the same strand of the same organism. We denote by XRC

i the variable corresponding to
the relative frequency of the reverse complement wRCi .

GCSPR indirectly explains why standard signature ρT is effective on metagenomics data despite being
strand-dependent; it also allows us to study ρT for sequences sampled from different strands. As recently
stressed, GCSPR implies that inverse k-mers have approximately the same total count in a genome [31]
and therefore we can assume that the global frequencies of wi and wRCi are equal:

gRCi = gi. (2)

Let s and z be two sequences sampled from the opposite strands of the same genome. To determine
the similarity between the two sequences, ρTi (s) actually should not be compared to ρTi (z) because the
latter contains the relative frequency in z of the reverse complement of wi in the strand of s, namely
wRCi . However, equation (2) implies that Xi and XRC

i are identically distributed, and hence the relative
frequencies of wi and wRCi in sequences of the same genome follow the same probability distribution,
irrespectively of the source strand (see Supplementary Material Section 1). Therefore it is sensible to
compare ρTi (s) and ρTi (z); in particular the two paired features have identical mean and variance:

E[Xi] = E[XRC
i ] = gi, (3)

V ar[Xi] = V ar[XRC
i ] =

gi(1− gi)
n

. (4)

By assuming that word frequency gi is approximately the same in all the organisms of the same species,
we can extend our theoretical analysis of ρT to all the sequences sampled from the same species. For
standard signature, as for most of the signatures we analyze, an increase in sequence length l leads to
lower variance; this is sensible for Xi, because the longer the sequence, the narrower will be the difference
between local and global frequencies of k-mers. For the rest of the manuscript, we assume that the
indices of non-palindromic wi are ordered such that XRC

i = X120+i, i = 1, . . . , 120; the last 16 random
variables X241, . . . , X256 correspond to palindromic k-mers. Thanks to this ordering and to equation (2),
the constraint (1) can be rewritten as:

2
4k∑
i=1

wi 6=wRC
i

gi +
4k∑
i=1

wi=w
RC
i

gi = 2
120∑
i=1

gi +
256∑
i=241

gi = 1. (5)

The expected value of random variable Xi associated to non-palindromic k-mers therefore cannot be
higher than 1/2 .

As measures of intra-species dispersion of the i-th feature, we use the coefficient of variation (CV ),
defined as the ratio between the standard deviation and the mean of that feature for sequences sampled
from the same species. For standard signature ρT the coefficient of variation is as follows:

CV [Xi] = CV [XRC
i ] =

√
1− gi
ngi

=

√
1

n

(
1

gi
− 1

)
. (6)
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Signature with features having lower intra-species coefficient of variations have lower dispersion, and
therefore are better because they tend to assume similar values for sequences of the same species. To
compare the inter-species discrimination power of signatures, first of all we rescale the distribution of
the expected signature value to the same range [0, 1]: each feature is rescaled such that ρi(0) = 0 and
ρi(1/2) = 1. If two signatures have the same distribution of species expected values for the i-th feature,
then they have the same inter-species distinction power. Otherwise we look at the coefficient of variations
of the random variable corresponding to the expected value of the i-th feature for a given set of organisms;
in this case, the higher the coefficient of variation, the higher is the discrimination power.

3.1.1 Symmetrized signature has lower intra-species dispersion than standard signature

Symmetrized ρS and operation signature ρO, as all the signatures based on the sum of features of the
standard signature ρT, have smaller intra-organism coefficient of variation than ρT (Supplementary In-
formation Sections 1.1 and 1.4). That result is obtained by modelling the sum of features as a random
variable Ùj in the following way:

Ùj :=
∑
i∈Ij

Xi =
∑
i∈Ij

Vi/n, (7)

where I1, . . . , Ih are a partition of the index set {1, . . . , 4k}; for example, for ρS and ρO the set Ij
corresponds to the indices of words {wj , wRCj } and {wj , wRCj , wCj , w

R
j }, respectively. It is worth to

mention that the use of GCSPR was not required for this observation.
Nevertheless, summing features could reduce the inter-species discrimination efficacy of a signature:

sequences s1 and s2 sampled from different organisms could have similar values for Ùj despite having
distinct gi’s. For example, let us suppose that a signature has a feature given by the sum of the first two
features of ρT, and that X(s1) = (1/128, 1/64, . . . ) and X(s2) = (5/256, 1/256, . . . ). We have that the
inequality (X1(s1), X2(s1)) 6= (X1(s2), X2(s2)) holds but X1(s1) +X2(s1) = X1(s2) +X2(s2).

However, GCSPR gives symmetrized signature ρS the same inter-species discrimination power of the
standard signature ρT. Our analysis therefore indicates that signature outperforms standard signature
because it has a lower intra-species dispersion but the same inter-species discrimination power. To
illustrate that, by following equation (7) we model ρSi (s) as a random variable as follows:

ρSi (s) = Zi := Xi +XRC
i ;

as shown at the beginning of Section 3.1, GCSPR implies that Xi and XRC
i are identically distributed

and have mean and variance as in equations (3) and (4). Therefore Zi has the following mean, variance,
and coefficient of variation (see Supplementary Material Section 1.1):

E[Zi] = 2gi, V ar[Zi] =
2gi(1− 2gi)

n
,

CV [Zi] =

√
1

n

(
1

2gi
− 1

)
. (8)

We compare the inter-species discrimination capacities of symmetrized and standard signatures by looking
at their distributions of per-species expected values. For the 240 non-palindromic k-mers, symmetrized
signature has 120 features because it combines the values of Xi and XRC

i . Therefore, we compare the
distributions of the expected values of Zi with the distribution of the average expected values of Xi and
XRC
i . By the definition of Zi, we have that the expectation of Zi is twice the average expectation of Xi

and XRC
i : 2(E[Xi] + E[XRC

i ])/2 = E[Xi +XRC
i ] = E[Zi]. Since Zi takes values between zero and one,

Xi +XRC
i is the rescaling of (Xi +XRC

i )/2 on that range and has the same expectation of Zi. Since the
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expected values are identical for the same species, the distributions of their expected values per-species
are also identical.

Inter-species distinction reduction could actually occur for operation signature, although it is partially
compensated by GCSPR. Let Ui := Xi +XRC

i +XC
i +XR

i be the random variable corresponding to ρOi ;
as observed at the beginning of Section 2.1, wRi is the inverse of wCi and therefore the GCSPR implies that
Ui follows a distribution with mean 2gi + 2gCi and variance 2(gi + gCi )[1− 2(gi + gCi )]/n (Supplementary
Material Sections 1.1). This means that the random variable corresponding to the sum of four k-mers
actually depends on only two of them; however, it is likely that summing the frequencies of wi and wRi
will have negative effects on the performance of the signature, because there is no symmetry rule for
those kind of pairs. Specifically, operation signature cannot distinguish organisms having different values
for k-mer frequencies of reverse words gi and gRCi but the same value for the sum gi + gCi .

3.1.2 Combination signature performs in between standard signature and symmetrized
signature

To simplify the analysis of combination signature, in this section we consider the normal approximation of
Xi. Specifically, we replace each binomial variable Vi with its normal approximation N (ngi, ngi(1− gi)).
Consequently, even the variable Xi follows a normal distribution because it is now the product of a
constant term 1/n and a Gaussian variable; its mean is gi and its variance is gi(1− gi)/n:

ρTi (s) = Xi ∼ N (gi, gi(1− gi)/n).

Let XRC
i ∼ N (gRCi , gRCi (1− gRCi )/n) be the frequency of wRCi in sequence s. Given the normal distribu-

tion of ρT features, it follows that maximal ρmax
i and minimal ρmin

i features follow the distribution of the
maximum and the minimum of the pair of Gaussian variables {Xi, X

RC
i }, respectively. We can therefore

define the following random variables corresponding to the signature values:

ρmax
i (s) = Ŷi := max(Xi, X

RC
i ),

ρmin
i (s) = Ỹi := min(Xi, X

RC
i ).

Formulas for first and second moment of maximum and minimum of pairs of Gaussian variable are
known [50] and from those we can express mean and variance of Ŷi and Ỹi (see Supplementary Material
1.2). Since those maximal and minimal complementarity signatures are strand-independent, random
variables Ŷ and Ỹ and their moments are also strand-independent.

The GCSPR allows us to show that maximal and minimal signature features, and thus the features of
combination signature, have lower variance than the standard signatures. Equation (2) indeed drastically
simplifies the first and second moment of Ŷ and Ỹ and hence ρmax and ρmin. By replacing gRCi with gi
we obtain (see Supplementary Material 1.2):

E[Ŷi] = gi +

√
gi
nπ

, E[Ỹi] = gi −
√

gi
nπ

, (9)

V ar[Ŷi] = V ar[Ỹi] = V ar[Xi]−
gi
nπ

=
gi
n

(
1− 1

π
− gi

)
(10)

CV [Ŷi] =

√
gi
n

(
1− 1

π − gi
)

gi +
√

gi
nπ

=

√
π − πgi − 1
√
ngiπ + 1

(11)

CV [Ỹi] =

√
π − πgi − 1
√
ngiπ − 1

. (12)

Since gi/nπ is strictly positive, it is plain to see from (10) that maximal and minimal signature features
have lower variance than the standard signature features for all the non-palindromic k-mers - for the
palindromic there is no difference.
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The combination signature has lower intra-species dispersion than the standard signature but higher
than the symmetryzed one (Figure 1). For the 16 palindromic k-mers, standard, symmetrized, and
combination signatures are identical. Since combination signature for the 240 non-palindromic k-mers
is a combination of maximal and minimal complementarity signature, the coefficients of variation of
its features do not have the same formula. Therefore, we study the average value of CV [Xi]/CV [Ŷi]
and CV [Xi]/CV [Ỹi]. As shown in Section 1.4 of Supplementary Material, this is higher than one, and
therefore combination signature has a lower dispersion than standard signature. On the other hand, in
the same section we show that combination signature has higher dispersion than symmetrized signature
for the non-palindromic k-mers, as shown in Figure 1:

1 <
1

2

(
CV [Xi]

CV [Ŷi]
+
CV [Xi]

CV [Ỹi]

)
<
CV [Xi]

CV [Zi]
.

Combination signature has the same inter-species discrimination power of the standard signature. For
the 240 non-palindromic k-mers, combination signature has 120 pairs of features, namely Ŷi and Ỹi, and
each of these pairs is a function of the values of Xi and XRC

i . Therefore, we compare the distributions of

the average expected values of Ŷi and Ỹi with the distribution of the average expected values of Xi and
XRC
i . Thanks to equations (9) we have the following equality: E[Ŷi] + E[Ỹi] = 2gi = E[Xi] + E[XRC

i ].

Hence the distributions of (E[Ŷi]+E[Ỹi])/2 and (E[Xi]+E[XRC
i ])/2 are identical, and the two signatures

have the same inter-species discrimination power. Since the expected values are identical, the distributions
of their expected values are also identical.

3.1.3 Divergence from GCSPR carries a phylogenetic signal

The expected values of asymmetry signature ρA are functions of the global word frequencies, and therefore
ρA carries a phylogenetic signal. Indeed the i-feature of asymmetry signature is defined as the absolute
difference between the frequencies of wi and wRCi ; we show that the random variable Ai corresponding
to the value of ρAi among sequences sampled from the given organism can be rewritten as a function of

Ŷ and Ỹ :
Ai := |Xi −XRC

i | = max(Xi, X
RC
i )−min(Xi, X

RC
i ) = Ŷi − Ỹi.

The mean, the variance, and the coefficient of variation for this signatures are (see Supplementary Material
section 1.3):

E[Ai] = 2
gi
nπ

,

V ar[Ai] =
2gi
n

(
1− 2

π

)
,

CV [Ai] =

√
π

2
− 1. (13)

in contrast with all the other signatures studied, its intra-species dispersion does not decrease with read
length and is actually constant (13).

The intra-species dispersion seems mostly worse than the symmetrized signature, and probably also
of the plain signature. Indeed, the intra-species coefficient of variation strictly decreases with k-mer
frequencies; it was lower than standard and symmetrized signatures for frequencies above 0.00351 and
0.00175, respectively (Figure 1).

We conduct an analysis of the intra-species coefficient of variation. Let Fi be the random variable
corresponding to the expected values of k-mer wi frequency for an organism belonging to a given set
of organisms. The coefficient of dispersion of Fi measures the intra-species dispersion of the standard
signature: the higher this coefficient, the more spread are the expected value for feature i of the standard
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Figure 1. Ratio between coefficient of variations of some studied signatures and the
coefficient of variation of the standard signature ρT for sequences of 500bp. Relevant ratio
are displayed for symmetrized signature, combination signature, and asymmetry signature

signature. Therefore, a higher coefficient leads to better discrimination between the given organisms.
Our analysis shows that asymmetry signature can outperform the standard signature intra-species dis-
crimination power if and only if CV [

√
Fi] >

√
3 (see Supplementary Section 1.5).

3.1.4 GCSPR-based signatures have better error-tolerance

An advantage of symmetrized signature over combination signature is in its tolerance to local deviation
from GCSPR. In particular, symmetric deviations from k-mers frequence parity will have no effect on
symmetrized signature. Indeed, it is known that Chargaff’s second parity rule, stating that complemen-
tary nucleotides have the same frequency along a strand, may not hold for sequences shorter than a
species-dependent “critical fragment length”; this length is comprised between 6 kbp and 50 kbp [51].
The parity rule seems the result of alternating regions with different signs of deviation from parity. Con-
sequently, it is reasonable to assume that even the version of the rule generalized for k-mers (the GCSPR)
will not hold for some of the reads, whose length is for sure lower than the GCSPR-equivalent of the
critical fragment length. For sequences of those regions, Xi will still follow a binomial distribution but
with a success rate ǵi = gi + δi, with δi ∈ (−gi, 1/2− gi) dependent on the sampled region and such that∑
i δi = 0. Let us focus on a special case of this deviation from parity here called symmetric deviation,

where complementary k-mers frequency deviate from parity but with opposite deviation of the same size,
i.e. δRCi = −δi. Symmetrized and operation signature will be uneffected by this deviation because the
sum of the success rates of complementary k-mers will be the same: ǵi + ǵRCi = gi + δi + gi − δi = 2gi
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By summing frequencies of different tetranucleotides, the GCSPR-based signatures are more tolerant
than the standard signature with respect to base-calling errors. It is plain to see that symmetrized signa-
ture ρS has some degree of tolerance to base-calling errors: if base-calling errors replace a tetranucleotide
w with its inverse wRC , then the sum of their frequencies will be preserved. Moreover, if a base-calling
error replace tetranucleotide wi with wj 6= wRCi , then the features of ρS corresponding to them could
still be preserved not only if the opposite error occurs (wj replaced by wi) but also if any of wj and
wRCj is replaced either by wi or wRCi . Those two mechanisms of error-tolerance of ρS are strengthened

in ρO. Indeed, feature associated with tetranucleotides w, wC , wR, wRC will be preserved not only if a
base-calling error replace one of those with its inverse, but also if any of the them is replaced by one of
the other three. Moreover, if a base-calling error replace tetranucleotide wi with wj 6∈ {wCi , wRi , wRCi },
then the features of ρO corresponding to them could still be preserved if any of wj , w

C
j , wRj , and wRCj

is replaced by any of wi, w
C
i , wRi , or wRCi (hence there are 16 possible compensating errors instead of 4

and 1 of ρS and ρT, respectively).

3.2 Experimental results

Signatures’ experimental performances were assessed through Precision Recall curves, using the Area
Under the Precision Recall curves (AUPRs). The AUPRs obtained by a signature for different levels of
representation were compared with the ones of an artificial signature that cannot distinguish between
the different taxonomic ranks, because it has the same distance distribution for each rank. We show in
the Supplementary Material that the AUPR of this artificial signature is equal to the ratio of positives
in the data. If the AUPR of a signature is higher than the one of this artificial signature, then it can be
considerate efficacious; the higher the AUPR, the better the signature.

Experimental performances of symmetrized, combination, and standard signatures were consistent
with the theoretical analysis. Indeed, symmetrized signature ρS outperformed combination signature
(ρmax, ρmin, ρP), which in its turn outperformed standard signature ρT; these relations held for each rep-
resentation level and community structure. More in general, the best experimental results were achieved
by strand-independent signatures summing or reordering most of the tetranucleotides frequencies, like
ρS, (ρmax, ρmin, ρP), ρmin + ρmax, and (ρmax, ρmin) (Figures 2, 3, 4, and Supplementary Figure 4).

The novel operation signature ρO was the signature with the lowest number of features among the ones
superior or comparable to the standard signature ρT (ρT and ρO had 256 and 72 features, respectively).
Theoretical analysis of ρO proved that it has the lowest intra-species dispersion among the signatures we
study, but its inter-species discrimination power could be lower than the standard signature. Experiments
indicate that its intra-species dispersion compensates its reduced inter-species discrimination power; this
excellent intra-species dispersion allows operation signature to perform better than the standard sig-
nature. In agreement with theoretical analysis, experiments showed that operation signature gives the
best performances when inter-species discrimination is easier. Adding frequencies of non-inverse k-mers
probably leads to some information loss; however, the negative effect of this loss will be reduced when
the microbial community is composed by few species. In this case, the likelihood of having organisms
having different values for k-mer frequencies of reverse words gi and gRCi but the same value for the sum
gi + gCi is reduced. Indeed, ρO excelled ρT for community structures of simple and medium complexity
(Figure 3 and Supplementary Figure 4), while it had similar results for complex community structure
(Figures 2 and 4). It is likely that ρO achieved good performances because it was inspired by a genomic
rule [34], but we cannot exclude that similar results could be obtained by comparable reduction of ρS

(i.e. by summing frequencies of other sets of tetranucleotide frequencies that still lead to 72 features).
In accordance with our theoretical analysis, signatures capturing the deviation from GCSPR, like

asymmetry signature ρA, carried a phylogenetic signal; however, this signal was too weak to lead to
appreciable performances. Figure 5 shows that the distance associated to signature ρA tends to assume
slightly higher values for sequences coming from distantly related species; indeed, the signature distance
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Representation level
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Operation - ρO

Frequencies - ρT

Minimal Complementary - ρmin

Symmetrized Rank - ρRank

Palindromic - ρP

Ratio - ρRatio1

Figure 2. AUPRs obtained by the best signatures on complex community structure, for
1000 bp sequences. Dashed line is made by the AUPRs of a signature whose distance distributions
are identical for each rank; the AUPRs of this signature do not depend on distribution shape.
Signatures’ names in the legend are sorted with respect to the sum of their AUPRs for the different
levels of taxonomic distance.
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Representation level
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Minimal Complementary - ρmin

Symmetrized Rank - ρRank

Palindromic - ρP

Ratio - ρRatio1

Figure 3. AUPRs obtained by the best signatures on simple-complexity community
structure, for 500 bp sequences. Dashed line is made by the AUPRs of a signature whose distance
distributions are identical for each rank; the AUPRs of this signature do not depend on distribution
shape. Signatures’ names in the legend are sorted with respect to the sum of their AUPRs for the
different levels of taxonomic distance.
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Intra-genome Species Genus Family Order Class Phylum Superkingdom
Representation level
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Figure 4. AUPRs obtained by the best signatures on complex community structure, for
150 bp sequences. Dashed line is made by the AUPRs of a signature whose distance distributions are
identical for each rank; the AUPRs of this signature do not depend on distribution shape. Signatures’
names in the legend are sorted with respect to the sum of their AUPRs for the different levels of
taxonomic distance.
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distributions associated to higher levels of taxonomic distance are a bit shifted to higher values. Despite
carrying a phylogenetic signal, signatures capturing the deviation from GCSPR were the worst in almost
any experiment; ratio signature, which was the best deviation-capturing signature, had actually the worst
performance among the signatures displayed in Figures 2 and 3. Our theoretical analysis of ρA suggest
that this is due to high intra-species signature dispersion.
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Figure 5. Normalized empirical distributions of Asymmetry Signature distances, for
different levels of taxonomic diversity.

Signature performances increased with read length, as predicted by the theory. For instance, Figure
6 shows that longer sequences led to higher AUPRs for ρS; the same happened for the other signatures.
Theoretical analysis of symmetrized and standard signatures indicates that this is due to the reduction
of intra-species dispersion, that tends to zero as read length l (and thus n = l − 4 + 1) increases –
see Equations (8) and (6). The same observation holds for compositional, maximal complementary and
minimal complementary signatures (11)-(12). This phenomenon is sensible also because the longer a
sequences is, the more information it contains; hence, the compositional properties that characterize the
source genomes are more recognizable. The trend was weaker for signatures designed to capture the
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deviation from GCSPR. In particular, their performances for complex community structure were not
affected by sequence length (for ρRatio1, see Supplementary Figure 3). This could be due to the fact that
their intra-species dispersion could be independent from read length; this is the case of the asymmetry
signature (13) as our theoretical analysis showed.

Intra-genome Species Genus Family Order Phylum
Representation level

0.0

0.2

0.4

0.6

0.8

1.0

AU
PR

Signature: Symmetrized - ρS , Mixed Community

150 bp
500 bp
1000 bp

Figure 6. AUPRs obtained by Symmetrized Signature for all the sequence lengths. AUPRs
were computed on medium-complexity community structure.

Reducing symmetrized and combination signatures to the features corresponding to the non-palindromic
tetranucleotides worsened their performances, but they still outperformed the standard signature (Figure
7). Indeed, as mentioned before, signatures ρmin + ρmax and (ρmax, ρmin) outperformed the standard
signature; moreover, they coincide with the features of ρS and (ρmax, ρmin, ρP) corresponding to the
non-palindromic tetranucleotides, respectively. Our theoretical analysis indicates that symmetrized and
combination signatures outperform the standard signature thanks to their reduced intra-species disper-
sion; experimental results thus indicate that this factor is so strong that those two signatures outperform
the standard signature even if they loose those 16 features of ρS. Nevertheless, it might be possible that
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good performances could still be obtained by removing features corresponding to a different and perhaps
larger set of k-mers.

Intra-genome Species Genus Family Order Phylum
Representation level
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Sequences length: 500 bp, Mixed Community

Symmetrized reduced - ρmin +ρmax

Combination (ρmin ,ρmax )

Maximal Complementary - ρmax

Frequencies - ρT

Minimal Complementary - ρmin

Figure 7. AUPRs obtained by a few asymmetry-related signatures on medium-complexity
community structure, for 500 bp sequences. Dashed line is made by the AUPRs of a signature
whose distance distributions are identical for each rank; the AUPRs of this signature do not depend on
distribution shape. Signatures’ names in the legend are sorted with respect to the sum of their AUPRs
for the different levels of taxonomic distance.

4 Conclusions

In this work, we conducted a theoretical analysis of new and existing genomic signatures for metagenomes;
we analyzed their intra-species dispersion and their inter-species discrimination power. Furthermore,
signatures’ performances were evaluated experimentally; the signatures were tested with respect to their
capability to preserve the taxonomic relations of the source organisms of pairs of sequences. Signature
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distances were evaluated for sequences of 1,000 bp, 500 bp, and 150 bp randomly sampled from 1,284
prokaryotic genomes.

In metagenomic literature, symmetrized signature is erroneously believed to outperform the standard
tetranucleotide signature simply because it is strand-independent. Our theoretical analysis proved that
even the standard signature is actually not affected by the sampling strand; this is due to the GC-
SPR, which implies that frequencies in equally long reads of inverse k-mers follow the same probability
distribution.

Moreover, our theoretical analysis showed that the success of symmetrized signature is due to its direct
exploitation of GCSPR. By summing frequencies of inverse k-mers, the inter-species discrimination power
is unmodified: there is no information loss because the frequencies of the combined k-mers follow the same
probability distribution. Moreover, this summation reduces the intra-species dispersion, thus leading to
performance improvement. Experimental results confirmed that symmetrized signature had the best
performance among all the tested signatures; the dimension of its feature space is about half of the one
of the standard signature, making the data also more tractable.

On the contrary to what is believed, summing frequencies of inverse k-mers is not the only effective
way to produce an effective strand-independent signature from the standard signature. The novel com-
bination signature achieves strand-independence through a biologically-sensible reordering of standard
signature’s features. As predicted by the theory, experimental performances of combination signature
were a bit below symmetrized signature but still higher than standard signature. Combination signature
thus seems the ideal choice if oligonucleotide frequencies must be kept separated; in general, it could be
used by alignment-free sequence comparison methods when source genomes do not respect GCSPR or
distinguishing inverse oligonucleotides matters. In particular, it can be advantageous for tasks on metage-
nomic data that are not strictly related to taxonomy, like the identification of cis-regulatory modules [21].
It can still be helpful for taxonomic analysis of metagenomes when they contain sequences sampled from
genomes not respecting GCSPR, like viral genomes. Experimental results also indicate that some features
of symmetrized and combination signatures can be removed without too much decrease of performance.

The performances of the novel operation signature indicates that other genomic symmetries than
GCSPR can be successfully exploited for designing low-dimensional signatures. Indeed, despite having
lower performance than the symmetrized signature, it has about half of its features and was superior to the
standard signature for communities with not-very-complex taxonomic structures (and at least comparable
for very complex ones). Theoretical analysis proved that it has the lowest intra-species dispersion among
the studied signatures; however, its inter-species discrimination power could be lower of the one of the
standard signature. Therefore, operation signature can be particularly beneficial for the analysis of large
metagenomes sampled from microbial communities whose taxonomic structure is not extremely complex;
indeed, dealing with less features reduces the computational cost of data analysis [36].

Deviation from GCSPR seems related to the taxonomic classification of the species, but not strongly:
signatures that are exclusively based on these asymmetries are not good enough to achieve the best
performances. Theoretical analysis of asymmetry signature suggests that performances are low due to a
high intra-species signature dispersion.

As predicted by the theoretical analysis and confirmed by the experiments, signature performances
increase with sequence length. It is likely that no signature can be effective on very short sequences, due
to the little information contained. Some works [16,25,26] dealt successfully with this issue by adopting
the following approach: short sequences were grouped, and then the signature was computed on this set as
if it were one long sequence. However, this procedure might be risky for metagenomes with high diversity
or low species coverage [52]. An alternative method is to compute the signatures on reads assembled into
contigs [18] but unfortunately the assembly process of a metagenome is computationally very intensive.

Our approach provides a unified framework to compare the performances of signatures by means
of binomially and normally distributed random variables. This framework can be used to guide the
development of novel signatures.
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