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1 Abstract— To study the evolution of several quantitative traits, the classical phylogenetic
15 comparative framework consists of a multivariate random process running along the

16 branches of a phylogenetic tree. The Ornstein-Uhlenbeck (OU) process is sometimes

v preferred to the simple Brownian Motion (BM) as it models stabilizing selection toward an
18 optimum. The optimum for each trait is likely to be changing over the long periods of time

o spanned by large modern phylogenies. Our goal is to automatically detect the position of

-

2 these shifts on a phylogenetic tree, while accounting for correlations between traits, which
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might exist because of structural or evolutionary constraints. We show that, in the
presence shifts, phylogenetic Principal Component Analysis (pPCA) fails to decorrelate
traits efficiently, so that any method aiming at finding shift needs to deal with correlation
simultaneously. We introduce here a simplification of the full multivariate OU model,
named scalar OU (scOU), which allows for noncausal correlations and is still
computationally tractable. We extend the equivalence between the OU and a BM on a
re-scaled tree to our multivariate framework. We describe an Expectation Maximization
algorithm that allows for a maximum likelihood estimation of the shift positions,
associated with a new model selection criterion, accounting for the identifiability issues for
the shift localization on the tree. The method, freely available as an R-package
(PhylogeneticEM) is fast, and can deal with missing values. We demonstrate its efficiency
and accuracy compared to another state-of-the-art method (¢lou) on a wide range of
simulated scenarios, and use this new framework to re-analyze recently gathered datasets
on New World Monkeys and Anolis lizards.

(Keywords: Ornstein-Uhlenbeck, Change-point detection, Adaptive evolution, Phylogeny,

Model selection, PhylogeneticEM)

Motivation

A major goal of comparative and evolutionary biology is to decipher the past

evolutionary mechanisms that shaped the present day diversity. Taking advantage of the
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s increasing amount of molecular data made available by powerful sequencing techniques,

22 sophisticated mathematical models have made it possible to infer reliable phylogenetic

i trees for ever growing groups of taxa (see e.g. Meredith et al.|2011}; \Jetz et al.|[2012]).

s Models of phenotypic evolution for such large families need to cope with the heterogeneity
s of observed traits across the species tree. One source of heterogeneity is the mechanism of
s “evolution by jumps” as hypothesized by Simpson, (1944)). It states that there exists an

s adaptive landscape shaping the evolution of functional traits, and that this landscape

s might shift, sometimes in a dramatic fashion, in response to environmental changes such as
s migration, or colonization of a new ecological niche. Such shifts, like the one observed in

so the brain shape and size of New World Monkeys in association with dietary and

si locomotion changes (Aristide et al. 2015, [2016), need to be explicitly accounted for in

s2 models of phenotypic evolution.

53 To detect such adaptive shifts, we must cope with two constraints: species do not
s« evolve independently (Felsenstein|/1985)) and adaptive evolution is an intrinsically

ss multivariate phenomenon. The first constraint arises from the shared evolutionary history
ss of species, usually represented as a phylogenetic tree. It means that traits observed on

s7 closely related taxa are on average more similar than traits observed on distantly related
ss  species. The second constraint results from natural selection acting on many traits at once.
so Functional traits are indeed often interdependent, either because they are regulated by the
0 same portions of the genetic architecture or because they are functionally constrained (e.g.
s limb bones lengths in Greater Antillean Anolis lizards Mahler et al.| (2010))).

62 This work aims to develop a likelihood-based method to detect rapid adaptive

&3 events, referred to as shifts, using a time calibrated phylogenetic tree and potentially

& incomplete observations of a multivariate functional trait at the tips of that tree. The

s shifts can be used to cluster together species sharing a common adaptive history.
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6 State of the Art

67 Phylogenetic comparative methods (PCM) are the de facto tools for studying

s¢ phenotypic evolution. Most of them can be summarized as stochastic processes on a tree.
s Specifically, given a rooted phylogeny, the traits evolve according to a stochastic process on
70 each branch of the tree. At each speciation event, one independent copy with the same

7 initial conditions is created for each daughter species. A common stochastic process in this
72 setting is the Brownian Motion (BM, [Felsenstein|[1985). It is well suited to model the

7z random drift of a quantitative, neutral and polygenic trait (see e.g. [Felsenstein| 2004, chap.
7 24). Unfortunately, the BM has no stationary distribution and cannot adequately model

s adaptation to a specific optimum (Hansen and Orzack|2005)). The Ornstein-Uhlenbeck

76 (OU) process is therefore preferred to the BM in the context of adaptive evolution (Hansen
7 [1997; [Hansen et al.[2008). Note that, as pointed out by Hansen et al.| (2008) and (Cooper
7 et al. (2016), this model is distinct from the process theoretically derived by [Lande| (1976)
7o for stabilizing selection toward an optimum on an adaptive landscape at a

g0 micro-evolutionary timescale, and is better seen as a heuristic for the macro-evolution of

s the “secondary optima” themselves in a Simpsonian interpretation of evolution (Hansen

22 let al.2008). Recently, Levy processes have also been used to capture Simpsonian evolution
s (Landis et al.[2013; Duchen et al.|[2017).

84 Extensions to multivariate traits have been proposed for both BM (Felsenstein

s [1985) and OU processes (Bartoszek et al.[2012). |Cybis et al. (2015)) considered even more
s complex models, with a mix of both quantitative and discrete characters modeled with an
& underlying multivariate BM and a threshold model (Felsenstein 2005, [2012) for drawing

ss discrete characters from the underlying continuous BM.

89 The work on adaptive shifts also enjoyed a growing interest in the last decade. In

o their seminal work, Butler and King| (2004)) considered a univariate trait with known shift

a1 locations on the tree and estimated shift amplitudes in the trait optimal value using a
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2 maximum-likelihood framework. Beaulieu et al.|(2012) extended the work by estimating
o3 shift amplitudes not only in the optimal value but also in the evolutionary rate. The focus
s then moved to estimating the number and locations of shifts. Eastman et al.| (2011} [2013))
o detected shifts, respectively, in the evolutionary rate or the trait expectations, for traits

s evolving as BM, in a Bayesian setting using reversible jump Markov Chain Monte Carlo

o (rjMCMC). Ingram and Mahler| (2013)); Uyeda and Harmon (2014)); Bastide et al.  (2016))
s detected shifts in the optimal value of a trait evolving as an OU. |Uyeda and Harmon

o (2014) and [Bastide et al. (2016) detect all shifts for a given number of shifts and use either
w0 rJMCMC or penalized likelihood to select the number of shifts. By contrast, Ingram and
1 Mabhler| (2013]) uses a stepwise procedure, based on AIC, to detect shifts sequentially,

12 stopping when adding a shift does not improve the criteria anymore.

103 Extensions from univariate to multivariate shifts are more recent. It should be

s noted that all methods assume that shifts affect all traits simultaneously. Given known

s shift locations and a multivariate OU process, Bartoszek et al. (2012) was the first to

s develop a likelihood-based method (package mvSLOUCH) to estimate both matrices of

7 multivariate evolutionary rates and selection strengths. (Clavel et al.| (2015) soon followed
s with mvmorph, a comprehensive package covering a wide range of multivariate processes.
w0 Detection of shifts in multivariate traits is more involved and both Ingram and Mahler

o (2013) and [Khabbazian et al| (2016]) make the simplifying assumption that all traits are
i independent, conditional on their shared shifts. Ingram and Mahler| (2013]) then proceed
12 with the same stepwise procedure as in the univariate case whereas Khabbazian et al.

us (2016)) uses a lasso-regression to detect the shifts and a phylogenetic BIC (pBIC) criterion

14 to select the number of shifts.

15 Scope of the Article

116 In this work, we present a new likelihood-based method to detect evolutionary shifts
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w7 in multivariate OU models. We make the simplifying assumptions that all traits have the

1

o

s same selection strength but, unlike in |Khabbazian et al. (2016) and Ingram and Mahler

e (2013)), traits can be correlated. Our contribution is multifaceted. We show that the scalar
120 assumption that we make (see Section and the independence assumption share a
121 similar feature in their structure that make the shift detection problem tractable. Building
122 upon a formal analysis made in the univariate case (Bastide et al[2016), we show that the
123 problem suffers from identifiability issues as two or more distinct shift configurations may
124 be indistinguishable. We propose a latent variable model combined with an OU to BM

s reparametrization trick to estimate the unknown number of shifts and their locations. Our
12s  method is fast and can handle missing data. It also proved accurate in a large scale

127 simulation study and was able to find back known shift locations in re-analysis of public
s datasets. Finally, we show that the standard practice of decorrelating traits using

120 phylogenetic principal component analysis (pPCA) before using a method designed for

1o independent traits can be misleading in the presence of shifts.

131 The article is organized as followed. We present the model and inference procedure

1

w

> jn Section [Model| the theoretical bias of pPCA in the presence of shifts in Section [pPCA |

153 [and Shiftg the simulation study in Section [Simulations Studies| the re-analysis of the New

15+ World Monkeys and Greater Antillean Anolis lizards datasets in Section and

s discuss the results and limitations of our method in Section [Discussionl

1

w

MODEL

137 Trait Evolution on a Tree

s Tree.— We consider a fixed and time-calibrated phylogenetic tree linking the present-day

139 species studied. The tree is assumed ultrametric with height A, but with possible
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1o polytomies. We denote by n the number of tips and by m the number of internal nodes,
11 such that N =n 4+ m is the total number of nodes. For a fully bifurcating tree, m =n — 1,

1w and N =2n — 1.

3 Traits— We note Y the matrix of size n x p of measured traits at the tips of the tree. For

s each tip ¢, the row-vector Y represents the p measured traits at tip i. Some of the data

s might be missing, as discussed later (see Section [Statistical Inference)).

us  Brownian Motion (BM).— The multivariate BM has p + p(p + 1)/2 parameters: p for the
17 ancestral mean value vector u, and p(p + 1)/2 for the drift rate (in the genetic sense)

us matrix R. The variance of a given trait grows linearly in time, and the covariance between
1o two traits k and [ at nodes ¢ and j is given by t;; Ry, where ¢;; is the time elapsed between
150 the root and the most recent common ancestor (MRCA) of i and j (see e.g. Felsenstein

151 2004, chap. 24). Using the vectorized version of matrix Y (where vec(Y) is the vector

152 obtained by “stacking” all the columns of Y), we get: Var[vec(Y)] = R ® C, where ® is

153 the Kronecker product, and C = [t;;]1<i j<n-

1sa  Ornstein-Uhlenbeck (OU).— The Ornstein-Uhlenbeck process has p? extra parameters in
155 the form of a selection strength matrix A. The traits evolve according to the stochastic

156 differential equation dX; = A(B — X;)dt + RdAW,, where W, stands for the standard

157 p-variate Brownian motion. The first part represents the attraction to a “primary

158 optimum” 3, with a dynamic controlled by A. This matrix is not necessarily symmetric in
159 general, but it must have positive eigenvalues for the traits to indeed be attracted to their
1o optima. This assumption also ensures the existence of a stationary state, with mean 8 and
11 variance I' (see Bartoszek et al.|[2012; |Clavel et al.[2015, for further details and general

162 expression of T').

163 Shifts.— We assume that some environmental changes affected the traits evolution in the
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s past. In the BM model, we take those changes into account by allowing the process to be
165 discontinuous, with shifts occurring in its mean value vector (as e.g. Eastman et al.[2013)).
166 This is reasonable if the adaptive response to a change in the environment is fast enough
17 compared to the evolutionary time scale. For the OU, we assume that environmental

168 changes result in a shift in the primary optimum 3 (as e.g. Butler and King2004)). The

169 process is hence continuous, and goes to a new optimum, with a dynamic controlled by A.
o In both cases, we make the standard assumptions that all traits shift at the same time (but
m with different magnitudes), that each shift occurs at the beginning of its branch, and that
12 all other parameters (A, R) of the process remain unchanged. We further assume that each
173 jump induces a specific optimum, which implies that there is no homoplasy for the

s optimum, that is, no convergent evolution.

175 Simplifying Assumptions

we Trait Independence Assumption.— The general OU as described above is computationally
77 hard to fit (Clavel et al.|2015), even when the shifts are fixed a priori. For automatic

s detection to be tractable in practice, several assumptions can be made. The two methods
irs that (to our knowledge) tackle this problem in the multivariate setting assume that all the
180 traits are independent, i.e. that matrices A and R are diagonal (Ingram and Mahler||2013;
e [Khabbazian et al.|[2016)). This is often justified by assuming that a priori preprocessing

182 with phylogenetic Principal Component Analysis (pPCA, Revell |2009) leads to

183 independent traits. However, pPCA assumes a no-shift BM evolution of the traits, and it
18« can introduce a bias in the downstream analysis conducted on the scores, as shown by

185 Uyeda et al.| (2015)). The choice of the number of PC axes to keep is also crucial, and can
16 qualitatively change the results obtained, leading to the detection of artificial shifts near

187 the root when not enough PC axes are kept for the analysis, as observed by [Khabbazian


https://doi.org/10.1101/146191
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/146191; this version posted June 5, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

s et al. (2016). Finally, we show theoretically (Section pPCA and Shifts) and numerically

10 (Section [Simulations Studies, last paragraph) that pPCA fails to decorrelate the data in

w0 the presence of shifts and may even hamper shift detection accuracy.

w1 Scalar OU (scOU).— We offer here an alternative to the independence assumption.

12 Computations are greatly simplified when matrices A and R commute. This happens when
13 both of these matrices are diagonal for example, or when R is unconstrained and A is

s scalar, i.e. of the form A = al,, where I, is the identity matrix. We call a process

105 satisfying the latter assumptions a scalar OU (scOU), as it behaves essentially as a

s univariate OU. In particular, its stationary variance is simply given by I' = R/(2«)

107 (analogous to the formula 4* = 02/(2a) in the univariate case, see e.g. [Hansen|[1997).

198 We define the scOU model as follows: at the root p, the traits are either drawn from
100 the stationary normal distribution with mean p and variance I' (X? ~ N (w, T')), or fixed
20 and equal to p. The initial optimum vector is By and the conditional distribution of trait

o X' at node i given trait XP*") at its parent node pa(i) is
. , , 1
X' | X0~ NV (eagiXpa(l) + (1 —e )3, 2—(1 — eazi)R> (1)
o

22 where 8; = Bpaq) + A is the optimal value of the process on the branch with length ¢;

203 going from pa(i) to ¢ and A is the N X p matrix of shifts on the branches of the tree: for
200 any node i and any trait [, Ay is 0 if there are no shift on the branch going from pa(i) to 1,
205 and the value of the shift on trait [ otherwise. At the root, we define 8, = By and, for each
oe trait I: Ay = e "y + (1 — e ") By, where h is the age of the root (or tree height).

207 The scOU model can also be expressed under a linear form. Let U be the N x N

20 Mmatrix where Uj; is 1 if node j is an ancestor of node 7 and 0 otherwise. Let T be the

200 1 X N matrix made of the n rows of U corresponding to tip taxa. For a given «, we further

20 define the diagonal N matrix W («) with diagonal term W;(a) = 1 — e~ %= for any
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a1 non-root node 7, where ap,(;) is the age of node pa(i), and W,,(a) = 1 for the root node p.

212 Then the joint distribution of the observed traits Y is normal
vee(Y) ~ N (vec(TW(a)A), R ® F(«)) (2)

23 where F(«) is the symmetric scaled correlation matrix between the n tips, with entries

ae Fy; = e~ if the root is drawn from the stationary distribution, and

%
as Fi; = %e*%‘dﬁ (1 — e~2%3) if the root is fixed, where d;; is the tree distance between nodes
26 ¢ and j. In the next section, this will allow us to rewrite scOU as a BM on a tree with
a7 rescaled branch lengths. This observation is at the core of our statistical inference strategy.
218 The scOU process allows us to handle the correlations that might exist between
210 traits, and spares us from doing a preliminary pPCA. This however comes at the cost of

20 assuming that all the traits evolve at the same rate toward their respective optima, with

21 the same selection strength a. See the for further analysis of these assumptions.

2 Identifiability Issues

223 Root State.— It can be easily checked that the parameters p and 3y at the root are not
24 jointly identifiable from observations at the tips of an ultrametric tree, only the

»s combination XA = e~y + (1 — e7") By is. See Ho and Ané| (2014) for a derivation in the
226 univariate case. Note that A corresponds to the first row of the shift matrix A. As we

27 cannot decide from the data, we assume by default By = u = A.

28 Shift Position.— The location of the shifts may not always be uniquely determined, as
2o several sets of locations (and magnitudes) may yield the same joint marginal distribution of
230 the traits at the tips. These identifiability issues have been carefully studied in Bastide

a1 et al.| (2016]) for the univariate case. Because we assume that all traits shift at the same
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22 time, the sets of equivalent shift locations are the same in the multivariate case as in the
233 Univariate case; only the number of parameters involved is different. So, the problem of

24 counting the total number of parsimonious, non-equivalent shift allocations remains the

235 same, as well as the problem of listing the allocations that are equivalent to a given one.

26 As a consequence, all the combinatorial results and algorithms used in |Bastide et al.| (2016))

27 are still valid here; only the model selection criterion needs be adapted (see Section

28 [Statistical Inferencel).

239 Re-scaling of the Tree

20 Equivalency scOU / rBM.— As recalled above, the inference of OU models raises specific
a1 issues, mostly because some maximum likelihood estimates do not have a closed form

a2 expression. Many of these issues can be circumvented using the equivalence between the
23 univariate BM and OU models described in Blomberg et al.| (2003)); Ho and Ané (2013);
24 Pennell et al.| (2015)), for ultrametric trees, when « is known. Thanks to the scalar

25 assumption, this equivalence extends to the multivariate case. Indeed, the marginal

26 distribution of the traits at the observed tips Y given in (2)) is the same as the one arising

27 from a BM model on a re-scaled tree defined by:

X? ~ N (Bo, £,(a)R) or XP = By (fixed)
X' | XP) o NV (XPO) + A'(@), £i(2)R),  for non-root node i.
25 where {, (o) = i@”“h, li(a) = %e”ah (620‘“ — 62“?&@)), and
u Alla) = (W(a)A) = (1 — e @) A’ Note that, when the root is taken random,
250 everything happens as if we added a fictive branch above the root with length £,(«). The

51 length of this branch increases when « goes to zero.
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252 We emphasize that only the distribution of the observed traits Y is preserved and
3 not the distribution of the complete dataset X. As a consequence, ancestral traits at

4 internal nodes cannot be directly inferred using this representation. Still, the equivalence
255 recasts inference of R and W(a)A in the scOU model into inference of the same

6 parameters in a much simpler BM model, albeit on a tree with rescaled branch lengths

»7 Li(a). Note that the rescaling depends on «, which needs to be inferred separately. See the

23 discussion (Section [Interpretation Issues) for further analysis of this re-scaling.

250 Statistical Inference

20 Incomplete Data Model.— We now discuss how to infer the set of parameters 8 = (A, R).
1 We adopt a maximum likelihood strategy, which consists in maximizing the log-likelihood
22 of the observed tip data logpg(Y) with respect to 8 to get the estimate . The maximum
2% likelihood estimate @ is difficult to derive directly as the computation of log pg(Y) requires
xs  to integrate over the unobserved values of the traits at the internal nodes. We denote by Z
25 the unobserved matrix of size m X p of these ancestral traits at internal nodes of the tree:
x6 for each internal node j, Z7 is the row-vector of the p ancestral traits at node j. Following
27 Bastide et al.| (2016), we use the expectation-maximization (EM) algorithm (Dempster

28 et al.|[1977) that relies on an incomplete data representation of the model and takes

20 advantage of the decomposition of log pe(Y) as E [logpe(Y,Z) | Y| —E[logpe(Z | Y) | Y].

o0 EM.— The M step of the EM algorithm consists in maximizing E [log pg (Y, Z) | Y| with
an respect to 6. For a given value of «, thanks to the rescaling described in Section [Model|
o the formulas to update A and R are explicit (see Appendix . The

13 optimization of « is achieved over a grid of values, at each point of which a complete EM
o7 algorithm is run.

25 At the M step, we need the mean and variance of the unobserved traits Z7 at each internal
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a6 node j conditional on the observed traits Y at the tips. The E step is dedicated to the

a7 computation of these values, which can be achieved via an upward-downward recursion

s (Felsenstein [2004). The upward path goes from the leaves to the root, computing the

a9 conditional means and variances at each internal node given the values of its offspring in a
80 recursive way. The downward recursion then goes from the root to the leaves, updating the
21 values at each internal node to condition on the full taxon set. Thanks to the joint

222 normality of the tip and internal node data, all update formulas have closed form matrix

23 expressions, even when there are some missing values (see Appendix [EM Inference)).

80 Inatialization.— The EM algorithm is known to be very sensitive to the initialization.

25 Following Bastide et al.| (2016)), we take advantage of the linear formulation to initialize
26 the shifts position using a lasso penalization (Tibshirani|[1996). This initialization method
27 js similar to the procedure used in ¢lou (Khabbazian et al.|2016)). See Appendix
s [[nferencel for more details.

280 Missing Data.— EM was originally designed to handle missing data. As a consequence, the
200 algorithm described above also applies when some traits are unobserved for some taxa.

2 Indeed, the conditional distribution of the missing traits given the observed ones can be

22 derived in the same way as in the E step. However, missing data break down the factorized

203 structure of the dataset and some computational tricks are needed to handle the missing

204 data efficiently (see Appendix [EM Inferencel).

205 Model Selection.— For each value of the number of shifts K, the EM algorithm described
26 above provides us with the maximum likelihood estimate 51{ K needs to be estimated to
207 complete the inference procedure. We do so using a penalized likelihood approach. The
26 model selection criterion relies on a reformulation of the model in terms of multivariate

200 linear regression, where we remove the phylogenetic correlation, like independent contrasts
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0 and PGLS do. We can re-write , for a given «, as
Y=TA+E where Y =F(a)"?Y, T =F(a)>’TW(a),

s where E is a n X p matrix with independent and identically distributed rows, each row

32 being a (transposed) centered Gaussian vector with variance R. In the univariate case

203 (Bastide et al.|[2016), this representation allowed us to cast the problem in the setting

3¢ considered by Baraud et al.| (2009), and hence to derive a penalty on the log-likelihood, or,
w5 equivalently, on the least squares. Taking advantage of the well known fact that the

s maximum likelihood estimators of the coefficients are also the least square ones, and do not
w7 depend on the variance matrix R (see, e.g. Mardia et al.[1979, Section 6), we propose to
s estimate K using the penalized least squares:

s : pen(K)\ g~ v _ <2
K—argrr}%n(l—l—n_K);HY] Y, |

~ ~ =K
w9 where Y is the column of Y for the j-th trait, and Y, the predicted means for trait j
s from the best model with K shifts. Using the EM results, this can be written as:
~ : pen(K) 5 -
K= 1————t[RK,]
argm}gn( —i—n_K)r (K, &)
su  where EA{(K , &) is the ML estimate of the variance parameter obtained by the EM for a

sz fixed number K of shifts. The penalty is the same as in the univariate case:

K -1
;mnao::A@—————iEka[Kﬂz—}(—2xkﬁ+1ﬁﬂsgﬂ

n—K-—

213 where EDkhi is the function from Definition 3 from Baraud et al. (2009) and |SE!| is the

su. number of parsimonious identifiable sets of locations for K shifts, as defined in [Bastide
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as et al. (2016). It hence might depends on the topology of the tree, for a tree with

2n—2—K

e ) A is a normalizing constant, that

25 polytomies. For a fully resolved tree, |SE!| = (
sz must be greater than 1. In [Baraud et al.| (2009), the authors showed that it had little
sis influence in the univariate case, and advised for a value around A = 1.1. We took this
s value as a default.

320 The criterion is directly inspired from the univariate case and inherits its theoretical

21 properties in the special case R = 021,. In general however, the criterion should be seen as

2 a heuristic, although with good empirical properties (see Section [Simulations Studies]).

23 Implementation

2« We implemented the method presented above in the PhylogeneticEM R package (R Core
»s [Team 2017)), available on the Comprehensive R Archive Network (CRAN). A thorough

s documentation of its functions, along with a brief tutorial, is available from the GitHub

27 repository of the project (pbastide.github.io/PhylogeneticEM). Thanks to a

»s comprehensive suite of unitary tests, that cover approximately 79% of the code

29 (codecov.io/gh/pbastide/PhylogeneticEM), and that are run automatically on an

s30 independent Ubuntu server using the continuous integration tool Travis Cl

s (travis-ci.org), the package was made as robust as possible. The computationally

;2 intensive parts of the analysis, such that the upward-downward algorithm of the M step,

13 have been coded in C++ to improve performance (see Section [Simulations Studies| for a

s study of the computation times needed to solve problems of typical size). Because the
135 inference on each « value on the grid used is independent, they can be easily be done in
16 parallel, and a built in option allows the user to choose the number of cores to be allocated

;37 to the computations.

PPCA AND SHIFTS
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339 Shift detection in multivariate settings is usually done by first decorrelating traits
s with pPCA before feeding phylogenetic PCs to detection procedures that assume

s independent traits. We show hereafter that even in the simple BM setting, phylogenetic

sz PC may still be correlated in the presence of shifts. The problem is only exacerbated in the

343 OU setting.

304 pPCA s biased in the presence of shifts

345 Assume that the traits evolve as a shifted BM process on the tree, so that

15 vec(Y) ~ N(vec(a), R ® C), with a being the n x p matrix of trait means at the tips.

w7 Decomposing R as R = VD2V pPCA relies on the fact that the columns of the matrix
us YV are independent. Therefore, its efficiency relies on an accurate estimation of R.

349 The estimate of R used in pPCA is R = (n — 1)"(Y — 1,YO)TC (Y — 1,,Y"),
s where Y? = (17C~'1,)"117C~1Y, which is known as the estimated phylogenetic mean
= vector (Revell 2009). Decomposing the estimate of R as R = VD2V”, pPCA then

% computes the scores as S = (Y — 1, Y7)V.

353 In the absence of shift, all species have the same mean vector pu so a = 1,u? and
s [Y} = . In the presence of shifts, species do not all share the same mean vector so the

s uniform centering is not valid anymore. As a consequence, the estimate of R is biased (see

356 appendix [PCA: Mathematical Derivations|):

1
n—1

G'C'G, G=a—1,3a" (3)

]E[f{] =R -+B where B =

7 The extra term B is analogous to the between-group variance in the context of linear
353 discriminant analysis and cancels out in the absence of shifts (note that R is analogous to
350 the within-group variance, see Mardia et al.[[1979). Because R is biased, the columns of the

w0 score matrix S resulting from pPCA are still correlated. We illustrate this phenomenon
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1 below using toy examples.

362 lllustration: a simple example

33 To illustrate the impact of shifts on the decorrelation performed by (p)PCA, we used the
s simple tree presented in Figure [lal and considered three scenarios. In all scenarios, we

365 simulated two highly correlated traits under a BM starting from (0, 0) at the root and with
1 =09

36 covariance matrix R = . The tree has two clearly marked clades, designed
—-09 1

sz to highlight the differences between pPCA and PCA. R is identical in all scenarios; any

w8 preprocessing aiming at decorrelating the traits should retrieve the eigenvectors of R as

w0 PCs. In the first scenario, there are no trait shifts on the tree, corresponding to the pPCA
w0 assumptions, and pPCA is indeed quite efficient in finding the PCs (see Fig. [ID] left panel).
sn In the second scenario, we added a shift on a long branch. This shift induces a species

sz structure in the trait space that misleads standard PCA. The same structure can however

sz be achieved by a large increment of the BM on that branch and large increments are likely
sz on long branches. pPCA therefore copes with the shift quite well and is able to recover

w5 accurate PCs. More quantitatively, the bias induced by the shift on R is quite small,

0.16 0.08
ww B = , around one tenth of the values of R. In the third scenario, we put a

0.08 0.04
sz shift on a small branch. The structure induced by the shift “breaks down” the upper clade

srs - and is unlikely to arise from the increment of a BM on that branch. It is therefore

s antagonistic to pPCA and results in a large bias for R: the extra term B is equal to

1.58 0.79
380 and comparable to R. In that scenario, both PCA and pPCA find axes that

0.79 04
w  are far away from the eigenvectors of R (Figure [Lb] right panel). The first eigenvector of R

2 captures the evolutionary drift correlation between traits, whereas the PCs of both PCA


https://doi.org/10.1101/146191
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/146191; this version posted June 5, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

;3 and pPCA capture a mix of evolutionary drift correlation and correlation resulting from

s shifts along the tree.

a
( ) ___ T-l T-Z c4 ___ Tl_TZ_ c4 Tl_TZ_ ca
L -. C3 L —- C3 —_= c3
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Trait 1

Figure 1: Bivariate traits simulated as a BM under three scenarios: no shift (left), shift on
a long branch (middle) and shift on a short branch (right). Species affected by the shift
are in dark red. Top: Phylogenetic tree, shift position and simulated trait values. Bottom:
Scatterplot of species in the trait space and corresponding first eigenvector computed from
the true covariance R (red) or found by PCA (green) and pPCA (blue).

SIMULATIONS STUDIES

386 Ezxperimental Design

ss7 General Setting.— We studied the performance or our method using a “star-like”
s experimental design, as opposed to a full-factorial design. We first considered a base

;0 scenario, corresponding to a base parameter set, and then varied each parameter in turn to
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;0 assess its impact as in |[Khabbazian et al.| (2016]). The base scenario was chosen to be only
s moderately difficult, so that our method would find shifts most but not all of the time.

302 For the base scenario, we generated one 160-taxon tree according to a pure birth

33 process, using the R package TreeSim (Stadler|[2011), with unit height and birth rate

s A= 0.1. We then generated 4 traits on the phylogeny according to the scOU model, with a
s rather low selection strength aj, =1 (t1/2 = 69% of the tree height), and with a root taken
06 With a stationary variance of 72 = 07/(2a3) = 1. Diagonal entries of the rate matrix R are
w7 o7 and off-diagonal entries were set to o?r, with a base correlation of ry = 0.4 (correlated
w8 traits) when testing the effect of shift number and amplitude, or 74 = 0 (independant

20 traits) otherwise.

400 Finally, we added three shifts on this phylogeny, with fixed positions (see Figure .
w1 Shift amplitudes were calibrated so that the means at the tips differ by about 1 standard
w2 deviation, which constitute a reasonable shift signal (Khabbazian et al|2016). Each

w03 configuration was replicated 100 times. We then used both our PhylogeneticEM and ¢1lou
w4 package (Khabbazian et al.|[2016]) to study the simulated data. We excluded SURFACE

sws (Ingram and Mahler|[2013) from the comparison at is (i) quite slow, (ii) assumes the same
ws evolutionary model as ¢lou and (iii) was found to achieve worse accuracy than ¢lou

w7 (Khabbazian et al.|2016]). We used default setting for both methods. For PhylogeneticEM
ws this implies an inference on an automatically chosen grid with 10 « values, on a log scale,
w9 and a maximum number of shifts of \/n + 5 (See Bastide et al.|2016/ and Appendix
410 for a justification of these default parameters).

an - Number and Amplitude of Shifts— We explored the effect of shifts by varying both their
a1z number and amplitude. We considered successively 0, 3,7, 11, 15 shifts on the topology,
a3 with positions and values fixed as in Figure [2l Shifts values were chosen to form well

s separated tip groups; adjacent (in the tree) group means differ by about 1 standard


https://doi.org/10.1101/146191
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/146191; this version posted June 5, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

a5 deviation 7,. To mimic adaptive events having different consequences on different traits, all
a6 shifts on a trait were then randomly multiplied by —1 or +1. Finally and to assess the

s effect of shift amplitude, we rescaled all shifts by a common factor taking values in [0.5, 3].
as Low scaling values correspond to smaller, harder to detect, shifts and high values to larger

40 and easier to detect shifts.

Figure 2: Shifts locations and magnitudes used in the base scenario. Mean trait values are
identical for the 4 traits, up to a multiplicative +1 factor and shown at the tips. Colors
correspond to the different regimes. The bar plots on the right represent the expected traits
values under the base model.

w0 Selection Strength.— When exploring parameters not related to the shifts, we considered a
a1 base number of 3 shifts and a base scaling factor of 1.25, empirically found to correspond

w22 to a moderately difficult scenario. We also assumed independent traits with the same
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w23 variance and selection strength (i.e. scalar A and R, see model A in

2 appendix [Kullback-Leibler Divergences). We first varied o from 1 to 3 (i.e. ¢/, varied

ns between 35% and 23% of the tree height). The variance 0% varied with « to ensure that the

ns stationary variance 77 remained fixed at 72 = 1.

w2 Model Mis-specification.— The two current frameworks (£lou and scOU) for multivariate
»s shift detection assume independents traits (diagonal A and R) or correlated traits with

x9 equal selection strengths (scalar A and arbitrary R). To assess robustness to model

a0 mis-specification, we simulated data under four classes of models, referred to as A, B, C, D.
a1 Model A is correctly specified for both scOU and ¢lou whereas B, C, D correspond

a2 respectively to mis-specifications for flou, scOU and both. We used the Kullback-Leibler

a3 divergence between models A and B (resp. C, D) to choose parameters that attain

a4 comparable “levels” of mis-specification (see appendix [Kullback-Leibler Divergences| for

435 details) .

436 e Model A assumes scalar A and R (independent traits, same selection strength and
a3 variance) and meets the assumptions of both scOU and (lou.

438 e Model B assumes scalar A and arbitrary R (correlated traits, same selection

439 strength) and corresponds to the scOU model. The level of correlation is controlled
440 by setting all off-diagonal terms to o?ry in R. Following [Khabbazian et al.| (2016), r4
aa1 varies from 0.2 to 0.8, leading to Kullback divergences of up to 288.36 units.

442 e Model C assumes diagonal, but not scalar, A, and diagonal R (independent traits,
aa3 different selection strengths), which matches the assumptions of flou only. We

aaa considered A = aDiag(s™%, 5795 595 s15) with s varying from 2 to 8. We

ass accordingly set R = 292 A to ensure that all traits have stationary variance v = 1.

a6 This led to Kullback divergences of up to 286.78 units.
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aa7 e Model D assumes non-diagonal A and diagonal R (uncorrelated drift, but correlated
448 traits selection) and violates both models. Following Khabbazian et al.| (2016]), all
449 off-diagonal elements of A were set to a,rs, varying from 0.2 to 0.8. In this case, the

o2 1+(p—2)rs

450 stationary variance is not diagonal but has diagonal entries equal to % (-0
451 We thus rescaled o2 appropriately to ensure that each trait has marginal stationary

452 variance 77 = 1 as previously. This led to Kullback divergences of up to 112.98 units.
453 We expected ¢lou to outperform scOU in model C and vice versa in model B. To be

sse fair to both methods, we selected parameter ranges leading to similar Kullback divergences,
ss5 o achieve similar levels of mis-specifications. However, both deviations produce datasets
6 with groups that are also theoretically easier to discriminate compared to model A (see

7 Figure . Indeed, we can quantify the difficulty of a dataset in terms of group separation
s by the Mahalanobis distance between the observed data and their expected mean,

s0  (phylogenetically) estimated in the absence of shifts:
_ 2
D = ||Yvee — (17241) 11T2deeCsz_1 — (np — Nna) (4)

w0 where Y is the vector of observed data at the tips (omitting missing values), 34 is the
w1 true variance of Yo and Nya is the number of missing values. In the absence of shifts

w2 E[D] =0 and E [D] increases when groups are well separated.

w3 Number of Observations.— We varied the number of observations by (i) varying the

s¢ number of taxa and (ii) adding missing values. To change the number of taxa, we

ws  generated 6 extra trees with the same parameters as before but with 32 to 256 taxa. The
ws three shifts were fixed as in Figure[d To test the ability of our method to handle missing
w7 data, we removed observations at random in our base scenario, taking care to keep at least

w8 one observed trait per species, so as not to change the number of taxa. The fraction of
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Figure 3: Impact of trait correlation 74 (left) and unequal selection strengths s (right) on
group separation, as defined in Eq. . Unequal selection strengths (s > 1) and trait
correlations (r4 > 0) both increase group separation and make it easier to detect shifts.

w0 missing data varied from 5% to 50%.
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Figure 4: Shifts locations and magnitudes used for the test trees with, respectively, 32, 64,
96, 128, 192, 256 taxa.

470 Results
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an - Number and Amplitude of Shifts.— We assessed shifts detection accuracy with the Adjusted
2 Rand Index (ARI, Hubert and Arabie|1985]) between the true clustering of the tips, and the
a3 clustering induced by the inferred shifts (Fig. |5, top). Before adjustment, the Rand index
s 18 proportional to the number of pairs of species correctly classified in the same group or
a5 correctly classified in different groups. The ARI has maximum value of 1 (for a perfectly
s inferred clustering) and has expected value of 0, conditional on the inferred number and

ar size of clusters. We use this measure rather than the classical precision/sensitivity graphs
ws as only the clustering can be recovered unambiguously (see Section [Model)). Note also that

w9 when there is no shift (K = 0), there is only one true cluster, and the ARI is either 1 if no

a0 shift is found, or 0 otherwise (see appendix [Note on the ARI)).

281 Figure [5| (top panel) shows that, unsurprisingly, both methods detect the number
«2  and positions of shifts more accurately when the shifts have higher amplitudes.

3 PhylogeneticEM is also consistently better than ¢lou when there is a base correlation (here,

s 1, = 0.4, see section [Simulations Studies)), which is expected as the independence

a5 assumption of ¢lou is then violated. The case K = 0 (no shift) shows that ¢lou

s systematically finds shifts when there are none, leading to an ARI of 0. More generally,
w7 {lou is prone to over-estimating the number of shifts, even when they have a high

s magnitude (Fig. [5] bottom) whereas PhylogeneticEM is more conservative and

w0 underestimates the number of shifts when they are difficult to detect.

w0 Selection Strength and Model Mis-specifications.— Our method is relatively robust to

s model mis-specification (Fig. |§|, top). The first panel confirms that, under model A, high
w2 values of a reduce the stationary variance and lead to higher ARI values and lower RMSEs
w3 for continuous parameters (Fig. [6| bottom, leftmost panel). Similarly, scOU (resp. (lou)

a4 achieves high ARI values under well specified models A and B (resp. A and C). The

s mis-specification of model C' (different selection strengths) does not affect scOU much: it
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Figure 5: ARI (top) and number of shifts selected (bottom) for the solutions found by
PhylogeneticEM (red) and ¢lou (blue). Each box corresponds to one of the configuration
shown in Figure [2, with a scaling factor varying between 0.5 and 3, and a true number
of shift between 0 and 15 (solid lines, bottom). For the ARI, the two lines represent the
maximum (1) and expected (0, for a random solution) ARI values.

w6 has higher ARI dispersion than ¢lou but their median ARI are comparable. By contrast,
s (lou is severely affected by correlated evolution (model C) and higher levels of correlations
w8 lead to significantly lower accuracy, even though group separation is increased (Fig.

a0 right). Finally, both methods are negatively affected by correlated selection strengths

s0  (Model D), although ¢lou seems more robust to this type of mis-specification.

501 Although shift detection is relatively unaffected by model mis-specification,

so parameter estimations suffers from it (Fig. |§|, bottom, center and right panels). Both ¢lou
s and scOU behave better for model A than for model D and as expected, scOU is not

so affected by trait correlation (model B) whereas ¢lou is. Unequal selection strengths (model

ss C) degrades parameter estimation for both PhylogeneticEM and, surprisingly, ¢lou, that
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sos should in principle remain unaffected. Overall, features of trait evolution not properly
sor accounted for by the inference methods (e.g. correlated selection strengths) are turned into
sos overestimated variances. Note that the quality of the estimation of I' is depends strongly

so0 0N the estimation of «, and could be improved by taking a finer grid for this parameter.
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Figure 6: ARI (top) and root mean squared error (RMSE) of the diagonal values of the
estimated stationary variance I' (bottom) for the solutions found by PhylogeneticEM (red)
and (lou (blue). Each panel corresponds to a different type of mis-specification (except
Model A) and the parameters 74, s and r4 control the level of mis-specification, with leftmost
values corresponding to no mis-specification. For the ARI, the solid lines represent the
maximum (1) and expected (0, for a random solution with the same number and size of
clusters) ARI values.

s Number of observations and Computation Time.— For a given number of shifts, shift
su detection becomes easier as the number of taxa increases (Fig. [7] left). Furthermore, our
s method is robust against missing data with detection accuracy only slightly decreased

sis when up to 50% of the observations are missing (Fig. [7]} right). Finally, our implementation
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sie of the EM algorithm, using only two tree traversals (see appendix |[EM Inference]) and coded

si5 in C++4, is reasonably fast. Inference takes roughly 15 minutes on a single core on the base
si5 160 taxa tree and less than 45 minutes on the largest simulated trees (256 taxa). ¢lou
sz scales less efficiently: it is faster for very small trees (32 taxa) but median running times go

si8 up to 20 hours for the large 256-taxon tree. Those long running times were unexpected and

s.0 higher than the ones reported in [Khabbazian et al. (2016). This discrepancy is partly due

s20 to the maximum number of shifts allowed, which strongly impacts the running time of

s {1lou. Khabbazian et al. (2016) capped it at twice the true number of shifts (6 shifts in our

s2 base scenario), while we used the default setting, which is half the number of tips (i.e. from

s 16 to 128 shifts).

ntaxa NA (%)

e e

74
% 050

Method
E PhylogeneticEM

=]

0.25

0.00

Figure 7: ARI of the solutions found by PhylogeneticEM (red) and ¢lou (blue) when the
number of taxa (left) or the number of missing values (right) increases. No ARI is available
for /1lou when there are missing values as it does not accept them in the version used here,
v1.21.

s Impact of pPCA on shift detection accuracy.— To illustrate how pPCA can both improve
s and hamper shift detection, we compared PhylogeneticEM on raw traits to ¢1ou on both
s raw traits and phylogenetic PCs. Figure [9a] shows that in our base scenario, with three
s moderate shifts, pPCA preprocessing slightly decreases performance for low levels of

s2s  correlations (ry < 0.2) but drastically improves them for moderate to high correlations
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Figure 8: Inference running times (in log-scale) of scOU and ¢lou. All tests were run on a
high-performance computing facility with CPU speeds ranging from 2.2 to 2.8Ghz.
s20 levels (14 > 0.6). Although pre-processing is neutral at moderate correlation levels
s (rq = 0.4) with three “easy” shifts, it becomes harmful and degrades the performances of
sn  ¢lou when the number or magnitude of the shifts increases (Fig. . As expected,

s PhylogeneticEM is unaffected by the pPCA preprocessing, up to numerical issues.
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Figure 9: ARI of the solutions found by PhylogeneticEM (red) and ¢1ou (blue), without (solid
lines) or with (dotted lines) pPCA preprocessing. (a) Trait correlation (r;) increases from 0
to 0.8. (b) Each box corresponds to one of the configuration shown in Figure , and shifts
are increasingly large with a scaling factor varying between 0.5 and 3.

EXAMPLES
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534 We used PhylogeneticEM to re-analyse two publicly available datasets.

535 New World Monkeys

s3  We first considered the evolution of brain shape in New World Monkeys studied by |Aristide
s77 et al.| (2016). The dataset consists of 49 species on a time-calibrated maximum-likelihood
s33 tree. The traits under study are the first two principal components (PC1, PC2) resulting
s39  from a PCA on 399 landmarks describing brain shape. We ran PhylogeneticEM on a grid of
ss0 30 values for the o parameter. To make this parameter easily interpretable, we report the
s phylogenetic half-life t1/o = In(2) /o (Hansen!|1997)), expressed in percentage of total tree

s height. Here, ¢;/, took values between 0.46 % and 277.26 %. We allowed for a maximum of
sa3 20 shifts. The inference took 17.56 minutes, parallelized on 5 cores.

544 The model selection criterion suggests an optimal value of K = 4 shifts (Fig.

s inset graph). The criterion does not show a very sharp minimum, however, and a value of
s K = 5 shifts also seems to be a good candidate. In order to compare our results with that
sr presented in [Aristide et al| (2016), we present the solution with 5 shifts (see Fig. [10] left).
sss The solution with 4 shifts is very similar, except that the group with Aotus species is

s.0 absent (in red, see Fig. and supplementary Fig. [14]in Appendix [Case Study|). Note

ss0 that, because of this added group, the solution with K =5 has 3 equivalent parsimonious
ss1 allocations of the shifts (see supplementary Fig. [15(in Appendix . The groups
s> found by PhylogeneticEM (Fig. are in close agreement with the ecological niches defined
ss3 in |Aristide et al.| (2016). There are three main differences. First, there is no jump

ssa  associated with the Pithecia species who, although having their own ecological niche, seem
55 to have quite similar brain shapes as closely related species. Second, Callicebus and Aotus
sss are marked as convergent in Aristide et al| (2016)) (in red, right), but form two distinct

ss7 - groups in our model (in pink and red, left). This is due to our assumption of no homoplasy.

s Finally, the group with Chiropotes, Ateles and Cebus species (in black) was found as
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ss0 having the “ancestral” trait optimum, while it is marked as “convergent” in Aristide et al.|

o0 (2016). This is because we did not include any information from the fossil record (not

s available for brain shape), but instead used a parsimonious solution. Note that the coloring

sz displayed in |Aristide et al. (2016]) is not parsimonious. The two models have the same

53 number of distinct groups.
564 The selected o value was found to be reasonably high, with ¢/, = 12.58%. The
sss  estimated correlation between the two PCs was —0.13, confirming that PCA does not

ses  result in independent traits.
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Figure 10: Solution given by PhylogeneticEM for K = 5 (left) against groups defined in
tide et al. (2016| Fig. 3) (right), based on ecological criteria including locomotion (arboreal
quadrupedal walk, clamber and suspensory locomotion or clawed locomotion), diet (leaves,
fruits, seeds or insects) and group size (smaller or larger than 15 individuals). The inset
graph shows the model selection criterion. The minimum is for K =4, but K =5 is also a
good candidate.

567 Lizards
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568 We then considered the dataset from [Mahler et al.| (2013]), which consists in 100

seo  lizard species on a time-calibrated maximum likelihood tree and 11 morphological traits.
so - We chose this example because of the large number of traits and the high correlation

sn between traits, as all traits are highly correlated (0.82 < p < 0.97) with snout-to-vent

sz length (SVL).

573 To deal with the correlation between traits, [Mahler et al.| (2010, [2013) first

sz performed a phylogenetic regression of all the traits against SVL, retrieved the residuals
s5 and then applied a phylogenetic PCA on SVL and the previous residuals, from which they
s used the first four components (pPC1 to pPC4) for their shift analysis. We first explored
sz how the number of pPCs used can impact the shift detection. Hence we ran

sis - PhylogeneticEM 11 times, including 1 to 11 pPCs in the input dataset. Each run was done
s on a grid of 100 values of «, with ¢1/o = In(2)/a € [0.99,693.15] % of tree height, and

ss0 - allowing for a maximum of 20 shifts. It appears that the result is quite sensitive to the

ss1 number of pPCs included: the selected number of shifts varies from 20, the maximum

s allowed, to 5 (Fig. . When 4 pPCs were used, as in the original study, the estimated

5,3 covariance matrix R contains many high correlations, showing that the pPCs are not

se«  phylogenetically independent (Fig. .

585 To avoid the difficult choice of the number of pPCs, we considered the direct

sss analysis of the raw traits without any pre-processing, and found no shift when running

ss7 PhylogeneticEM. Although the likelihood was found to increase with K, the model selection
sss criterion profile was found erratic, suggesting numerical instability. A natural suspect for
se0 - such instability is the extreme correlation between some traits (0.996 for tibia and

s0 metatarsal lengths), which results in bad conditioning of several matrices that must be

so1 inverted. To circumvent this problem, we used the two pseudo-orthogonalization strategies
sz described above, running PhylogeneticEM on the SVL plus residuals dataset, and on the 11

s pPCs, with the same parameters as above. Note that all these transformations use a
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Figure 11: Lizard dataset: selected number of shifts K given the number of pPCs included
in the analysis (left) and estimated correlation matrix between the first four pPCs (right).

rotation matrix, so that the likelihood and the least squares of the original or of any of the
two transformed datasets are the same. Hence, the objective function, as well as the model
selection criterion, should remain unchanged. Still, slight differences were found between

the maximized likelihood for each pseudo-orthogonalized datasets. For each value of K, we

therefore retained the solution with the highest likelihood.

Using the model selection criterion given in Section [Statistical Inferencel we found

~

K =5 shifts, which are displayed in Figure , along with the ecomorphs as described in
Mabhler et al.| (2013).

Three of those shifts seem to single out grass-bush Anolis, that appear to have a
rather small body size, with longer than expected lower limbs and tail, and shorter upper
limbs. The two others might be associated with twig Anolis, that have smaller than
expected limbs and tails. Because of our no-homoplasy assumption, one of those shifts
encompasses some species living in other ecomorphs (namely, trunk, trunk-crown and

un-classified). The shift, designed to be coherent with the phylogeny, is located on the
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s stem lineage of the smallest clade encompassing the bulk of twig lizards.
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Figure 12: Lizard dataset: solution found by PhylogeneticEM. Groups produced by the shifts
are colored on the edges of the tree. The species are colored according to ecomorphs defined
in Mahler et al.| (2013). The traits are the snout-to-vent length (SVL), and the phylogenetic
residuals of the regression against SVL of the following traits: femur length, tibia length,
metatarsal IV length, toe IV length, humerus length, radius length, finger IV length, lamina
number (toe and finger IV), and tail length. The same transformations were used as in
Mabhler et al.| (2010, [2013))

600 Comments

610 On both examples (p)PCA does not correct a priori for the correlation between the

su  traits in the presence of shifts. In Section [pPCA and Shifts| we formally proved that it

s12 cannot correct for it, actually. As a consequence, any shift detection methods has to
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s13 account for the correlation between traits.

s1e  Still, high correlations between traits may raise strong numerical issues, so PCA can be

s1s used as a pseudo-orthogonalization of traits, as well as any other linear distance-preserving
s16 transformation that would reduce the correlation between them. This does not dispense of
iz considering the correlation between the transformed traits in the model.

618 The other interest of PCA is to reduce the dimension of the data, which may be

s19 desirable when dealing with a large number of traits, such as the original dataset from

s20 |Aristide et al.|(2016). Since PCA does not correct for the right correlation, we have no clue
s21 whether or not the dimension reduction performed by PCA is relevant for shift detection,
22 or if it may remove precisely the direction along which the shifts occur. The relevant

23 dimension reduction would consist in approximating the correlation matrix R with a matrix
2« of lower rank g < p. This can obviously not be done before the shifts are known, which

s suggests that shift detection and dimension reduction should be performed simultaneously.

Di1sSCcUSSION

627 Many phenotypic traits appear to evolve relatively smoothly over time and across
2 many taxa. However, changes in evolutionary pressures (dispersal to new geographic zones,
20 diet change, etc) or key innovations (bipedal locomotion) may cause bursts of rapid trait
s evolution, coined evolutionary jumps by [Simpson! (1944). Phenotypic traits typically evolve
en in a coordinated way (Mahler et al.|2013; Aristide et al.|[2015) and a multivariate

sz framework is thus best suited to detect evolutionary jumps. We introduced here an

sz Expectation Maximization algorithm embedded in a maximum-likelihood multivariate

s framework to infer shifts strength, location and number. Importantly, our method uses

635 Gaussian elimination, just like Fitzjohn| (2012)), to avoid computing inverses of large

636 variance-covariance matrices and can cope with missing data, an especially important
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s37  problem in the multivariate setting where some traits are bound to be missing for some

s taxa. We demonstrated the applicability and accuracy of our method on simulated datasets
30 and by identifying jumps for body size evolution in Anolis lizards and brain shapes of New
a0  World Monkeys. In both systems, the well-supported jumps occurred on stem lineages of
s1 clades that differ in terms of diet, locomotion, group size or foraging strategy (see Aristide

s> et al.|2016 for a detailed discussion) supporting the Simpsonian hypothesis.

643 Interpretation Issues

644 We emphasize that the interpretation of « is a matter of discussion. We introduced
ss  the scOU in terms of adaptive evolution with a selection strength « on the tree. However,
a6 the equivalency between OU and BM on a distorted tree suggests that a can also be seen
a7 as a “phylogenetic signal” parameter, like Pagel’s A (Pagel/[1999). When « is small,

sas L;(a) ~ ¢; so that branch lengths are unchanged and the phylogenetic variance is preserved.
s40 At the other end of the spectrum, when « is large, ¢;(«) ~ 0 for inner branches and the

0 rescaled tree behaves almost like a star tree. However and unlike Pagel’s A\, a also dictates
st how shifts in the optima in the original OU (A9Y) are transformed into shifts in the traits
es2 values in the rescaled BM (AZM(q)). For small o, recall to the optima is weak and shifts
es3 on the optima affect the traits values minimally (AZM(«) ~ 0). By contrast, for large «,
s« the recall is strong and shifts on the optima are instantaneously passed on to the traits

o5 values (APM(a) ~ A9Y). Note however that in both cases, the topology is never lost: a

6 shift, no matter how small its amplitude or how short the branch it occurs on, always

es7  affects the same species.

658 Note that if we observed traits values at some ancestral nodes (e.g. from the fossil
es0 Trecord), the equivalency between BM and OU would break down: a would recover its strict
0 interpretation as selection strength. On non-ultrametric trees, our inference strategy does

ss1  not benefit from the computational trick to speed up the M step. Similarly to the
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sz Univariate case, we could write a generalized EM algorithm to handle this situation. In

e63 Bastide et al.| (2016), we used a lasso-based heuristic to raise, if not maximize, the

ss  Objective function at the M step. It worked quite well, but was much slower. This

s approach could be extended to the multivariate setting, although with impaired

s computational burden. Note also that some shifts configuration that are not identifiable in
ssv the absence of fossil data become distinguishable with the addition of fossil data. This

s affects our model selection criterion, which relies on the number of distinct identifiable

sso  solutions. Computing this number on a non-ultrametric tree for an OU remains an open

s0  problem, and is probaly highly dependent on the topology of the tree.

671 Noncausal Correlations

672 ¢1ou, SURFACE and PhylogeneticEM make many simplifying assumptions to achieve
13 tractable models. Chief among them is the assumption that A is diagonal. While ¢1ou and
sza SURFACE both assume independent traits, PhylogeneticEM can handle correlated traits

o5 through non-diagonal variance matrix R. We warn the reader that correlations encoded by
s R are not causal and only capture coordinated and non selective traits evolution: i.e. when
ez arm length increases, so does leg length. In order to capture evolution of trait ¢ in response
s to changes in trait j (i.e. when arm length strays away from its optimal value, does leg

oo length move away or toward its own optimum) one should rather look at the value of A;;,
ss0 as was recently pointed out (Reitan et al|2012; Liow et al.2015; Manceau et al.|2016).

1 Our simplifying assumptions are justified by various considerations: our focus on inference
2 Of shifts rather than proper estimation of A and R, simulations showing that shift

se3 detection is robust to moderate values of off-diagonal terms in A, difficulties to

s8¢ simultaneously estimate o and shifts even in the univariate case (Butler and King|2004]),
ss and computational gain achieved by considering scalar or diagonal A. They also suggest

sss that if the focus is on causal correlation in the presence of shifts, a two-step strategy that
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7 first detects shifts using a crude but robust model, then includes those shifts in a more

se complex model, may achieve good performance.

689 The other simplifying assumption we made is that all traits shift at the same time.
o0 It makes formal analysis of identifiability issues and selection of the number of shifts

so1 similar to the univariate case, previously studied in Bastide et al.| (2016). The assumption
s02 18 likely to be false in practice, however. Asynchronous shifts are an interesting extension of
3 the model. An ambitious framework would be to build from the ground up a model that
s allows for different shifts on different traits. It would have to deal with the combinatorial
sss complexity induced by asynchronous shifts, and to use a different selection criterion for the
sos number of shifts. A less ambitious but more pragmatic approach would be a postprocessing
v Of the shifts to select, for each shift, the traits that actually jumped. This would require

ss derivation of confidence intervals for the shift values.

s0o  Finally, and unlike SURFACE and new version v1.40 of ¢lou, our model excludes convergent
700 evolution. This limitation is shared with other shift detection methods such as bayou

7 (Uyeda and Harmon|[2014) in the univariate case. This exclusion simplifies formal analysis
72 and allows us to borrow from the framework of convex characters on a tree developed in

w3 [Semple and Steel| (2003) but is also likely to be false in practice. A straightforward

704 extension of our method to detect convergence relies again on postprocessing of the shifts:
705 the inferred optimal value of a trait after a shift can be tested to assess whether or not it is

76 different from previously inferred optimal values and warrants a regime of its own.

707 Nature of the jumps

708 We model shifts as instantaneous and immediately following speciation events, like
20 in the punctuated equilibrium theory of Eldredge and Gould| (1972). We don’t argue that
70 this is necessary the case. Selection and drift can reasonably be seen as instantaneous over

11 macroevolutionary timescales but by no means over microevolutionary timescales. There is
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72 very strong evidence, for example in peppered moths (Cook et al.|2012), that rapid

73 adaptation can happen even in the absence of speciation. However our model does not
712 allow us to distinguish between many small jumps distributed across a branch, one big
715 jump anywhere on that branch and one big jump immediately following speciation, and

76 therefore between punctuated or Simpsonian evolution.
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PCA: MATHEMATICAL DERIVATIONS

sas  Fxpectation of the estimated Variance-Covariance Matriz.— Taking
ws C=(17C'1,)"'17C!, we have that Y7 = CY, and a” = E [Y”] = Ca. Denote by
s Ngo1 : R — RP’ the function that to a n x p matrix A associates the p x p matrix

sr ATC71A. We get:

(n—1E [R| =E [No-: (Y -~ 1,Y")] =E [No+ (Y — a) + (a— 1,a") + (1,a” — 1,Y7)]
—E [chl ((I ~1,C)(Y —a) + (a— 1naT)>]

=E[Nes (1= 1,6)(Y —a))| + Ne-i (a—1,a")

s where the two double products cancel out, as E[Y] = a. But, for any non-singular

a0 symmetric matrix H, we have:

E[(Y-a)H' (Y -a)= Y [H';E[Y —a)(Y —a’)]

1<i,j<n
= Z [H_l]ijCin: tI’(H_IC)R
1<i,j<n
= Hence, applying this formula with H™* = (I - 1,C)’C'(I-1,C) = C! — C'1,,C,
ss1  some straightforward matrix algebra manipulations give us:

(n—1E [R} —(n—1)R+(a—1,a")7C'(a—1,a")

s> which is the result stated in the text, with G = a — 1,a” = (I, — (11C~'1,)"'1,1IC })a.


https://doi.org/10.1101/146191
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/146191; this version posted June 5, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

PhylogeneticEM PACKAGE CASE STUDY: NEW WORLD
MONKEYS
855 In this section, we demonstrate the basic use of the R package PhylogeneticEM for

sss the analysis of the New World Monkeys dataset (Aristide et al.|2016]).

857 Loading and Plotting the data

858 The data have been embedded in the R package PhylogeneticEM, to be loaded easily.
sso  The traits can be plotted on the tree thanks to the function plot applied to a void

0 params_process object with dimension 2 (Fig. [L3)).

library(PhylogeneticEM)
data(monkeys)

plot(params_BM(p=2), data = monkeys$dat,
phylo = monkeys$phy, show.tip.label = TRUE)

861 This plot function inherits from most of the optional arguments of the popular ape
s> plot function (here for instance, the optional argument show.tip.label is used). Many other
g3 graphical parameters can be set by the user, so as to control the output of the function. All
ssa  the results showed in the main text were produced by the package’s plotting function. The
s two traits are represented on the right, each with its own scale. Plotting the data on the

s tree before analyzing it allows us to spot potential errors or outliers.

867 Analyzing the data

868 The automatic shift detection is done using function PhyloEM. We show below how
se0 the function can be called, using an scOU process (with stationary root, the default), for a

g0 maximum number of shifts equal to 10, on an automatically chosen grid with 4 values for
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Figure 13: New World Monkey dataset as plotted in PhylogeneticEM

sr1 the selection strength «, and parallelized on 2 cores. These parameters were chosen only to
s2  demonstrate the function, for this example analysis would run in about one minute.

gz Different parameters were used to obtain the results below and in the main text. There are
g7« many more options available to guide the analysis, all described in the manual entry of the

e7s  function.

res <- PhyloEM(Y_data = monkeys$dat, ## data
phylo = monkeys$phy, ## phylogeny
process = "sc0U", ## scalar OU
K_max = 10, ## maximal number of shifts
nbr_alpha = 4, ## number of alpha values
parallel_alpha = TRUE, ## parallelize on alpha values
Ncores = 2) ## number of computing cores

876 The result is stored in an object of class PhyloEM, which has several extractors
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er available (see manual). By default, the plot function draws the maximum likelihood
s function selected by the method (Fig. . The same optional parameters can be used as

gs7o - before to control how the figure should look like.

plot(res, edge.width = 2, show.tip.label = TRUE)
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Figure 14: Maximum likelihood solution with 4 shifts selected by the method.

880 The solution showed in the main text (Fig. has 5 shifts, instead of 4. It can be
ss1  plotted using the extractor params_process, which extracts some inferred parameters from

g2 an object of class PhyloEM.

params_5 <- params_process(res, K = 5)
plot(res, params = params_5)
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63 Plotting Equivalent Solutions

884 The previous call actually results in a warning being issued: “Warning in

g5 params_process.PhyloEM(res, K = 5): There are several equivalent solutions for this shift
sss  position.” Indeed, as mentioned in the main text, the solution with 5 shifts has three
se7  equivalent shift allocations on the branches. These solutions can be found and plotted

sss  thanks to the function equivalent_shifts, that returns an object that can be visualized

889 (Fig. .

eq_shifts <- equivalent_shifts(monkeys$phy, params_5)
plot(eq_shifts, show_shifts_values = FALSE, shifts_cex = 0.5)

W |
.a
W |

i
4
i

Figure 15: The three equivalent maximum likelihood shift allocations for the solution with
5 shifts.

890 By default, the shifts values for the first trait is showed for all equivalent solutions.
g1 Black is always reserved to the “ancestral state”, and the value A = 5y = p of the ancestral
g2 optimal value is shown at the root. Here, the three equivalent solutions are quite

g3 straightforward, as one configuration has two shifts on sister edges. Note that the

sa  clustering of the species at the tips of the tree remains unchanged, while the historic
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s scenario of the adaptive shifts is slightly altered. This ambiguity is inherent to the data.
sos  More information to resolve this ambiguity can only come from a prior distribution on shift

so7  values, or ideally from fossil data sampled in the right region of the tree.
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EM INFERENCE

899 This section provides the update formulas for the EM algorithm in Section

9

I=}

o [Statistical Inferencel Throughout this section, the superscript h refers to the current

o1 iteration index, e.g. 8" stands for the vector of parameters estimate at iteration h:

w2 00 = (u™ AP RM® TM) We denote further by X the N x p matrix of the traits at all
o3 the nodes of the tree, that contains both Z and Y. In these derivations, nodes are

ss numbered in a preorder, such that the root comes first: p = 1, the internal nodes are

os numbered from 1 to m, and the tips from m + 1 to N = m + n.

ws  Conditional expectation of the complete likelihood.— The EM algorithm mainly deals with
sor Eflog po(X) | Y], where Y? is the vector of the observed tips data (that might be missing

s some values). In our case we have that

—2E [logpe(X) | Y] = p(m+n)log2n +pn§10gej
-
+log|T| +tr{rlv;r (X' Y]+ |E[X ] Y] — pss
+(m+n—1)log|R| + miff;l tr {R™'Var [X7 — XP20) | Y47}
m+n =
ISRl IP RS CRING VNI o)
P
%09 M step
910 At the M step, the parameters are updated as the minimizers of (5] evaluated with

o1 the conditional moments of the hidden variables given Y?. We get the following updates.

o2 Root Parameters.—

u(thl) — ]E(h) [Xl ‘ Yd} 7 I\(thl) — Var(h) [Xl ‘ Yd} ) (6)
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a1z where the conditional moments are obtained as part of the E step, see Equation .
s Notations E® anf Var® denote the moments taken with the law defined by current

s parameters 0.

o6 Rate Matrixz.—

m—+n

(m+n— 1R = Z gj—lvar(h) (X7 — X Pa(i) ‘ Yd}
j=2
+ 5;1 (E(h) [Xj _ xpali) | Yd] . A(h+1)j)

L (B® [x7 — XP0) | y4] - A<h+1)j)T,

sz Optimal Shift Location.— Only the last term of depends on the shifts so we have to

as minimize the sum of costs to find A+D:

with Cj(h)(A) _ Ej—l HE(h) [Xj — xpali) ‘ Yd} _ AjH?RW)’l .

o190 'This minimization can be achieved using the same algorithm as in the univariate case
o0 (Bastide et al.[2016) to get the optimal shifts allocations and values. Said algorithm
o1 essentially sorts the branches in decreasing order of C](-h)(A) and assigns shifts to the first

o2 K branches.

923 E St@p

924 The aim of the E step is to compute the moments of the completed dataset given

o5 the observed traits at the tips, namely:

E,=E[X/|Y?], V;=Var[X/|Y"], Cjpgy =Cov[X); X0 | Y] (8)
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926 where we dropped the dependency in ™ for the sake of legibility, but all these moments
o7 are indeed taken with the laws given by the current parameters. We do so thanks to an
ws upward-downward recursion on the tree, as described below. This algorithm can apply to a
w0 broad classes of Gaussian processes, provided that the moments of the traits at a child
a0 node are of the form:
E [Xj ‘ Xpa(j)} =m; (Xpa(j)) — QjXpa(j) +r;
Vi e [2,m+n],
Var [X/ | XP20) ] = 3,
a1 For a BM, we get
Q;, =L, r,=A’ and ¥;=/(R.

022 A multivariate OU could also be handled, with:

Q=B rj=(,—e )3 and X;=T —e A6Te A"

a3 Although we do not use these last formulas here (thanks to the equivalence between OU
o and BM in our setting), they are implemented in PhylogeneticEM, and could be readilly
a5 used in an extension of the method to non-ultrametric trees with fossil taxa. To properly
036 handle missing data in a unified framework, we first re-define ad hoc inversion and

o37 determinant operations that allow us to easily write the degenerated Gaussian likelihood

e3¢ that appears along the way.

o0 Missing data.— For a multivariate trait observed at node ¢, define the application
o0 fq, o RPXP — R%*di that, given a matrix, returns the matrix with only rows and columns
o corresponding to observed traits. Define also the “pseudo-inverse” f,- L Rdixdi 5 RP*P

w2 that put the observed traits back into their places, and fills the un-defined lines and
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a3 columns with zeros. This allows us to define a “low-dimensional inverse” as:

Skt = £t (fa(S)] ), VS e R

oaa  for all S such that f;, (S) is invertible. We also define a “low dimensional determinant”, as:

Sl = |[fa (S, VS e RPP.

05 These conventions amount to taking infinite values for the variance-covariance terms

ws of non-observed traits. This allows us to write the following:

(2m) P20, 5(x) = @), rus) (fa(X))-

a7 where ®,,, g denotes the density of a multivariate Gaussian, with expectation vector m and
ws variance matrix S. That is, we write the density of a d-dimensional Gaussian as the density
wo of a p-dimensional one, but with the exact same likelihood value, up to a normalizing

oo constant (27)#~D/2 1f d = 0 (no data at one tip), then [S],;' is a matrix of 0, and we take

51 by convention HS];H =1, so that ®¢,m) s, (fa(x)) = L.

o2 Upward recursion.— For a given node j in the tree, we denote by 7Y% the set of all traits
ss3  observed at all the tips below node j. The aim of the upward recursion is to compute the
s Gaussian pdf f rya|x (Y% a) of 7Y? | X7, which we write as proportional to a Gaussian
5 density in a:

Foyapxo OY %) = A;0Y) Py vy 5,00 (@)

oss Initialization: For each tip 4, the observed values (Y?)! given the vector of values Y?
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follow a Dirac distribution:

Wi € [1,1], f ryay(ys (Y)52) = 8yay(a).

We can express this in the correct format:

Vi e [1 ,n]],f(Yd)i

(Y5 a) = 2m) D20y o(a)

Yi

but taking the “low dimensional” inverses and determinants defined above.

Propagation: The upward recursion formulas result from the standard properties of the

conditional distribution of a multivariate Gaussian distribution plus the fact that L

daughters of a given node X7 are conditionally independent so

We get

JYd

M;(Y?) =

log 4;(Y?) = —

L
ijd|xj (ij; a) = H fjeyd‘xj (”Yd; a)'
/=1

-1
(Z Q Jzz MYd) + 2%) 1sz>

]Yd Z Q jz NYd) + 2]2) (sz(jeYd) - rjz)

(L—l)

1 .
5 log(27) + 5 log ‘Sj(]Yd)‘

L
. 1 .
+ § log A;, (YY) — 3 log |S;,(*Y?) + ;|
=1

—_

5 Z j MYd - r]e) (Sje (jZYd) + Eje)_l(M' (”Yd) r]e)

=1

M; Y8 0Y ) T M (Y

\)

+

l\DI»—


https://doi.org/10.1101/146191
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/146191; this version posted June 5, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

964 where we keep track of the log of the constant A;, for numerical accuracy. Remark
965 that we only need to handle the infinite terms properly as described above, using the
966 “low dimensional” inverses and determinants when needed. These terms will

967 disappear as we go up to a node that has at least one tip with some observation for
968 this particular trait. In the pathological case where a trait is never observed, the

969 corresponding term remains infinite throughout the recursion, and hence does not

970 bring any information as to the value of that trait, and does not change the

o71 likelihood. The variance of a root non-observed trait is then just the one put a priori
o2 in I' (see below).

a3 Root node and likelihood: Once at the root, we have dele (Y% a), which is the

o74 likelihood of the observations given the root state X! = a, and we write:

fxllyd (a7 Yd) X fyd‘Xl (Yd? a)fxl (a)
o75 which gives

Var [X']| Y] = (07 + Si(Y) ™)

E[X"| Y] =Var [X; | Y] (T 7'+ Si1(Y) ' M(Y)).

ars  Downward recursion.— We now derive a recursion that goes from the root back to the tips
o7 to compute the conditional moments required to evaluate . Going down the tree, we
os need to compute, for each node X, 2 < j <m, E;, V; and Cj,(;) as in . (additionally

ors - conditioning on X! if the root is fixed).

so Initialization: The initialization of the downward is given by the last step of the upward.
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081 If the root is random, we have

V=V [X V] = (s

Ei=E[X"| Y] =Var [X; | Y] (T + S1(Y?) ' M(Y))

| Cipay = NA

082 whereas, if we work conditionally to the root, we have Vi = Var [X! | Y4, X'] =0,

o83 E, =E[X'| Y4 X!'] = p and Cypa) = NA.

s Propagation: We have

fxpa(j)xj |y (a, b; Yd) = fxpati) |y (a; Y)ij‘xpa(j),yd (b; a, Yd)

%85 We know the first term from the recurrence, and we can compute the second term

086 thanks to the upward step:
ij‘xpa(jLYd (b§ a, Yd) = ij|xpa(j)7ij (b§ a, ij) X ij‘xpa(j) (b§ a)ijd‘xj (ij§ b)
087 As IYY | XTI~ N (M;(PY?), S;(PY?)) and X7 | XPaU) ~ N (m;(XP20)), 335), we get

X7 ‘ XPeO) Y ~ N (mj(Xpa(j))72j)
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988 with
( d A
= (5;,0Y) T +27)
. —1 : -1 i
= S;0Y) (S;,(0Y) + %) B =%;(5,0Y)+%;) 5;,0Y%)
my (XP0)) = 35 (S;0Y") MY ) 4 55 my (XP0)))
= S;0Y) (07 + %) Q; X0
Q,
+ 807 ($;0Y) +25) 1y + 55 (5,07 +35) T MY
\ f‘j
089 Hence:
1 _ e _
oo b X o exp (=50 = m @) 57 (b = ma)

XJ 4 E. V. C. ol

990 And, as ‘ Y~ N ! ) ’ Jpad) , by Gaussian
Xpa(j) Epa(j) C] pa(j) Vpa(j)
901 conditioning, we get, for any a:
m;(a) = Ej + Cjpa) Vour (@ = Epag)
2 - V CJ pa(])v C?pa

902 From this we get:

e S AT
Cjpati) = Qi Vpa(i)s E; =1; + QjEpa), V;=3%;+Q;Vypu(»Qj -
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And, finally:

p

. . 1
Cjpai) = S;0YY) (S;0YN) +55) 7 Q;Viag

Cipat) = Zi%; ' Qi Viai)
>

J

E
V; = 2]’ (Ip + Eleija(j)Qarzglij))

E; = S;0Y%) (S;0Y") + %) (QjEpg) +1;) + 5 (S;0Y%) + 5,)

THQ E g + 1) + 28,07 M (YY)

1

M;(Y)

Vv, = 507" (5,07 + ;) <Ej + Qi Vi) Q] (S0 +35) Sj(ij)>

where 7' = S;(7Y?)~! + X! can be is computed using the “low dimensional

inverse” defined earlier for S;(“Y?), if needed.

Remark that theses formulas involve the inversion of two matrices (%; and 2_3;1), each of

dimension p (typically small), which is not computationally intensive.

EM Initialization

Because it is only guaranteed to converge to a local optimum, the EM algorithm is

highly sensitive to its starting point. As consequence, it needs to be provided with good

initial guesses for the shifts positions and value, as well as the variance matrix R. Initial

values are determined as follows:

1. Do a lasso regression, assuming all traits are independent, choosing a penalty so that

K shifts are found.

2. Find the groups of tips created by those shifts, and center each group by its empirical

mean.
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3. Use the centered data to estimate an empirical variance matrix. This is done using
the Minimum Covariance Determinant (MCD) method, with function covMed from

package robustbase (Rousseeuw et al.|2014]).
4. Use this estimated matrix to correct for correlations, before running a lasso again.

5. For this second lasso, choose a penalty that selects for K + Kj,g shifts, with Kj,e a
fixed value (default to 5). Then, using a Gauss-lasso procedure, select the best K

shifts (in term of log-likelihood) among those.

This last step can be combinatorially intensive. To keep it fast, we bound the number of

trials. It has proven to enhance the results of the algorithm substantially.

Grid on «

The inference presented above works for the rescaled BM, when the parameter « is
supposed to be known. In practice, this parameter needs to be estimated. One simple way
to do that is to use a grid on «a. For each value on the grid, one can find an associated
estimator, and then find the maximum likelihood estimator of the parameters by taking
the best likelihood, for each number of shifts K. For instance, we plot below (Fig. the
likelihood profile in K for 30 a values on a grid, for the New World Monkey dataset
(Aristide et al.|[2016]).

This grid of « values can be provided by the user, depending on some a priori
knowledge she might have of the problem at hand. If no grid is provided, one is
automatically computed, with n,, values, evenly spaced on a log scale ranging between oy,

and .. Those extrema values are chosen in the following way.

Qmin The minimum value is chosen so that the maximum phylogenetic half-life

(t1/2 =1n(2)/a) is equal to Aln(2)h, where h is the height of the tree, and A is a
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Figure 16: Likelihood profile for all the @ values, on the New World Monkey dataset. Each
colored line represents the likelihood of the solution for a given c. The maximum value of
the likelihood for each K is emphasized. The maximum is not reached by the same value of
a for each K. Colors in log scale.

1031 constant, by default equal to 3. This ensures that the lowest o makes for a
1032 phylogenetic half-life approximately two times as high as the tree. Lower values of «
1033 would make the process looking too much like a BM.

1034 Qax Lhe maximum value of «v is chosen so that the correlations between tips is bounded

1035 by e B/2, with B a constant by default equal to 2. This is obtained by noting that
1036 the correlation between two tips ¢ and j for a given trait k is given by (for a
1037 stationary root):
Byk o—2ad;;
Cov [szk;Yv] ] — 2a — 67201(1” < 6720¢dmin

Bk ik

200 2
1038 where dp,;, is the minimum phylogenetic distance between two tips. Hence we choose

1039 Opax — B/(dein).


https://doi.org/10.1101/146191
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/146191; this version posted June 5, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

SIMULATIONS APPENDICES
1041 Kullback-Leibler Divergences
Model B Model C Model D
° [e) o [¢) o [e)
§ - g - o &
g § T o g § T ° g 3 °
X | X | ™M |
o
n ° 8 i o S
—0 ° o —0 —0 °
T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1 2 3 4 5 6 7 8 0.0 0.2 0.4 0.6 0.8
7] S fs

Figure 17: KL divergences from the base model

1042 Denote by I, the identity matrix of size p, J, = 171 the matrix filled with ones, and

w3 S, = Diag(s~P+D/244: 1 < ¢ < p) (so that |S,| = 1). We consider the four following models:
e Model A: A =al, and R = 0%,

s Model B: A =al, and R =R,, = %I, +r4(J, — L))

s Model C: A =aS, and R = 7S,

wr Model D: A = oI, +7,(J, — L)) and R = 51,

1048 The general formula for a Kullback divergence between two multivariate Gaussian

s distributions with means p; and variances V; (i € {1,2}) is:

det V2
det Vl

2K [N V] = (V5 'V + (g — )"V (e — ) — np + In
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w0 We assume that the root is in the stationary state. From the general formula for a
st multivariate OU, we derive the form of the variances for these four models (Bartoszek et al.

1052 2012; Clavel et al. 2015):

wss General Formula: V@) =P ([/\ }N\ e Aalti=tij) g=Ar(ti—tij) ® P‘IRP‘T) P7,

e 1<q,r<p
1054 where P is the orthogonal matrix of diagonalization of A, associated with eigenvalues
1055 (A1, Ap).

1056 Model A: VA = %Ma X Ip with Ma = (e_adij)lgigjgn
w7 Model B: Vg = M, ® R,,
s Model C: Vg’j) = % Diag (e=*(Srludis; 1 < ¢ < p)

s Model D: Vi) =

050 %P Diag <ﬁe—o¢(1—1ﬂ5)dij7 ﬁe—a(l—rs)dijj ﬁe—a(l—rs)dljj 1+13T56—a(1+31"5)dij) pT
1061 For model C, taking R = %S, ensures that the variances at the tips for all the
w2 (independent) traits are equal to v = %

1063 For model D, the characteristic polynomial of matrix iA is

wee X (X) = (X +rs—1)3(X = 3rs — 1), so we wrote

wes A = aP Diag (1 —7,,1—7,,1—7,,1+ 3r,)PT. This leads to a variance at the tips of

1066 %P Diag <1jr , 1fr , 1jr )1 +13T > PT”. By computing this matrix product (easy linear

1—rs? 1—rg? 1—rg? 143rs

w7 algebra formula), we find that P Diag < L L1 L ) PT = (A= K)I, + kJ,, with

1+(p—2)rs

1068 A = (=D and kK = —(1_rs)(1$(p_1)rs). Dividing the variance matrix by a factor A
w0 hence ensures that the diagonal variances at the tips are still equal to 4% = %

1070 We can then express the Kullback distance of models B, C and D to model A, using
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wn  the general formula:

det
2K [i; A] = tr(V ;' V) —np +In

v, T (T ELIW(AL) = WA vee(AT)]|y, -

2

2
:—Ogtr((l\/[ ®L,)V;) — np+npln——|—plndet1\/[ — Indet V;
o

(T © 1,)[W(A ) — W(A)] vee(AT)]],, -

1072 For K [B; A], we can get a closed formula that does not depend on the topology (the

073 expectations term cancels out):
2K [B; A] = nIn[(1 — 7)*(1 + 3r)]

ws  For the two other distances, there are no such nice simplified formula, and the result

s depends on the topology (even when there are no shifts). To get an idea of the distance
we  when there are no shifts, we computed it on 100 randomly generated trees, and took the
w7 mean. With shifts, we computed the distances for the trees and shift positions chosen and

w7s  shown above.

1079 Note on the ARI (Hubert and Arabie|1985)

wso  Partitions.— Let S be a set with n elements, and U,V two different partitions of .S, with
a1 respectivelly R and C' groups. Denote by n,; the number of elements of S that are both in
w2 groups i € [1,R] of U and j € [1,C] of V, and by n;. = E;’;l ni; (respectively,

s My = Y1, n;) the number of elements of S that are in group i € [1, R] of U (resp.

s J € [1,C] of V).

wss  Rand Index.— We further define:
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e o the number of pairs of S that are in the same groups in both partitions U anv V/,

=2 (%)

i=1 j=

e b the number of pairs of S that are in different groups in both partitions U anv V|

(- (B0 (EG) ) - O£ ) EE)

J=1 J=
Then the Rand index is defined as the number of agreeing paairs on the total number of

pairs:
a—+b

()

Rand =

Adjusted Rand Index.— Assume that the null model is a generalized hypergeometric
models, where the partitions and the number of elements in each group are fixed (i.e. the

n;. and n.; are fixed), and the element randomly distributed among them. Then:

N . n;. n.; n
()]G E)G)
The ARI is then defined as (1 is the maximum value of the Rand index):

Rand — E [Rand|

ARL= 1 — E[Rand]

which can be re-written as:

Ef:l 2?:1 (nﬁj) T Zzﬁzl (nﬁ) ZJCZI néj)/(g)
(X () + 55 (%) = X (5) 25 (9)/()

ARI =


https://doi.org/10.1101/146191
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/146191; this version posted June 5, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

wes  One class partition.— Assume that R = 1, i.e. that one of the partition has only one class.

1006 Lhen:
Sy (V)= () -2 (Y)
1007 and
S(5)2()=(3)Z(5)=-0)= (%)

ws  so that ARI = 0. Hence, if one of the true solution or the estimated solution has no shift,

w0 then the ARI is automatically equal to 0.

1100 Supplementary Figures

uo  Sensitivity / Precision.— Because only the clustering of the tips induced by the shifts, and
noe  not their exact position on the branches of the tree, are identifiable, we used the ARI,

nos rather than sensitivity and recision, to asses methods of shift detection. With this caveat in
o« mind, we plot these quantities here for the interested reader. To do that, we removed the
1os  6.53% of solutions that were not identifiable in the results of the methods.

1106 These graphs confirm our conclusions drawn in the main text, with PhylogeneticEM,
nor  more conservative, having a better precision, along with a similar sensitivity than ¢lou. It
nos 1S interesting to note that, even when the model is violated for PhylogeneticEM, the

e methods keeps a better or similar precision (see e.g. Model C in Fig. [19).
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Figure 18: Sensitivity (top) and precision (bottom) for the solutions found by PhylogeneticEM
(red) and ¢lou (blue). Each box corresponds to one of the configuration shown in Figure [2]
with a scaling factor varying between 0.5 and 3, and a true number of shift between 3 and
15 (solid lines, bottom).
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Figure 19: Sensitivity (top) and precision (bottom) for the solutions found by PhylogeneticEM
(red) and f1lou (blue). Each panel corresponds to a different type of mis-specification (except
Model A) and the parameters r4, s and r¢ control the level of mis-specification, with leftmost

values corresponding to no mis-specification. For the ARI, the solid lines represent the
maximum (1) and expected (0, for a random solution) ARI values.


https://doi.org/10.1101/146191
http://creativecommons.org/licenses/by-nc-nd/4.0/

