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Abstract.— To study the evolution of several quantitative traits, the classical phylogenetic14

comparative framework consists of a multivariate random process running along the15

branches of a phylogenetic tree. The Ornstein-Uhlenbeck (OU) process is sometimes16

preferred to the simple Brownian Motion (BM) as it models stabilizing selection toward an17

optimum. The optimum for each trait is likely to be changing over the long periods of time18

spanned by large modern phylogenies. Our goal is to automatically detect the position of19

these shifts on a phylogenetic tree, while accounting for correlations between traits, which20
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might exist because of structural or evolutionary constraints. We show that, in the21

presence shifts, phylogenetic Principal Component Analysis (pPCA) fails to decorrelate22

traits efficiently, so that any method aiming at finding shift needs to deal with correlation23

simultaneously. We introduce here a simplification of the full multivariate OU model,24

named scalar OU (scOU), which allows for noncausal correlations and is still25

computationally tractable. We extend the equivalence between the OU and a BM on a26

re-scaled tree to our multivariate framework. We describe an Expectation Maximization27

algorithm that allows for a maximum likelihood estimation of the shift positions,28

associated with a new model selection criterion, accounting for the identifiability issues for29

the shift localization on the tree. The method, freely available as an R-package30

(PhylogeneticEM) is fast, and can deal with missing values. We demonstrate its efficiency31

and accuracy compared to another state-of-the-art method (`1ou) on a wide range of32

simulated scenarios, and use this new framework to re-analyze recently gathered datasets33

on New World Monkeys and Anolis lizards.34

(Keywords: Ornstein-Uhlenbeck, Change-point detection, Adaptive evolution, Phylogeny,35

Model selection, PhylogeneticEM)36

37

Motivation38

A major goal of comparative and evolutionary biology is to decipher the past39

evolutionary mechanisms that shaped the present day diversity. Taking advantage of the40
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increasing amount of molecular data made available by powerful sequencing techniques,41

sophisticated mathematical models have made it possible to infer reliable phylogenetic42

trees for ever growing groups of taxa (see e.g. Meredith et al. 2011; Jetz et al. 2012).43

Models of phenotypic evolution for such large families need to cope with the heterogeneity44

of observed traits across the species tree. One source of heterogeneity is the mechanism of45

“evolution by jumps” as hypothesized by Simpson (1944). It states that there exists an46

adaptive landscape shaping the evolution of functional traits, and that this landscape47

might shift, sometimes in a dramatic fashion, in response to environmental changes such as48

migration, or colonization of a new ecological niche. Such shifts, like the one observed in49

the brain shape and size of New World Monkeys in association with dietary and50

locomotion changes (Aristide et al. 2015, 2016), need to be explicitly accounted for in51

models of phenotypic evolution.52

To detect such adaptive shifts, we must cope with two constraints: species do not53

evolve independently (Felsenstein 1985) and adaptive evolution is an intrinsically54

multivariate phenomenon. The first constraint arises from the shared evolutionary history55

of species, usually represented as a phylogenetic tree. It means that traits observed on56

closely related taxa are on average more similar than traits observed on distantly related57

species. The second constraint results from natural selection acting on many traits at once.58

Functional traits are indeed often interdependent, either because they are regulated by the59

same portions of the genetic architecture or because they are functionally constrained (e.g.60

limb bones lengths in Greater Antillean Anolis lizards Mahler et al. (2010)).61

This work aims to develop a likelihood-based method to detect rapid adaptive62

events, referred to as shifts, using a time calibrated phylogenetic tree and potentially63

incomplete observations of a multivariate functional trait at the tips of that tree. The64

shifts can be used to cluster together species sharing a common adaptive history.65
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State of the Art66

Phylogenetic comparative methods (PCM) are the de facto tools for studying67

phenotypic evolution. Most of them can be summarized as stochastic processes on a tree.68

Specifically, given a rooted phylogeny, the traits evolve according to a stochastic process on69

each branch of the tree. At each speciation event, one independent copy with the same70

initial conditions is created for each daughter species. A common stochastic process in this71

setting is the Brownian Motion (BM, Felsenstein 1985). It is well suited to model the72

random drift of a quantitative, neutral and polygenic trait (see e.g. Felsenstein 2004, chap.73

24). Unfortunately, the BM has no stationary distribution and cannot adequately model74

adaptation to a specific optimum (Hansen and Orzack 2005). The Ornstein-Uhlenbeck75

(OU) process is therefore preferred to the BM in the context of adaptive evolution (Hansen76

1997; Hansen et al. 2008). Note that, as pointed out by Hansen et al. (2008) and Cooper77

et al. (2016), this model is distinct from the process theoretically derived by Lande (1976)78

for stabilizing selection toward an optimum on an adaptive landscape at a79

micro-evolutionary timescale, and is better seen as a heuristic for the macro-evolution of80

the “secondary optima” themselves in a Simpsonian interpretation of evolution (Hansen81

et al. 2008). Recently, Levy processes have also been used to capture Simpsonian evolution82

(Landis et al. 2013; Duchen et al. 2017).83

Extensions to multivariate traits have been proposed for both BM (Felsenstein84

1985) and OU processes (Bartoszek et al. 2012). Cybis et al. (2015) considered even more85

complex models, with a mix of both quantitative and discrete characters modeled with an86

underlying multivariate BM and a threshold model (Felsenstein 2005, 2012) for drawing87

discrete characters from the underlying continuous BM.88

The work on adaptive shifts also enjoyed a growing interest in the last decade. In89

their seminal work, Butler and King (2004) considered a univariate trait with known shift90

locations on the tree and estimated shift amplitudes in the trait optimal value using a91
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maximum-likelihood framework. Beaulieu et al. (2012) extended the work by estimating92

shift amplitudes not only in the optimal value but also in the evolutionary rate. The focus93

then moved to estimating the number and locations of shifts. Eastman et al. (2011, 2013)94

detected shifts, respectively, in the evolutionary rate or the trait expectations, for traits95

evolving as BM, in a Bayesian setting using reversible jump Markov Chain Monte Carlo96

(rjMCMC). Ingram and Mahler (2013); Uyeda and Harmon (2014); Bastide et al. (2016)97

detected shifts in the optimal value of a trait evolving as an OU. Uyeda and Harmon98

(2014) and Bastide et al. (2016) detect all shifts for a given number of shifts and use either99

rjMCMC or penalized likelihood to select the number of shifts. By contrast, Ingram and100

Mahler (2013) uses a stepwise procedure, based on AIC, to detect shifts sequentially,101

stopping when adding a shift does not improve the criteria anymore.102

Extensions from univariate to multivariate shifts are more recent. It should be103

noted that all methods assume that shifts affect all traits simultaneously. Given known104

shift locations and a multivariate OU process, Bartoszek et al. (2012) was the first to105

develop a likelihood-based method (package mvSLOUCH) to estimate both matrices of106

multivariate evolutionary rates and selection strengths. Clavel et al. (2015) soon followed107

with mvmorph, a comprehensive package covering a wide range of multivariate processes.108

Detection of shifts in multivariate traits is more involved and both Ingram and Mahler109

(2013) and Khabbazian et al. (2016) make the simplifying assumption that all traits are110

independent, conditional on their shared shifts. Ingram and Mahler (2013) then proceed111

with the same stepwise procedure as in the univariate case whereas Khabbazian et al.112

(2016) uses a lasso-regression to detect the shifts and a phylogenetic BIC (pBIC) criterion113

to select the number of shifts.114

Scope of the Article115

In this work, we present a new likelihood-based method to detect evolutionary shifts116
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in multivariate OU models. We make the simplifying assumptions that all traits have the117

same selection strength but, unlike in Khabbazian et al. (2016) and Ingram and Mahler118

(2013), traits can be correlated. Our contribution is multifaceted. We show that the scalar119

assumption that we make (see Section Model) and the independence assumption share a120

similar feature in their structure that make the shift detection problem tractable. Building121

upon a formal analysis made in the univariate case (Bastide et al. 2016), we show that the122

problem suffers from identifiability issues as two or more distinct shift configurations may123

be indistinguishable. We propose a latent variable model combined with an OU to BM124

reparametrization trick to estimate the unknown number of shifts and their locations. Our125

method is fast and can handle missing data. It also proved accurate in a large scale126

simulation study and was able to find back known shift locations in re-analysis of public127

datasets. Finally, we show that the standard practice of decorrelating traits using128

phylogenetic principal component analysis (pPCA) before using a method designed for129

independent traits can be misleading in the presence of shifts.130

The article is organized as followed. We present the model and inference procedure131

in Section Model, the theoretical bias of pPCA in the presence of shifts in Section pPCA132

and Shifts, the simulation study in Section Simulations Studies, the re-analysis of the New133

World Monkeys and Greater Antillean Anolis lizards datasets in Section Examples and134

discuss the results and limitations of our method in Section Discussion.135

Model136

Trait Evolution on a Tree137

Tree.— We consider a fixed and time-calibrated phylogenetic tree linking the present-day138

species studied. The tree is assumed ultrametric with height h, but with possible139
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polytomies. We denote by n the number of tips and by m the number of internal nodes,140

such that N = n+m is the total number of nodes. For a fully bifurcating tree, m = n− 1,141

and N = 2n− 1.142

Traits.— We note Y the matrix of size n× p of measured traits at the tips of the tree. For143

each tip i, the row-vector Yi represents the p measured traits at tip i. Some of the data144

might be missing, as discussed later (see Section Statistical Inference).145

Brownian Motion (BM).— The multivariate BM has p+ p(p+ 1)/2 parameters: p for the146

ancestral mean value vector µ, and p(p+ 1)/2 for the drift rate (in the genetic sense)147

matrix R. The variance of a given trait grows linearly in time, and the covariance between148

two traits k and l at nodes i and j is given by tijRkl, where tij is the time elapsed between149

the root and the most recent common ancestor (MRCA) of i and j (see e.g. Felsenstein150

2004, chap. 24). Using the vectorized version of matrix Y (where vec(Y) is the vector151

obtained by “stacking” all the columns of Y), we get: Var [vec(Y)] = R⊗C, where ⊗ is152

the Kronecker product, and C = [tij]1≤i,j≤n.153

Ornstein-Uhlenbeck (OU).— The Ornstein-Uhlenbeck process has p2 extra parameters in154

the form of a selection strength matrix A. The traits evolve according to the stochastic155

differential equation dXt = A(β −Xt)dt+ RdWt, where Wt stands for the standard156

p-variate Brownian motion. The first part represents the attraction to a “primary157

optimum” β, with a dynamic controlled by A. This matrix is not necessarily symmetric in158

general, but it must have positive eigenvalues for the traits to indeed be attracted to their159

optima. This assumption also ensures the existence of a stationary state, with mean β and160

variance Γ (see Bartoszek et al. 2012; Clavel et al. 2015, for further details and general161

expression of Γ).162

Shifts.— We assume that some environmental changes affected the traits evolution in the163
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past. In the BM model, we take those changes into account by allowing the process to be164

discontinuous, with shifts occurring in its mean value vector (as e.g. Eastman et al. 2013).165

This is reasonable if the adaptive response to a change in the environment is fast enough166

compared to the evolutionary time scale. For the OU, we assume that environmental167

changes result in a shift in the primary optimum β (as e.g. Butler and King 2004). The168

process is hence continuous, and goes to a new optimum, with a dynamic controlled by A.169

In both cases, we make the standard assumptions that all traits shift at the same time (but170

with different magnitudes), that each shift occurs at the beginning of its branch, and that171

all other parameters (A,R) of the process remain unchanged. We further assume that each172

jump induces a specific optimum, which implies that there is no homoplasy for the173

optimum, that is, no convergent evolution.174

Simplifying Assumptions175

Trait Independence Assumption.— The general OU as described above is computationally176

hard to fit (Clavel et al. 2015), even when the shifts are fixed a priori. For automatic177

detection to be tractable in practice, several assumptions can be made. The two methods178

that (to our knowledge) tackle this problem in the multivariate setting assume that all the179

traits are independent, i.e. that matrices A and R are diagonal (Ingram and Mahler 2013;180

Khabbazian et al. 2016). This is often justified by assuming that a priori preprocessing181

with phylogenetic Principal Component Analysis (pPCA, Revell 2009) leads to182

independent traits. However, pPCA assumes a no-shift BM evolution of the traits, and it183

can introduce a bias in the downstream analysis conducted on the scores, as shown by184

Uyeda et al. (2015). The choice of the number of PC axes to keep is also crucial, and can185

qualitatively change the results obtained, leading to the detection of artificial shifts near186

the root when not enough PC axes are kept for the analysis, as observed by Khabbazian187
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et al. (2016). Finally, we show theoretically (Section pPCA and Shifts) and numerically188

(Section Simulations Studies, last paragraph) that pPCA fails to decorrelate the data in189

the presence of shifts and may even hamper shift detection accuracy.190

Scalar OU (scOU).— We offer here an alternative to the independence assumption.191

Computations are greatly simplified when matrices A and R commute. This happens when192

both of these matrices are diagonal for example, or when R is unconstrained and A is193

scalar, i.e. of the form A = αIp, where Ip is the identity matrix. We call a process194

satisfying the latter assumptions a scalar OU (scOU), as it behaves essentially as a195

univariate OU. In particular, its stationary variance is simply given by Γ = R/(2α)196

(analogous to the formula γ2 = σ2/(2α) in the univariate case, see e.g. Hansen 1997).197

We define the scOU model as follows: at the root ρ, the traits are either drawn from198

the stationary normal distribution with mean µ and variance Γ (Xρ ∼ N (µ,Γ)), or fixed199

and equal to µ. The initial optimum vector is β0 and the conditional distribution of trait200

Xi at node i given trait Xpa(i) at its parent node pa(i) is201

Xi
∣∣ Xpa(i) ∼ N

(
e−α`iXpa(i) + (1− e−α`i)βi,

1

2α
(1− e−α`i)R

)
(1)

where βi = βpa(i) + ∆i is the optimal value of the process on the branch with length `i202

going from pa(i) to i and ∆ is the N × p matrix of shifts on the branches of the tree: for203

any node i and any trait l, ∆il is 0 if there are no shift on the branch going from pa(i) to i,204

and the value of the shift on trait l otherwise. At the root, we define βρ = β0 and, for each205

trait l: ∆ρl = e−αhµl + (1− e−αh)β0l, where h is the age of the root (or tree height).206

The scOU model can also be expressed under a linear form. Let U be the N ×N207

matrix where Uij is 1 if node j is an ancestor of node i and 0 otherwise. Let T be the208

n×N matrix made of the n rows of U corresponding to tip taxa. For a given α, we further209

define the diagonal N matrix W(α) with diagonal term Wii(α) = 1− e−αapa(i) for any210
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non-root node i, where apa(i) is the age of node pa(i), and Wρρ(α) = 1 for the root node ρ.211

Then the joint distribution of the observed traits Y is normal212

vec(Y) ∼ N (vec(TW(α)∆),R⊗ F(α)) (2)

where F(α) is the symmetric scaled correlation matrix between the n tips, with entries213

Fij = 1
2α
e−αdij if the root is drawn from the stationary distribution, and214

Fij = 1
2α
e−2αdij(1− e−2αtij) if the root is fixed, where dij is the tree distance between nodes215

i and j. In the next section, this will allow us to rewrite scOU as a BM on a tree with216

rescaled branch lengths. This observation is at the core of our statistical inference strategy.217

The scOU process allows us to handle the correlations that might exist between218

traits, and spares us from doing a preliminary pPCA. This however comes at the cost of219

assuming that all the traits evolve at the same rate toward their respective optima, with220

the same selection strength α. See the Discussion for further analysis of these assumptions.221

Identifiability Issues222

Root State.— It can be easily checked that the parameters µ and β0 at the root are not223

jointly identifiable from observations at the tips of an ultrametric tree, only the224

combination λ = e−αhµ + (1− e−αh)β0 is. See Ho and Ané (2014) for a derivation in the225

univariate case. Note that λ corresponds to the first row of the shift matrix ∆. As we226

cannot decide from the data, we assume by default β0 = µ = λ.227

Shift Position.— The location of the shifts may not always be uniquely determined, as228

several sets of locations (and magnitudes) may yield the same joint marginal distribution of229

the traits at the tips. These identifiability issues have been carefully studied in Bastide230

et al. (2016) for the univariate case. Because we assume that all traits shift at the same231
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time, the sets of equivalent shift locations are the same in the multivariate case as in the232

univariate case; only the number of parameters involved is different. So, the problem of233

counting the total number of parsimonious, non-equivalent shift allocations remains the234

same, as well as the problem of listing the allocations that are equivalent to a given one.235

As a consequence, all the combinatorial results and algorithms used in Bastide et al. (2016)236

are still valid here; only the model selection criterion needs be adapted (see Section237

Statistical Inference).238

Re-scaling of the Tree239

Equivalency scOU / rBM.— As recalled above, the inference of OU models raises specific240

issues, mostly because some maximum likelihood estimates do not have a closed form241

expression. Many of these issues can be circumvented using the equivalence between the242

univariate BM and OU models described in Blomberg et al. (2003); Ho and Ané (2013);243

Pennell et al. (2015), for ultrametric trees, when α is known. Thanks to the scalar244

assumption, this equivalence extends to the multivariate case. Indeed, the marginal245

distribution of the traits at the observed tips Y given in (2) is the same as the one arising246

from a BM model on a re-scaled tree defined by:247

Xρ ∼ N (β0, `ρ(α)R) or Xρ = β0 (fixed)

Xi
∣∣ Xpa(i) ∼ N

(
Xpa(i) + ∆i(α), `i(α)R

)
, for non-root node i.

where `ρ(α) = 1
2α
e−2αh, `i(α) = 1

2α
e−2αh

(
e2αti − e2αtpa(i)

)
, and248

∆i(α) = (W(α)∆)i = (1− e−α(h−tpa(i)))∆i. Note that, when the root is taken random,249

everything happens as if we added a fictive branch above the root with length `ρ(α). The250

length of this branch increases when α goes to zero.251
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We emphasize that only the distribution of the observed traits Y is preserved and252

not the distribution of the complete dataset X. As a consequence, ancestral traits at253

internal nodes cannot be directly inferred using this representation. Still, the equivalence254

recasts inference of R and W(α)∆ in the scOU model into inference of the same255

parameters in a much simpler BM model, albeit on a tree with rescaled branch lengths256

`i(α). Note that the rescaling depends on α, which needs to be inferred separately. See the257

discussion (Section Interpretation Issues) for further analysis of this re-scaling.258

Statistical Inference259

Incomplete Data Model.— We now discuss how to infer the set of parameters θ = (∆,R).260

We adopt a maximum likelihood strategy, which consists in maximizing the log-likelihood261

of the observed tip data log pθ(Y) with respect to θ to get the estimate θ̂. The maximum262

likelihood estimate θ̂ is difficult to derive directly as the computation of log pθ(Y) requires263

to integrate over the unobserved values of the traits at the internal nodes. We denote by Z264

the unobserved matrix of size m× p of these ancestral traits at internal nodes of the tree:265

for each internal node j, Zj is the row-vector of the p ancestral traits at node j. Following266

Bastide et al. (2016), we use the expectation-maximization (EM) algorithm (Dempster267

et al. 1977) that relies on an incomplete data representation of the model and takes268

advantage of the decomposition of log pθ(Y) as E [ log pθ(Y,Z) | Y ]−E [ log pθ(Z | Y) | Y ].269

EM.— The M step of the EM algorithm consists in maximizing E [log pθ (Y,Z) | Y ] with270

respect to θ. For a given value of α, thanks to the rescaling described in Section Model,271

the formulas to update ∆ and R are explicit (see Appendix EM Inference). The272

optimization of α is achieved over a grid of values, at each point of which a complete EM273

algorithm is run.274

At the M step, we need the mean and variance of the unobserved traits Zj at each internal275
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node j conditional on the observed traits Y at the tips. The E step is dedicated to the276

computation of these values, which can be achieved via an upward-downward recursion277

(Felsenstein 2004). The upward path goes from the leaves to the root, computing the278

conditional means and variances at each internal node given the values of its offspring in a279

recursive way. The downward recursion then goes from the root to the leaves, updating the280

values at each internal node to condition on the full taxon set. Thanks to the joint281

normality of the tip and internal node data, all update formulas have closed form matrix282

expressions, even when there are some missing values (see Appendix EM Inference).283

Initialization.— The EM algorithm is known to be very sensitive to the initialization.284

Following Bastide et al. (2016), we take advantage of the linear formulation (2) to initialize285

the shifts position using a lasso penalization (Tibshirani 1996). This initialization method286

is similar to the procedure used in `1ou (Khabbazian et al. 2016). See Appendix EM287

Inference for more details.288

Missing Data.— EM was originally designed to handle missing data. As a consequence, the289

algorithm described above also applies when some traits are unobserved for some taxa.290

Indeed, the conditional distribution of the missing traits given the observed ones can be291

derived in the same way as in the E step. However, missing data break down the factorized292

structure of the dataset and some computational tricks are needed to handle the missing293

data efficiently (see Appendix EM Inference).294

Model Selection.— For each value of the number of shifts K, the EM algorithm described295

above provides us with the maximum likelihood estimate θ̂K . K needs to be estimated to296

complete the inference procedure. We do so using a penalized likelihood approach. The297

model selection criterion relies on a reformulation of the model in terms of multivariate298

linear regression, where we remove the phylogenetic correlation, like independent contrasts299
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and PGLS do. We can re-write (2), for a given α, as300

Ỹ = T̃∆ + E where Ỹ = F(α)−1/2Y, T̃ = F(α)−1/2TW(α),

where E is a n× p matrix with independent and identically distributed rows, each row301

being a (transposed) centered Gaussian vector with variance R. In the univariate case302

(Bastide et al. 2016), this representation allowed us to cast the problem in the setting303

considered by Baraud et al. (2009), and hence to derive a penalty on the log-likelihood, or,304

equivalently, on the least squares. Taking advantage of the well known fact that the305

maximum likelihood estimators of the coefficients are also the least square ones, and do not306

depend on the variance matrix R (see, e.g. Mardia et al. 1979, Section 6), we propose to307

estimate K using the penalized least squares:308

K̂ = arg min
K

(
1 +

pen(K)

n−K

) p∑
j=1

‖Ỹj −
̂̃
Y
K

j ‖2

where Ỹj is the column of Ỹ for the j-th trait, and
̂̃
Y
K

j the predicted means for trait j309

from the best model with K shifts. Using the EM results, this can be written as:310

K̂ = arg min
K

(
1 +

pen(K)

n−K

)
tr
[
R̂(K, α̂)

]

where R̂(K, α̂) is the ML estimate of the variance parameter obtained by the EM for a311

fixed number K of shifts. The penalty is the same as in the univariate case:312

pen(K) = A
n−K − 1

n−K − 2
EDkhi

[
K,n−K − 2, (K + 1)2/|SPI

K |
]

where EDkhi is the function from Definition 3 from Baraud et al. (2009) and |SPI
K | is the313

number of parsimonious identifiable sets of locations for K shifts, as defined in Bastide314
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et al. (2016). It hence might depends on the topology of the tree, for a tree with315

polytomies. For a fully resolved tree, |SPI
K | =

(
2n−2−K

K

)
. A is a normalizing constant, that316

must be greater than 1. In Baraud et al. (2009), the authors showed that it had little317

influence in the univariate case, and advised for a value around A = 1.1. We took this318

value as a default.319

The criterion is directly inspired from the univariate case and inherits its theoretical320

properties in the special case R = σ2Ip. In general however, the criterion should be seen as321

a heuristic, although with good empirical properties (see Section Simulations Studies).322

Implementation323

We implemented the method presented above in the PhylogeneticEM R package (R Core324

Team 2017), available on the Comprehensive R Archive Network (CRAN). A thorough325

documentation of its functions, along with a brief tutorial, is available from the GitHub326

repository of the project (pbastide.github.io/PhylogeneticEM). Thanks to a327

comprehensive suite of unitary tests, that cover approximately 79% of the code328

(codecov.io/gh/pbastide/PhylogeneticEM), and that are run automatically on an329

independent Ubuntu server using the continuous integration tool Travis CI330

(travis-ci.org), the package was made as robust as possible. The computationally331

intensive parts of the analysis, such that the upward-downward algorithm of the M step,332

have been coded in C++ to improve performance (see Section Simulations Studies for a333

study of the computation times needed to solve problems of typical size). Because the334

inference on each α value on the grid used is independent, they can be easily be done in335

parallel, and a built in option allows the user to choose the number of cores to be allocated336

to the computations.337

pPCA and Shifts338
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Shift detection in multivariate settings is usually done by first decorrelating traits339

with pPCA before feeding phylogenetic PCs to detection procedures that assume340

independent traits. We show hereafter that even in the simple BM setting, phylogenetic341

PC may still be correlated in the presence of shifts. The problem is only exacerbated in the342

OU setting.343

pPCA is biased in the presence of shifts344

Assume that the traits evolve as a shifted BM process on the tree, so that345

vec(Y) ∼ N (vec(a),R⊗C), with a being the n× p matrix of trait means at the tips.346

Decomposing R as R = VD2VT , pPCA relies on the fact that the columns of the matrix347

YV are independent. Therefore, its efficiency relies on an accurate estimation of R.348

The estimate of R used in pPCA is R̂ = (n− 1)−1(Y − 1nȲ
T )TC−1(Y − 1nȲ

T ),349

where ȲT = (1TnC−11n)−11TnC−1Y, which is known as the estimated phylogenetic mean350

vector (Revell 2009). Decomposing the estimate of R as R̂ = V̂D̂2V̂T , pPCA then351

computes the scores as S = (Y − 1nȲ
T )V̂.352

In the absence of shift, all species have the same mean vector µ so a = 1nµ
T and353

E
[
Ȳ
]

= µ. In the presence of shifts, species do not all share the same mean vector so the354

uniform centering is not valid anymore. As a consequence, the estimate of R is biased (see355

appendix PCA: Mathematical Derivations):356

E
[
R̂
]

= R + B where B =
1

n− 1
GTC−1G, G = a− 1nā

T (3)

The extra term B is analogous to the between-group variance in the context of linear357

discriminant analysis and cancels out in the absence of shifts (note that R is analogous to358

the within-group variance, see Mardia et al. 1979). Because R̂ is biased, the columns of the359

score matrix S resulting from pPCA are still correlated. We illustrate this phenomenon360
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below using toy examples.361

Illustration: a simple example362

To illustrate the impact of shifts on the decorrelation performed by (p)PCA, we used the363

simple tree presented in Figure 1a and considered three scenarios. In all scenarios, we364

simulated two highly correlated traits under a BM starting from (0, 0) at the root and with365

covariance matrix R =

 1 −0.9

−0.9 1

. The tree has two clearly marked clades, designed366

to highlight the differences between pPCA and PCA. R is identical in all scenarios; any367

preprocessing aiming at decorrelating the traits should retrieve the eigenvectors of R as368

PCs. In the first scenario, there are no trait shifts on the tree, corresponding to the pPCA369

assumptions, and pPCA is indeed quite efficient in finding the PCs (see Fig. 1b, left panel).370

In the second scenario, we added a shift on a long branch. This shift induces a species371

structure in the trait space that misleads standard PCA. The same structure can however372

be achieved by a large increment of the BM on that branch and large increments are likely373

on long branches. pPCA therefore copes with the shift quite well and is able to recover374

accurate PCs. More quantitatively, the bias induced by the shift on R̂ is quite small,375

B =

0.16 0.08

0.08 0.04

, around one tenth of the values of R. In the third scenario, we put a376

shift on a small branch. The structure induced by the shift “breaks down” the upper clade377

and is unlikely to arise from the increment of a BM on that branch. It is therefore378

antagonistic to pPCA and results in a large bias for R̂: the extra term B is equal to379 1.58 0.79

0.79 0.4

 and comparable to R. In that scenario, both PCA and pPCA find axes that380

are far away from the eigenvectors of R (Figure 1b, right panel). The first eigenvector of R381

captures the evolutionary drift correlation between traits, whereas the PCs of both PCA382
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and pPCA capture a mix of evolutionary drift correlation and correlation resulting from383

shifts along the tree.384
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Figure 1: Bivariate traits simulated as a BM under three scenarios: no shift (left), shift on
a long branch (middle) and shift on a short branch (right). Species affected by the shift
are in dark red. Top: Phylogenetic tree, shift position and simulated trait values. Bottom:
Scatterplot of species in the trait space and corresponding first eigenvector computed from
the true covariance R (red) or found by PCA (green) and pPCA (blue).

Simulations Studies385

Experimental Design386

General Setting.— We studied the performance or our method using a “star-like”387

experimental design, as opposed to a full-factorial design. We first considered a base388

scenario, corresponding to a base parameter set, and then varied each parameter in turn to389
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assess its impact as in Khabbazian et al. (2016). The base scenario was chosen to be only390

moderately difficult, so that our method would find shifts most but not all of the time.391

For the base scenario, we generated one 160-taxon tree according to a pure birth392

process, using the R package TreeSim (Stadler 2011), with unit height and birth rate393

λ = 0.1. We then generated 4 traits on the phylogeny according to the scOU model, with a394

rather low selection strength αb = 1 (t1/2 = 69% of the tree height), and with a root taken395

with a stationary variance of γ2
b = σ2

b/(2αb) = 1. Diagonal entries of the rate matrix R are396

σ2
b and off-diagonal entries were set to σ2

brd with a base correlation of rd = 0.4 (correlated397

traits) when testing the effect of shift number and amplitude, or rd = 0 (independant398

traits) otherwise.399

Finally, we added three shifts on this phylogeny, with fixed positions (see Figure 2).400

Shift amplitudes were calibrated so that the means at the tips differ by about 1 standard401

deviation, which constitute a reasonable shift signal (Khabbazian et al. 2016). Each402

configuration was replicated 100 times. We then used both our PhylogeneticEM and `1ou403

package (Khabbazian et al. 2016) to study the simulated data. We excluded SURFACE404

(Ingram and Mahler 2013) from the comparison at is (i) quite slow, (ii) assumes the same405

evolutionary model as `1ou and (iii) was found to achieve worse accuracy than `1ou406

(Khabbazian et al. 2016). We used default setting for both methods. For PhylogeneticEM407

this implies an inference on an automatically chosen grid with 10 α values, on a log scale,408

and a maximum number of shifts of
√
n+ 5 (See Bastide et al. 2016 and Appendix EM409

Inference for a justification of these default parameters).410

Number and Amplitude of Shifts.— We explored the effect of shifts by varying both their411

number and amplitude. We considered successively 0, 3, 7, 11, 15 shifts on the topology,412

with positions and values fixed as in Figure 2. Shifts values were chosen to form well413

separated tip groups; adjacent (in the tree) group means differ by about 1 standard414
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deviation γb. To mimic adaptive events having different consequences on different traits, all415

shifts on a trait were then randomly multiplied by −1 or +1. Finally and to assess the416

effect of shift amplitude, we rescaled all shifts by a common factor taking values in [0.5 , 3].417

Low scaling values correspond to smaller, harder to detect, shifts and high values to larger418

and easier to detect shifts.419
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Figure 2: Shifts locations and magnitudes used in the base scenario. Mean trait values are
identical for the 4 traits, up to a multiplicative ±1 factor and shown at the tips. Colors
correspond to the different regimes. The bar plots on the right represent the expected traits
values under the base model.

Selection Strength.— When exploring parameters not related to the shifts, we considered a420

base number of 3 shifts and a base scaling factor of 1.25, empirically found to correspond421

to a moderately difficult scenario. We also assumed independent traits with the same422
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variance and selection strength (i.e. scalar A and R, see model A in423

appendix Kullback-Leibler Divergences). We first varied α from 1 to 3 (i.e. t1/2 varied424

between 35% and 23% of the tree height). The variance σ2 varied with α to ensure that the425

stationary variance γ2
b remained fixed at γ2

b = 1.426

Model Mis-specification.— The two current frameworks (`1ou and scOU) for multivariate427

shift detection assume independents traits (diagonal A and R) or correlated traits with428

equal selection strengths (scalar A and arbitrary R). To assess robustness to model429

mis-specification, we simulated data under four classes of models, referred to as A, B, C, D.430

Model A is correctly specified for both scOU and `1ou whereas B, C, D correspond431

respectively to mis-specifications for `1ou, scOU and both. We used the Kullback-Leibler432

divergence between models A and B (resp. C, D) to choose parameters that attain433

comparable “levels” of mis-specification (see appendix Kullback-Leibler Divergences for434

details).435

� Model A assumes scalar A and R (independent traits, same selection strength and436

variance) and meets the assumptions of both scOU and `1ou.437

� Model B assumes scalar A and arbitrary R (correlated traits, same selection438

strength) and corresponds to the scOU model. The level of correlation is controlled439

by setting all off-diagonal terms to σ2
brd in R. Following Khabbazian et al. (2016), rd440

varies from 0.2 to 0.8, leading to Kullback divergences of up to 288.36 units.441

� Model C assumes diagonal, but not scalar, A, and diagonal R (independent traits,442

different selection strengths), which matches the assumptions of `1ou only. We443

considered A = αDiag(s−1.5, s−0.5, s0.5, s1.5) with s varying from 2 to 8. We444

accordingly set R = 2γ2
bA to ensure that all traits have stationary variance γ2

b = 1.445

This led to Kullback divergences of up to 286.78 units.446
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� Model D assumes non-diagonal A and diagonal R (uncorrelated drift, but correlated447

traits selection) and violates both models. Following Khabbazian et al. (2016), all448

off-diagonal elements of A were set to αbrs, varying from 0.2 to 0.8. In this case, the449

stationary variance is not diagonal but has diagonal entries equal to σ2

2
1+(p−2)rs

(1−rs)(1+(p−1)rs)
.450

We thus rescaled σ2 appropriately to ensure that each trait has marginal stationary451

variance γ2
b = 1 as previously. This led to Kullback divergences of up to 112.98 units.452

We expected `1ou to outperform scOU in model C and vice versa in model B. To be453

fair to both methods, we selected parameter ranges leading to similar Kullback divergences,454

to achieve similar levels of mis-specifications. However, both deviations produce datasets455

with groups that are also theoretically easier to discriminate compared to model A (see456

Figure 3). Indeed, we can quantify the difficulty of a dataset in terms of group separation457

by the Mahalanobis distance between the observed data and their expected mean,458

(phylogenetically) estimated in the absence of shifts:459

D =
∥∥Yvec − (1TΣd1)−11TΣdYvec

∥∥2

Σd
−1 − (np−NNA) (4)

where Yvec is the vector of observed data at the tips (omitting missing values), Σd is the460

true variance of Yvec and NNA is the number of missing values. In the absence of shifts461

E [D] = 0 and E [D] increases when groups are well separated.462

Number of Observations.— We varied the number of observations by (i) varying the463

number of taxa and (ii) adding missing values. To change the number of taxa, we464

generated 6 extra trees with the same parameters as before but with 32 to 256 taxa. The465

three shifts were fixed as in Figure 4. To test the ability of our method to handle missing466

data, we removed observations at random in our base scenario, taking care to keep at least467

one observed trait per species, so as not to change the number of taxa. The fraction of468
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Figure 3: Impact of trait correlation rd (left) and unequal selection strengths s (right) on
group separation, as defined in Eq. (4). Unequal selection strengths (s > 1) and trait
correlations (rd > 0) both increase group separation and make it easier to detect shifts.

missing data varied from 5% to 50%.469
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Figure 4: Shifts locations and magnitudes used for the test trees with, respectively, 32, 64,
96, 128, 192, 256 taxa.

Results470
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Number and Amplitude of Shifts.— We assessed shifts detection accuracy with the Adjusted471

Rand Index (ARI, Hubert and Arabie 1985) between the true clustering of the tips, and the472

clustering induced by the inferred shifts (Fig. 5, top). Before adjustment, the Rand index473

is proportional to the number of pairs of species correctly classified in the same group or474

correctly classified in different groups. The ARI has maximum value of 1 (for a perfectly475

inferred clustering) and has expected value of 0, conditional on the inferred number and476

size of clusters. We use this measure rather than the classical precision/sensitivity graphs477

as only the clustering can be recovered unambiguously (see Section Model). Note also that478

when there is no shift (K = 0), there is only one true cluster, and the ARI is either 1 if no479

shift is found, or 0 otherwise (see appendix Note on the ARI).480

Figure 5 (top panel) shows that, unsurprisingly, both methods detect the number481

and positions of shifts more accurately when the shifts have higher amplitudes.482

PhylogeneticEM is also consistently better than `1ou when there is a base correlation (here,483

rb = 0.4, see section Simulations Studies), which is expected as the independence484

assumption of `1ou is then violated. The case K = 0 (no shift) shows that `1ou485

systematically finds shifts when there are none, leading to an ARI of 0. More generally,486

`1ou is prone to over-estimating the number of shifts, even when they have a high487

magnitude (Fig. 5, bottom) whereas PhylogeneticEM is more conservative and488

underestimates the number of shifts when they are difficult to detect.489

Selection Strength and Model Mis-specifications.— Our method is relatively robust to490

model mis-specification (Fig. 6, top). The first panel confirms that, under model A, high491

values of α reduce the stationary variance and lead to higher ARI values and lower RMSEs492

for continuous parameters (Fig. 6, bottom, leftmost panel). Similarly, scOU (resp. `1ou)493

achieves high ARI values under well specified models A and B (resp. A and C). The494

mis-specification of model C (different selection strengths) does not affect scOU much: it495
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Figure 5: ARI (top) and number of shifts selected (bottom) for the solutions found by
PhylogeneticEM (red) and `1ou (blue). Each box corresponds to one of the configuration
shown in Figure 2, with a scaling factor varying between 0.5 and 3, and a true number
of shift between 0 and 15 (solid lines, bottom). For the ARI, the two lines represent the
maximum (1) and expected (0, for a random solution) ARI values.

has higher ARI dispersion than `1ou but their median ARI are comparable. By contrast,496

`1ou is severely affected by correlated evolution (model C) and higher levels of correlations497

lead to significantly lower accuracy, even though group separation is increased (Fig. 3,498

right). Finally, both methods are negatively affected by correlated selection strengths499

(Model D), although `1ou seems more robust to this type of mis-specification.500

Although shift detection is relatively unaffected by model mis-specification,501

parameter estimations suffers from it (Fig. 6, bottom, center and right panels). Both `1ou502

and scOU behave better for model A than for model D and as expected, scOU is not503

affected by trait correlation (model B) whereas `1ou is. Unequal selection strengths (model504

C) degrades parameter estimation for both PhylogeneticEM and, surprisingly, `1ou, that505
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should in principle remain unaffected. Overall, features of trait evolution not properly506

accounted for by the inference methods (e.g. correlated selection strengths) are turned into507

overestimated variances. Note that the quality of the estimation of Γ is depends strongly508

on the estimation of α, and could be improved by taking a finer grid for this parameter.509
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Figure 6: ARI (top) and root mean squared error (RMSE) of the diagonal values of the
estimated stationary variance Γ (bottom) for the solutions found by PhylogeneticEM (red)
and `1ou (blue). Each panel corresponds to a different type of mis-specification (except
Model A) and the parameters rd, s and rs control the level of mis-specification, with leftmost
values corresponding to no mis-specification. For the ARI, the solid lines represent the
maximum (1) and expected (0, for a random solution with the same number and size of
clusters) ARI values.

Number of observations and Computation Time.— For a given number of shifts, shift510

detection becomes easier as the number of taxa increases (Fig. 7, left). Furthermore, our511

method is robust against missing data with detection accuracy only slightly decreased512

when up to 50% of the observations are missing (Fig. 7, right). Finally, our implementation513
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of the EM algorithm, using only two tree traversals (see appendix EM Inference) and coded514

in C++, is reasonably fast. Inference takes roughly 15 minutes on a single core on the base515

160 taxa tree and less than 45 minutes on the largest simulated trees (256 taxa). `1ou516

scales less efficiently: it is faster for very small trees (32 taxa) but median running times go517

up to 20 hours for the large 256-taxon tree. Those long running times were unexpected and518

higher than the ones reported in Khabbazian et al. (2016). This discrepancy is partly due519

to the maximum number of shifts allowed, which strongly impacts the running time of520

`1ou. Khabbazian et al. (2016) capped it at twice the true number of shifts (6 shifts in our521

base scenario), while we used the default setting, which is half the number of tips (i.e. from522

16 to 128 shifts).523
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Figure 7: ARI of the solutions found by PhylogeneticEM (red) and `1ou (blue) when the
number of taxa (left) or the number of missing values (right) increases. No ARI is available
for `1ou when there are missing values as it does not accept them in the version used here,
v1.21.

Impact of pPCA on shift detection accuracy.— To illustrate how pPCA can both improve524

and hamper shift detection, we compared PhylogeneticEM on raw traits to `1ou on both525

raw traits and phylogenetic PCs. Figure 9a shows that in our base scenario, with three526

moderate shifts, pPCA preprocessing slightly decreases performance for low levels of527

correlations (rd ≤ 0.2) but drastically improves them for moderate to high correlations528
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Figure 8: Inference running times (in log-scale) of scOU and `1ou. All tests were run on a
high-performance computing facility with CPU speeds ranging from 2.2 to 2.8Ghz.

levels (rd ≥ 0.6). Although pre-processing is neutral at moderate correlation levels529

(rd = 0.4) with three “easy” shifts, it becomes harmful and degrades the performances of530

`1ou when the number or magnitude of the shifts increases (Fig. 9b). As expected,531

PhylogeneticEM is unaffected by the pPCA preprocessing, up to numerical issues.532
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Figure 9: ARI of the solutions found by PhylogeneticEM (red) and `1ou (blue), without (solid
lines) or with (dotted lines) pPCA preprocessing. (a) Trait correlation (rd) increases from 0
to 0.8. (b) Each box corresponds to one of the configuration shown in Figure 2, and shifts
are increasingly large with a scaling factor varying between 0.5 and 3.

Examples533
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We used PhylogeneticEM to re-analyse two publicly available datasets.534

New World Monkeys535

We first considered the evolution of brain shape in New World Monkeys studied by Aristide536

et al. (2016). The dataset consists of 49 species on a time-calibrated maximum-likelihood537

tree. The traits under study are the first two principal components (PC1, PC2) resulting538

from a PCA on 399 landmarks describing brain shape. We ran PhylogeneticEM on a grid of539

30 values for the α parameter. To make this parameter easily interpretable, we report the540

phylogenetic half-life t1/2 = ln(2)/α (Hansen 1997), expressed in percentage of total tree541

height. Here, t1/2 took values between 0.46 % and 277.26 %. We allowed for a maximum of542

20 shifts. The inference took 17.56 minutes, parallelized on 5 cores.543

The model selection criterion suggests an optimal value of K̂ = 4 shifts (Fig. 10,544

inset graph). The criterion does not show a very sharp minimum, however, and a value of545

K̂ = 5 shifts also seems to be a good candidate. In order to compare our results with that546

presented in Aristide et al. (2016), we present the solution with 5 shifts (see Fig. 10, left).547

The solution with 4 shifts is very similar, except that the group with Aotus species is548

absent (in red, see Fig. 10, and supplementary Fig. 14 in Appendix Case Study). Note549

that, because of this added group, the solution with K̂ = 5 has 3 equivalent parsimonious550

allocations of the shifts (see supplementary Fig. 15 in Appendix Case Study). The groups551

found by PhylogeneticEM (Fig. 10) are in close agreement with the ecological niches defined552

in Aristide et al. (2016). There are three main differences. First, there is no jump553

associated with the Pithecia species who, although having their own ecological niche, seem554

to have quite similar brain shapes as closely related species. Second, Callicebus and Aotus555

are marked as convergent in Aristide et al. (2016) (in red, right), but form two distinct556

groups in our model (in pink and red, left). This is due to our assumption of no homoplasy.557

Finally, the group with Chiropotes, Ateles and Cebus species (in black) was found as558
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having the “ancestral” trait optimum, while it is marked as “convergent” in Aristide et al.559

(2016). This is because we did not include any information from the fossil record (not560

available for brain shape), but instead used a parsimonious solution. Note that the coloring561

displayed in Aristide et al. (2016) is not parsimonious. The two models have the same562

number of distinct groups.563

The selected α value was found to be reasonably high, with t1/2 = 12.58%. The564

estimated correlation between the two PCs was −0.13, confirming that PCA does not565

result in independent traits.566
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Figure 10: Solution given by PhylogeneticEM for K = 5 (left) against groups defined in Aris-
tide et al. (2016, Fig. 3) (right), based on ecological criteria including locomotion (arboreal
quadrupedal walk, clamber and suspensory locomotion or clawed locomotion), diet (leaves,
fruits, seeds or insects) and group size (smaller or larger than 15 individuals). The inset
graph shows the model selection criterion. The minimum is for K = 4, but K = 5 is also a
good candidate.

Lizards567
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We then considered the dataset from Mahler et al. (2013), which consists in 100568

lizard species on a time-calibrated maximum likelihood tree and 11 morphological traits.569

We chose this example because of the large number of traits and the high correlation570

between traits, as all traits are highly correlated (0.82 < ρ < 0.97) with snout-to-vent571

length (SVL).572

To deal with the correlation between traits, Mahler et al. (2010, 2013) first573

performed a phylogenetic regression of all the traits against SVL, retrieved the residuals574

and then applied a phylogenetic PCA on SVL and the previous residuals, from which they575

used the first four components (pPC1 to pPC4) for their shift analysis. We first explored576

how the number of pPCs used can impact the shift detection. Hence we ran577

PhylogeneticEM 11 times, including 1 to 11 pPCs in the input dataset. Each run was done578

on a grid of 100 values of α, with t1/2 = ln(2)/α ∈ [0.99, 693.15] % of tree height, and579

allowing for a maximum of 20 shifts. It appears that the result is quite sensitive to the580

number of pPCs included: the selected number of shifts varies from 20, the maximum581

allowed, to 5 (Fig. 11). When 4 pPCs were used, as in the original study, the estimated582

covariance matrix R contains many high correlations, showing that the pPCs are not583

phylogenetically independent (Fig. 11).584

To avoid the difficult choice of the number of pPCs, we considered the direct585

analysis of the raw traits without any pre-processing, and found no shift when running586

PhylogeneticEM. Although the likelihood was found to increase with K, the model selection587

criterion profile was found erratic, suggesting numerical instability. A natural suspect for588

such instability is the extreme correlation between some traits (0.996 for tibia and589

metatarsal lengths), which results in bad conditioning of several matrices that must be590

inverted. To circumvent this problem, we used the two pseudo-orthogonalization strategies591

described above, running PhylogeneticEM on the SVL plus residuals dataset, and on the 11592

pPCs, with the same parameters as above. Note that all these transformations use a593
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Figure 11: Lizard dataset: selected number of shifts K̂ given the number of pPCs included
in the analysis (left) and estimated correlation matrix between the first four pPCs (right).

rotation matrix, so that the likelihood and the least squares of the original or of any of the594

two transformed datasets are the same. Hence, the objective function, as well as the model595

selection criterion, should remain unchanged. Still, slight differences were found between596

the maximized likelihood for each pseudo-orthogonalized datasets. For each value of K, we597

therefore retained the solution with the highest likelihood.598

Using the model selection criterion given in Section Statistical Inference, we found599

K̂ = 5 shifts, which are displayed in Figure 12, along with the ecomorphs as described in600

Mahler et al. (2013).601

Three of those shifts seem to single out grass-bush Anolis, that appear to have a602

rather small body size, with longer than expected lower limbs and tail, and shorter upper603

limbs. The two others might be associated with twig Anolis, that have smaller than604

expected limbs and tails. Because of our no-homoplasy assumption, one of those shifts605

encompasses some species living in other ecomorphs (namely, trunk, trunk-crown and606

un-classified). The shift, designed to be coherent with the phylogeny, is located on the607
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stem lineage of the smallest clade encompassing the bulk of twig lizards.608
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Figure 12: Lizard dataset: solution found by PhylogeneticEM. Groups produced by the shifts
are colored on the edges of the tree. The species are colored according to ecomorphs defined
in Mahler et al. (2013). The traits are the snout-to-vent length (SVL), and the phylogenetic
residuals of the regression against SVL of the following traits: femur length, tibia length,
metatarsal IV length, toe IV length, humerus length, radius length, finger IV length, lamina
number (toe and finger IV), and tail length. The same transformations were used as in
Mahler et al. (2010, 2013)

Comments609

On both examples (p)PCA does not correct a priori for the correlation between the610

traits in the presence of shifts. In Section pPCA and Shifts we formally proved that it611

cannot correct for it, actually. As a consequence, any shift detection methods has to612
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account for the correlation between traits.613

Still, high correlations between traits may raise strong numerical issues, so PCA can be614

used as a pseudo-orthogonalization of traits, as well as any other linear distance-preserving615

transformation that would reduce the correlation between them. This does not dispense of616

considering the correlation between the transformed traits in the model.617

The other interest of PCA is to reduce the dimension of the data, which may be618

desirable when dealing with a large number of traits, such as the original dataset from619

Aristide et al. (2016). Since PCA does not correct for the right correlation, we have no clue620

whether or not the dimension reduction performed by PCA is relevant for shift detection,621

or if it may remove precisely the direction along which the shifts occur. The relevant622

dimension reduction would consist in approximating the correlation matrix R with a matrix623

of lower rank q < p. This can obviously not be done before the shifts are known, which624

suggests that shift detection and dimension reduction should be performed simultaneously.625

Discussion626

Many phenotypic traits appear to evolve relatively smoothly over time and across627

many taxa. However, changes in evolutionary pressures (dispersal to new geographic zones,628

diet change, etc) or key innovations (bipedal locomotion) may cause bursts of rapid trait629

evolution, coined evolutionary jumps by Simpson (1944). Phenotypic traits typically evolve630

in a coordinated way (Mahler et al. 2013; Aristide et al. 2015) and a multivariate631

framework is thus best suited to detect evolutionary jumps. We introduced here an632

Expectation Maximization algorithm embedded in a maximum-likelihood multivariate633

framework to infer shifts strength, location and number. Importantly, our method uses634

Gaussian elimination, just like Fitzjohn (2012), to avoid computing inverses of large635

variance-covariance matrices and can cope with missing data, an especially important636
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problem in the multivariate setting where some traits are bound to be missing for some637

taxa. We demonstrated the applicability and accuracy of our method on simulated datasets638

and by identifying jumps for body size evolution in Anolis lizards and brain shapes of New639

World Monkeys. In both systems, the well-supported jumps occurred on stem lineages of640

clades that differ in terms of diet, locomotion, group size or foraging strategy (see Aristide641

et al. 2016 for a detailed discussion) supporting the Simpsonian hypothesis.642

Interpretation Issues643

We emphasize that the interpretation of α is a matter of discussion. We introduced644

the scOU in terms of adaptive evolution with a selection strength α on the tree. However,645

the equivalency between OU and BM on a distorted tree suggests that α can also be seen646

as a “phylogenetic signal” parameter, like Pagel’s λ (Pagel 1999). When α is small,647

`i(α) ' `i so that branch lengths are unchanged and the phylogenetic variance is preserved.648

At the other end of the spectrum, when α is large, `i(α) ' 0 for inner branches and the649

rescaled tree behaves almost like a star tree. However and unlike Pagel’s λ, α also dictates650

how shifts in the optima in the original OU (∆OU) are transformed into shifts in the traits651

values in the rescaled BM (∆BM(α)). For small α, recall to the optima is weak and shifts652

on the optima affect the traits values minimally (∆BM(α) ' 0). By contrast, for large α,653

the recall is strong and shifts on the optima are instantaneously passed on to the traits654

values (∆BM(α) '∆OU). Note however that in both cases, the topology is never lost: a655

shift, no matter how small its amplitude or how short the branch it occurs on, always656

affects the same species.657

Note that if we observed traits values at some ancestral nodes (e.g. from the fossil658

record), the equivalency between BM and OU would break down: α would recover its strict659

interpretation as selection strength. On non-ultrametric trees, our inference strategy does660

not benefit from the computational trick to speed up the M step. Similarly to the661
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univariate case, we could write a generalized EM algorithm to handle this situation. In662

Bastide et al. (2016), we used a lasso-based heuristic to raise, if not maximize, the663

objective function at the M step. It worked quite well, but was much slower. This664

approach could be extended to the multivariate setting, although with impaired665

computational burden. Note also that some shifts configuration that are not identifiable in666

the absence of fossil data become distinguishable with the addition of fossil data. This667

affects our model selection criterion, which relies on the number of distinct identifiable668

solutions. Computing this number on a non-ultrametric tree for an OU remains an open669

problem, and is probaly highly dependent on the topology of the tree.670

Noncausal Correlations671

`1ou, SURFACE and PhylogeneticEM make many simplifying assumptions to achieve672

tractable models. Chief among them is the assumption that A is diagonal. While `1ou and673

SURFACE both assume independent traits, PhylogeneticEM can handle correlated traits674

through non-diagonal variance matrix R. We warn the reader that correlations encoded by675

R are not causal and only capture coordinated and non selective traits evolution: i.e. when676

arm length increases, so does leg length. In order to capture evolution of trait i in response677

to changes in trait j (i.e. when arm length strays away from its optimal value, does leg678

length move away or toward its own optimum) one should rather look at the value of Aij,679

as was recently pointed out (Reitan et al. 2012; Liow et al. 2015; Manceau et al. 2016).680

Our simplifying assumptions are justified by various considerations: our focus on inference681

of shifts rather than proper estimation of A and R, simulations showing that shift682

detection is robust to moderate values of off-diagonal terms in A, difficulties to683

simultaneously estimate α and shifts even in the univariate case (Butler and King 2004),684

and computational gain achieved by considering scalar or diagonal A. They also suggest685

that if the focus is on causal correlation in the presence of shifts, a two-step strategy that686
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first detects shifts using a crude but robust model, then includes those shifts in a more687

complex model, may achieve good performance.688

The other simplifying assumption we made is that all traits shift at the same time.689

It makes formal analysis of identifiability issues and selection of the number of shifts690

similar to the univariate case, previously studied in Bastide et al. (2016). The assumption691

is likely to be false in practice, however. Asynchronous shifts are an interesting extension of692

the model. An ambitious framework would be to build from the ground up a model that693

allows for different shifts on different traits. It would have to deal with the combinatorial694

complexity induced by asynchronous shifts, and to use a different selection criterion for the695

number of shifts. A less ambitious but more pragmatic approach would be a postprocessing696

of the shifts to select, for each shift, the traits that actually jumped. This would require697

derivation of confidence intervals for the shift values.698

Finally, and unlike SURFACE and new version v1.40 of `1ou, our model excludes convergent699

evolution. This limitation is shared with other shift detection methods such as bayou700

(Uyeda and Harmon 2014) in the univariate case. This exclusion simplifies formal analysis701

and allows us to borrow from the framework of convex characters on a tree developed in702

Semple and Steel (2003) but is also likely to be false in practice. A straightforward703

extension of our method to detect convergence relies again on postprocessing of the shifts:704

the inferred optimal value of a trait after a shift can be tested to assess whether or not it is705

different from previously inferred optimal values and warrants a regime of its own.706

Nature of the jumps707

We model shifts as instantaneous and immediately following speciation events, like708

in the punctuated equilibrium theory of Eldredge and Gould (1972). We don’t argue that709

this is necessary the case. Selection and drift can reasonably be seen as instantaneous over710

macroevolutionary timescales but by no means over microevolutionary timescales. There is711
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very strong evidence, for example in peppered moths (Cook et al. 2012), that rapid712

adaptation can happen even in the absence of speciation. However our model does not713

allow us to distinguish between many small jumps distributed across a branch, one big714

jump anywhere on that branch and one big jump immediately following speciation, and715

therefore between punctuated or Simpsonian evolution.716
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PCA: Mathematical Derivations843

Expectation of the estimated Variance-Covariance Matrix.— Taking844

C̃ = (1TnC−11n)−11TnC−1, we have that ȲT = C̃Y, and āT = E
[
ȲT
]

= C̃a. Denote by845

NC−1 : Rn×p → Rp2 the function that to a n× p matrix A associates the p× p matrix846

ATC−1A. We get:847

(n− 1)E
[
R̂
]

= E
[
NC−1

(
Y − 1nȲ

T
)]

= E
[
NC−1

(
(Y − a) + (a− 1nā

T ) + (1nā
T − 1nȲ

T )
)]

= E
[
NC−1

(
(I− 1nC̃)(Y − a) + (a− 1nā

T )
)]

= E
[
NC−1

(
(I− 1nC̃)(Y − a)

)]
+ NC−1

(
a− 1nā

T
)

where the two double products cancel out, as E [Y] = a. But, for any non-singular848

symmetric matrix H, we have:849

E
[
(Y − a)TH−1(Y − a)

]
=

∑
1≤i,j≤n

[H−1]ijE
[
(Yi − ai)(Yj − aj)T

]
=

∑
1≤i,j≤n

[H−1]ijCijR = tr(H−1C)R

Hence, applying this formula with H−1 = (I− 1nC̃)TC−1(I− 1nC̃) = C−1 −C−11nC̃,850

some straightforward matrix algebra manipulations give us:851

(n− 1)E
[
R̂
]

= (n− 1)R + (a− 1nā
T )TC−1(a− 1nā

T )

which is the result stated in the text, with G = a− 1nā
T = (In − (1TnC−11n)−11n1

T
nC−1)a.852
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PhylogeneticEM package case study: New World853

Monkeys854

In this section, we demonstrate the basic use of the R package PhylogeneticEM for855

the analysis of the New World Monkeys dataset (Aristide et al. 2016).856

Loading and Plotting the data857

The data have been embedded in the R package PhylogeneticEM, to be loaded easily.858

The traits can be plotted on the tree thanks to the function plot applied to a void859

params process object with dimension 2 (Fig. 13).860

library(PhylogeneticEM)

data(monkeys)

plot(params_BM(p=2), data = monkeys$dat,

phylo = monkeys$phy, show.tip.label = TRUE)

This plot function inherits from most of the optional arguments of the popular ape861

plot function (here for instance, the optional argument show.tip.label is used). Many other862

graphical parameters can be set by the user, so as to control the output of the function. All863

the results showed in the main text were produced by the package’s plotting function. The864

two traits are represented on the right, each with its own scale. Plotting the data on the865

tree before analyzing it allows us to spot potential errors or outliers.866

Analyzing the data867

The automatic shift detection is done using function PhyloEM. We show below how868

the function can be called, using an scOU process (with stationary root, the default), for a869

maximum number of shifts equal to 10, on an automatically chosen grid with 4 values for870
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Figure 13: New World Monkey dataset as plotted in PhylogeneticEM

the selection strength α, and parallelized on 2 cores. These parameters were chosen only to871

demonstrate the function, for this example analysis would run in about one minute.872

Different parameters were used to obtain the results below and in the main text. There are873

many more options available to guide the analysis, all described in the manual entry of the874

function.875

res <- PhyloEM(Y_data = monkeys$dat, ## data

phylo = monkeys$phy, ## phylogeny

process = "scOU", ## scalar OU

K_max = 10, ## maximal number of shifts

nbr_alpha = 4, ## number of alpha values

parallel_alpha = TRUE, ## parallelize on alpha values

Ncores = 2) ## number of computing cores

The result is stored in an object of class PhyloEM, which has several extractors876
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available (see manual). By default, the plot function draws the maximum likelihood877

function selected by the method (Fig. 14). The same optional parameters can be used as878

before to control how the figure should look like.879

plot(res, edge.width = 2, show.tip.label = TRUE)
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Figure 14: Maximum likelihood solution with 4 shifts selected by the method.

The solution showed in the main text (Fig. 10) has 5 shifts, instead of 4. It can be880

plotted using the extractor params process, which extracts some inferred parameters from881

an object of class PhyloEM.882

params_5 <- params_process(res, K = 5)

plot(res, params = params_5)
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Plotting Equivalent Solutions883

The previous call actually results in a warning being issued: “Warning in884

params process.PhyloEM(res, K = 5): There are several equivalent solutions for this shift885

position.” Indeed, as mentioned in the main text, the solution with 5 shifts has three886

equivalent shift allocations on the branches. These solutions can be found and plotted887

thanks to the function equivalent shifts, that returns an object that can be visualized888

(Fig. 15).889

eq_shifts <- equivalent_shifts(monkeys$phy, params_5)

plot(eq_shifts, show_shifts_values = FALSE, shifts_cex = 0.5)

Figure 15: The three equivalent maximum likelihood shift allocations for the solution with
5 shifts.

By default, the shifts values for the first trait is showed for all equivalent solutions.890

Black is always reserved to the “ancestral state”, and the value λ = β0 = µ of the ancestral891

optimal value is shown at the root. Here, the three equivalent solutions are quite892

straightforward, as one configuration has two shifts on sister edges. Note that the893

clustering of the species at the tips of the tree remains unchanged, while the historic894
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scenario of the adaptive shifts is slightly altered. This ambiguity is inherent to the data.895

More information to resolve this ambiguity can only come from a prior distribution on shift896

values, or ideally from fossil data sampled in the right region of the tree.897
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EM Inference898

This section provides the update formulas for the EM algorithm in Section899

Statistical Inference. Throughout this section, the superscript h refers to the current900

iteration index, e.g. θ(h) stands for the vector of parameters estimate at iteration h:901

θ(h) = (µ(h),∆(h),R(h),Γ(h)). We denote further by X the N × p matrix of the traits at all902

the nodes of the tree, that contains both Z and Y. In these derivations, nodes are903

numbered in a preorder, such that the root comes first: ρ = 1, the internal nodes are904

numbered from 1 to m, and the tips from m+ 1 to N = m+ n.905

Conditional expectation of the complete likelihood.— The EM algorithm mainly deals with906

E[log pθ(X)
∣∣ Yd ], where Yd is the vector of the observed tips data (that might be missing907

some values). In our case we have that908

−2E
[
log pθ(X)

∣∣ Yd
]

= p(m+ n) log 2π + p
m+n∑
j=2

log `j

+ log |Γ|+ tr
{
Γ−1Var

[
X1
∣∣ Yd

]}
+
∥∥E [X1

∣∣ Yd
]
− µ

∥∥2

Γ−1

+(m+ n− 1) log |R|+
m+n∑
j=2

`−1
j tr

{
R−1Var

[
Xj −Xpa(j)

∣∣ Yd
]}

+
m+n∑
j=2

`−1
j

∥∥E [Xj −Xpa(j)
∣∣ Yd

]
−∆j

∥∥2

R−1 . (5)

M step909

At the M step, the parameters are updated as the minimizers of (5) evaluated with910

the conditional moments of the hidden variables given Yd. We get the following updates.911

Root Parameters.—912

µ(h+1) = E(h)
[
X1
∣∣ Yd

]
, Γ(h+1) = Var(h)

[
X1
∣∣ Yd

]
. (6)
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where the conditional moments are obtained as part of the E step, see Equation (8).913

Notations E(h) anf Var(h) denote the moments taken with the law defined by current914

parameters θ(h).915

Rate Matrix.—916

(m+ n− 1)R(h+1) =
m+n∑
j=2

`−1
j Var(h)

[
Xj −Xpa(j)

∣∣ Yd
]

+ `−1
j

(
E(h)

[
Xj −Xpa(j)

∣∣ Yd
]
−∆(h+1)j

)
·
(
E(h)

[
Xj −Xpa(j)

∣∣ Yd
]
−∆(h+1)j

)T
.

(7)

Optimal Shift Location.— Only the last term of (5) depends on the shifts so we have to917

minimize the sum of costs to find ∆(h+1):918

C(h)(∆) =
m+n∑
j=2

C
(h)
j (∆)

with C
(h)
j (∆) = `−1

j

∥∥E(h)
[
Xj −Xpa(j)

∣∣ Yd
]
−∆j

∥∥2

(R(h))−1 .

This minimization can be achieved using the same algorithm as in the univariate case919

(Bastide et al. 2016) to get the optimal shifts allocations and values. Said algorithm920

essentially sorts the branches in decreasing order of C
(h)
j (∆) and assigns shifts to the first921

K branches.922

E step923

The aim of the E step is to compute the moments of the completed dataset given924

the observed traits at the tips, namely:925

Ej = E
[
Xj
∣∣ Yd

]
, Vj = Var

[
Xj
∣∣ Yd

]
, Cj,pa(j) = Cov

[
Xj; Xpa(j)

∣∣ Yd
]

(8)
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where we dropped the dependency in θ(h) for the sake of legibility, but all these moments926

are indeed taken with the laws given by the current parameters. We do so thanks to an927

upward-downward recursion on the tree, as described below. This algorithm can apply to a928

broad classes of Gaussian processes, provided that the moments of the traits at a child929

node are of the form:930

∀j ∈ J2 ,m+ nK,


E
[
Xj
∣∣ Xpa(j)

]
= mj(X

pa(j)) = QjX
pa(j) + rj

Var
[
Xj
∣∣ Xpa(j)

]
= Σj

For a BM, we get931

Qj = Ip , rj = ∆j and Σj = `jR.

A multivariate OU could also be handled, with:932

Qj = e−A`j , rj = (Ip − e−A`j)βj and Σj = Γ− e−A`jΓe−AT `j .

Although we do not use these last formulas here (thanks to the equivalence between OU933

and BM in our setting), they are implemented in PhylogeneticEM, and could be readilly934

used in an extension of the method to non-ultrametric trees with fossil taxa. To properly935

handle missing data in a unified framework, we first re-define ad hoc inversion and936

determinant operations that allow us to easily write the degenerated Gaussian likelihood937

that appears along the way.938

Missing data.— For a multivariate trait observed at node i, define the application939

fdi : Rp×p → Rdi×di that, given a matrix, returns the matrix with only rows and columns940

corresponding to observed traits. Define also the “pseudo-inverse” f−1
di

: Rdi×di → Rp×p
941

that put the observed traits back into their places, and fills the un-defined lines and942
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columns with zeros. This allows us to define a “low-dimensional inverse” as:943

[S]−1
ld = f−1

di

(
[fdi(S)]−1) , ∀S ∈ Rp×p

for all S such that fdi(S) is invertible. We also define a “low dimensional determinant”, as:944

∣∣[S]−1
ld

∣∣ =
∣∣[fdi(S)]−1

∣∣ , ∀S ∈ Rp×p.

These conventions amount to taking infinite values for the variance-covariance terms945

of non-observed traits. This allows us to write the following:946

(2π)(p−d)/2Φm,S(x) = Φfd(m),fd(S)(fd(x)).

where Φm,S denotes the density of a multivariate Gaussian, with expectation vector m and947

variance matrix S. That is, we write the density of a d-dimensional Gaussian as the density948

of a p-dimensional one, but with the exact same likelihood value, up to a normalizing949

constant (2π)(p−d)/2. If d = 0 (no data at one tip), then [S]−1
ld is a matrix of 0, and we take950

by convention
∣∣[S]−1

ld

∣∣ = 1, so that Φfd(m),fd(S)(fd(x)) = 1.951

Upward recursion.— For a given node j in the tree, we denote by jYd the set of all traits952

observed at all the tips below node j. The aim of the upward recursion is to compute the953

Gaussian pdf f jYd|Xj (jYd; a) of jYd
∣∣ Xj , which we write as proportional to a Gaussian954

density in a:955

f jYd|Xj (jYd; a) = Aj(
jYd)ΦMj(jYd),Sj(jYd)(a).

Initialization: For each tip i, the observed values (Yd)i given the vector of values Yi
956
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follow a Dirac distribution:957

∀i ∈ J1 , nK, f (Yd)i|Yi ((Yd)i; a) = δ(Yd)i(a).

We can express this in the correct format:958

∀i ∈ J1 , nK, f (Yd)i|Yi ((Yd)i; a) = (2π)(p−d)/2ΦYi,0(a)

but taking the “low dimensional” inverses and determinants defined above.959

Propagation: The upward recursion formulas result from the standard properties of the960

conditional distribution of a multivariate Gaussian distribution plus the fact that L961

daughters of a given node Xj are conditionally independent so962

f jYd|Xj (jYd; a) =
L∏
`=1

f j`Yd|Xj (j`Yd; a).

We get963



Sj(
jYd) =

(
L∑
`=1

QT
j`

(Sj`(
j`Yd) + Σj`)

−1Qj`

)−1

Mj(
jYd) = Sj(

jYd)
L∑
`=1

QT
j`

(Sj`(
j`Yd) + Σj`)

−1(Mj`(
j`Yd)− rj`)

logAj(
jYd) = −(L− 1)p

2
log(2π) +

1

2
log
∣∣Sj(jYd)

∣∣
+

L∑
`=1

logAj`(
j`Yd)− 1

2
log
∣∣Sj`(j`Yd) + Σj`

∣∣
− 1

2

L∑
`=1

(Mj`(
j`Yd)− rj`)

T (Sj`(
j`Yd) + Σj`)

−1(Mj`(
j`Yd)− rj`)

+
1

2
Mj(

jYd)TSj(
jYd)−1Mj(

jYd)
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where we keep track of the log of the constant Aj, for numerical accuracy. Remark964

that we only need to handle the infinite terms properly as described above, using the965

“low dimensional” inverses and determinants when needed. These terms will966

disappear as we go up to a node that has at least one tip with some observation for967

this particular trait. In the pathological case where a trait is never observed, the968

corresponding term remains infinite throughout the recursion, and hence does not969

bring any information as to the value of that trait, and does not change the970

likelihood. The variance of a root non-observed trait is then just the one put a priori971

in Γ (see below).972

Root node and likelihood: Once at the root, we have fYd|X1 (Yd; a), which is the973

likelihood of the observations given the root state X1 = a, and we write:974

fX1|Yd (a; Yd) ∝ fYd|X1 (Yd; a)fX1(a)

which gives975


Var

[
X1
∣∣ Yd

]
=
(
Γ−1 + S1(Yd)−1

)−1

E
[
X1
∣∣ Yd

]
= Var

[
X1

∣∣ Yd
] (

Γ−1µ + S1(Yd)−1M1(Y)
)
.

Downward recursion.— We now derive a recursion that goes from the root back to the tips976

to compute the conditional moments required to evaluate (5). Going down the tree, we977

need to compute, for each node Xj, 2 ≤ j ≤ m, Ej, Vj and Cj,pa(j) as in (8). (additionally978

conditioning on X1 if the root is fixed).979

Initialization: The initialization of the downward is given by the last step of the upward.980
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If the root is random, we have981


V1 = Var

[
X1
∣∣ Yd

]
=
(
Γ−1 + S1(Yd)−1

)−1

E1 = E
[
X1
∣∣ Yd

]
= Var

[
X1

∣∣ Yd
] (

Γ−1µ + S1(Yd)−1M1(Y)
)

C1,pa(1) = NA

whereas, if we work conditionally to the root, we have V1 = Var
[
X1
∣∣ Yd,X1

]
= 0,982

E1 = E
[
X1
∣∣ Yd,X1

]
= µ and C1,pa(1) = NA.983

Propagation: We have984

fXpa(j),Xj|Yd (a,b; Yd) = fXpa(j)|Yd (a; Y)fXj|Xpa(j),Yd (b; a,Yd)

We know the first term from the recurrence, and we can compute the second term985

thanks to the upward step:986

fXj|Xpa(j),Yd (b; a,Yd) = fXj|Xpa(j),jYd (b; a, jYd) ∝ fXj|Xpa(j) (b; a)f jYd|Xj (jYd; b)

As jYd
∣∣ Xj ∼ N

(
Mj(

jYd), Sj(
jYd)

)
and Xj

∣∣ Xpa(j) ∼ N
(
mj(X

pa(j)),Σj

)
, we get987

Xj
∣∣ Xpa(j),Yd ∼ N

(
m̄j(X

pa(j)), Σ̄j

)
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with988 

Σ̄j =
(
Sj(

jYd)−1 + Σ−1
j

)−1

= Sj(
jYd)

(
Sj(

jYd) + Σj

)−1
Σj = Σj

(
Sj(

jYd) + Σj

)−1
Sj(

jYd)

m̄j(X
pa(j)) = Σ̄j

(
Sj(

jYd)−1Mj(
jYd) + Σ−1

j mj(X
pa(j))

)
= Sj(

jYd)
(
Sj(

jYd) + Σj

)−1
Qj︸ ︷︷ ︸

Q̄j

Xpa(j)

+ Sj(
jYd)

(
Sj(

jYd) + Σj

)−1
rj + Σj

(
Sj(

jYd) + Σj

)−1
Mj(

jYd)︸ ︷︷ ︸
r̄j

Hence:989

fXj|Xpa(j),Yd (b; a,Yd) ∝ exp

(
−1

2
(b− m̄j(a))T Σ̄−1

j (b− m̄j(a))

)

And, as

 Xj

Xpa(j)


∣∣∣∣∣∣∣ jYd ∼ N


 Ej

Epa(j)

 ,

 Vj Cj,pa(j)

CT
j,pa(j) Vpa(j)


, by Gaussian990

conditioning, we get, for any a:991


m̄j(a) = Ej + Cj,pa(j)V

−1
pa(j)(a− Epa(j))

Σ̄j = Vj −Cj,pa(j)V
−1
pa(j)C

T
j,pa(j)

From this we get:992

Cj,pa(j) = Q̄jVpa(j), Ej = r̄j + Q̄jEpa(j), Vj = Σ̄j + Q̄jVpa(j)Q̄
T
j .
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And, finally:993


Cj,pa(j) = Sj(

jYd)
(
Sj(

jYd) + Σj

)−1
QjVpa(j)

Ej = Sj(
jYd)

(
Sj(

jYd) + Σj

)−1
(QjEpa(j) + rj) + Σj

(
Sj(

jYd) + Σj

)−1
Mj(

jYd)

Vj = Sj(
jYd)

(
Sj(

jYd) + Σj

)−1
(
Σj + QjVpa(j)Q

T
j

(
Sj(

jYd) + Σj

)−1
Sj(

jYd)
)

Missing Data: In presence of missing data, the downward formulas read994


Cj,pa(j) = Σ̄jΣ

−1
j QjVpa(j)

Ej = Σ̄jΣ
−1
j (QjEpa(j) + rj) + Σ̄jSj(

jYd)−1Mj(
jYd)

Vj = Σ̄j

(
Ip + Σ−1

j QjVpa(j)Q
T
j Σ−1

j Σ̄j)
)

where Σ̄−1
j = Sj(

jYd)−1 + Σ−1
j can be is computed using the “low dimensional995

inverse” defined earlier for Sj(
jYd), if needed.996

Remark that theses formulas involve the inversion of two matrices (Σj and Σ̄−1
j ), each of997

dimension p (typically small), which is not computationally intensive.998

EM Initialization999

Because it is only guaranteed to converge to a local optimum, the EM algorithm is1000

highly sensitive to its starting point. As consequence, it needs to be provided with good1001

initial guesses for the shifts positions and value, as well as the variance matrix R. Initial1002

values are determined as follows:1003

1. Do a lasso regression, assuming all traits are independent, choosing a penalty so that1004

K shifts are found.1005

2. Find the groups of tips created by those shifts, and center each group by its empirical1006

mean.1007
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3. Use the centered data to estimate an empirical variance matrix. This is done using1008

the Minimum Covariance Determinant (MCD) method, with function covMcd from1009

package robustbase (Rousseeuw et al. 2014).1010

4. Use this estimated matrix to correct for correlations, before running a lasso again.1011

5. For this second lasso, choose a penalty that selects for K +Klag shifts, with Klag a1012

fixed value (default to 5). Then, using a Gauss-lasso procedure, select the best K1013

shifts (in term of log-likelihood) among those.1014

This last step can be combinatorially intensive. To keep it fast, we bound the number of1015

trials. It has proven to enhance the results of the algorithm substantially.1016

Grid on α1017

The inference presented above works for the rescaled BM, when the parameter α is1018

supposed to be known. In practice, this parameter needs to be estimated. One simple way1019

to do that is to use a grid on α. For each value on the grid, one can find an associated1020

estimator, and then find the maximum likelihood estimator of the parameters by taking1021

the best likelihood, for each number of shifts K. For instance, we plot below (Fig. 16) the1022

likelihood profile in K for 30 α values on a grid, for the New World Monkey dataset1023

(Aristide et al. 2016).1024

This grid of α values can be provided by the user, depending on some a priori1025

knowledge she might have of the problem at hand. If no grid is provided, one is1026

automatically computed, with nα values, evenly spaced on a log scale ranging between αmin1027

and αmax. Those extrema values are chosen in the following way.1028

αmin The minimum value is chosen so that the maximum phylogenetic half-life1029

(t1/2 = ln(2)/α) is equal to A ln(2)h, where h is the height of the tree, and A is a1030
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Figure 16: Likelihood profile for all the α values, on the New World Monkey dataset. Each
colored line represents the likelihood of the solution for a given α. The maximum value of
the likelihood for each K is emphasized. The maximum is not reached by the same value of
α for each K. Colors in log scale.

constant, by default equal to 3. This ensures that the lowest α makes for a1031

phylogenetic half-life approximately two times as high as the tree. Lower values of α1032

would make the process looking too much like a BM.1033

αmax The maximum value of α is chosen so that the correlations between tips is bounded1034

by e−B/2, with B a constant by default equal to 2. This is obtained by noting that1035

the correlation between two tips i and j for a given trait k is given by (for a1036

stationary root):1037

Cov [Yik;Yjk] =
Rkk

2α
e−2αdij√
Rkk

2α
Rkk

2α

= e−2αdij ≤ e−2αdmin

where dmin is the minimum phylogenetic distance between two tips. Hence we choose1038

αmax = B/(2dmin).1039
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Simulations Appendices1040

Kullback-Leibler Divergences1041
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Figure 17: KL divergences from the base model

Denote by Ip the identity matrix of size p, Jp = 1T1 the matrix filled with ones, and1042

Sp = Diag(s−(p+1)/2+q; 1 ≤ q ≤ p) (so that |Sp| = 1). We consider the four following models:1043

Model A: A = αIp and R = σ2Ip1044

Model B: A = αIp and R = Rrd = σ2(Ip + rd(Jp − Ip))1045

Model C: A = αSp and R = σ2Sp1046

Model D: A = α(Ip + rs(Jp − Ip)) and R = σ2

λ
Ip1047

The general formula for a Kullback divergence between two multivariate Gaussian1048

distributions with means µi and variances Vi (i ∈ {1, 2}) is:1049

2K [N1;N2] = tr(V−1
2 V1) + (µ2 − µ1)TV−1

2 (µ2 − µ1)− np+ ln
det V2

det V1
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We assume that the root is in the stationary state. From the general formula for a1050

multivariate OU, we derive the form of the variances for these four models (Bartoszek et al.1051

2012; Clavel et al. 2015):1052

General Formula: V(i,j) = P

([
1

λq+λr
e−λq(ti−tij)e−λr(tj−tij)

]
1≤q,r≤p

�P−1RP−T
)

PT ,1053

where P is the orthogonal matrix of diagonalization of A, associated with eigenvalues1054

(λ1, . . . , λp).1055

Model A: VA = σ2

2α
Mα ⊗ Ip with Mα = (e−αdij)1≤i≤j≤n1056

Model B: VB = σ2

2α
Mα ⊗Rrd1057

Model C: V
(i,j)
C = σ2

2α
Diag

(
e−α(Sp)qqdij ; 1 ≤ q ≤ p

)
1058

Model D: V
(i,j)
D =1059

σ2

2λα
P Diag

(
1

1−rs e
−α(1−rs)dij , 1

1−rs e
−α(1−rs)dij , 1

1−rs e
−α(1−rs)dij , 1

1+3rs
e−α(1+3rs)dij

)
PT

1060

For model C, taking R = σ2Sp ensures that the variances at the tips for all the1061

(independent) traits are equal to γ2 = σ2

2α
.1062

For model D, the characteristic polynomial of matrix 1
α
A is1063

χ(X) = (X + rs − 1)3(X − 3rs − 1), so we wrote1064

A = αP Diag (1− rs, 1− rs, 1− rs, 1 + 3rs) PT . This leads to a variance at the tips of1065

σ2

2αλ
P Diag

(
1

1−rs ,
1

1−rs ,
1

1−rs ,
1

1+3rs

)
PT . By computing this matrix product (easy linear1066

algebra formula), we find that P Diag
(

1
1−rs ,

1
1−rs ,

1
1−rs ,

1
1+3rs

)
PT = (λ− κ)Ip + κJp, with1067

λ = 1+(p−2)rs
(1−rs)(1+(p−1)rs)

and κ = − rs
(1−rs)(1+(p−1)rs)

. Dividing the variance matrix by a factor λ1068

hence ensures that the diagonal variances at the tips are still equal to γ2 = σ2

2α
.1069

We can then express the Kullback distance of models B, C and D to model A, using1070
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the general formula:1071

2K [i;A] = tr(V−1
A Vi)− np+ ln

det VA

det Vi

+
∥∥(T⊗ Ip)[W(AA)−W(Ai)] vec(∆T )

∥∥
VA

−1

=
2α

σ2
tr((M−1

α ⊗ Ip)Vi)− np+ np ln
σ2

2α
+ p ln det Mα − ln det Vi

+
∥∥(T⊗ Ip)[W(AA)−W(Ai)] vec(∆T )

∥∥
VA

−1

For K [B;A], we can get a closed formula that does not depend on the topology (the1072

expectations term cancels out):1073

2K [B;A] = n ln[(1− r)3(1 + 3r)]

For the two other distances, there are no such nice simplified formula, and the result1074

depends on the topology (even when there are no shifts). To get an idea of the distance1075

when there are no shifts, we computed it on 100 randomly generated trees, and took the1076

mean. With shifts, we computed the distances for the trees and shift positions chosen and1077

shown above.1078

Note on the ARI (Hubert and Arabie 1985)1079

Partitions.— Let S be a set with n elements, and U, V two different partitions of S, with1080

respectivelly R and C groups. Denote by nij the number of elements of S that are both in1081

groups i ∈ J1 , RK of U and j ∈ J1 , CK of V , and by ni· =
∑C

j=1 nij (respectively,1082

nj· =
∑R

i=1 nij) the number of elements of S that are in group i ∈ J1 , RK of U (resp.1083

j ∈ J1 , CK of V ).1084

Rand Index.— We further define:1085
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� a the number of pairs of S that are in the same groups in both partitions U anv V ,1086

a =
R∑
i=1

C∑
j=1

(
nij
2

)

� b the number of pairs of S that are in different groups in both partitions U anv V ,1087

b =

(
n

2

)
−

[
a+

(
R∑
i=1

(
ni·
2

)
− a

)
+

(
C∑
j=1

(
n·j

2

)
− a

)]
=

(
n

2

)
+a−

R∑
i=1

(
ni·
2

)
−

C∑
j=1

(
n·j

2

)

Then the Rand index is defined as the number of agreeing paairs on the total number of1088

pairs:1089

Rand =
a+ b(
n
2

)
Adjusted Rand Index.— Assume that the null model is a generalized hypergeometric1090

models, where the partitions and the number of elements in each group are fixed (i.e. the1091

ni· and n·j are fixed), and the element randomly distributed among them. Then:1092

E
[(
nij
2

)]
=

(
ni·
2

)(
n·j

2

)
/

(
n

2

)

The ARI is then defined as (1 is the maximum value of the Rand index):1093

ARI =
Rand− E [Rand]

1− E [Rand]

which can be re-written as:1094

ARI =

∑R
i=1

∑C
j=1

(
nij

2

)
−
∑R

i=1

(
ni·
2

)∑C
j=1

(
n·j
2

)
/
(
n
2

)
1
2

(∑R
i=1

(
ni·
2

)
+
∑C

j=1

(
n·j
2

))
−
∑R

i=1

(
ni·
2

)∑C
j=1

(
n·j
2

)
/
(
n
2

)
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One class partition.— Assume that R = 1, i.e. that one of the partition has only one class.1095

Then:1096

R∑
i=1

C∑
j=1

(
nij
2

)
=

C∑
j=1

(
n1j

2

)
=

C∑
j=1

(
n·j

2

)
and1097

R∑
i=1

(
ni·
2

) C∑
j=1

(
n·j

2

)
=

(
n1·

2

) C∑
j=1

(
n·j

2

)
=

(
n

2

) C∑
j=1

(
n·j

2

)
so that ARI = 0. Hence, if one of the true solution or the estimated solution has no shift,1098

then the ARI is automatically equal to 0.1099

Supplementary Figures1100

Sensitivity / Precision.— Because only the clustering of the tips induced by the shifts, and1101

not their exact position on the branches of the tree, are identifiable, we used the ARI,1102

rather than sensitivity and recision, to asses methods of shift detection. With this caveat in1103

mind, we plot these quantities here for the interested reader. To do that, we removed the1104

6.53% of solutions that were not identifiable in the results of the methods.1105

These graphs confirm our conclusions drawn in the main text, with PhylogeneticEM,1106

more conservative, having a better precision, along with a similar sensitivity than `1ou. It1107

is interesting to note that, even when the model is violated for PhylogeneticEM, the1108

methods keeps a better or similar precision (see e.g. Model C in Fig. 19).1109
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Figure 18: Sensitivity (top) and precision (bottom) for the solutions found by PhylogeneticEM
(red) and `1ou (blue). Each box corresponds to one of the configuration shown in Figure 2,
with a scaling factor varying between 0.5 and 3, and a true number of shift between 3 and
15 (solid lines, bottom).
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Figure 19: Sensitivity (top) and precision (bottom) for the solutions found by PhylogeneticEM
(red) and `1ou (blue). Each panel corresponds to a different type of mis-specification (except
Model A) and the parameters rd, s and rs control the level of mis-specification, with leftmost
values corresponding to no mis-specification. For the ARI, the solid lines represent the
maximum (1) and expected (0, for a random solution) ARI values.
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