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Abstract 

Accurately selecting relevant alleles in large sequencing experiments remains 

technically challenging. Bystro (https://bystro.io/) is the first online, cloud-based application that 

makes variant annotation and filtering accessible to all researchers for terabyte-sized whole-

genome experiments containing thousands of samples. Its key innovation is a general-purpose, 

natural-language search engine that enables users to identify and export alleles of interest in 

milliseconds. The search engine dramatically simplifies complex filtering tasks that previously 

required programming experience or specialty command-line programs. Critically, Bystro 

annotation and filtering capabilities are orders of magnitude faster than previous solutions, 

saving weeks of processing time for large experiments. 
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Background 
While genome-wide association studies (GWAS) and whole-exome sequencing (WES) 

remain important components of human disease research, the future lies in whole-genome 

sequencing (WGS), as it inarguably provides more complete data. The central challenge posed 

by WGS is one of scale. Genetic disease studies require thousands of samples to obtain 

adequate power, and the resulting WGS datasets are hundreds of gigabytes in size and contain 

tens of millions of variants. Manipulating data at this scale is difficult. To find the alleles that 

contribute to traits of interest, two steps must occur. First, the variants identified in a sequencing 

experiment need to be described in a process called annotation, and second, the relevant 

alleles need to be selected based on those descriptions in a procedure called variant filtering. 
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Annotating and filtering large numbers of variant alleles requires specialty software. 

Existing annotators, such as ANNOVAR[1], SeqAnt[2], VEP[3], and GEMINI[4] have played an 

important research role, and are sufficient for small to medium experiments (e.g.,10s to 100s of 

WES samples). However, they require significant computer science training to use in offline, 

distributed computing environments, and have substantial restrictions in terms of performance 

and the maximum size of the data they will annotate online. Existing variant filtering solutions 

are even more limited, with most analyses requiring researchers to program custom scripts, 

which can result in errors that impact reproducibility[5]. Therefore, annotation and filtering are 

not readily accessible to most scientists, and even bioinformaticians face challenges of 

performance, cost and complexity. 

Here we introduce an application called Bystro that significantly simplifies variant 

annotation and filtering, while also improving performance by orders of magnitude and saving 

weeks of processing time on large data sets. It is the first program capable of handling 

sequencing experiments on the scale of thousands of whole-genome samples and tens of 

millions of variants online in a web browser, and integrates the first natural-language search 

engine that enables real-time, complex variant filtering using simple phrases. Bystro makes it 

possible to efficiently find alleles of interest in any sequencing experiment without computer 

science training, improving reproducibility while reducing annotation and filtering costs. 

 

Results 

To compare Bystro’s capabilities with other recent programs, we submitted 1000 

Genomes[6] Phase 1 and Phase 3 VCF files for annotation and filtering (Figure 1). Phase 1 

contains 39.4 million variants from 1,092 WGS samples, while Phase 3 includes 84.9 million 

alleles from 2,504 WGS samples. We first evaluated the online capabilities of the web-based 

versions of Bystro, wANNOVAR[7], VEP, and GEMINI (running on the Galaxy[8] platform). 

Bystro was the only program able to complete either 1000 Genomes Phase 1 or Phase 3 online. 
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When tested with small subsets of Phase 3 (5x104 – 6.4x106 variants), Bystro was 131-210x 

faster than GEMINI/Galaxy and provided the most comprehensive whole-genome annotations 

(Figure 2).   

 

 

 

 

 

 

 

Figure 1 | Using Bystro online to find alleles of interest in sequencing experiments. A) 

After logging in (https://bystro.io/), users upload one of more VCF or SNP-format files - 

containing alleles from a sequencing experiment - from a computer or a connected Amazon 

S3 bucket. Datasets of over 890GB, containing thousands of samples and tens of millions of 

variants are supported. The data is rapidly annotated in the cloud, using descriptions from 

public sources (e.g. RefSeq, dbSNP, Clinvar, and others). The annotated results can be 

filtered using Bystro’s natural-language search engine, and any search results can be saved 

as new annotations. Annotated experiments and saved results can be viewed online, 

downloaded as tab-delimited text, or uploaded back to linked Amazon S3 buckets. B) An 

example of using Bystro’s natural language search engine to filter 1000 Genomes Phase 3 

(https://bystro.io/public). To do so, users may type natural phrases, specific terms, numerical 

ranges, or apply filters on any annotated field. Queries are flexible, allowing misspelled terms 

such as “earl-onset” to accurately match. Complex tasks, such as identifying de novo 

variants can be achieved by using Boolean operators (AND, OR, NOT), field filters, and user-

defined synonymous terms. 
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We next tested each program’s offline performance on identical servers to gauge 

performance in the absence of web-related file-size and networking limitations. Bystro was 60x 

faster than ANNOVAR and 419x faster than VEP, completing Phase 3 in less than 6 hours 

(Table 1). Furthermore, ANNOVAR was unable to finish either Phase 1 or Phase 3 annotations 

due to memory requirements (exceeding 60GB of RAM), and VEP annotated Phase 3 at a rate 

of 10 variants per second, indicating that it would need at least 98 days to complete. Critically, 

Bystro’s run time grew linearly with the number of submitted genotypes, suggesting that it could 

handle even hundreds of thousands of samples within days. A detailed comparison of the exact 

settings used is given (Additional File 1;Additional File 2).  

Figure 2 | Online performance comparison of Bystro, VEP, wANNOVAR, and GEMINI. 

Bystro, wANNOVAR, VEP, and GEMINI (running on Galaxy) we run under similar conditions. 

Total processing time was recorded for 1000 Genomes Phase 3 WGS VCF files, containing 

either the full data set (2,504 samples, 8.49x107 variant sites), or subsets (2,504 samples and 

5x104, 3x105, 1x106, and 6x106 variants). Only Bystro successfully processed more than 

1x106 variants online: wANNOVAR (not shown) could not complete the smallest 5x104 variant 

subset; VEP could not complete more than 5x104 variants; and GEMINI/Galaxy could not 

complete more than 1x106 variants. Online, VEP outputted a restricted subset of annotation 

data compared to its offline version. GEMINI and Bystro (but not VEP) outputted whole-

genome CADD scores, while only Bystro also returned whole-genome PhyloP and PhastCons 

scores. Bystro was faster than GEMINI/Galaxy by 131x-210x across all time points.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2017. ; https://doi.org/10.1101/146514doi: bioRxiv preprint 

https://doi.org/10.1101/146514
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

 Next, we explored the Bystro search engine’s ability to filter the 84.9 million annotated 

Phase 3 variants. Bystro’s search engine was unique in its natural-language capabilities, and no 

other tested program could handle the full Phase 3 dataset online (Figure 2). First, we used 

Bystro’s search engine to find all alleles in exonic regions by entering the term “exonic” (933,343 

alleles, 0.030 ± .001 seconds, Table 2). The search engine calculated a transition to 

transversion ratio of 2.96 for the query, consistent with previously observed values in coding 

regions. To refine results to rare, predicted deleterious alleles, we queried “cadd > 20 maf < 

.001 pathogenic expert review missense” (65 alleles, 0.029 ± 0.025s, Table 2). This search 

Table 1 | Bystro, VEP, ANNOVAR offline command-line performance. 
Software Dataset Samples Variants Variants/s Bystro vs 

Bystro 

1000G Phase 3 chr1 2504 1x106 4468 ± 70.0 - 
1000G Phase 3 chr1 2504 2x106 4481 ± 5.79 - 
1000G Phase 3 chr1 2504 4x106 4513 ± 30.2 - 
1000G Phase 3 chr1 2504 6.5x106 4278 ± 3.96 - 
1000G Phase 3 2504 8.5x107 4189 ± 91.9 - 
1000G Phase 1 1092 3.9x107 4366 ± 62.0 - 

VEP 
1000G Phase 3 2504 8.5x107 10.00 ± 0.00 419x 
1000G Phase 1 1092 3.9x107 18.67 ± 0.58 234x 

ANNOVAR 

1000G Phase 3 chr1 2504 1x106 74.67 ± 0.21 59.8x 
1000G Phase 3 chr1 2504 2x106 75.32 ± 0.06 59.5x 
1000G Phase 3 chr1 2504 4x106 75.15 ± 0.39 60.1x 
1000G Phase 3 chr1 2504 6.5x106 NA NA 
1000G Phase 3 2504 8.5x107 NA NA 
1000G Phase 1 1092 3.9x107 NA NA 

 

Bystro, VEP, and ANNOVAR were similarly configured on Amazon i3.2xlarge servers. “Dataset” 

refers to the VCF file used. “Variants/s” is the average of three trials. VEP performance was 

recorded after 2x105 sites in consideration of time. In runs of 1x106 or more annotated sites, 

VEP performance did not deviate from the 2x105 value. ANNOVAR could not complete the full 

Phase 1, Phase 3, or Phase 3 chromosome 1 datasets due to memory limitations. Thus, 

ANNOVAR was compared to Bystro on subsets of 1000 Genomes Phase 3 chromosome 1. 
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query could be written using partial words (“pathogen”), possessive nouns (“expert’s”), different 

tenses (“reviews”), and synonyms (“nonsynonymous”) without changing the results. 

Table 2 | Online comparison of Bystro and recent programs in filtering 8.49x107 variants 

from 1000 Genomes 

Group   Search query Time (s) Variants Tr:Tv 
1 exonic 0.030 ± 0.030 993,343 2.96 

2 (a) cadd > 20 maf < .001 pathogenic expert 
review missense 

0.029 ± 0.009 65 1.71 

2 (b) cadd > 20 maf < .001 pathogenic expert’s 
review non-synonymous 

0.036 ± 0.019 65 1.71 

2 (c) cadd > 20 maf < .001 pathogen expert-
reviewed nonsynonymous 

0.044 ± 0.025 65 1.71 

3 (a) early onset breast cancer 0.046 ± 0.029 4,335 2.51 

3 (b) early-onset breast cancer 0.037 ± 0.020 4,335 2.51 

3 (c) Early onset breast cancers 0.033 ± 0.015 4,335 2.51 

4 (a) Pathogenic nonsense Ehlers-Danlos 0.038 ± 0.027 1 NA 

4 (b) pathogenic nonsense E.D.S 0.078 ± 0.087 1 NA 

4 (c) pathogenic stopgain eds 0.040 ± 0.022 1 NA 
 

The full 1000 Genomes Phase 3 VCF file (853GB, 8.49x107 variants, 2,504 samples) was 

filtered in the publicly-available Bystro web application using the Bystro natural-language search 

engine. VEP, GEMINI, and wANNOVAR (not shown) were also tested, but were unable to 

annotate this data set or filter it. Bystro’s search engine uses a natural language parser that 

allows for unstructured queries: queries in groups 2, 3, and 4 show phrasing variations that did 

not affect results returned, as would be expected for a search engine that could handle normal 

language variation. “Tr:Tv” is the transition to transversion ratio automatically calculated for each 

query by the search engine. The transition to transversion ratio of 2.96 for the “exonic” query is 

close to the ~2.8-3.0 ratio expected in coding regions, suggesting that the search engine 

accurately identified exonic (coding) variants.  
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To test the search engine’s ability to accurately match variants from full-text disease 

queries, we first searched “early-onset breast cancer”, returning the expected alleles in BRCA1 

and BRCA2 (4,335 variants, .037 ± .020s, Table 2). Notably, the queried phrase “early-onset 

breast cancer” did not exist within the annotation, and instead matched closely-related RefSeq 

transcript names, such as “Homo sapiens breast cancer 2, early onset (BRCA2), mRNA.” We 

next explored Bystro’s ability to handle synonyms and acronyms. To test the hypothesis that 

Bystro could interpret common ontologies, we queried “pathogenic nonsense E.D.S”, where 

“nonsense” is a common synonym for “stopGain” (a term annotated by the Bystro annotation 

engine), and “E.D.S” is an acronym for “Ehlers-Danlos Syndrome”. Bystro successfully parsed 

this query, returning a single PLOD1 variant found in 1000 Genomes Phase 3 that introduces an 

early stop codon in all three of its overlapping transcripts, and which has been reported in 

Clinvar as “pathogenic” for “Ehlers-Danlos syndrome, type 4” (1 variant, .038s ± .027s, Table 2). 

Since no other tested program could load or filter the 1000 Genomes Phase 3 VCF file 

online, we next compared Bystro to GEMINI (running on the Galaxy platform) on a 1x106 variant 

subset of 1000 Genomes Phase 3. In contrast with GEMINI’s structured SQL queries, which do 

not easily avail themselves to complex research questions, Bystro enabled shorter and more 

flexible searches: for instance, GEMINI returned 0 results for “impact = 

‘nonsynonymous_variant’”, while searching for either “missense” or “nonsynonymous” in Bystro 

returned identical results. Critically, Bystro was also approximately 6,000x to 42,000x faster than 

GEMINI/Galaxy, enabling real-time filtering (Table 3). 
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Discussion 

Table 3 | Online comparison of Bystro and GEMINI in filtering 1x106 variants 
Group   Program Query Time (s) Variants 

1 Bystro cadd > 15 0.003 ± 0.001 29,057 

1 GEMINI SELECT * FROM variants WHERE 
cadd_scaled > 15 

126 ± 77.9 22,063 

2  Bystro maf < .001 cadd > 15 missense 0.006 ± 0.001 7,926 

2  GEMINI SELECT * FROM variants WHERE 
cadd_scaled > 15 AND 
(aaf_exac_all < .001 OR aaf_1kg_all 
< .001) AND impact = 
'missense_variant' 

36.2 ± 5.98 5,269 

3 Bystro maf < .001 cadd > 15 
nonsynonymous 

0.005 ± 0.001 7,926 

3 GEMINI SELECT * FROM variants WHERE 
cadd_scaled > 15 AND 
(aaf_exac_all < .001 OR aaf_1kg_all 
< .001) AND impact = 
‘nonsynonymous_variant' 

NA 0 

Bystro was compared to GEMINI (running on the Galaxy platform) in filtering the 1x106 

variant subset of 1000 Genomes Phase 3 (the largest tested file that Galaxy could 

completely process). GEMINI requires structured SQL queries, while Bystro allows for 

unstructured, natural-language search. Time represents the number of seconds to return 

results, averaged from six consecutive repetitions. In queries 2 and 3, Bystro’s search 

engine returns identical results for the synonymous terms “missense” and 

“nonsynonymous”, despite annotating such sites only as “nonsynonymous”. In contrast, 

GEMINI requires its domain-specific query “impact = ‘missense_variant’”. Comparisons 

between GEMINI/Galaxy and Bystro are limited, as GEMINI/Galaxy does not provide a 

natural-language parser, annotation field filters, an interactive result browser, a 

transition/transversion calculator, or the ability to filter saved search results. 
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The Bystro annotation and filtering capabilities are primarily exposed through a public 

web application (https://bystro.io/), and are also available for custom, offline installation. 

Creating an annotation online is as simple as selecting the genome and assembly used to make 

the variant call format (VCF)[9] or SNP[10] format files, and uploading these files from a 

computer or Amazon S3 bucket, which can be easily linked to the web application. Annotation 

occurs in the cloud, where distributed instances of the Bystro annotation engine process the 

data and send the results back to the web application for storage and display (Figure 1).  

The Bystro annotation engine is open source, and supports diverse model organisms 

including Homo sapiens (hg19, hg38), M. musculus (mm9, mm10), R.macaque (rheMac8), 

R.norvegicus (rn6), D. melanogaster (dm6), C. elegans (ce11), S. cerevisiae (sacCer3). To 

annotate, it rapidly matches alleles from users’ submitted files to descriptions from RefSeq[11], 

dbSNP[12], PhyloP[13], PhastCons[13], Combined Annotation-Dependent Depletion (CADD), 

and Clinvar[14]. The annotation engine is aware of alternate splicing, and annotates all variants 

relative to each alternate transcript. In contrast with current programs that require substantial 

VCF file pre-processing, Bystro automatically removing low-quality sites, normalizes variant 

representations, splits multiallelic variants, and checks supplied reference bases for 

concordance with the reference assembly. 

The Bystro annotation engine is designed to scale to any size experiment, offering the 

speed of distributed computing solutions such as Hail[15], but with less complexity. Current well-

performing annotators - such as ANNOVAR and SeqAnt - load significant amounts of data into 

memory to improve performance. However, when these programs use multiple threads to take 

advantage of multicore CPUs they may exceed available memory (in some cases over 60GB), 

resulting in a sharp drop in performance or system crash. To solve this, Bystro annotates 

directly from an efficient memory-mapped database (LMDB), using only a few megabytes per 

thread, and because memory-mapped databases naturally lend themselves to the caching 

frequently accessed data, Bystro achieves most of the benefits of in-memory solutions, but 
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without the per-thread penalties. This approach allows Bystro to take excellent advantage of 

multicore CPUs, while also enabling it to perform well on inexpensive, low-memory machines. 

Critically, when multiple files are submitted to it simultaneously, the Bystro annotation engine 

can automatically distribute the work throughout the cloud (or a user-configured computer 

cluster), gaining additional performance by processing the files on multiple computers (Figure 

1). 

When the web application receives a completed annotation, it saves the data and 

creates a permanent results page. Users may then explore several quality control metrics, 

including the transition to transversion ratio on a per-sample or per-experiment basis. They may 

also download the results as tab-delimited text to their computer, or upload them to any 

connected Amazon S3 bucket. In parallel with the completion of an annotation, the Bystro 

search engine automatically begins indexing the results. Once finished, a search bar is revealed 

in the results page, allowing users to filter their variants using the search engine (Figure 1).  

Unlike existing filtering solutions, Bystro’s Elasticsearch-based natural-language search 

engine accepts unstructured, “full-text” queries, and relies on a sophisticated language parser to 

match annotated variants. This allows it to offer the flexibility of modern search engines like 

Google and Bing, while remaining specific enough for the precise identification of alleles 

relevant to the research question. The Bystro search engine matches terms regardless of 

capitalization, punctuation, or word tense, and accurately finds partial terms within long 

annotation values. For complex queries, it supports Boolean operators, numerical ranges, 

regular expressions, Levenshtein-edit distance fuzzy matches, and prefix queries. It also has a 

built-in dictionary of synonyms, for instance equating “stopgain” and “nonsense”.  

The Bystro search engine also allows users to define their own synonymous terms. 

Among other uses, this make it is possible to label trios, which can be used to easily identify de 

novo variants and test allele transmission models. Bystro also provides search tools and 

annotation field filters, which are small programs, accessible by a single mouse click, that 
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dynamically modify any query to generate complex result summaries or refine search results. 

Some of their functions include identifying compound heterozygotes, finding per-field (such as 

per-gene) allele counts, and easily selecting variants that have been reported in association with 

a specific disease, coding consequence, or any other annotation. Like the annotation engine, 

the search engine is also exceptionally fast, automatically distributing indexed annotations 

throughout the cloud, enabling users to sift through millions of variants from large whole-

genome sequencing experiments in milliseconds. 

Most importantly, users can save and download the results of any search query, which 

enables multi-step filtering on a single dataset. The saved results are indexed for search, and 

hyperlinked to the annotations that they were generated from, forming permanent records that 

can be used to reproduce complex analyses. This multi-step filtering provides functionality 

similar to custom command-line filtering script pipelines, but is significantly faster, less error 

prone, and accessible to researchers without programming experience.  

 

While Bystro’s annotation and filtering performance is currently unparalleled by any other 

approach, other software (such as Hail[15]) could achieve similar performance by implementing 

distributed computing algorithms like MapReduce[16], and spreading annotation workloads 

across many servers. Bystro demonstrates that these workarounds are unnecessary to achieve 

reasonable run-times for large datasets online or offline. Additionally, while Bystro’s natural-

language search engine significantly reduces the difficulty of variant filtering, it does not handle 

language idiosyncrasies as robustly as more mature solutions like Google’s, and may return 

unexpected results when search queries are very short, since such queries may have multiple 

correct matches. This is easily avoided by using exact phrases (e.g., by quoting terms), using 

user-specified synonyms, or applying field filters. 

 

Conclusions 
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To date, identifying alleles of interest in sequencing experiments has been time-

consuming and technically challenging, especially for whole-genome sequencing experiments. 

Bystro increases performance by orders of magnitude and improves ease of use through three 

key innovations: 1) a low-memory, high-performance, multithreaded variant annotator that 

automatically distributes work in cloud or clustered environments; 2) an online architecture that 

handles significantly larger sequencing experiments than previous solutions; and 3) the first 

general-purpose, natural-language search engine that simplifies complex variant filtering, and 

which can return matching variants from whole-genome datasets in milliseconds, enabling real-

time data analysis. Bystro’s features enable practically any researcher – regardless of 

computational experience - to analyze large sequencing experiments (e.g thousands of whole-

genome samples) within less than a day, and small ones (e.g hundreds of whole-exome 

samples) in seconds. As genome sequencing continues the march toward ever-larger datasets 

and becomes more frequently used in diverse research settings, Bystro’s combination of 

performance and ease of use will prove invaluable for reproducible, rapid research. 

 

Methods 

 

Accessing Bystro 

For most users, we recommend the Bystro web application (https://bystro.io), as it gives 

full functionality, supports arbitrarily large datasets, and provides a convenient interface to the 

natural-language search engine. Users with computational experience can download the Bystro 

open-source package (https://github.com/akotlar/bystro). Using the provided installation script or 

Amazon AMI image, Bystro can be easily deployed on an individual computer, computational 

cluster, or any Amazon Web Services (AWS) EC2 instance. Bystro has very low memory and 

CPU requirements, but benefits from fast SSD drives. As such we recommend at AWS 
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instances with provisioned I/O EBS drives, RAID 0 non-provisioned EBS, or i2/i3-class EC2 

instances. 

 

Bystro comparisons with ANNOVAR, wANNOVAR, VEP, and GEMINI/Galaxy 

 

Bystro Database 

Bystro databases were created using the open-source package 

(https://github.com/akotlar/bystro). The hg19 and hg38 databases contains RefSeq, dbSNP, 

PhyloP, PhastCons, Combined Annotation-Dependent Depletion (CADD), and Clinvar fields, as 

well as custom annotations (Additional File 3). A complete listing of the original source data are 

enumerated in the Git repository (https://github.com/akotlar/bystro/tree/master/config). Other 

organism databases contain a subset of these sources, based on availability. Pre-built, up-to-

date versions of these databases are publicly available (https://github.com/akotlar/bystro). 

 

WGS Datasets 

Phase 1 and Phase 3 autosome and chromosome X VCF files were downloaded from 

http://www.internationalgenome.org/data/. Phase 1 files were concatenated using bcftools[17] 

“concat” function. Phase 3 files were concatenated using a custom Perl script 

(https://github.com/wingolab-org/GenPro/blob/master/bin/mergeSnpFiles). The Phase 1 VCF file 

was 895GB (139GB compressed), and the Phase 3 data was 853GB (15.6GB compressed). 

The larger size of Phase 1 can be attributed to the inclusion of extra genotype information (the 

genotype likelihood). The full Phase 3 chromosome 1 VCF file (6.4x106 variants, 1.2GB 

compressed), and 5x104-4x106 variant allele subsets (8-655MB compressed) were also tested. 

All Phase 1 and Phase 3 data correspond to the GRCh37/hg19 human genome assembly. All 

data used are available (Additional File 4). 
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Online annotation comparisons 

Bystro, VEP online, wANNOVAR (the online version of ANNOVAR), and GEMINI (within 

Galaxy, which wraps command-line programs) were tested with the full 1000 Genomes Phase 1 

and Phase 3 VCF files, unless they were unable to upload the files due to file size restrictions. 

Bystro was found to be the only program capable of uploading and processing the full Phase 1 

and Phase 3 data sets. 

 

To conduct Bystro online annotations, a new user was registered within the public Bystro 

web application (https://bystro.io/). Phase 1 and Phase 3 files were submitted in triplicate, one 

replicate at a time, using the default database configuration (Additional File 1). Indexing was 

automatically performed by Bystro upon completion of each annotation. The Phase 3 annotation 

is publicly available to be tested (https://bistro.io/public). 

 

The public Bystro server was configured as an Amazon i3.4xlarge EC2 instance. The 

server supported 8 simultaneous users. Throughout the duration of each experiment, multiple 

users had concurrent access to this server, increasing experiment variance, and limiting 

observed performance. 

 

Online Variant Effect Predictor (VEP) submissions were done using the VEP web 

application (http://www.ensembl.org/info/docs/tools/vep/index.html). VEP has a 50MB 

(compressed) file size limit. Due to gateway timeout issues and this file size limit, data sets 

larger than 5x104 variants failed to complete (Additional File 1). 

 

Online ANNOVAR submissions were handled using the wANNOVAR web application. 

wANNOVAR could not accept the smallest tested file, the 5x104 variant subset of Phase 3 

chromosome 1 (8MB compressed) due to file size restrictions (Additional File 1). 
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Galaxy submission was made using the public Galaxy servers. Galaxy provides 

ANNOVAR, but its version of this software failed to complete any annotations, with the error 

“unknown option: vcfinput”. Annotations on Galaxy were therefore performed using GEMINI, 

which provides annotations similar to Bystro’s. Galaxy has a total storage allocation of 250GB 

(after requisite decompression), and both Phase 1 and Phase 3 exceed this size. Galaxy was 

therefore tested with the full 6.4x106 variant Phase 3 chromosome 1 VCF file. Galaxy’s FTP 

server was able to upload the file, however, Galaxy was unable to load the data into GEMINI, 

terminating after running for 36 hours, with the message “This job was terminated because it ran 

longer than the maximum allowed job run time” (Additional File 1). Subsets of Phase 3 

chromosome 1 containing 5x104, 3x105, and 1x106 variants were therefore tested. Three 

repetitions of the 5x104 variant submission were made. In consideration of the duration of 

execution, two repetitions were made of the 3x105 and 1x106 variants submissions. Since 

Galaxy does not record completion time, QuickTime was used to record each submission. 

 

Variant filtering comparisons 

After Bystro completed each annotation, it automatically indexed the results for search. 

The time taken to index this data was recorded. Once this was completed, the Bystro web 

application’s search bar was used to filter the annotated sequencing experiments. The query 

time, as well as the number of results and the transition to transversion ratio for each query, 

were automatically generated by the search engine and recorded. Query time did not take into 

account network latency between the search server and the web server. All queries were run six 

times and averaged. The public search engine, which processed all queries, was hosted on a 

single Amazon i3.2xlarge EC2 instance. 

 

Since VEP, wANNOVAR, and Galaxy/GEMINI could not complete Phase 1 or Phase 3 

annotations, variant filtering on these data sets could not be attempted. For small experiments 
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VEP and GEMINI can filter based on exact matches, while wANNOVAR provides only pre-

configured phenotype and disease model filters. VEP could annotate and filter at most only 

5x104 variants and was therefore excluded from query comparisons. Galaxy/GEMINI was tested 

with subsets of 1000 Genomes Phase 3 of 1x106 variants (the largest tested data set that 

Galaxy could handle), with the described settings (Additional File 1). Since Galaxy does not 

report run times, Quicktime software was used to record each run, and the query time was 

calculated as the difference between the time the search submission entered the Galaxy queue, 

to the time that it was marked completed. Galaxy/GEMINI queries were each run more than 6 

times. Because run times varied by more than 17x, the fastest consecutive 6 runs were 

averaged to minimize the influence of Galaxy server load. 

 

All comparisons with the Bystro search engine are limited, because no other existing 

method provides natural-language parsing, and either rely on built-in scripts or require the user 

to learn a specific language (SQL). 

 

Offline annotation comparisons 

To generate offline performance data, Bystro, VEP, and ANNOVAR were each run on 

separate, dedicated Amazon i3.2xlarge EC2 instances. Each instance contained 4 CPU cores 

(8 threads), 60GB RAM, and a 1920GB NVMe SSD. Each instance was identically configured. 

All programs were configured to as closely match Bystro’s output as possible, although Bystro 

output more total annotation fields (Additional File 2). Each data set tested was run 3 times. The 

annotation time for each run was recorded, and averaged to generate the mean variant per 

second (variant/s) performance. 

 

VEP version 36 was used, as the most recent version at the time of writing, version 37, 

failed to run with the GRCh37 human assembly. VEP was configured to use 8 threads and to 
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run in “offline” mode to maximize performance, as recommended[3]. In each of three recorded 

trials, VEP was set to annotate from RefSeq and CADD, and to check the reference assembly 

(Additional File 2). Based on VEP’s observed performance, adding PhastCons annotations was 

not attempted. VEP’s performance was measured by reading the program’s log, which records 

variant/second performance every 5x103 annotated sites. In consideration of time, VEP was 

stopped after at least 2x105 variants were completed, and the 2x105 variants performance was 

recorded. 

 

The latest ANNOVAR version at the time of writing, 2016-02-01, was used. ANNOVAR 

was configured to annotate RefSeq, CADD, PhastCons 100way, PhyloP 100way, Clinvar, 

avSNP, and ExAc version 03 (Additional File 2). ANNOVAR’s avSNP database was used in 

place of dbSNP, as recommended. We configured ANNOVAR to report allele frequencies from 

ExAc, because it does not do so from either avSNP or dbSNP databases. When annotating 

Phase 1, Phase 3, or Phase 3 chromosome 1, ANNOVAR crashed by exceeding the available 

60GB of memory. It was therefore tested with the subsets of Phase 3 chromosome 1 that 

contained 1x106 – 4x106 variants. 

 

Bystro was configured to annotate descriptions from RefSeq, dbSNP 147, CADD, 

PhastCons 100way, PhyloP 100way, Clinvar, and to check the reference for each submitted 

genomic position (Additional File 2). 

 

Availability of data and materials 

The Bystro web application is freely accessible at https://bystro.io/, and features detailed 

interface documentation (https://bystro.io/help). The Bystro annotator, search indexer, 

distributed queue servers, and database builder are freely available in the Github repository 

(https://github.com/akotlar/bystro, DOI: 10.5281/zenodo.834960), under the Apache 2 open-
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source license. The software is written in Perl and Go programming languages and runs on 

Linux and Mac operating systems. Detailed documentation for Bystro software is provided at 

https://github.com/akotlar/bystro/blob/master/README.md. The datasets supporting the 

conclusions of this article are publicly available in the Amazon S3 repository, 

https://s3.amazonaws.com/1000g-vcf/ (Additional File 4).  

 

Additional Files 

Additional File 1: Description of online comparison settings (.xlsx, 859KB) 

Additional File 2: Description of online comparison settings (.xlsx, 40KB) 

Additional File 3: Species supported at time of writing, and their configurations (.xslx, 36KB) 

Additional File 4: URLs of 1000 Genomes Phase 1 and 3 VCF files used (.xslx, 47KB) 
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