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 21 

ABSTRACT 22 

1. Despite being a core ecological question, disentangling individual and 23 

interacting effects of plant-plant interactions, abiotic factors and species-specific 24 

adaptations as drivers of community assembly is challenging. Studies addressing 25 

this issue are growing rapidly, but they generally lack empirical data regarding 26 

species interactions and local abundances, or cover a narrow range of 27 

environmental conditions. 28 

2. We analysed species distribution models and local spatial patterns to isolate the 29 

relative importance of key abiotic (aridity) and biotic (facilitation and 30 

competition) drivers of plant community assembly in drylands worldwide. We 31 

examined the relative importance of these drivers along aridity gradients and 32 

used information derived from the niches of species to understand the role that 33 

species-specific adaptations to aridity play in modulating the importance of 34 

community assembly drivers.  35 

3. Facilitation, together with aridity, was the major driver of plant community 36 

assembly in global drylands. Due to community specialization, the importance 37 

of facilitation as an assembly driver decreased with aridity, and became non-38 

significant at the border between arid and semiarid climates. Under the most arid 39 

conditions, competition affected species abundances in communities dominated 40 

by specialist species. Due to community specialization, the importance of aridity 41 

in shaping dryland plant communities peaked at moderate aridity levels.  42 

4. Synthesis: We showed that competition is an important driver of community 43 

assembly even under harsh environments, and that the effect of facilitation 44 

collapses as driver of species´ relative abundances under high aridity because of 45 
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the specialization of the species pool to extremely dry conditions. Our findings 46 

pave the way to develop more robust species distribution models aiming to 47 

predict the consequences of ongoing climate change on community assembly in 48 

drylands, the largest biome on Earth. 49 

 50 
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Determinants of plant community diversity and structure, Community assembly drivers, 52 

Facilitation, Specialization, Niches, species-specific adaptation, competition, Drylands 53 
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 55 

INTRODUCTION 56 

Climate change is affecting biodiversity by reducing local species richness, altering 57 

composition and homogenizing biotas in terrestrial ecosystems worldwide (Millenium 58 

Ecosystem Assessment 2005). A major challenge is to accurately predict future 59 

community composition and local species abundance to better understand how these 60 

changes will impact ecosystem structure and functioning (Chapin III et al. 2000; 61 

Valencia et al. 2015). However, predicting the local abundances of species is a difficult 62 

task because of the interplay between abiotic and biotic factors that joinly determine 63 

community composition and structure (Lawton 1999; Soberón 2007; Mayfield & 64 

Levine 2010). In adition, the relative importance of both biotic interactions and abiotic 65 

factors is highly dependent on species features such as their ability to cope with abiotic 66 

stress, making the outcomes of biotic interaction highly species-specific and context 67 

dependent (Choler, Michalet & Callaway 2001; Liancourt, Callaway & Michalet 2005; 68 

Gross et al. 2010; Boulangeat, Gravel & Thuiller 2012; Soliveres et al. 2014).  69 

Combining approaches focusing on contrasting spatial scales, such as species 70 

distribution models (SDMs, applied at regional scales, Guisan & Thuiller 2005) and 71 

local spatial segregation and aggregation data (applied at local scales) can help to tease 72 

apart the relative importance of abiotic and biotic assembly drivers (Fig. 1). SDMs rely 73 

on abiotic variables, such as climate and soil type, to assess the probability of 74 

occurrences of species in a given site. They are able to predict diversity changes and 75 

extinction risks at regional scales, and account for the effect of abiotic factors (e.g., 76 

Araújo et al. 2002). Therefore, SDMs can help to identify the upper limit of species 77 

abundance within a community based on its environmental suitability (VanDerWal et 78 

al. 2009). Along with their ability to describe environmental suitability of individual 79 
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species, SDMs allow to assess species adaptive strategies such as the degree of 80 

specialization to environmental conditions (Devictor et al. 2010), an important 81 

parameter to predict the outcomes of biotic interactions (Liancourt et al. 2005; Gross et 82 

al. 2010). Spatial co-occurrence patterns observed within communities, in turn, can 83 

inform about the frequency and strength of plant-plant interactions (e.g., Cavieres et al. 84 

2006), but provide limited information about the role of abiotic factors on community 85 

assembly. 86 

The combination of SDMs and local co-occurrence patterns is gathering 87 

increasing attention to assess the relative importance of biotic interactions in species 88 

distribution models (e.g., by including co-occurrence matrices on SDMs; Boulangeat et 89 

al. 2012; Wisz et al. 2013; Godsoe et al. 2017; or by using joint SDMs with several 90 

species; Tikhonov et al. 2017; Staniczenko et al. 2017). Also, information about the 91 

niches of species extracted using SDMs has been included in models of local co-92 

occurrences to infer the relative importance of habitat sharing on co-occurrence patterns 93 

(Steinbauer et al. 2016). This combination of approaches provides a promising tool to 94 

disentangle the relative importance of community assembly factors at community 95 

scales. However, such approaches have been rarely integrated into a comprehensive 96 

framework and have not been tested against field data covering a wide range of species 97 

pools and abiotic conditions. Furthermore, they have not been used to evaluate changes 98 

in the importance of biotic interactions along abiotic gradients. The latter would allow 99 

the investigation of how interactions between abiotic factors, plant-plant interactions 100 

and species-specific responses drive the relative abundance of species at the community 101 

scale, something that would provide a solid framework to understand how communities 102 

will change the importance of assembly rules with ongoing climate change. 103 
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Here we combine SDMs with local co-occurrence data to test the relative 104 

importance of abiotic factors, plant-plant interactions and the degree of specialization, 105 

as well as their interplay, as drivers of species abundances within communities. We 106 

used data gathered from 157 drylands from all continents except Antarctica (Maestre et 107 

al. 2012). These ecosystems are constrained by water scarcity (Whitford 2002), and the 108 

interplay of aridity with plant-plant interactions (competition and facilitation) largely 109 

drives the composition and diversity of their plant communities (Tielbörger & Kadmon 110 

2000; Tirado & Pugnaire 2003; Soliveres & Maestre 2014). Drylands already cover 111 

over 45% of terrestrial surface and will expand their global extent by 11-23% by the end 112 

of this century (Prăvălie 2016). Hence, understanding how the relative importance of 113 

abiotic/biotic assembly drivers changes along aridity gradients is crucial to predict the 114 

response of terrestrial ecosystems to ongoing climate change. Specifically, we 115 

hypothesized that: i) species become more adapted and specialized to aridity as the 116 

latter increases, ii) aridity and plant-plant interactions (both facilitation and competition) 117 

interact to drive community assembly, and iii) in communities dominated by species 118 

specialized to aridity, facilitation is less important than competition as an assembly 119 

driver. 120 

 121 

MATERIAL AND METHODS 122 

Study sites and field sampling 123 

The 157 sites used in this study are a subset of the 230 sites used by Ulrich et al. (2016), 124 

and were located in drylands from 19 countries (Fig. S1). The sites surveyed differ 125 

widely in their environmental conditions: annual mean temperature, rainfall and 126 

elevation ranges are from -1.8 to 27.8 ºC, from 67 to 1219 mm, and from 69 to 4668 127 

m.a.s.l., respectively. Our database includes grasslands, shrublands and savannahs, with 128 
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species richness ranging from 2 to 52 perennial species, and total plant cover ranging 129 

from 2 to 82 %.  130 

All the sites were surveyed between 2006 and 2013 according to a standardized 131 

sampling protocol (see Maestre et al. 2012 for details). In each of these sites, a 30 m x 132 

30 m plot was established and four 30-m long transects were displayed separated by 8 m 133 

from each other. We established 20 quadrats (1.5 x 1.5m) along each transect (80 per 134 

site) and visually estimated the cover of each perennial plant species, which was used as 135 

our surrogate of species abundance in each quadrat. A total of 898 species were 136 

identified to the species level. We calculated the aridity level of each site [1 − aridity 137 

index (AI), where AI is the precipitation/potential evapotranspiration] from AI obtained 138 

from the Global Potential Evapotranspiration database (Zomer et al. 2008), which is 139 

based on interpolations provided by WorldClim (Hijmans et al. 2005). 140 

 141 

Evaluating aridity and plant-plant interactions as assembly drivers  142 

We developed a four-step approach to evaluate how abiotic and biotic factors determine 143 

species relative abundances in plant communities. First, we extracted the aridity niches 144 

of all species surveyed using SDMs, and the local relative abundance of species 145 

expected when considering only abiotic conditions. Then, we estimated the main 146 

features of species niche (niche optimum, niche breadth and niche skewness), calculated 147 

a community-weighted mean of such features, and evaluated their variation along 148 

aridity gradients to identify changes in common strategies of species specialization to 149 

aridity across environmental gradients. Third, we evaluated the effect of both aridity and 150 

plant-plant interactions (as extracted from co-occurrence analyses) on the relative 151 

abundance of species within each community. Finally, we evaluated changes in the 152 

relative importance of abiotic/biotic assembly drivers along gradients of aridity and of 153 
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niche specialisation of the species in our communities. These steps are described in 154 

detail below. 155 

Step i - Assessing aridity niches using species distribution models 156 

SDMs are nonlinear statistical models relating abiotic variables (predictors) with 157 

species occurrences (response variable) at regional or global scales. We obtained 158 

species occurrences from the Global Biodiversity Information Facility (GBIF, 159 

http://www.gbif.org/). For simplicity, we used only aridity as the sole abiotic factor for 160 

our SDMs. Aridity is a good proxy for water availability, which is the most influential 161 

abiotic factor for plant survival in drylands (Whitford 2002), and is a key determinant of 162 

both species interactions and composition in drylands (Callaway 2007; Soliveres & 163 

Maestre 2014). 164 

We performed SDMs using MAXENT (Elith et al. 2011) as fully described in 165 

Appendix S1. The result of MAXENT is a function relating the suitability of a species 166 

with aridity (i.e., the “aridity niche”). Based on the aridity niches, we then estimated the 167 

“aridity-driven abundance” (Aab), i.e., the expected local relative abundance of each 168 

species based solely on the aridity level of each surveyed site and the other species able 169 

to colonize the site (see Fig. 1.a).  170 

 equation 1 171 

where nsp is the number of species in the community, SP is the species performance 172 

calculated as the habitat suitability for the species yielded as an interpolation between 173 

the species niche and the aridity observed in the surveyed communities. To ensure 174 

comparability of SP, we standardized niches to their maximum (thus it ranged between 175 

0 and 1 for each species). This methodology assumes that, for a particular 176 

environmental condition, a species will share the available space with its neighbors by 177 
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occurring proportionally to its aridity preferences (as measured with the aridity niches). 178 

We assumed that relative abundances in the community emerge from sampling the 179 

species pool according to the local aridity level, thus, the relative abundance is the 180 

density expectation of sampling all species present in the community, each with a 181 

probability that depends on its SP.  182 

 183 

Step ii – Identifying dominant plant strategies based on niche features 184 

Aridity niches hold information about the adaptative strategy of species by showing the 185 

following features: i) niche optimum (the aridity level at which a species performs 186 

optimally, SP = 1), ii) niche breath (the aridity range that a given species occupies), and 187 

iii) niche shape (as measured by the skewness of aridity niches; see examples in Fig. 188 

S2). As this information is available for each species, each niche feature can be 189 

considered as an attribute of the species related to its response to aridity. These 190 

attributes can be used to scale species response to aridity at the community level, i.e. to 191 

track how the dominant plant strategy and their diversity within communities change 192 

across the global aridity gradient. 193 

First, we calculated the community weighted mean niche optimum obtained as 194 

the sum of species niche optimum weighted by their observed relative abundance 195 

(adapted from Lavorel & Garnier 2002, hereafter CW-niche optimum) as a measure of 196 

the tolerance of communities to aridity. CW-niche optimum was used to evaluate how 197 

well the optimum level of aridity of a given species matched with the observed aridity 198 

in the surveyed sites. Differences between CW-niche optimum and observed aridity 199 

may impact the importance of aridity-driven abundance as a community assembly 200 

driver, as it supposes extra stress to species maladapted to local conditions. We used 201 

this analysis to understand variations in the importance of aridity-driven abundance (see 202 
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step iv) across aridity gradients. Additionally, this analysis indicated whether 203 

information extracted from SDM matched the one provided by observed patterns, as the 204 

local abundance of a species in a given community should exhibit aridity optima around 205 

the local aridity conditions of such community (meaning that the community is locally 206 

adapted to the aridity).  207 

Second, we calculated the community weighted mean of niche breath (CW-208 

Niche breadth) and shape (CW-Niche skewness) to assess the degree of species 209 

specialization to aridity. A smaller niche breath defines species specialized to a 210 

particular range of aridity conditions, whereas the shape informs about the preference of 211 

such species for more or less arid environments. Hence, communities dominated by 212 

species specialized to aridity will be defined by lower CW-Niche breath and negative 213 

CW-Niche skewness (i.e., right-skewed, indicating preferences for high aridity level). 214 

We observed a strong correlation between niche breadth and skewness (r > 0.60): 215 

communities dominated by species with a narrow niche breath tend also to be 216 

dominated by species with a negative skewness (Fig. 2). Therefore, we used only CW-217 

Niche skewness as a measure of the community specialization towards arid 218 

environments (community specialization) in further analyses.  219 

Step iii – Developping a statistical model to predict species abundance  220 

-Plant-Plant interactions: Expected abundance using co-occurrence matrices 221 

For each site, we obtained an estimate of the expected relative abundance of each 222 

species according only to plant-plant interactions, measured as spatial co-occurrences. 223 

We used aggregation/seggregation as proxies of facilitation/competition, respectively 224 

(Tirado & Pugnaire 2003; Cavieres et al. 2006; Valiente-Banuet & Verdú 2008). We are 225 

aware that spatial aggregation/segregation can also be driven by other factors such as 226 

habitat sharing or seed capture (Morales-Castilla et al. 2015). Interpretation of the 227 
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results should then consider this limitation; however, co-occurrence has been 228 

successfully linked to plant-plant interactions as estimated from manipulative studies 229 

(Tirado & Pugnaire 2003), and is the only method available to approximate facilitation 230 

and competition at the community level when studying many sites and species 231 

(Cavieres et al. 2006; Valiente-Banuet & Verdú 2008).  232 

As a metric of spatial aggregation/segregation, we obtained a normalized score 233 

of co-occurrence using PAIRS (Ulrich 2008). PAIRS randomizes the matrices of 234 

species occurrences within the quadrats (one per site) and detects deviations from 235 

random spatial association patterns in all species pairs while controlling for false 236 

positives due to multiple testing (Gotelli & Ulrich 2010). We used an abundance-237 

weighted swap method to randomize species occurrence. This method assumes 238 

sampling quadrats with equal probabilities of being colonized and keeps species 239 

richness and local abundances constant to account for overall differences in habitat 240 

suitability. We obtained co-occurrence in both observed vs. randomized communities 241 

for each species pair in each community as:  242 

     equation 2 243 

where n is the number of occurrences of target species (ni) and its neighbours (nj), and is 244 

N the number of co-occurrences of both species together. We used the standardized 245 

effect sizes obtained from comparing co-occurrences of the null model with that 246 

observed in the field as a metric of the strength of the interaction between target species 247 

and their neighbours as a function of the deviation from random co-occurrence of 248 

species i and j. Thus, standardized effect sizes are comparable between different pairs, 249 

but do not take into account how frequent is the interaction within the community. To 250 

correct for this, we estimated the relative abundance of a species i expected due to 251 
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competition (i.e., negative co-occurrence, equation 3) and facilitation (i.e., positive co-252 

occurrence, equation 4) with other species (j, not includying i) as: 253 

  equation 3 254 

  equation 4 255 

Where, Cab and Fab represent the competition and facilitation-driven abundances in the 256 

community; β represents the standardized effect sizes obtained measuring the 257 

competitive (if negative) and facilitative (if positive) effect over species i of other 258 

species in the community (j), and pj represents the relative abundance of species j in the 259 

surveyed community. By doing this we obtained a metric of the effects of plant-plant 260 

interactions on the performance of target species for a specific community considering 261 

both the strength of interaction with each neighbor (standardized effect sizes) and the 262 

frequency of such interactions within the community (relative abundance of the 263 

neighbours).  264 

-Fitting the statistical model 265 

We used linear mixed models to analyse the relative abundances of each species as a 266 

function of: i) aridity-driven abundance, ii) cumulative effects of both competition-267 

driven and facilitation-driven abundances, and iii) the height of the target species 268 

(equation 5, Fig. 1.c). Plant height was introduced to control for potential confounding 269 

effects between cover (used to estimate relative abundance in the field) and the size of 270 

the species being sampled (taller species are more likely to score higher cover values 271 

regardless of their abundance). Plant height was obtained from available databases, 272 

published literature and local floras (see Appendix A from Soliveres et al. 2014 for a full reference list). Species-specific 273 

differences were accounted for by introducing “species identity” as a random factor in 274 
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the model to avoid the use of the same species in two different communites as two 275 

independent cases.  276 

As species relative adaptation to local aridity may influence the importance of 277 

facilitation and competition (Choler et al. 2001; Liancourt et al. 2005; Gross et al. 2010; 278 

Soliveres et al. 2014), we established an interaction between aridity-driven (derived 279 

from the niches and summarizing species suitability to local conditions) and 280 

competition- and facilitation-driven abundances. Interactions between aridity and 281 

competition and facilitation will be positive if the effect of plant-plant interactions on 282 

relative abundance is higher for locally adapted species than for species not adapted to 283 

local conditions. It must be noted that the effects of competition are negative, therefore 284 

positive contributions from the interaction term decrease the effect of competition on 285 

the relative abundance of species adapted to local aridity conditions. Thus, our final 286 

model was: 287 

   equation 5 288 

Where AAb, FAb and CAb represent aridity, facilitation and competition-driven 289 

abundances, respectively. Size is the height of species i. We obtained the standardized 290 

effect sizes of all variables on relative abundance. We assume that the effect size of how 291 

suitable the local aridity is for a given species (AAb) and plant-plant interactions on 292 

relative abundance represent the relative importance of abiotic factors and plant-plant 293 

interactions, respectively, as drivers of the assembly of the communities analyzed.  294 

Step iv –Exploring changes in the relative importance of biotic/abiotic assembly 295 

drivers across gradients of aridity and community specialization 296 

First, we ordered all sites according to either aridity or community specialization 297 

(contingent factors). Then, we took the 45 sites with the lowest values of each 298 
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contingent factor (as this number of sites allowed sufficient statistical power for our 299 

model), and performed the mixed model described in equation 5 (see Fig. 1.d). In the 300 

case of community specialization, we did not use the interaction terms described in 301 

equation 5. We did so because CW-Niche skewness already summarizes the influence 302 

of species adaptation on the importance of plant-plant interactions and, therefore, the 303 

information extracted from interaction terms is redundant with that extracted from the 304 

gradient.  305 

We bootstrapped the standardized slopes of each predictor to obtain their 306 

confidence intervals, which were matched to the average value of the contingent factor 307 

studied across the 45 sites. Next, we removed the community with the lowest value of 308 

the contingent factor studied from the 45 selected sites, and added the community 309 

scoring the next higher value to repeat the same calculations. We repeated this loop as 310 

many times as sites remained (112). The coefficients of the standardized predictors 311 

included in the linear mixed models provide a comparable measure of the importance of 312 

plant-plant interactions and position of each species regarding its aridity niche. We used 313 

the 95% confidence interval to assess changes in the importance of biotic/abiotic 314 

assembly drivers across the gradients studied. 315 

Further statistical details 316 

To maintain information representative of the community level in the analyses 317 

described in steps ii, iii and iv above, we used all sites for which we gathered enough 318 

information (e.g., discarding species with less than 20 occurrences [see appendix S1], or 319 

those for which we could not retrieve height values) for the species that summed up at 320 

least 60% of the total perennial vegetation. A total of 157 out of the original 236 321 

communities remained for further analyses, leaving a total of 1631 study cases (405 322 

different species in 157 communities with some species repeated throughout 323 
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communities). The species from these communities represented on average of 91.6 ± 324 

10.3 % (mean ± SD) of the total cover in the surveyed sites. 325 

Mixed models in steps ii and iv were performed using the “lme4” R package 326 

(Bates et al. 2015) in R (R Development Core Team 2008). We log transformed all 327 

variables but aggregation and segregation (which were double square root transformed), 328 

and scaled the values after transformation to fulfill the assumptions of the analyses and 329 

to obtain standardized coefficients. We extracted the marginal (variance explained by 330 

fixed factors) and conditional (variance explained by fixed + random factors) R2 values 331 

(Nakagawa & Schielzeth 2013) using the “piecewiseSEM” R package (Lefcheck 2015). 332 

In analyses of steps ii, and iv we used generalized additive models (Wood 2006) 333 

to depict smoothed trends in the effects of community niche features and assembly 334 

drivers across gradients of aridity and community specialization. These models are used 335 

to investigate the nonlinear relationships and work well when a large number of 336 

replicates is considered (Wood 2006). Data and code used to perform all the analyses 337 

are available in figshare (Berdugo et al. 2017a). 338 

RESULTS 339 

Common strategies on species adaptive response along aridity gradients  340 

The relationship between the CWM of aridity optima and observed aridity was close to 341 

the 1:1 line (slope = 0.8 ± 0.19), but deviated from this line at intermediate aridity levels 342 

(about 0.6-0.8; Fig. 2a). Both CW-Niche skewness and CW-Niche breadth decreased 343 

within this aridity range, suggesting that species became more specialized to arid 344 

conditions by skewing their niches to the right (i.e., showing preference for more arid 345 

environments; Fig. 2b and 2c). All these trends were not confounded by the uneven 346 

distribution of the number of communities across the aridity gradient (Fig. S3). 347 
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Changes in the relative importance of aridity and plant-plant interactions as 348 

assembly drivers 349 

The strongest predictors of the relative abundance of each species were facilitation 350 

(measured as positive co-occurrences) and aridity, which exhibited similar effect sizes 351 

(Fig. 3). Competition (negative co-occurrences) and the interactions between aridity-352 

driven abundance and plant co-occurrences showed negative effects in the overall 353 

model. The negative effects of interaction terms suggest that species well adapted to 354 

aridity in drylands usually experience less facilitative effects and more competitive 355 

effects. 356 

The importance of aridity as an assembly driver increased up to aridity levels ~ 357 

0.75 (i.e., the limit between arid and semiarid climates), and remained constant beyond 358 

that value (Fig. 4a, see also Table S1). The effect of facilitation declined linearly, while 359 

that of competition increased (i.e., became more negative), with aridity. However, the 360 

effect of competition was only significant under very high aridity levels (0.75-0.80). 361 

The interaction term between aridity-driven abundance and competition shifted from 362 

negative at wetter sites to positive at dryer sites. These results indicate that, in the less 363 

arid sites of our gradient, competition was less important for species more adapted to 364 

local aridity than for those less adapted to them. Conversely, at high aridity levels, the 365 

effects of competition were stronger for species well adapted to aridity than for those 366 

that were far from their aridity optimum. The interaction term between response to 367 

aridity and facilitation turned negative (Table S1, Fig. 4b), although only significant in 368 

some points of the gradient, with increasing aridity. This result suggests that, under high 369 

aridity conditions, facilitation tend to be a more important driver of species´ abundances 370 

for those species maladapted to the observed (high arid) conditions. 371 
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As communities became more specialized, the importance of facilitation as a 372 

community assembly process decreased (Fig. 5). This corresponded with an increase of 373 

the importance of competition and aridity-driven abundance. The decline in the 374 

importance of facilitation was abrupt and became not significant around values of 375 

skewness=0, thus representing Gaussian-like shapes. These results remained consistent 376 

when using autoregression analyses instead of generalized additive models (Table S1). 377 

 378 

DISCUSSION 379 

By merging approaches operating at contrasting spatial scales, we showed the 380 

differential effect of abiotic conditions and plant-plant interactions according to current 381 

aridity levels and the degree of habitat specialization of the species pool to aridity. Our 382 

study provides fundamental information on how species assemble in global drylands 383 

and may help to forecast future community composition in response to climate change. 384 

We found that facilitation (measured as positive spatial co-occurrences) and aridity 385 

largely explained community assembly in global drylands. The weak effects of 386 

competition and the interactions between abiotic and biotic drivers observed were 387 

explained by shifts in the importance of abiotic/biotic assembly drivers across gradients 388 

of aridity and specialization. We also observed a shift towards communities more 389 

specialized with aridity, which substantially reduced the importance of facilitation in the 390 

assembly of these communities at the most arid sites studied.  391 

Facilitation as driver of community assembly in drylands 392 

We found that facilitation and aridity were the two main assembly factors in dryland 393 

plant communities. The high importance of facilitation on explaining local plant 394 

abundance found here suggests that species niches might be highly influenced by this 395 

particular biotic factor in dryland communities. Particularly, the importance of 396 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2017. ; https://doi.org/10.1101/147181doi: bioRxiv preprint 

https://doi.org/10.1101/147181
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

 

facilitation was maximum in mild drylands (those with aridity values lower than 0.7) 397 

and for generalist communities (Fig. 3). Our results also indicate that facilitation 398 

importantly affect the abundances of not only rare but also dominant species in these 399 

sites, as previously documented (Le Bagousse-Pinguet et al. 2014). This peak in the 400 

importance of facilitacion could be driven by two ecological mechanisms: i) species less 401 

well-adapted to local conditions are those that benefit the most from facilitation, 402 

specially at moderate levels of stress (e.g., Choler et al. 2001; Maestre et al. 2009; 403 

Holmgren & Scheffer 2010), or ii) species with extended ranges (and therefore 404 

appearing as generalists) in drylands might seem so because positive biotic interactions 405 

substantially extend their niches (Wisz et al. 2013; Stewart et al. 2015; Tikhonov et al. 406 

2017). However, with our approach is not possible to distinguish between these two 407 

mechanisms. Given that biotic interactions show stronger effects at local scales 408 

(Pearson & Dawson 2003), and that the optimum of the niches matches the aridity of 409 

our sites (thus suggesting that niches were primarily linked to abiotic conditions, Fig. 410 

2), we assume that the former mechanism (facilitation favouring less adapted species) is 411 

more likely to occur in the communities studied. However, the high importance of 412 

facilitation in our study supposes a good starting point to encourage the study of how 413 

facilitation may affect the niches of dryland species at mild environmental conditions. 414 

 415 

Changes in abiotic/biotic controls of community assembly across aridity and 416 

specialization gradients 417 

Our SDMs indicated that species niches became narrower and more skewed to dry 418 

conditions at aridity levels > 0.7 (Fig. 2). This suggests a high degree of specialization 419 

of those species growing under more arid conditions, probably as an adaptive response 420 

of communities to increasing environmental harshness (Noy-Meir 1973; Devictor et al. 421 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2017. ; https://doi.org/10.1101/147181doi: bioRxiv preprint 

https://doi.org/10.1101/147181
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

 

2010). In contrast to previous predictions that did not account for the degree of 422 

specialization of the species pool (Butterfield 2015), our results suggest that 423 

communities already experiencing high levels of aridity should not be expected to 424 

drastically shift their composition with further aridification. The latter is supported by 425 

the asymptotic trend on the importance of aridity-driven abundance in the most arid 426 

drylands (Fig. 4a for aridity > 0.75, Fig. 5), and the lower levels of beta-diversity found 427 

in these communities (Ulrich et al. 2014). Our results highlight the importance of 428 

including the degree of specialization of the species pool to accurately forecast 429 

compositional shifts with climate change, as highlighted by Bush et al. (2016). 430 

Concomitantly, specialization of the species pool affected also the relative 431 

importance of plant-plant interactions at the community level (Fig. 5, Fig. S5). Indeed, 432 

we found a collapse of facilitation as a driver of plant community assembly - as 433 

previously forecasted by studies focusing on pairwise interactions (e.g., Tielbörger & 434 

Kadmon 2000; Cavieres et al. 2006; Michalet et al. 2006) - to occur at aridity levels of 435 

0.75-0.80, likely because of a higher specialization of the species pool at high aridity 436 

levels. The assembly of communities dominated by specialist species is less dependent 437 

on facilitation and more on competition, as suggested also by experimental studies (e.g., 438 

Liancourt et al. 2005; Gross et al. 2010). Our results, therefore, validate the occurrence 439 

of a tight relationship between species specialization and the outcomes of plant-plant 440 

interactions within plant communities. As specialists became dominant in high aridity 441 

sites (Fig. 2b and c), the community-scale importance of facilitation declined, and that 442 

of competition increased, along the aridity gradient evaluated (Fig. 4a). Note that within 443 

high aridity sites, facilitation was still more important for species not adapted to local 444 

aridity conditions than for those not adapted to them (Fig. 4b). Overall, our results 445 

support the notion that facilitation is less important for locally-adapted species, and that 446 
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plant-plant interactions depend more on species-specific adaptations than on the overall 447 

environmental harshness (Liancourt et al. 2005; Soliveres & Maestre 2014). 448 

Using a method based on the abundance patterns of interacting species rather 449 

than on species richness, we were able to quantify where the shift on the relative 450 

importance of facilitation and competition occurs in drylands, something that happened 451 

around aridity levels of 0.75-0.80. Importantly, studies focusing on the relationship 452 

between facilitation and species richness that focused on pairings between dominant 453 

nurses and their neighbours did not find such facilitation collapse along similar aridity 454 

ranges as those studied here (Soliveres & Maestre 2014), although this collapse has 455 

been found in studies considering temporal variation in climatic conditions (Tielbörger 456 

& Kadmon 2000). This suggests that plant-plant interactions behave differently across 457 

environmental gradients depending on whether we focus on particular pairs of species 458 

or in all possible pairs within a given community, and also on whether we focus on 459 

species richness or changes in relative abundances. 460 

Our results might explain why spatial patterns of dryland vegetation decouple 461 

from facilitation under aridity levels ≥ 0.8 (Berdugo et al. 2017b). Under these 462 

conditions, facilitation is no longer an important driver of species abundance, which is 463 

likely related to the size of plant patches in drylands. Previous studies have failed to link 464 

facilitation with ecosystem functioning (Maestre et al. 2010), probably due to the focus 465 

on the relationship between facilitation and species richness as the sole mechanism 466 

linking facilitation to ecosystem functioning (but see Mitchell et al. 2009). We speculate 467 

that focusing on the links between facilitation and species abundance, known to affect 468 

spatial patterns that are fundamental drivers of ecosystem functioning in drylands 469 

(Maestre et al. 2016), could provide the long hypothesized but largely untested link 470 

between facilitation and ecosystem functioning. Interestingly, at approximately the 471 
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same aridity levels where facilitation declines and communities become more 472 

competition-driven, other studies have found important functional changes involving 473 

nutrient cycling rates (Wang et al. 2014) and drastic declines in ecosystem functioning 474 

(Berdugo et al. 2017b). Since plant-plant interactions are thought to affect ecosystem 475 

resilience (Kéfi, Holmgren & Scheffer 2016), our study points that a possible driver of 476 

such sensitivity might be a shift from facilitation to competition-driven plant 477 

communities. 478 

 479 

CONCLUDING REMARKS 480 

The SDMs effectively isolated the effect of abiotic conditions, as supported by the good 481 

fit of estimated aridity optima of the observed community vs. the local aridity of each 482 

community (Fig. 2a). In addition, our results are in accordance to those estimating the 483 

relative importance of biotic/abiotic assembly drivers from patterns of height variation 484 

(Fig. S4) (Cornwell & Ackerly 2009; Mayfield & Levine 2010). Thus, the combination 485 

of approaches at different spatial scales introduced here effectively allowed us to isolate 486 

the role of abiotic conditions and plant-plant interactions when analyzing the relative 487 

abundance of species within communities. We found shifts from facilitation- to 488 

competition-driven communities under aridity levels around 0.75, with potentially 489 

important cascading effects on ecosystem functioning that deserve further attention. 490 

Furthermore, by explicitly considering the adaptation of species to aridity we showed 491 

that facilitation was more important for maladapted species in drylands, and that 492 

specialized species pools estabilize the effect of environmental filtering across a large 493 

range of aridity levels. Our results emphasize the role of species adaptation to aridity as 494 

a modulator of the role of environmental filters and plant-plant interactions as drivers of 495 

community assembly. They also suggest that the composition of arid plant communities 496 
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may be highly resilient to further increases in aridity, and that facilitation is key to 497 

preserve species less adapted to high aridity levels. These findings can be used to refine 498 

forecasts of plant community composition under climate change in drylands, the largest 499 

biome on Earth. 500 

501 
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FIGURES 700 

 701 

 702 

Figure 1. Diagram showing the methodological approach used. First, we obtained, for 703 

each species, the Aridity-driven abundance using species distribution modelling with 704 

aridity as predictor (a) and spatial co-occurrences measured in the field (as a proxy of 705 

plant-plant interactions, b). Then we built the model by additionally controlling for 706 

species size and using the relative abundance of species as response variable (c). The 707 

effects of these elements on species abundance is a metric on the importance of each 708 

assembly driver evaluated (aridity, facilitation and competition) for community 709 

assembly. Finally, we used a moving window approach to explore how the importance 710 

the different community assembly drivers change along aridity and community 711 

specialization gradients (d). SP: Species Performance, STD: Standardized coefficients. 712 

713 
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 714 

 715 

Figure 2. Relationships between aridity and the community weighted mean (CWM) of 716 

the niche optimum (a), niche breadth (b) and niche skewness (c) obtained from species 717 

distributions models. The blue line and shaded area are the gam-smoothed trends (non-718 

parametric regressions) observed ± 95% confidence interval, respectively. The black 719 
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line in a) represents the 1:1 line; the 0 value in c) indicates a change in the direction of 720 

skewness. 721 

Aridity-driven
abundance

Facilitation Competition

Aridity-driven
abundance

X
Competition

Aridity-driven
abundance

X
Facilitation

R2 marginal         0.13

R2 conditional 0.52

 722 

Figure 3. Standardized effect sizes of different drivers of community assembly obtained 723 

from the linear mixed model applied to all dryland communities. Median, 50 and 75 724 

quantiles are represented in a box plot for each effect. Marginal (variance explained by 725 

fixed factors) and conditional (variance explained by fixed + random factors) R2 values 726 

are shown. 727 

728 
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b
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Wetter Dryer
 730 

Figure 4. Standardized effects sizes of facilitation, competition and local performance 731 

to aridity along an aridity gradient (a), and interactions between local performance to 732 

aridity and competition or facilitation (b). This analysis is performed by fitting a 733 

generalized mixed model throughout a moving window subsetting our study sites 734 

following the gradient of aridity. Bootstrapped coefficients of this regression within the 735 
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95% confidence intervals are displayed for each step of the moving window. Lines are 736 

the gam smoothed trend of variation of the effects. 737 

 738 

GeneralistsSpecialists
 739 

 740 

Figure 5. Standardized effects sizes of facilitation, competition and aridity along a 741 

gradient of community specialization (measured as community weighted [CW] niche 742 

skewness). This analysis is performed by fitting a generalized mixed model throughout 743 

a moving window subsetting our study sites following the gradient of community 744 

specialization. Bootstrapped coefficients of this regression within the 95% confidence 745 

intervals are displayed for each step of the moving window. Lines are the gam 746 

smoothed trend of variation of the effects. 747 

748 
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 749 

SUPPLEMENTARY FIGURES 750 

 751 

 752 

Figure S1. Map showing the geographical position of the 157 sites used in this study 753 

(red points). 754 

755 
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 756 

Optimum = 0.62

Niche Amplitude = 0.94

Skewness = 0.32 a

Optimum = 0.82

Niche Amplitude = 0.43

Skewness = -0.27 b

 757 

Figure S2. Example of aridity niches for Stipa tenacissima (a) and Maireana brevifolia 758 

(b), including the features measured on them. AI = aridity index. Photographs of each 759 

species are shown in the figure. Authors: a) Lumbar~commonswiki; b) BY-SA 3.0, 760 

downloaded from Wikipedia under creative commons license. 761 

762 
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 763 

 764 

Figure S3. Variation in the relationship between aridity and community weighted niche 765 

optimum (a), amplitude (b) and skewness (c) when using the same number of points at 766 

both sides of the intermediate aridity level of the study (Aridity = 0.6). We performed 767 
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this regression 100 times by keeping the sites with aridity lower than 0.6 (N=24) and 768 

bootstrapping sites with aridity higher than 0.6 (so that total N = 48 for each regression). 769 

Each dot represents a community observed in one of the sites. The transparency of the 770 

data points is inverselly proportional to the number of times the point was used. The 771 

blue line is the loess smoothed trend observed in each of the 100 bootstrapped 772 

samplings. The black line in a) represents the 1:1 line and in c) the 0 value, and 773 

indicates a change in the direction of skewness. 774 

775 
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 776 

Standard Deviation of Height
 777 

Figure S4. Standardized effects sizes of facilitation, competition and aridity along an 778 

aridity gradient. This analysis is performed by fitting a generalized mixed model (see 779 

equation 5) throughout a moving window subsetting our study sites following the 780 

gradient of height standard deviation within communities. Bootstrapped coefficients of 781 

this regression within the 95% confidence intervals are displayed for each step of the 782 

moving window. Lines are the gam smoothed trend of variation of the effects.783 
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 785 

Figure S5. Standardized effects sizes of facilitation, competition and aridity along an 786 

aridity gradient for Specialized communities (CWSkewness <0, a), and not specialized 787 

communities (CWSkewness >0, b). This analysis is performed by fitting a generalized 788 

mixed model throughout a moving window (see figure 1d) in two subsets of our study 789 

sites according to CWskewness. Bootstrapped coefficients of mixed models regression 790 

within the 95% confidence intervals are displayed for each step of the moving window. 791 

Lines are the gam smoothed trend of variation of the effects. 792 

793 
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 794 

Table S1. Results from a lineal and quadratic autorregresive model relating aridity and 795 

CW-Niche skewness with the importance of the different drivers of community 796 

assembly evaluated. The analysis takes the average of effect sizes per level of the 797 

contingent factor (as in Figures 4 and 5) as response variables and uses lagged values of 798 

these effects along the gradient at lags = 1 and 2 as covariates of aridity/CW-Niche 799 

Skewness to control for autocorrelation. Int. Facil: interaction of Aridity-driven 800 

abundance and facilitation. Int. Compet: interaction between Aridity-driven abundance 801 

and competition. 802 

 

Assembly driver Slope Quadratic term 

S
p
ec

ia
li

za
ti

o
n

 

Aridity-driven 

abundance -0.01• -0.03 (n.s.) 

Facilitation -0.01 (n.s.) 0.02 (n.s) 

Competition -0.01 (n.s.) 0.02 • 

A
ri

d
it

y
 

Aridity-driven 

abundance -0.01 (n.s.) -0.50 • 

Facilitation -0.16*** -0.08(n.s.) 

Competition -0.09* -0.04 (n.s.) 

Int. Facil 0.00 (n.s.) 0.15 (n.s.) 

Int. Compet. 0.82 • -0.55 • 

Note: *** significant at P<0.001, ** significant at P<0.01, * significant at P<0.05, • 803 

marginally significant, (n.s) not significant 804 
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