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ABSTRACT 

Background: Although biomonitoring studies demonstrate that the general population 

experiences exposure to multiple chemicals, most environmental epidemiology studies consider 

each chemical separately when assessing adverse effects of environmental exposures. Hence, the 

critical need for novel approaches to handle multiple correlated exposures. 

Methods: We propose a novel approach using the G-formula, a maximum likelihood-based 

substitution estimator, combined with an ensemble learning technique (i.e. SuperLearner) to infer 

causal effect estimates for a multi-pollutant mixture. We simulated four continuous outcomes 

from real data on 5 correlated exposures under four exposure-response relationships with 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 30, 2017. ; https://doi.org/10.1101/147413doi: bioRxiv preprint 

https://doi.org/10.1101/147413
http://creativecommons.org/licenses/by-nc/4.0/


increasing complexity and 500 replications. The first simulated exposure-response was generated 

as a linear function depending on two exposures; the second was based on a univariate nonlinear 

exposure-response relationship; the third was generated as a linear exposure-response 

relationship depending on two exposures and their interaction; the fourth simulation was based 

on a non-linear exposure-response relationship with an effect modification by sex and a linear 

relationship with a second exposure. We assessed the method based on its predictive 

performance (Minimum Square error [MSE]), its ability to detect the true predictors and 

interactions (i.e. false discovery proportion, sensitivity), and its bias. We compared the method 

with generalized linear and additive models, elastic net, random forests, and Extreme gradient 

boosting. Finally, we reconstructed the exposure-response relationships and developed a toolbox 

for interactions visualization using individual conditional expectations. 

Results: The proposed method yielded the best average MSE across all the scenarios, and was 

therefore able to adapt to the true underlying structure of the data. The method succeeded to 

detect the true predictors and interactions, and was less biased in all the scenarios. Finally, we 

could correctly reconstruct the exposure-response relationships in all the simulations.        

Conclusions: This is the first approach combining ensemble learning techniques and causal 

inference to unravel the effects of chemical mixtures and their interactions in epidemiological 

studies. Additional developments including high dimensional exposure data, and testing for 

detection of low to moderate associations will be carried out in future developments. 
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Background 

Biomonitoring studies of environmental chemicals demonstrate that the general population 

experiences exposure to multiple chemicals from many different sources and at varying levels. In 

addition to chemicals, non-chemical exposures such as drugs, infectious agents, macro- and 

micronutrients, and psychosocial stressors exhibit a significant role in the etiology of disease 

either independently or in combination with chemical stressors (1). The inception of the 

exposome concept (i.e. potentially including all exposures of potential health significance) (2), 

coupled with high throughput omics technologies, brings the field of environmental 

epidemiology to a new era, and large observational datasets will be increasingly used to address 

health effects of chemical exposures. However, implementation of the exposome concept is 

challenged by the ability to accurately assess the effects of multiple exposures (3).  

The large majority of observational environmental epidemiology studies consider each 

chemical separately when assessing the potential adverse health effects of environmental 

exposures. Investigating single environmental exposures in isolation does not reflect the actual 

human exposure circumstances nor does it capture the multifactorial etiology of health and 

disease (4). Ignoring the potential confounding from correlated environmental exposures can 

lead to invalid conclusions, even if we consider that associational analyses may be valid for 

causal inference assuming that exposure data are accurate. These limitations have been 

recognized as critical by the National Institute of Environmental Health Sciences (NIEHS), as 

demonstrated by the inclusion of the topic of combined exposures in the NIEHS 2012-2017 

strategic plan and the organization of two recent NIEHS workshops on chemical mixtures.    

Several statistical methods have been proposed to estimate health effects of environmental 

mixtures, often with an emphasis on variable selection. These methods include Environmental-
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Wide Association Studies (EWAS) (5), penalized regression methods (e.g. least angle selection 

and shrinkage operator [LASSO]) (6), dimension reduction methods, and exposure-response 

surface methodology such as generalized additive models and kernel regression methods (7). In a 

recent study by Agier and colleagues used simulation to demonstrate feasibility of some 

established and emerging methods for handling chemical mixtures (8), including EWAS, Elastic 

net, sparse partial least squares, a “deletion/subtraction/addition” method (9), and Graphical Unit 

Evolutionary Stochastic Search (10). While promising, these methods underperformed when the 

goal was identification of individual exposures with an impact on the phenotype of interest. They 

tended to exhibit high false discovery proportions as the number of correlated exposures 

increased. Moreover, results from a recent NIEHS workshop showed that none of the tested 

approaches appeared to outperform the others (11). 

Machine learning methods have a great potential for quantifying the role of chemical 

mixtures in regard to their effects on human health, in addition to their ability to detect complex 

interactions. Surprisingly, only a few studies have applied these methods in the context of 

environmental mixtures investigations (12, 13). Machine learning methods are mainly used for 

their excellent predictive ability. They typically consist of two steps, a first step where the 

algorithm “learns” the variables that are associated with the outcome, and a second step where 

the algorithm is tested in an independent dataset to estimate generalizability of the algorithm 

(14). Tree-based methods (15) and their variants, including random forests (16) and stochastic 

gradient boosting (17) are among the most popular machine learning method. These algorithms 

select combinations of variables, or exposures, which are predictive of the outcome and form a 

“rule”, or decision tree, based on these combinations. Rules or decision trees can thereby 

quantify the association between multiple exposure variables and a given outcome (14). Other 
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newer machine learning algorithms include Bayesian Additive Regression Trees (BART (18)), 

Bootstrap aggregating (Bagging (19)), and Extreme Gradient Boosting (XGB). These algorithms 

can yield excellent predictive performance, and can provide Variable Importance Measures 

(VIMs) for the exposures. However, these measures are mainly based on predictive accuracy, 

and do not summarize the magnitude or direction of the association easily.  

In this paper, we propose to use an ensemble machine learning technique called Super Learner 

(20) that offers greater flexibility in approximating the data generating mechanism, and combine 

it with G-computation (21, 22), a causal inference approach that can yield valid causal effect 

estimates. The proposed approach can mitigate the problems of multicollinearity and model 

misspecification, with nonparametric prediction algorithms fitting complex exposure-response 

curves. We extend the approach to reconstruct valid exposure-response relationships, and to infer 

estimates of potential two-way interactive effects.  

METHODS 

G-computation: 

G-computation is a maximum likelihood based substitution estimator of the G-formula (21). 

Application of this method allows using observational data to estimate parameters that would be 

obtained in a perfectly randomized controlled trial. Under the assumption that adjustment for 

observed confounders is sufficient to achieve independence between potential outcomes and the 

exposure levels, these estimates can be interpreted causally. Implementation of the G-

computation estimator is equivalent to using the marginal distribution of the covariates as the 

standard in standardization, a familiar class of procedures in epidemiology (22). It is 

implemented by modeling the outcome as a function of the exposure and covariates. The fitted 
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model is then used to predict the outcome under different exposure scenarios to be compared. 

The average causal effect (ACE) is therefore estimated by averaging the difference between the 

model predictions for all individuals across the desired exposure levels. Typically, g-

computation relies on parametric models, however, in this novel approach; we use the 

SuperLearner ensemble learning technique to relax a priori assumptions about the underlying 

function since the nature of the exposure-outcome relationship is usually unknown. 

SuperLearner: 

SuperLearner is a data adaptive approach that has been proposed by van der Laan et al. (20, 23). 

It uses cross-validated risks to find an optimal combination of predictions from a list of 

algorithms supplied by the user that minimizes a given loss function (e.g. squared error). One of 

the most important properties of the SuperLearner is that it converges to the oracle estimator, 

i.e. it has been demonstrated that this convex combination performs asymptotically at least as 

well as the best choice among the library of candidate algorithms if the library does not contain a 

correctly specified parametric model, and it achieves the same rate of convergence as the 

correctly specified parametric model otherwise (24). The method therefore yields the closest 

approximation to the real data generating mechanism for a given set of candidate models. The 

weights applied to the convex combination are derived to minimize the prediction error.  

Simulation study:  

We used a matrix X of 5 exposure variables with a sample size n � 300 from a Faroese birth 

cohort (25), where X � �PCB, PFOS, ���DDE, PFOA, HCB� represents concentrations of 5 weakly 

to highly correlated exposures (0 � � � 0.87�, namely sum of polychlorinated biphenyls (PCB), 

Perfluorooctanesulfonic acid (PFOA), Dichlorodiphenyldichloroethylene (pp’DDE), 
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Perfluorooctanoic acid (PFOA), and Hexachlorobenzene (HCB) (Figure 1). We also generated a 

binary variable for sex from a Bernoulli distribution, with a probability of being female of 50%. 

The 5 exposures were log2-transformed and standardized before simulating the exposure-

response relationships to approximate a Gaussian distribution and to simplify interpretation.  

 

Figure 1: Correlation plot of the 5 environmental exposures 

We generated four continuous outcomes with increasing complexity in regard to the exposure-

response relationships. The properties of these simulated relationships and values of the � 

coefficients are described in table 1.  

�������� 	 �����
�� �: �� � ����� � ������ � �������� � ������ � ����� � � (1) 

�������� 	 �����
�� �: �� � ����� � ������ � �������� � ������ � ����� � ��������� � �      
(2) 

�������� 	 �����
�� �: �� � ����� � ������ � �������� � ������ � ����� �  �� ���� !

������" � � (3) 

�������� 	 �����
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Table 1: Values of the � coefficients for the 4 simulated exposure-response relationships.  

Coefficient Variable 
Simulation protocol ( values of � coefficients) 

Y1 Y2 Y3 Y4 

�� PCB -1 0 0 0 

�� PFOS 0 0 -1 -1 

�� pp’DDE -2 -1 -2 -1 

�� PFOA 0 0 0 0 

�� HCB 0 0 0 0 

�� pp’DDE2 - -1 - - 

�� PFOS � pp’DDE - - -3 - 

�� pp’DDE3 � sex - - - -2 

  

Analysis Method:  

For each data generating mechanism, we created 500 simulated datasets with similar exposure 

distributions to evaluate the predictive performance of the SuperLearner. To the data from each 

of the simulated exposure-response scenarios, we applied the SuperLearner algorithm. We 

included a convenient set of prediction algorithms in the library that can cover a large range of 

exposure-response relationships: the traditional generalized linear (GLM) and additive models 

(GAM), Elastic net regularization (26), multivariate adaptive polynomial spline regression (27), 

and Random Forests (16).  

The primary measure of predictive performance was the Mean Squared Error (MSE), where 

lower MSE indicates a better estimate. For each algorithm included in the SuperLearner library, 

we present the 10-fold cross validated MSE and the �� for each of the scenarios with: 
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 �� � 1  � ��������
	

� ����	
������	
 .   (5) 

To compare the selected algorithms with the most commonly used method in the field, we also 

use the relative MSE (!"#MSE) as a measure of relative performance to the widely employed 

linear regression as previously reported (28). 

!"#MSE�%� � �����

������
   (6) 

where k is the specific algorithm to assess (28). All these performance indices were averaged 

across the 500 datasets for each scenario. 

Effect estimates using G-computation: For more complex ensemble machine learning 

techniques such as the SuperLearner, no simple parametric description that is comparable to the 

linear regression coefficients is available; we therefore use G-computation to infer valid effect 

estimates for specific exposures of interest.  Let Y be the outcome and X � X�, … . . , X� a vector 

of predictors. Let’s also assume that we are interested in the effect estimates of a subset of 

environmental exposures, for each exposureX�, X�� � )X�, X� … . . , X���, X���, … … , X�* includes 

all the remaining covariates required for the identifiability of the effect estimate of X�. Each 

X� can take values x , τ where τ is a continuous domain. The potential outcome under the 

exposure level X� � x is denoted Y�x�, whereas the potential outcome under the exposure level 

X� � x . Δx is denoted Y�x . Δx�. For example, in our simulation Δx � 1 corresponds to a one 

standard deviation (SD) increase in the log2-transformed values of exposure X�, and the 

parameter capturing the corresponding incremental change in the outcome Y can be expressed as 

follows: 

ψ� � E12Y3X� � x . Δx,  X��4  2Y3X� � x,  X��45 (7) 
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where the individual level effects are marginalized over the distribution of  X��. The estimator 

for the marginal effect of exposure X� can be defined as follows: 

ψ6 � �

�
∑ 8�

� Q6)x . Δx, X��*  Q6)x, X��*: (8) 

where Q6)x, X��* and Q6)x . ∆x, X��* are the estimated potential outcomes for each individual 

under the exposures x and x . ∆x, respectively, and N is the number of subjects in the sample. 

We derived these estimates non-parametrically using the SuperLearner by plugging in the 

exposure levels of interest for X� and obtaining the predicted outcomes. In this simulation study, 

the average marginal effect for a one SD increase in a given log2-transformed exposure 

corresponds to the average difference between predictions from a dataset where the exposure of 

interest is replaced by 1 (X� � 1� and predictions from a dataset where the exposure is replaced 

by 0 (X� � 0�: 

E12Y3X� � 1,  X��4  2Y3X� � 0,  X��45. (9)   

The results from the SuperLearner predictions were evaluated on the basis of False Discovery 

Proportion (FDP; the proportion of selected variables that were not truly related to the outcome), 

and sensitivity (the proportion of true predictors that were actually selected by the method). 

Additionally, we calculated the percent bias for each scenario. 

Reconstructing the dose response relationship. In this proposed method, we use the 

SuperLearner-predicted outcomes at each specified level of the exposure of interest to construct 

a dose response relationship. In other words, we predict the outcome for all the unique values of 

X� while keeping values of the variables in X�� at their observed levels. Therefore, the average 

partial relationship between X� and Y can be expressed as follows: 
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f?�

� �

�
 ∑ f?�

� )X�, X��*  (10) 

where N is the number of observations and f? denotes predictions from the SuperLearner.  

Detection of interactions. Suppose we are interested in detecting and estimating the effect 

attributable to the interaction between exposures X�and X� from a set of exposures of interest. 

After standardizing the exposures, the Interactive effect (IE) is expressed as:  

AB���	
� BCD|F� � 1, F� � 1, GH   BCD|F� � 1, F� � 0, GH  BCD|F� � 0, F� � 1, GH .

BCD|F� � 0, F� � 0, GH  (11) 

where C is a set of measured confounders sufficient to identify the effect estimates of F�and F�. 

The formulations in this equation respectively correspond to the predicted outcome among those 

exposed to both F�and F�, the predicted outcome for those exposed only to F�, the predicted 

outcome for those exposed only to F�, and the baseline outcome, i.e. predicted outcome for those 

exposed to neither F�nor F�. Thus, if for example the result from the formula is significantly > 0, 

there is evidence that F�and F� work in a synergistic way. Therefore, synergy is indexed by 

deviations from additivity. 

Visualizing interactive effects. We developed an innovative way to unravel any existing 

interactions, borrowed from data science. The Individual Conditional Expectation (ICE) of an 

observation was estimated using the above equation 10 (i.e. f?�

� �

�
 ∑ f?�

� )X�, X��* ), absent the 

averaging. We used plots of the ICE in order to disaggregate the estimated average marginal 

effect by displaying the estimated functional relationship for each observation. We therefore plot 

N estimated conditional expectation curves, each reflecting the individual predicted response as a 

function of the exposure X�, conditional on the observed X�� (29). Unlike the marginal effects, 

this approach allowed us to observe and identify existing interactions. 
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We used non-parametric bootstrap (500 samples) for statistical inference for the estimated 

average causal effects (ACEs), interactive effects, and exposure–response relationships. In the 

absence of a theoretical formulae for the asymptotic distribution of these parameters within the 

SuperLearner framework, the bootstrap allows to approximate the 95% confidence intervals 

(CIs) (30, 31). 

 

RESULTS 

Predictive performance of the SuperLearner: The four simulated exposure-response 

relationships had different optimal �� of 0.88, 0.67, 0.93, and 0.97, respectively for exposure-

responses 1, 2, 3, and 4. The optimal value gives an upper bound on the possible �� for each 

algorithm. Figure 2 shows the 10-fold cross validated MSE, the ��, as long as the relMSE for 

each included algorithm for the four scenarios.  

For the simulated exposure-response 1, most of the included algorithms performed very well 

given the simple linear relationship (Figure 2). Linear regression based methods perform best. 

Elastic net, GLM and the SuperLearner had the largest �� (0.89). For exposure-responses 2, 3, 

and 4, the SuperLearner had the largest average �� each time with �I� of 0.69, 0.93, and 0.74. 

Results for the MSE exhibited the same pattern (Figure 2). Overall, the SuperLearner yielded the 

best average ��(0.81) and the best average gain (lowest relMSE � 0.48� in comparison to the 

widely used linear model across all the scenarios (Figure 2). Importantly, the SuperLearner was 

able to adapt to the true underlying structure of the data for each of the scenarios, and performed 

best or close to the best, demonstrating its ability to yield robust predictions across different 

scenarios.  
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Figure 2: Distributions of the Minimum Squared error, R2, and relMSE for the included 
algorithms, across the 4 scenarios. 
 
Regarding ACEs, Figure 3 shows the estimated ACEs for the 5 exposures for each algorithm and 

the 4 scenarios. Overall, the SuperLearner algorithm combined with G-computation was able to 

pick the true predictor in all the scenarios and did not pick any false positive reaching 100% 

sensitivity and specificity. The extreme gradient boosting algorithm (XGB) also reached the 

same level of sensitivity and specificity. None of the other algorithms performed as well as the 

SuperLearner and XGB algorithms. Regarding bias estimation, the SuperLearner with G-
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computation had the lowest average absolute bias, whereas the GLM had the highest average 

absolute bias (Results not shown).          

 

Figure 3: Average causal effects of the 5 exposures for each scenario, and for each included 
algorithm. 
 
Reconstructing the dose response relationship: We reconstructed the exposure-response 

relationship for each exposure and scenario (Figure 4). To accomplish this, we used the 

SuperLearner to predict the response at specific percentiles of the exposure of interest, and we 

reconstructed the dose-response by plotting these predictions along their bootstrapped 95% CI. 

Figure 4 shows that, using SuperLearner predictions, we were able to correctly reconstruct the 

exposure-response relationships for the four scenarios.   
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Figure 4: Exposure response relationships between the 5 exposures and the 4 generated 
outcomes 
 
Detection of interactions: We calculated all potential two-way interactions using the predictions 

form the SuperLearner after plugging desired values of the two specific exposures of interest. 

The only interactive effects that are truly differed from 0 are the interactions between PFOS and 

pp-DDE for the simulated exposure-response 3, as well as the interaction between pp-DDE and 

sex for the simulated exposure-response 4. These were the only included interactions in the 

simulated data.  Figure 5 shows interactive effect estimates for each pair of potentially 

interacting exposures, as well as sex. Effect estimates were derived from Equation 11 and 95% 

CI were constructed using bootstrap. Again, the SuperLearner was able to pick the two true 

interactions in Exposure-response 3 and 4. GLM, ENET, and GAM models were not able to pick 

interactions since these models do not handle interactions unless they are formally included in 
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the model’s specification. XGB and PMARS algorithms performed very well although the 

former picked a false positive interaction in Exposure-response 1 and the later tended to be 

bounded by 0 when it picked interactions. RF algorithm tended to pick a high proportion of 

interactions, and was therefore keen to select false positive interactions. In regard to effect 

estimates, the SL algorithm was again the less biased one (Figure 5).    

 

Figure 5: Effect estimates of the potential two-way interactions for all included algorithms 
and the 4 scenarios. Red asterisks indicate significant interaction terms. 
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Visualizing interactions: In addition to this well-known approach embedded within the potential 

outcome framework, we present an innovative way to unravel existing interactions. We 

estimated the individual conditional expectations for each observation for specific levels of the 

exposure of interest (i.e. percentiles). Unlike Figure 4, where effects are averaged for all 

observations, plotting ICE allows observing specific patterns by groups of individuals (Figure 6).  

 

Figure 6: Individual conditional expectations for each exposure and for each generated 
exposure-response relationship. E-R: Exposure-Response.  
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In this Figure 6, for most Exposure-Response relationships, ICE present parallel patterns for all 

the individuals, except when there is an interaction with another variable as demonstrated for 

pp’DDE in Exposure-Response 3 and 4, and for PFOS in Exposure-Response 3.  

Two examples are shown in Figures 7 and 8. Figure 7 describes the ICE for specific percentiles 

of pp’DDE exposure according to PFOS levels. Clearly, we can identify the interactive effect 

between pp’DDE and PFOS for Exposure-response 3 in Figure 7 since the dose-response 

relationship between pp’DDE and Y3 depends on the levels of PFOS.   

 

Figure 7: ICE of the relationship between pp’DDE and generated outcomes according to 
PFOS levels 
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Figure 8 describes ICE for specific percentiles of pp’DDE exposure according to sex. We can 

therefore visualize the effect modification by sex of the relationship between pp’DDE and Y4.  

 

Figure 8: ICE of the relationship between pp’DDE and generated outcomes according to 
sex. 
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DISCUSSION 

In the present paper, we have shown that ensemble learning methods to model the conditional 

mean of the outcome given known confounders can be advantageous, and have the potential to 

provide a solution to the long-lasting issue of chemical mixtures, especially in regard to model 

misspecification and multicollinearity issues. While this application represents a first proof of 

concept for application of these computational techniques to multiple correlated exposures in 

environmental epidemiology studies, our findings suggest that the proposed approach has an 

excellent predictive performance in a realistic environmental health scenario, in addition to a 

very good ability to correctly reconstruct dose-response relationships and to detect interactions.   

We were also able to derive estimates of marginal effects, using G-computation, a maximum 

likelihood substitution estimator. Under assumptions of conditional exchangeability, consistency, 

and positivity, these estimates may be interpreted causally.  

We considered 4 simulations characterized by varying degrees of complexity to describe the 

Exposure-Response relationships. Each time, the SuperLearner combined with G-computation 

performed best or close to the best algorithm. This is an important and primordial result since the 

true parametric specification of the model is almost never known a priori. Therefore, the use of 

the SuperLearner allows relaxing the strong a priori assumptions in regard to the Dose-Response 

relationship.  

The literature on the use of ensemble learning methods for estimating causal effects is limited 

(32), especially in the field of environmental epidemiology. To our knowledge, this approach is 

completely new and has not been explored in environmental epidemiological settings involving 

multi-pollutant exposures. Although ensemble learning techniques have gained increasing 

recognition, especially for climate change predictions (33-35), their use in environmental health 
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studies is rare. Existing comparable attempts in this type are those of Diaz et al. (36), Chambaz et 

al. (37) and Kreif et al. (38), all of which are developed in contexts (e.g. genetics, health policy) 

very different from environmental mixtures. But these investigations did not extend the use of 

the SuperLearner to detect interactions and/or to construct dose-response relationships. Given 

that the marginal effects of an exposure in a nonlinear model are not constant over its entire 

range, even in the absence of interaction terms, it is important to reconstruct the dose response 

relationship (39).  

Several methods have been proposed to estimate the joint effects of environmental mixtures, and 

individual effects within a mixture, often with an emphasis on variable selection. The most 

widely used methods are the LASSO (40), EWAS (5, 41), weighted quantile sum regression (42, 

43), and Elastic Net (13, 44). A major disadvantage of such approaches is that they typically 

assume specific and often restrictive parametric functional forms for the exposure-response 

relationship, often resulting in a model that does not accurately capture the complexity of the 

relationships among high dimensional covariates and health outcomes. This misspecification can 

lead to biased estimators and overly liberal (too optimistic) assessment of the uncertainty 

associated with estimation. We typically observed this trend in our results when such methods 

were applied to complex Exposure-responses with interactions and non-linearities.     

The present work has several limitations. First, we only considered environmental exposures and 

one potential effect modifier, eg. sex. Future studies should examine the performance of this 

approach while taking into account the data generating process of such exposures allowing for 

multiple potential confounders. The inclusion of potential confounders when these are measured, 

should be based on a priori knowledge and causal approaches based on the interdependencies 

between variables, e.g. Non parametric structural equation models (45, 46), and not only based 
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on the predictive performance. Second, the ability of the SuperLearner approach depends on the 

choice of candidate learners that should be guided by theoretical and practical considerations 

based on expert knowledge. We did not include some powerful algorithms such as the Bayesian 

Additive Regression Tress (BART), nor did we specify tuning parameters for the included 

algorithms to minimize computational time. But these are possibilities that should be 

investigated in future work. Third, we used the bootstrap to estimate valid confidence intervals in 

the absence of a theoretical formula for the asymptotic distribution of the parameters of interest 

within the SuperLearner framework. This gave rise to heavy computational burden, since the 

described analyses are quite time consuming. Running these analyses in multicore parallel 

computing will substantially reduce this time, but just how much time can be saved depends on 

the availability of computing cores with sufficient memory, and is therefore installation-

dependent (47). Finally, the generated dose-response relationships in this investigation were 

based on associations with relatively strong effect sizes, and further studies will consider the 

performance of such approach when effect sizes are moderate or low.  

Despite the abovementioned limitations, these analyses provide a significant contribution to the 

field of environmental health. This approach leverages the high predictive ability of ensemble 

learning techniques, while opening the blackbox of these methods to allow for the estimation of 

individual associations, interactive effects, and reconstruction of dose-response relationships. 

The overall idea of this paper is to propose a general approach that is flexible. Such method can 

lay the ground for additional methodological extensions allowing for future developments 

encompassing high dimensional data from omics technologies such as microbiomics, 

epigenetics, and metabolomics, as well as a flexible way to assess mediation and moderation, as 

well as multivariate analyses. This approach can also be easily adapted to estimate generalized 
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propensity scores for doubly robust estimations. Therefore, additional developments and 

progresses starting from this work may provide substantial improvements. 
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