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Abstract Cell proliferation assays are routinely used to explore how a low
density monolayer of cells grows with time. For a typical cell line with a dou-
bling time of 12 hours (or longer), a standard cell proliferation assay conducted
over 24 hours provides excellent information about the low-density exponen-
tial growth rate, but limited information about crowding effects that occur
at higher densities. To explore how we can best detect and quantify crowding
effects, we present a suite of in silico proliferation assays where cells proliferate
according to a generalised logistic growth model. Using approximate Bayesian
computation we show that data from a standard cell proliferation assay can-
not reliably distinguish between classical logistic growth and more general
non-logistic growth models. We then explore, and quantify, the trade-off be-
tween increasing the duration of the experiment and the associated decrease

in uncertainty in the crowding mechanism.
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1 Introduction 1

Two-dimensional in wvitro cell biology experiments play an invaluable role in -
improving our understanding of the collective behaviour of cell populations s
(Laing, 2007). Understanding collective cell behaviour is relevant to a number 4
of normal and pathological processes, such as tissue regeneration and malig- 5
nant spreading, respectively. One of the most common in witro cell biology
experiments is called a proliferation assay (Bosco et al., 2015; Bourseguin et 7
al., 2016). Cell proliferation assays are initiated by uniformly placing a mono- s
layer of cells, at low density, on a two-dimensional substrate. Individual cells
in the population undergo both movement and proliferation events, and the 1o
assay is observed as the density of the monolayer of cells increases. Comparing  u
cell proliferation assays with and without a putative drug plays an important 1

role in drug design (Bosco et al., 2015; Bourseguin et al., 2016). 13

One approach to interpret a cell proliferation assay is to use a mathematical 1
model. This approach can provide quantitative insight into the mechanisms s
involved (Maini et al., 2004; Sengers et al., 2007). For example, it is possible 1
to estimate the proliferation rate of cells by calibrating a mathematical model
to data from a cell proliferation assay. Results can then be used to compare 1
a target and control assay (Johnston et al., 2015). Typically, most previous 1
studies that interpret cell biology assays using continuum mathematical models 2
make the assumption that cells proliferate logistically (Cai et al. 2007; Dale et =
al., 1994; Doran et al., 2009; Jin et al., 2016a; Maini et al., 2004a; Maini et al., 2
2004b; O’Dea et al., 2012; Savla et al., 2004; Sengers et al., 2007; Sheardown 23
and Cheng, 1996; Sherratt and Murray, 1990). The classical logistic equation 2
is given by 2

— = A0 - C), (1)
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where C(t) is the scaled cell density, such that C(t) = 1 represents the carrying 2
capacity density, ¢ is time and A is the cell proliferation rate. For example, by 2
calibrating the solution of Eq (??) to data from a cell biology assay, Treloar et 2
al. (2014) showed that the proliferation rate of 3T3 fibroblast cells is approx- 2
imately 0.048 /hour. However, while the classical logistic model is routinely s
used to study biological population dynamics (Pearl, 1927; Edelstein-Keshet, =
1988; Murray, 2002), this choice is often made without a careful examination =
of whether the classical logistic model is valid (Treloar et al., 2014). 3

In the literature, there is an awareness that biological populations do not s
always grow according to the classical logistic equation (Gerlee, 2013; Zwieter- 3
ing et al., 1990). For example, West and coworkers investigate the growth of 3
cell populations from a wide range of animal models and find that the growth s
is not logistic; instead, they find that a more general model provides a better s
match to the experimental data (West et al., 2001). Likewise, Laird (1964) ex- s
amines tumour growth data and shows that the Gompertz growth law matches
the data better than the classical logistic model. Similar observations have also  «
been made more recently for different types of tumour growth by Sarapata and  «
de Pillis (2014). a3

Therefore, it is not always clear that the classical logistic model ought to 4
be used to describe cell proliferation assays. The classical logistic model, and
its generalisations (Tsoularis and Wallace, 2002), all lead to similar growth dy- 4
namics during the early phase of the experiment when the density is small. The «
key differences between these models occur at larger densities as the cell pop- 4
ulation grows towards the carrying capacity density. The question of whether 4
cells in a proliferation assay grow logistically, or by some other mechanism, s
is obscured by the fact that most cell proliferation assays are conducted for a =
relatively short period of time. To illustrate this, we note that a typical cell s

proliferation rate of A = 0.048 /hour (Treloar et al., 2014) corresponds to a s
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doubling time of approximately 14 hours. Given that a typical initial cell den- s
sity in a cell proliferation assay is approximately C(0) = 0.1, and the typical s
time scale of a cell proliferation assay is no more than 24 hours, the cell den- s
sity will grow to be no more than 0.4, Fig ??(a)-(d). Indeed, the evolution of s
the cell density data in Fig ??(d) shows that the cell density grows approx- s
imately linearly over the standard experimental duration of 24 hours. This s
linear increase is consistent with the early time behaviour of the exponential
growth phase, but provides less information about later time behaviour where &
crowding effects play a role. Therefore, standard experimental durations are e
inappropriate for the purposes of examining how cells grow at high densities.
The focus of the current work is to explore how we can determine the optimal e
duration of a cell proliferation assay so that it can be used to reliably dis- e
tinguish between classical logistic and generalised logistic growth models. In s
summary, this study is the first time that an individual based model has been &
used to explore the duration of a cell proliferation assay, in order to reliably e

distinguish between different types of growth models. 69


https://doi.org/10.1101/147678

bioRxiv preprint doi: https://doi.org/10.1101/147678; this version posted June 8, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission

Exploring the optimal duration of a cell proliferation assay

"'6R8-TL8 ‘G, "Sureysnp Yym juowrdo[ossp IeLefouour

JO mo11e319seAUl SUI[[opOUW pue [ejuewLIodxy ‘T o uosdwig (£10g) 430701 [esryewoy)RI\ JO UIS[[IE S} WO uorsstuLIed
s pojurador oxe (0)-(e) ur seSew] moy/ wl ()0gg = (7 PU® Moy/ gF() () = Y 03 puodseriod siojourered 03010sIp dsoy T, wrf
G¢ = v PU® MOy LTH0°0 = + ‘G000 = ‘d ‘6,80 = “d ‘¢ = [ ‘G¢ = ] 03 puodso1100 suoryemuus [y ‘A[A100dsor ¢ pue g ‘T
sesey) 10] (d) pue (1)‘(Y) wmoys SI ose)) YRS Ul Pasn UO0IOUNJ SUIpMoId o1 T, *(0)-(w) ur ¢ ase)) ‘pue {()-(1) ur g ase)) {(3)-(a)
Ul T 9se)) :I0] UMOYS 91 S}NSAI UOIIR[NUIIS "9IS 90139 JURIRA }S9ILaU o1} U0 pade[d pur ‘ed1jye[ [euofexay] © 0} paddew

ST (®) UI [[00 Yo®S JO UOIYRDO[ o[} JRY} OS USSOYD PUR ‘[ROJULPI oIe (W) pue (1)(9) UI sjusSe JO UOIYRIO[ S, 'SARSSe 00115 UL O
ut sjuede Jo UOTNLIISIP Teryrur o) moys (wr) pue (1)‘(9) "9y Iesur] sorenbs jseo] & pue ‘gurod owi) Yoed 3B JUSWIIOAXD ST} WOI]
Ay1suap [[00 pafess o) smoys (p) “urrf 0T 03 Spuodsaliod Ieq o[eds 1Ry "ISYIRUI MO[[PA ® YIIM POYIIULPI ST [[90 [ded Jo uorjisod
AYT, "POYeIIPUL Se ‘S[RAISIUI INOY ZT IR UMOUS ‘S[[9D ISR[OIqY ¢,¢ Susn pauriofrad Aesse uorjeiojiord [[oo [eotdAy e woy
poure)qo seSew [eyuowLIodxe moys (0)-(v) *sAesse uorjerajijord [[99 09215 uz pue [ejuswuriedxs jo sjoysdeug T *Siq

2 0
- %. H T ! ..".“w..w.. ORI
° “ #oo ° © ° * "ooo ° oo
3 .u...........m...........w > 30 o000 Vo &Y A .a..%
e o ° % e ﬁoco ° ooo ° o ® (o]
’.*“ a%.ﬂ %.' w‘... .v.. .... [ ] ° ° [ ] w
N, L ey ud oy o2t ", e ee e * o
0-1)=(0) (d) (o) (u) (w)
9 0
° .%. ° ﬂ.h 4. ¢ ° .... [ ] .. °
S vtita et RV
....*’....‘“..‘.#. %‘.. ° .. .. w
L L .dee. ®® ° Mo ee o ° “
DO-1=0 0 (N (1)
o 0
° m .mugw M ¢ ...a ...“..”’ .......‘ [ ] .. °
.w..w. A Sapa® Yo . AR 1a
AT LA e I O L
gt o Povee &u..g PR ey “pe. . ot |2
L oo‘ouo%tntoo % *o o? moo"o"oofuooof "o oo” oo"o
o-1=(00) (W () () (@)
vz (sinoy) awig 0
- m
3
) g
c3 3
g
g

sinoyyz=1 (o)

o
o

(e)

.m‘_.:o.s 0=1

(p)


https://doi.org/10.1101/147678

bioRxiv preprint doi: https://doi.org/10.1101/147678; this version posted June 8, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

6 Alexander P Browning et al.

This work is organised as follows. We first present a suite of results from a 7
stochastic in silico cell proliferation assay. The benefit of working with an in =

silico assay is that it can be used to describe the evolution of a cell proliferation 7

assay corresponding to a known, but general, proliferation mechanism, 73
dC(t
U _xewmre) 2

where f(C) € [0, 1] is a crowding function of our choice (Jin et al., 2016b). The
crowding function is a smooth decreasing function that satisfies f(0) =1 and
f(1) = 0. In general, we could study any choice of f(C) that satisfies these
conditions. However, for the purposes of this study we restrict our attention

to the family of crowding functions given by 78
F(C) =107, 3)

where « and ( are positive constants (Tsoularis and Wallace, 2002). This
choice of f(C) is still general and we note that different choices of o and 8w
correspond to well-known biological growth models such as the classical logistic =~ &
growth model, the Gompertz growth model, and the von Bertalanaffy growth e
model (Tsoularis and Wallace, 2002). Our choice of f(C) is partly motivated
by the recent work of Sarapata and de Pillis (2014), who explore a range
of sigmoid growth models for different types of tumours, including bladder, s
breast, liver, lung, and melanoma tumours. Sarapata and de Pillis (2014) show &
that the classical logistic growth model does not always provide the best match &
to observed data, and they test a range of other sigmoid growth models for s
each different kind of tumour. The different forms of sigmoid growth models s
that Sarapata and de Pillis (2014) explore are encompassed in our choice of
crowding function, Eq 7?7, simply by making different choices of the constants o

a and f. )
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In this work we focus on three particular choices of f(C): 0

Case 1: a =1 and 8 = 1. Here, f(C) is a linear function that corresponds o
to the classical logistic equation (Eq ?77?). See Fig ??(h); o
Case 2: « = 2 and 8 = 1. Here, f(C) is a non-linear, concave-down function. s
See Fig ?77(1); and, o
Case 3: a = 1 and 8 = 2. Here, f(C) is a non-linear, concave-up function. s

See Fig 7?(p). o

Setting @ = 1 and 8 = 1 recovers the classical logistic equation (Eq ?7?), 100
whereas other choices of @ and § lead to different, general logistic growth 1i:
models. Typical in silico experiments showing snapshots of the growing pop- 12
ulations are given in Fig ??(e)-(g) for Case 1, Fig ?7?(i)-(k) for Case 2 and Fig 10
??(m)-(o) for Case 3. After we have generated typical in silico results for these 10
different choices of f(C'), we then examine our ability to distinguish between 10
data corresponding to different choices of f(C') using approximate Bayesian 10
computation (ABC) (Liepe et al. 2014; Sunnaker et al. 2013; Tanaka et al. 1o
2006; Collis et al. 2017) to estimate the parameters « and . This procedure 1
clearly shows that the duration of a standard cell proliferation assay is too 100
short to reliably recover the values of o and 3. Therefore, to provide quantita- 10
tive insight into the benefit of performing the experiment for a longer duration,
we quantify the decrease in our uncertainty of the parameters and the increase 12

in information as we effectively run the experiment for longer periods of time. 13

2 Methods 114

2.1 Discrete mathematical model 115

We use a lattice-based random walk model to describe a cell proliferation as- 1

say (Liggett, 1999). Throughout the work, we will refer to a realisation of the s
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stochastic model as either an in silico experiment, or a simulation. In the s
model cells are treated as equally-sized discs, and this is a typical assumption 10
(Deroulers et al. 2009; Vo et al. 2015) that is supported by experimental mea- 120
surements (Simpson et al. 2013). We use a hexagonal lattice, with no more 1z
than one agent per site. The lattice spacing, A, is chosen to be equal to the 12
mean cell diameter (Jin et al., 2016b). This means we have a circular packing 12
of agents, which corresponds to the maximum carrying capacity for a popu- 12

lation of uniformly sized discs. The relationship between the scaled density, 1

C(t), and the number of agents, N(¢), is 126
N(t)
t) = 4
C( ) NIII&X, ( )

so that C(t) = 1 corresponds to the carrying capacity of Npy.x agents, which 17
is the number of lattice sites. Motivated by the experimental images of the 1
cell proliferation assay in Fig ??(a)-(c), that is conducted with 3T3 fibroblast 12
cells, we set A = 25 pum to be the mean cell diameter (Simpson et al., 2013). 10
As the images in Fig ??(a)-(c) show a fixed field of view that is much smaller 1
than the spatial extent of the uniformly distributed cells in the experiment, 12

we apply zero net flux boundary conditions (Johnston et al., 2015). 133

Each lattice site, indexed (i, j) where 4,5 € ZT, has position

(iA,jAV3/2) if j is even,
(z,y) =
((i+1/2)A,jAV3/2)  if jis odd,
such that 1 < ¢ < T and 1 < 5 < J. To match a typical physical domain, 13
such as the experiment in Fig ??(a)-(c) where the field of view is 625 ym x 13
480 pm and the cell diameter is A = 25 pm, we set [ = 25 and J = 22. When 13
this domain is packed to confluence, the field of view can hold no more than 1

Nimax = 550 agents. 138
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In any single realisation of the discrete model, the occupancy of site s is 13
denoted Cg, with Cg = 1 if the site is occupied, and Cs = 0 if vacant. We 10
report results from the model by summing the total number of agents at time 1
t, which we denote N (¢). Each site s is associated with a unique index (7,7). 1
We denote the set of nearest neighbour sites surrounding site s as N'{s}, and 13
the size of N'{s} is |N{s}|. For a typical lattice site, not on any boundary, 1
N{s} corresponds to the usual six nearest neighbour sites and |N{s}| = 6. s
However, for any lattice site on a boundary, we adjust A'{s} and |N{s}| as s
appropriate to enforce no-flux boundary conditions. 147

To initiate simulations of a cell proliferation assay, we randomly select a 14
lattice site and place an agent on that site, provided the site is vacant. We 10
repeat this process until N(0) = 55 agents have been randomly placed. This s
corresponds to each simulation starting with C'(0) = 0.1, which is typical of 15
the initial density, such as in Fig ??(a). The following algorithm is used to s
simulate the way in which cells migrate and proliferate during the experiment. 13
At any time, t, there are N(¢) agents on the lattice. In each discrete time 1s
step, of duration 7, we allow motility and proliferation events to occur in the 1
following two sequential steps. 156

First, N (t) agents are selected independently at random, one at a time with 157
replacement, and given the opportunity to move with probability P, € [0,1]. 1ss
A motile agent attempts to move to one of the six nearest neighbour sites, 1so
selected at random. To simulate crowding effects, potential motility events are 160
aborted if an agent attempts to move to an occupied site or attempts to move e
outside the domain. 162

Second, another N (t) agents are selected independently, at random, one 163
at a time with replacement, and given the opportunity to proliferate with 1
probability P, € [0,1]. To assess how crowding affects the ability of a cell to 16

proliferate, we follow the approach of Jin et al. (2016b) and assume that an 1
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agent at site s senses the occupancy of the six nearest neighbour sites, and e

can detect a measure of the average occupancy of those sites, 168
- 1
G- W@ 2 & ®)
s’eN{s}

This means that Cs € [0,1] is a measure of the local crowdedness in N(s). 1
We use Cs to determine whether a potential proliferation event succeeds by 1o
introducing a crowding function, f(C) € [0,1] with f(0) =1 and f(1) = 0. m
To incorporate crowding effects we sample a random number, R ~ U(0,1). If w2
R < f(Cs), a daughter agent is placed at a randomly chosen, vacant, nearest 173
neighbouring site, whereas if R > f(Cs), the potential proliferation event is 17
aborted. After the N(t) potential proliferation events have been attempted, ws

N(t + 1) is updated. 176
These two steps are repeated until the desired end time, T, is reached. 177

As previously demonstrated (Jin et al., 2016b), the continuum limit de- s

scription of this discrete model gives rise to 179

oC(z,y,t) D (82C(x,y,t) 0%C(x

Y5 t)
ot D2 9y >+/\C(5U»y7t)f(c), (6)

where,

) (1)
AT—0 T
Py A2
D= )

Here, X is the proliferation rate, and the motility of agents is characterised by 1
a diffusivity, D. Since the agents are initially distributed uniformly we have 1

oC (x,y,t)/0x = 0C(x,y,t)/0y = 0. This means that the partial differential 1
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equation simplifies to an ordinary differential equation, 183
dC(t)
—— =AC()f(O), (9)
dt
which is a generalised logistic growth model. 184

In this study, we only ever vary the parameters in the crowding function, 1ss
« and (3. All other parameters are fixed, and chosen to represent a typical cell 186
population. As previously stated, we set N(0) = 55, [ = 25 and J = 22, to 1
accommodate the typical geometry and initial condition of a cell proliferation 1
assay with a population of cells whose mean diameter is A = 25 pm (Simpson 18
et al., 2013). To describe the rate at which cells move, we set P,, = 0.579 190
and 7 = 0.0417 hours. This corresponds to D = 2200 pm?/hour, which is a 1«
typical value of the cell diffusivity for a mesenchymal cell line (Simpson et al., 10
2014). To describe the rate at which cells proliferate, we set P, = 0.002 and 193
7 = 0.0417 hours. This corresponds to A = 0.048 /hour, which is a typical 10
value of the cell proliferation rate (Treloar et al., 2014). This proliferation rate 195
is consistent with the experimental data in Fig ??(d). 196

Using these parameter estimates, we show the evolution of C(t) for a single 107
realisation of the discrete model, for each choice of crowding function, in Fig 1
??(a)-(b), for T = 24 and 96 hours, respectively. Results in Fig ??(a)-(b) show 1
some stochastic fluctuations, as expected. To approximate the expected be- 200
haviour, we perform 20 identically prepared realisations of the discrete model >
and show the mean density profile, C(), in Fig ??(c)-(d), for T = 24 and 96  x
hours, respectively. Comparing the single realisations with the mean behaviour 2
confirms that there are minimal fluctuations, at this scale. Furthermore, we 2
see minimal differences in the overall behaviour of the model when we consider 20
a single realisation and the results from an ensemble of 20 identically prepared 20

realisations. 207
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2.2 Parameter estimation using ABC rejection 208

Using a Bayesian framework, we consider the crowding function parameters 0
6 = («, ) as random variables, and the uncertainty in the 0 is updated using 210
observed data (Gelman et al., 2004; Tanaka et al., 2006; Sunnaker et al., 2013;  2n
Collis et al., 2017). Under this assumption, we note that the cell density profile, 212
C(t), is also a random variable. In this section we refer to the variables using 23
vector notation to keep the description of the inference algorithm as succinct 24
as possible. However, in the main text we refer to the variables using ordered 215
pairs, («, 3), so that our results are presented as clearly as possible. 216

To begin with, we perform three in silico experiments with fixed, known 2s
parameter values, which we refer to as the target parameters, 6,, correspond- 2
ing to each Case considered. We take care to ensure that the three in silico 29
experiments lead to typical C(t) data, as we demonstrate in Fig ??. The data 20
from these experiments is treated as observed data, denoted X,ps. Then, we oz
use an ABC approach to explore, and quantify, how well the target values of 2»
0 can be estimated using the observed data. In particular, we are interested in 22
the effect of varying the duration over which the observation data is collected, 2
T. 225

In the absence of any experimental observations, information about 6 is 2

characterised by a specified prior distribution (Gelman et al., 2004, Sunnaker 27

et al., 2013). For our choices of « and 3, we set the prior to be 28
1
m(0) = 9’ 0 € (0,3) x (0,3), (10)
which is a uniform distribution across (a, 8) € (0, 3) x (0, 3). 229

We summarise data, X, with a lower-dimensional summary statistic, S. 2%
Under a Bayesian framework, the information from the prior is updated by 2

the likelihood of the observations, p(Sons|@), to produce posterior distributions, 22
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p(0]Sobs), of 8. In this study, we use the most fundamental ABC algorithm, 23
known as ABC rejection (Liepe et al. 2014; Tanaka et al., 2006; Sunnaker et 23
al., 2013). Our aim is to quantify the trade off between the duration of the 23
experiment, 7', and the reduction in uncertainty of the value of @ as well as 2

the information gain. 237

In this work, we choose S to be the number of agents observed at equally 2
spaced intervals of 24 hours. Let Ngps(t) and Ny () denote the number of 23
agents present in the observed data and a simulated cell proliferation assay at 20
time t, respectively. We choose a discrepancy measure, p(Sobs, Ssim ), t0 be the  2u

cumulative sum of the square difference between Ngim(t) and Nops(t) at each 2

24 hour interval, up to the duration of the experiment, T', such that 23
T/24
P(Sobs: Ssim) = Y [Nsim (244) — Nobs(241)]”. (11)
i=1

With these definitions, the ABC rejection algorithm is given by Algorithm 1. 2

Algorithm 1 ABC rejection sampling

Set P,, = 0.579, P, = 0.002, A =25 ym, 7 = 0.0417 hours, N(0) = 55.
Draw 0; ~ 7(0).

Simulate cell proliferation assay with 6;.

Record Sgim, = {Naim(245)}, j =1,2,3,4.

Compute €; = p(Sobs, Ssim; ), given in Eq ?7.

Repeat steps 2-5 until 106 samples {6;, ¢; 22 are simulated.

Retain a small proportion, v = 0.01, with the smallest discrepancy, €;, as
posterior samples.

To present and perform calculations with posterior distributions, we use a  2s
kernel density estimate with grid spacing 0.01 to form an approximate contin- s
uous posterior distribution from the samples. We do this using the ksdensity o
function in the MATLAB Statistics Toolbox (Mathworks, 2017). All ABC pos- s

terior results presented in the main paper correspond to retaining the 10,000 20
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simulations out of 1,000,000 simulations with the smallest discrepancy, giving 2o
u = 0.01. To confirm that our results are insensitive to this choice of u we s
also present equivalent results with v = 0.02 in the Supplementary Material s

document. 253

2.2.1 Kullback-Leibler divergence 254

To quantitatively compare posterior distributions, we calculate the Kullback- 25
Leibler (KL) divergence (Kullback and Leibler 1951; Burnham and Anderson  2s
2002), Dk (pl|/7), for each posterior distribution. The KL divergence is a mea- 257
sure of the information gain in moving from the prior, 7(0), to the posterior, 2s

p(0]Sobs), in Bayesian inference, and is defined as 250

Dict(5(0]50) [(0)) = [ /@ P(6]Sons) log (p(‘;'(‘f;)")) 0, (12)

where © = (0, 3) x (0, 3) is the prior support. To calculate D g1, (p(6|Sobs)||7(0)) 260
we use quadrature to estimate the integral in Eq (?7), taking care to ensure 26
that the result is independent of the discretisation. Note that D, is a measure
of the amount of information gained when moving from the prior distribution s

to the posterior distribution. 264

2.2.2 Other measures 265

We also make use of several other measures to help quantify various properties s
of the posterior densities. For each Case we always know, in advance, the target 2
parameter values, 6., and we also estimate the mode, 6,,, using the kernel s
density estimate. Note that the mode is the value of @ corresponding to the 20

maximum posterior density, 270

0., = argmax p(0|Sobs)- (13)
0
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It is useful to report the posterior density at the target, p(04|Sops), for various on
values of T'. It is also instructive to report the posterior density at the mode,
(01| Sobs), for various values of T. Another useful measure is the Euclidean

distance between the target and the mode, given by 274

a= 0.~ 0,2 (14)

3 Results and Discussion 275

Results from a typical cell proliferation assay are shown in Fig ??(a)-(c). The 21
cell density profile, shown in Fig ??(d), increases approximately linearly with 2
time. This indicates that the experimental duration is not long enough for us s
to observe crowding effects, which occur at higher densities, and cause the net 2o
growth rate to reduce so that cell density profile, C(¢), becomes concave down 2
at later times. Therefore, by using typical experimental data, it is unclear 2
whether the growth process follows a classical logistic model, or some other 2

more general growth model. 283

To provide further insight into the limitations of this standard experimen-  2ss
tal design, we show results from the discrete model in Fig ?7?(a) for a standard 2
experimental duration of T' = 24 hours, for three different crowding functions. s
These results show several interesting features: (i) the cell density profile for 2
each Case appears to increase linearly with time, which is similar to the exper- 2
imental results in Fig ??(d); (ii) it is difficult to distinguish between the three 2s
different profiles, despite each profile corresponding to a different crowding 200
function; and (iii) comparing the cell density profiles of a single realisation in 20
Fig ?7?(a) to the expected behaviour in Fig ??(c) confirms that the expected 20

cell density profiles for each Case are similar for the first 24 hours. 203
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To examine when crowding effects begin to significantly influence the cell 20
density profile, we perform simulations over longer durations of time. In par- s
ticular, we examine T' < 96 hours. Results for a single realisation in Fig ??(b) 20
show that the cell density profiles for each Case are indistinguishable during 2o
the first 24 hours. However the profile for each Case does become increas- 29
ingly distinguishable at times greater than 24 hours. For example, each Case 209
is clearly discernable by 72 hours. Comparing the cell density profiles of a sin- 30
gle realisation in Fig ??(b) to the expected behaviour in Fig ??(d) confirms sm
that each Case is only distinguishable at times greater than 24 hours. These s
observations motivate several questions that we will explore. The two main 303
questions we focus on are: (i) what experimental duration is required to reli- 30
ably distinguish between Cases 1, 2 and 3; and, (ii) can we quantify the trade 0
off between allowing the experiment to run for a sufficiently long period of s
time to distinguish between the Cases, while still minimising the duration of 3o
the experiment. 308

To quantify the increase in information we can obtain by running the ex- 3o
periment for longer durations of time, we attempt to recover the parameters s
in the crowding function for each Case using ABC to produce a posterior dis- su
tribution for o and 3, which we refer to as the ordered pair (a, 8). To achieve s
this aim, we produce in silico observed data, using a target parameter set sz
for each Case: Case 1 corresponds to («, ) = (1,1); Case 2 corresponds to s
(o, B) = (2,1); and Case 3 corresponds to («, 8) = (1,2). All other parameters s
in the simulations are held fixed at the values given previously. 316

The data we use to perform inference takes the form of the size of the s
population, N (t), recorded at equally spaced intervals, each of duration 24 s
hours. In particular, we examine the effect of varying the total duration of a0
the experiment, T'. This means that if we consider an experimental design

with 7' = 24 hours, then we record N(24) only. In contrast, if we consider an 3z
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experimental design with 7' = 72 hours, we record N(24), N(48) and N(72). 32
Overall, we examine four durations, T" = 24,48, 72 and 96 hours. 33

Results in Fig ??(a)-(d) show the bivariate posterior distributions of « and 32
8 for Case 1, with T' = 24,48, 72 and 96 hours, respectively. Recall that the s
target parameters for Case 1 are (a, ) = (1,1). The results indicate that the 32
choice of prior, m(0), on the domain (0,3) x (0,3), is reasonable because the 37
posterior distribution has full support within this region. The distribution in s
Fig ??(a) shows there are many parameter combinations that are likely to s
match the observed data, with T" = 24 hours. This observation is consistent s
with the results in Fig ??(a) where we observe that setting 7' = 24 hours is s
insufficient to distinguish between the three Cases. Comparing the posterior s»
distributions in Fig ??(a)-(d), we see that increasing 7" leads to a narrowing of 33
the posterior distribution, and the mode of the distribution moves toward the s
target parameter combination. For this Case, we see the largest benefit when 13
increasing T' from 48 to 72 hours. For example, for 7' = 48 hours, the mode of 13
the distribution is (1.82, 2.16), which means that each parameter estimate is 33
almost double each target value. In contrast, the mode of the distribution at s:s
T = 72 hours is (1.06, 0.95), so each parameter is able to be estimated within 33

6% of the target. 340
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To quantify the properties in the posterior distributions, Fig ??(a)-(d), 3
there are many features that we may consider. Figure ??(e) compares the o
posterior density at the target parameter values and the maximum posterior s
density of the distribution, which corresponds to the mode. The maximum 3.
posterior density increases with T, confirming that the posterior distribution s
narrows as the duration of the experiment is increased. Results in Figure s
?7(f) show that d eventually decreases with T', indicating that the mode of the s«
distribution moves towards the target as T increases. Together, these results s
show that the density at the mode is close to the density at the target, and that s
both these quantities increase with 7T'. This indicates that the target parameter sso
combination is always as likely as the mode. Results in Fig ?7?(g) shows how 3
the KL divergence (Eq ??) also increases with 7. We see that the largest 3=
gain in information for this Case occurs when T is increased from 24 hours ss3
(Drr = 0.33) to 48 hours (Dgy = 0.84). The quantitative measures in Fig s
?77?7(e)-(g) suggest that there is always value in increasing T, however the value 3
of increasing T varies. For example, there is a substantial benefit in extending  3s6
the experiment from 7" = 48 to 72 hours, whereas the benefit in extending the s
experiment from 7" = 72 to 96 hours is less pronounced. 358

Results in Fig ??(a)-(d) and Fig ??(a)-(d) show the bivariate posterior s
distributions of o and S for Cases 2 and 3, respectively. Note that all data 0
presented for Cases 2 and 3 is given in the same format as used for the results s
corresponding to Case 1 in Fig ?7. As before, we always observe a narrowing o
of the posterior distribution as T increases. Results in Fig ??(e) and Fig 7?7(e) 36
clearly show that the target parameter combination becomes more likely as 36
T is increased. Data for d in Fig ??(f) confirms that the distance between e
the target and the mode is reduced for larger values of T'. Data for d in Fig s
??(f) shows that the distance between the target and the mode increases, at s

first, when T is increased from 24 to 48 hours. However, the most important  ses
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feature is that d always decreases eventually for large enough T'. Again, as T s

is increased, Dy, increases in both Fig ??(g) and Fig ?7(g). 370
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Overall, the essential trends in Fig 7?7 and Fig 7?7 are consistent with those sn
in Fig ??, namely: (i) the standard choice of T' = 24 hours is insufficient to s
determine the parameters in the crowding function and hence it is impossible to a3
reliably distinguish between classical logistic growth and more general logistic s
growth models; and, (ii) as the value of T is increased, our ability to recover the s
parameters in the crowding function increases. However, certain details differ s
between the cases. For example, choosing T = 72 hours allows us to recover s
estimates of a and 8 to an accuracy of at least 6, 46 and 34% in Cases 1, 2 s
and 3, respectively. Therefore, with this choice of T we are able to recover the s
parameters for Case 1 relatively accurately. In contrast, if we choose T' = 96 30
hours, we recover estimates of o and S to an accuracy of at least 14, 41 and s
6% in Cases 1, 2 and 3, respectively. Therefore, with this choice of T' we are s
able to recover the parameters for Cases 1 and 3 relatively accurately, yet Case 33

2 remains relatively unclear. 384

4 Conclusion 385

In this work, we implement a random walk model to simulate a cell prolifera- s
tion assay. In particular, we focus on exploring whether the typical experimen-  ss
tal design of a cell proliferation assay, with C'(0) =~ 0.1, A &~ 0.05 /hour and s
T = 24 hours, is sufficient to make a clear distinction between classical logistic s
growth and more general logistic growth models. We are motivated to explore s
this question because many theoretical modelling studies choose to represent  so
cell proliferation with the classical logistic model, yet this assumption is rarely s
tested using experimental data. Furthermore, there is a growing awareness in 10
the mathematical biology literature that the choice of using a classical logistic 30
model can be inappropriate. For example, Sarapata and de Pillis (2014) show 30

that a range of tumour growth data is more accurately predicted using a gen- a0
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eralised logistic model rather than the classical logistic model. Therefore, the o
question of whether standard designs of cell proliferation assays can make a s
clear and unambiguous distinction between classical logistic growth and more 10
general logistic growth is important as cell proliferation assays are commonly 00
employed. It is currently unclear whether the standard experimental design is 4
sufficient to distinguish between different sigmoid growth mechanisms. This e
study is the first time that a stochastic individual based model has been used
to explore the optimal duration of a cell proliferation assay. In particular, we 40
explore how to choose the duration of the assay to reliably distinguish between s
different types of growth models. 406

One of the main conclusions of our study is that the typical experimental 4o
design for a cell proliferation assay, with C'(0) = 0.1, A & 0.05 /hour and s
T = 24 hours, can not be used to make a distinction between classical logistic 400
growth and more general logistic growth. Further, we use our stochastic mod- w0
elling and parameter inference tools to explore how the experimental design
can be altered so that this distinction can be made with confidence. In par- o
ticular we explore the option of increasing the duration of the experiment, T. a3
Our parameter inference results show that increasing T' always provides more s
information about the crowding function parameters. However, the trends are a5
subtle, and there is no simple guideline for prescribing the ideal experimental s
duration that one could implement in practice. Our results show that we can a7
recover the crowding function for the case of classical logistic growth (Case s
l:a =1, 8 =1) to within an accuracy of 6% if the experimental duration o
is increased to T' = 72 hours. Beyond this duration, we encounter dimin-
ishing returns for this Case. For example, further increasing the duration of
the experiment to T" = 96 hours leads to only a small increase in additional
information about the crowding function. In other cases where we consider 4

generalised logistic growth (Case 2: « = 1, 8 = 2), we see that the parameter
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estimates remain relatively poor, even if the experimental duration is increased s
to T = 72 hours. For Case 2 we recover the parameters to an accuracy of within s
33% if T = 72 hours, and to within 5% if T = 96 hours. Therefore, it is not
possible to make a simple conclusion that cell proliferation assays ought to s
be conducted until T = 48 or T" = 72 hours since the increase in information
with T is subtle. Despite this complication, our results certainly show that the 430
standard choice of T' = 24 hours is insufficient, and that the experiment ought
to be conducted for a long as practically possible. 232

One aspect of a cell proliferation assay that we have not explored is the 43
dependence of the results on the initial cell density, C(0). All results in this 4
work, both the in vitro experimental data in Fig 7?7, and the in silico data in s
Figs ??7-77, deal with initial densities of C'(0) ~ 0.1, where C' = 1 corresponds 43
to the maximum carrying capacity of the confluent monolayer. This initial s
density corresponds to a fairly standard choice of initiating a cell proliferation
assay with approximately 20,000 cells placed into the wells of a 24-well tissue 30
culture plate where each well has a diameter of approximately 15 mm. Alterna- o
tively, a similar initial density can be obtained by initiating a cell proliferation
assay with approximately 10,000 cells placed into the wells of a 96-well tissue a2
culture plate, where each well has a diameter of approximately 9 mm. While 3
it is true that crowding effects in a cell proliferation assay might be more s
clearly discernable by initiating the experiment with larger numbers of cells, s
we warn against this for two reasons. First, from a practical point of view, our s
experience in initiating a two-dimensional in vitro cell biology assay with large
numbers of cells is problematic as the cells can tend to cluster together, and s
pile up in the vertical direction instead of spreading as a monolayer (Treloar s
et al. 2013). Second, established methods for initiating cell proliferation assays s
with C'(0) = 0.1 are perfectly well suited to observe the low density exponen- s

tial phase of the growth process, which is important to estimate the intrinsic
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proliferation rate, A. For example, the data shown in Fig ??(a)-(c) corresponds 43
to a cell proliferation assay initialised with 20,000 cells in a 24-well tissue cul- s
ture plate, and results in Fig ??(d) show C(t) grows linearly over the first 24 45
hours. This result is consistent with the early part of the growth process where s
we expect C(t) ~ C(0)exp(At) = C(0) [1 4 At + O(t?)]. Therefore, we do not s
suggest that the standard experimental design for a cell proliferation assay s
ought to be altered by increasing C'(0). This is why, throughout this study, s
we have treated A and C(0) as known, constant values, in the experimental s

design. a61

All of the results presented here have focused on exploring whether we can s
make a reliable distinction between classical logistic growth and more general 43
logistic growth in a cell proliferation assay. To achieve this we use in silico Sim- s
ulations in which the crowding function can be specified. While the discrete s
simulation algorithm can be used to model a cell proliferation assay with any e
crowding function, f(C), to illustrate the key points of our study we focus on s
three particular cases. Case 1 corresponds to classical logistic growth, while s
Cases 2 and 3 are examples of more general logistic growth. Of course, the s
methods outlined in this work apply equally well to any other choice of crowd- 0
ing function. Furthermore, while all crowding functions explored here involve
two parameters, a and [3, it is possible that other choices of crowding function 4
might contain additional parameters. Under these conditions, the procedures s
described here to quantitatively measure the potential for parameter recov- 4
ery as a function of the experimental design apply in exactly the same way s

regardless of the number of unknown parameters in the crowding function. a6
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