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Abstract Cell proliferation assays are routinely used to explore how a low

density monolayer of cells grows with time. For a typical cell line with a dou-

bling time of 12 hours (or longer), a standard cell proliferation assay conducted

over 24 hours provides excellent information about the low-density exponen-

tial growth rate, but limited information about crowding effects that occur

at higher densities. To explore how we can best detect and quantify crowding

effects, we present a suite of in silico proliferation assays where cells proliferate

according to a generalised logistic growth model. Using approximate Bayesian

computation we show that data from a standard cell proliferation assay can-

not reliably distinguish between classical logistic growth and more general

non-logistic growth models. We then explore, and quantify, the trade-off be-

tween increasing the duration of the experiment and the associated decrease

in uncertainty in the crowding mechanism.
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1 Introduction 1

Two-dimensional in vitro cell biology experiments play an invaluable role in 2

improving our understanding of the collective behaviour of cell populations 3

(Laing, 2007). Understanding collective cell behaviour is relevant to a number 4

of normal and pathological processes, such as tissue regeneration and malig- 5

nant spreading, respectively. One of the most common in vitro cell biology 6

experiments is called a proliferation assay (Bosco et al., 2015; Bourseguin et 7

al., 2016). Cell proliferation assays are initiated by uniformly placing a mono- 8

layer of cells, at low density, on a two-dimensional substrate. Individual cells 9

in the population undergo both movement and proliferation events, and the 10

assay is observed as the density of the monolayer of cells increases. Comparing 11

cell proliferation assays with and without a putative drug plays an important 12

role in drug design (Bosco et al., 2015; Bourseguin et al., 2016). 13

One approach to interpret a cell proliferation assay is to use a mathematical 14

model. This approach can provide quantitative insight into the mechanisms 15

involved (Maini et al., 2004; Sengers et al., 2007). For example, it is possible 16

to estimate the proliferation rate of cells by calibrating a mathematical model 17

to data from a cell proliferation assay. Results can then be used to compare 18

a target and control assay (Johnston et al., 2015). Typically, most previous 19

studies that interpret cell biology assays using continuum mathematical models 20

make the assumption that cells proliferate logistically (Cai et al. 2007; Dale et 21

al., 1994; Doran et al., 2009; Jin et al., 2016a; Maini et al., 2004a; Maini et al., 22

2004b; O’Dea et al., 2012; Savla et al., 2004; Sengers et al., 2007; Sheardown 23

and Cheng, 1996; Sherratt and Murray, 1990). The classical logistic equation 24

is given by 25

dC(t)

dt = λC(t)(1− C(t)), (1)
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where C(t) is the scaled cell density, such that C(t) = 1 represents the carrying 26

capacity density, t is time and λ is the cell proliferation rate. For example, by 27

calibrating the solution of Eq (??) to data from a cell biology assay, Treloar et 28

al. (2014) showed that the proliferation rate of 3T3 fibroblast cells is approx- 29

imately 0.048 /hour. However, while the classical logistic model is routinely 30

used to study biological population dynamics (Pearl, 1927; Edelstein-Keshet, 31

1988; Murray, 2002), this choice is often made without a careful examination 32

of whether the classical logistic model is valid (Treloar et al., 2014). 33

In the literature, there is an awareness that biological populations do not 34

always grow according to the classical logistic equation (Gerlee, 2013; Zwieter- 35

ing et al., 1990). For example, West and coworkers investigate the growth of 36

cell populations from a wide range of animal models and find that the growth 37

is not logistic; instead, they find that a more general model provides a better 38

match to the experimental data (West et al., 2001). Likewise, Laird (1964) ex- 39

amines tumour growth data and shows that the Gompertz growth law matches 40

the data better than the classical logistic model. Similar observations have also 41

been made more recently for different types of tumour growth by Sarapata and 42

de Pillis (2014). 43

Therefore, it is not always clear that the classical logistic model ought to 44

be used to describe cell proliferation assays. The classical logistic model, and 45

its generalisations (Tsoularis and Wallace, 2002), all lead to similar growth dy- 46

namics during the early phase of the experiment when the density is small. The 47

key differences between these models occur at larger densities as the cell pop- 48

ulation grows towards the carrying capacity density. The question of whether 49

cells in a proliferation assay grow logistically, or by some other mechanism, 50

is obscured by the fact that most cell proliferation assays are conducted for a 51

relatively short period of time. To illustrate this, we note that a typical cell 52

proliferation rate of λ = 0.048 /hour (Treloar et al., 2014) corresponds to a 53
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doubling time of approximately 14 hours. Given that a typical initial cell den- 54

sity in a cell proliferation assay is approximately C(0) ≈ 0.1, and the typical 55

time scale of a cell proliferation assay is no more than 24 hours, the cell den- 56

sity will grow to be no more than 0.4, Fig ??(a)-(d). Indeed, the evolution of 57

the cell density data in Fig ??(d) shows that the cell density grows approx- 58

imately linearly over the standard experimental duration of 24 hours. This 59

linear increase is consistent with the early time behaviour of the exponential 60

growth phase, but provides less information about later time behaviour where 61

crowding effects play a role. Therefore, standard experimental durations are 62

inappropriate for the purposes of examining how cells grow at high densities. 63

The focus of the current work is to explore how we can determine the optimal 64

duration of a cell proliferation assay so that it can be used to reliably dis- 65

tinguish between classical logistic and generalised logistic growth models. In 66

summary, this study is the first time that an individual based model has been 67

used to explore the duration of a cell proliferation assay, in order to reliably 68

distinguish between different types of growth models. 69
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This work is organised as follows. We first present a suite of results from a 70

stochastic in silico cell proliferation assay. The benefit of working with an in 71

silico assay is that it can be used to describe the evolution of a cell proliferation 72

assay corresponding to a known, but general, proliferation mechanism, 73

dC(t)

dt = λC(t)f(C), (2)

where f(C) ∈ [0, 1] is a crowding function of our choice (Jin et al., 2016b). The 74

crowding function is a smooth decreasing function that satisfies f(0) = 1 and 75

f(1) = 0. In general, we could study any choice of f(C) that satisfies these 76

conditions. However, for the purposes of this study we restrict our attention 77

to the family of crowding functions given by 78

f(C) = (1− Cα)β , (3)

where α and β are positive constants (Tsoularis and Wallace, 2002). This 79

choice of f(C) is still general and we note that different choices of α and β 80

correspond to well-known biological growth models such as the classical logistic 81

growth model, the Gompertz growth model, and the von Bertalanaffy growth 82

model (Tsoularis and Wallace, 2002). Our choice of f(C) is partly motivated 83

by the recent work of Sarapata and de Pillis (2014), who explore a range 84

of sigmoid growth models for different types of tumours, including bladder, 85

breast, liver, lung, and melanoma tumours. Sarapata and de Pillis (2014) show 86

that the classical logistic growth model does not always provide the best match 87

to observed data, and they test a range of other sigmoid growth models for 88

each different kind of tumour. The different forms of sigmoid growth models 89

that Sarapata and de Pillis (2014) explore are encompassed in our choice of 90

crowding function, Eq ??, simply by making different choices of the constants 91

α and β. 92
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Exploring the optimal duration of a cell proliferation assay 7

In this work we focus on three particular choices of f(C): 93

Case 1: α = 1 and β = 1. Here, f(C) is a linear function that corresponds 94

to the classical logistic equation (Eq ??). See Fig ??(h); 95

Case 2: α = 2 and β = 1. Here, f(C) is a non-linear, concave-down function. 96

See Fig ??(l); and, 97

Case 3: α = 1 and β = 2. Here, f(C) is a non-linear, concave-up function. 98

See Fig ??(p). 99

Setting α = 1 and β = 1 recovers the classical logistic equation (Eq ??), 100

whereas other choices of α and β lead to different, general logistic growth 101

models. Typical in silico experiments showing snapshots of the growing pop- 102

ulations are given in Fig ??(e)-(g) for Case 1, Fig ??(i)-(k) for Case 2 and Fig 103

??(m)-(o) for Case 3. After we have generated typical in silico results for these 104

different choices of f(C), we then examine our ability to distinguish between 105

data corresponding to different choices of f(C) using approximate Bayesian 106

computation (ABC) (Liepe et al. 2014; Sunnaker et al. 2013; Tanaka et al. 107

2006; Collis et al. 2017) to estimate the parameters α and β. This procedure 108

clearly shows that the duration of a standard cell proliferation assay is too 109

short to reliably recover the values of α and β. Therefore, to provide quantita- 110

tive insight into the benefit of performing the experiment for a longer duration, 111

we quantify the decrease in our uncertainty of the parameters and the increase 112

in information as we effectively run the experiment for longer periods of time. 113

2 Methods 114

2.1 Discrete mathematical model 115

We use a lattice-based random walk model to describe a cell proliferation as- 116

say (Liggett, 1999). Throughout the work, we will refer to a realisation of the 117
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stochastic model as either an in silico experiment, or a simulation. In the 118

model cells are treated as equally-sized discs, and this is a typical assumption 119

(Deroulers et al. 2009; Vo et al. 2015) that is supported by experimental mea- 120

surements (Simpson et al. 2013). We use a hexagonal lattice, with no more 121

than one agent per site. The lattice spacing, ∆, is chosen to be equal to the 122

mean cell diameter (Jin et al., 2016b). This means we have a circular packing 123

of agents, which corresponds to the maximum carrying capacity for a popu- 124

lation of uniformly sized discs. The relationship between the scaled density, 125

C(t), and the number of agents, N(t), is 126

C(t) =
N(t)

Nmax
, (4)

so that C(t) = 1 corresponds to the carrying capacity of Nmax agents, which 127

is the number of lattice sites. Motivated by the experimental images of the 128

cell proliferation assay in Fig ??(a)-(c), that is conducted with 3T3 fibroblast 129

cells, we set ∆ = 25 µm to be the mean cell diameter (Simpson et al., 2013). 130

As the images in Fig ??(a)-(c) show a fixed field of view that is much smaller 131

than the spatial extent of the uniformly distributed cells in the experiment, 132

we apply zero net flux boundary conditions (Johnston et al., 2015). 133

Each lattice site, indexed (i, j) where i, j ∈ Z+, has position

(x, y) =


(
i∆, j∆

√
3/2

)
if j is even,(

(i+ 1/2)∆, j∆
√
3/2

)
if j is odd,

such that 1 ≤ i ≤ I and 1 ≤ j ≤ J . To match a typical physical domain, 134

such as the experiment in Fig ??(a)-(c) where the field of view is 625 µm × 135

480 µm and the cell diameter is ∆ = 25 µm, we set I = 25 and J = 22. When 136

this domain is packed to confluence, the field of view can hold no more than 137

Nmax = 550 agents. 138
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In any single realisation of the discrete model, the occupancy of site s is 139

denoted Cs, with Cs = 1 if the site is occupied, and Cs = 0 if vacant. We 140

report results from the model by summing the total number of agents at time 141

t, which we denote N(t). Each site s is associated with a unique index (i, j). 142

We denote the set of nearest neighbour sites surrounding site s as N{s}, and 143

the size of N{s} is |N{s}|. For a typical lattice site, not on any boundary, 144

N{s} corresponds to the usual six nearest neighbour sites and |N{s}| = 6. 145

However, for any lattice site on a boundary, we adjust N{s} and |N{s}| as 146

appropriate to enforce no-flux boundary conditions. 147

To initiate simulations of a cell proliferation assay, we randomly select a 148

lattice site and place an agent on that site, provided the site is vacant. We 149

repeat this process until N(0) = 55 agents have been randomly placed. This 150

corresponds to each simulation starting with C(0) = 0.1, which is typical of 151

the initial density, such as in Fig ??(a). The following algorithm is used to 152

simulate the way in which cells migrate and proliferate during the experiment. 153

At any time, t, there are N(t) agents on the lattice. In each discrete time 154

step, of duration τ , we allow motility and proliferation events to occur in the 155

following two sequential steps. 156

First, N(t) agents are selected independently at random, one at a time with 157

replacement, and given the opportunity to move with probability Pm ∈ [0, 1]. 158

A motile agent attempts to move to one of the six nearest neighbour sites, 159

selected at random. To simulate crowding effects, potential motility events are 160

aborted if an agent attempts to move to an occupied site or attempts to move 161

outside the domain. 162

Second, another N(t) agents are selected independently, at random, one 163

at a time with replacement, and given the opportunity to proliferate with 164

probability Pp ∈ [0, 1]. To assess how crowding affects the ability of a cell to 165

proliferate, we follow the approach of Jin et al. (2016b) and assume that an 166
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agent at site s senses the occupancy of the six nearest neighbour sites, and 167

can detect a measure of the average occupancy of those sites, 168

C̄s =
1

|N (s)|
∑

s′∈N{s}

Cs′ . (5)

This means that C̄s ∈ [0, 1] is a measure of the local crowdedness in N (s). 169

We use C̄s to determine whether a potential proliferation event succeeds by 170

introducing a crowding function, f(C) ∈ [0, 1] with f(0) = 1 and f(1) = 0. 171

To incorporate crowding effects we sample a random number, R ∼ U(0, 1). If 172

R < f(C̄s), a daughter agent is placed at a randomly chosen, vacant, nearest 173

neighbouring site, whereas if R > f(C̄s), the potential proliferation event is 174

aborted. After the N(t) potential proliferation events have been attempted, 175

N(t+ τ) is updated. 176

These two steps are repeated until the desired end time, T , is reached. 177

As previously demonstrated (Jin et al., 2016b), the continuum limit de- 178

scription of this discrete model gives rise to 179

∂C(x, y, t)

∂t
= D

(
∂2C(x, y, t)

∂x2
+

∂2C(x, y, t)

∂y2

)
+ λC(x, y, t)f(C), (6)

where,

λ = lim
∆,τ→0

Pp

τ
, (7)

D = lim
∆,τ→0

Pm∆2

4τ
. (8)

Here, λ is the proliferation rate, and the motility of agents is characterised by 180

a diffusivity, D. Since the agents are initially distributed uniformly we have 181

∂C(x, y, t)/∂x ≈ ∂C(x, y, t)/∂y ≈ 0. This means that the partial differential 182
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equation simplifies to an ordinary differential equation, 183

dC(t)

dt = λC(t)f(C), (9)

which is a generalised logistic growth model. 184

In this study, we only ever vary the parameters in the crowding function, 185

α and β. All other parameters are fixed, and chosen to represent a typical cell 186

population. As previously stated, we set N(0) = 55, I = 25 and J = 22, to 187

accommodate the typical geometry and initial condition of a cell proliferation 188

assay with a population of cells whose mean diameter is ∆ = 25 µm (Simpson 189

et al., 2013). To describe the rate at which cells move, we set Pm = 0.579 190

and τ = 0.0417 hours. This corresponds to D = 2200 µm2/hour, which is a 191

typical value of the cell diffusivity for a mesenchymal cell line (Simpson et al., 192

2014). To describe the rate at which cells proliferate, we set Pp = 0.002 and 193

τ = 0.0417 hours. This corresponds to λ = 0.048 /hour, which is a typical 194

value of the cell proliferation rate (Treloar et al., 2014). This proliferation rate 195

is consistent with the experimental data in Fig ??(d). 196

Using these parameter estimates, we show the evolution of C(t) for a single 197

realisation of the discrete model, for each choice of crowding function, in Fig 198

??(a)-(b), for T = 24 and 96 hours, respectively. Results in Fig ??(a)-(b) show 199

some stochastic fluctuations, as expected. To approximate the expected be- 200

haviour, we perform 20 identically prepared realisations of the discrete model 201

and show the mean density profile, Ĉ(t), in Fig ??(c)-(d), for T = 24 and 96 202

hours, respectively. Comparing the single realisations with the mean behaviour 203

confirms that there are minimal fluctuations, at this scale. Furthermore, we 204

see minimal differences in the overall behaviour of the model when we consider 205

a single realisation and the results from an ensemble of 20 identically prepared 206

realisations. 207
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2.2 Parameter estimation using ABC rejection 208

Using a Bayesian framework, we consider the crowding function parameters 209

θ = (α, β) as random variables, and the uncertainty in the θ is updated using 210

observed data (Gelman et al., 2004; Tanaka et al., 2006; Sunnaker et al., 2013; 211

Collis et al., 2017). Under this assumption, we note that the cell density profile, 212

C(t), is also a random variable. In this section we refer to the variables using 213

vector notation to keep the description of the inference algorithm as succinct 214

as possible. However, in the main text we refer to the variables using ordered 215

pairs, (α, β), so that our results are presented as clearly as possible. 216

To begin with, we perform three in silico experiments with fixed, known 217

parameter values, which we refer to as the target parameters, θ∗, correspond- 218

ing to each Case considered. We take care to ensure that the three in silico 219

experiments lead to typical C(t) data, as we demonstrate in Fig ??. The data 220

from these experiments is treated as observed data, denoted Xobs. Then, we 221

use an ABC approach to explore, and quantify, how well the target values of 222

θ can be estimated using the observed data. In particular, we are interested in 223

the effect of varying the duration over which the observation data is collected, 224

T . 225

In the absence of any experimental observations, information about θ is 226

characterised by a specified prior distribution (Gelman et al., 2004, Sunnaker 227

et al., 2013). For our choices of α and β, we set the prior to be 228

π(θ) =
1

9
, θ ∈ (0, 3)× (0, 3), (10)

which is a uniform distribution across (α, β) ∈ (0, 3)× (0, 3). 229

We summarise data, X, with a lower-dimensional summary statistic, S. 230

Under a Bayesian framework, the information from the prior is updated by 231

the likelihood of the observations, p(Sobs|θ), to produce posterior distributions, 232
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14 Alexander P Browning et al.

p(θ|Sobs), of θ. In this study, we use the most fundamental ABC algorithm, 233

known as ABC rejection (Liepe et al. 2014; Tanaka et al., 2006; Sunnaker et 234

al., 2013). Our aim is to quantify the trade off between the duration of the 235

experiment, T , and the reduction in uncertainty of the value of θ as well as 236

the information gain. 237

In this work, we choose S to be the number of agents observed at equally 238

spaced intervals of 24 hours. Let Nobs(t) and Nsim(t) denote the number of 239

agents present in the observed data and a simulated cell proliferation assay at 240

time t, respectively. We choose a discrepancy measure, ρ(Sobs, Ssim), to be the 241

cumulative sum of the square difference between Nsim(t) and Nobs(t) at each 242

24 hour interval, up to the duration of the experiment, T , such that 243

ρ(Sobs, Ssim) =

T/24∑
i=1

[Nsim(24i)−Nobs(24i)]
2
. (11)

With these definitions, the ABC rejection algorithm is given by Algorithm 1. 244

Algorithm 1 ABC rejection sampling
1: Set Pm = 0.579, Pp = 0.002, ∆ = 25 µm, τ = 0.0417 hours, N(0) = 55.
2: Draw θi ∼ π(θ).
3: Simulate cell proliferation assay with θi.
4: Record Ssimi

= {Nsim(24j)}, j = 1, 2, 3, 4.
5: Compute ϵi = ρ(Sobs, Ssimi), given in Eq ??.
6: Repeat steps 2-5 until 106 samples {θi, ϵi}10

6

i=1 are simulated.
7: Retain a small proportion, u = 0.01, with the smallest discrepancy, ϵi, as

posterior samples.

To present and perform calculations with posterior distributions, we use a 245

kernel density estimate with grid spacing 0.01 to form an approximate contin- 246

uous posterior distribution from the samples. We do this using the ksdensity 247

function in the MATLAB Statistics Toolbox (Mathworks, 2017). All ABC pos- 248

terior results presented in the main paper correspond to retaining the 10,000 249
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simulations out of 1,000,000 simulations with the smallest discrepancy, giving 250

u = 0.01. To confirm that our results are insensitive to this choice of u we 251

also present equivalent results with u = 0.02 in the Supplementary Material 252

document. 253

2.2.1 Kullback-Leibler divergence 254

To quantitatively compare posterior distributions, we calculate the Kullback- 255

Leibler (KL) divergence (Kullback and Leibler 1951; Burnham and Anderson 256

2002), DKL(p∥π), for each posterior distribution. The KL divergence is a mea- 257

sure of the information gain in moving from the prior, π(θ), to the posterior, 258

p(θ|Sobs), in Bayesian inference, and is defined as 259

DKL(p(θ|Sobs)∥π(θ)) =
∫∫

Θ

p(θ|Sobs) log

(
p(θ|Sobs)

π(θ)

)
dθ, (12)

where Θ = (0, 3)×(0, 3) is the prior support. To calculate DKL(p(θ|Sobs)∥π(θ)) 260

we use quadrature to estimate the integral in Eq (??), taking care to ensure 261

that the result is independent of the discretisation. Note that DKL is a measure 262

of the amount of information gained when moving from the prior distribution 263

to the posterior distribution. 264

2.2.2 Other measures 265

We also make use of several other measures to help quantify various properties 266

of the posterior densities. For each Case we always know, in advance, the target 267

parameter values, θ∗, and we also estimate the mode, θm, using the kernel 268

density estimate. Note that the mode is the value of θ corresponding to the 269

maximum posterior density, 270

θm = argmax
θ

p(θ|Sobs). (13)
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It is useful to report the posterior density at the target, p(θ∗|Sobs), for various 271

values of T . It is also instructive to report the posterior density at the mode, 272

p(θm|Sobs), for various values of T . Another useful measure is the Euclidean 273

distance between the target and the mode, given by 274

d = ||θ∗ − θm||2. (14)

3 Results and Discussion 275

Results from a typical cell proliferation assay are shown in Fig ??(a)-(c). The 276

cell density profile, shown in Fig ??(d), increases approximately linearly with 277

time. This indicates that the experimental duration is not long enough for us 278

to observe crowding effects, which occur at higher densities, and cause the net 279

growth rate to reduce so that cell density profile, C(t), becomes concave down 280

at later times. Therefore, by using typical experimental data, it is unclear 281

whether the growth process follows a classical logistic model, or some other 282

more general growth model. 283

To provide further insight into the limitations of this standard experimen- 284

tal design, we show results from the discrete model in Fig ??(a) for a standard 285

experimental duration of T = 24 hours, for three different crowding functions. 286

These results show several interesting features: (i) the cell density profile for 287

each Case appears to increase linearly with time, which is similar to the exper- 288

imental results in Fig ??(d); (ii) it is difficult to distinguish between the three 289

different profiles, despite each profile corresponding to a different crowding 290

function; and (iii) comparing the cell density profiles of a single realisation in 291

Fig ??(a) to the expected behaviour in Fig ??(c) confirms that the expected 292

cell density profiles for each Case are similar for the first 24 hours. 293
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To examine when crowding effects begin to significantly influence the cell 294

density profile, we perform simulations over longer durations of time. In par- 295

ticular, we examine T ≤ 96 hours. Results for a single realisation in Fig ??(b) 296

show that the cell density profiles for each Case are indistinguishable during 297

the first 24 hours. However the profile for each Case does become increas- 298

ingly distinguishable at times greater than 24 hours. For example, each Case 299

is clearly discernable by 72 hours. Comparing the cell density profiles of a sin- 300

gle realisation in Fig ??(b) to the expected behaviour in Fig ??(d) confirms 301

that each Case is only distinguishable at times greater than 24 hours. These 302

observations motivate several questions that we will explore. The two main 303

questions we focus on are: (i) what experimental duration is required to reli- 304

ably distinguish between Cases 1, 2 and 3; and, (ii) can we quantify the trade 305

off between allowing the experiment to run for a sufficiently long period of 306

time to distinguish between the Cases, while still minimising the duration of 307

the experiment. 308

To quantify the increase in information we can obtain by running the ex- 309

periment for longer durations of time, we attempt to recover the parameters 310

in the crowding function for each Case using ABC to produce a posterior dis- 311

tribution for α and β, which we refer to as the ordered pair (α, β). To achieve 312

this aim, we produce in silico observed data, using a target parameter set 313

for each Case: Case 1 corresponds to (α, β) = (1, 1); Case 2 corresponds to 314

(α, β) = (2, 1); and Case 3 corresponds to (α, β) = (1, 2). All other parameters 315

in the simulations are held fixed at the values given previously. 316

The data we use to perform inference takes the form of the size of the 317

population, N(t), recorded at equally spaced intervals, each of duration 24 318

hours. In particular, we examine the effect of varying the total duration of 319

the experiment, T . This means that if we consider an experimental design 320

with T = 24 hours, then we record N(24) only. In contrast, if we consider an 321
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18 Alexander P Browning et al.

experimental design with T = 72 hours, we record N(24), N(48) and N(72). 322

Overall, we examine four durations, T = 24, 48, 72 and 96 hours. 323

Results in Fig ??(a)-(d) show the bivariate posterior distributions of α and 324

β for Case 1, with T = 24, 48, 72 and 96 hours, respectively. Recall that the 325

target parameters for Case 1 are (α, β) = (1, 1). The results indicate that the 326

choice of prior, π(θ), on the domain (0, 3) × (0, 3), is reasonable because the 327

posterior distribution has full support within this region. The distribution in 328

Fig ??(a) shows there are many parameter combinations that are likely to 329

match the observed data, with T = 24 hours. This observation is consistent 330

with the results in Fig ??(a) where we observe that setting T = 24 hours is 331

insufficient to distinguish between the three Cases. Comparing the posterior 332

distributions in Fig ??(a)-(d), we see that increasing T leads to a narrowing of 333

the posterior distribution, and the mode of the distribution moves toward the 334

target parameter combination. For this Case, we see the largest benefit when 335

increasing T from 48 to 72 hours. For example, for T = 48 hours, the mode of 336

the distribution is (1.82, 2.16), which means that each parameter estimate is 337

almost double each target value. In contrast, the mode of the distribution at 338

T = 72 hours is (1.06, 0.95), so each parameter is able to be estimated within 339

6% of the target. 340
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To quantify the properties in the posterior distributions, Fig ??(a)-(d), 341

there are many features that we may consider. Figure ??(e) compares the 342

posterior density at the target parameter values and the maximum posterior 343

density of the distribution, which corresponds to the mode. The maximum 344

posterior density increases with T , confirming that the posterior distribution 345

narrows as the duration of the experiment is increased. Results in Figure 346

??(f) show that d eventually decreases with T , indicating that the mode of the 347

distribution moves towards the target as T increases. Together, these results 348

show that the density at the mode is close to the density at the target, and that 349

both these quantities increase with T . This indicates that the target parameter 350

combination is always as likely as the mode. Results in Fig ??(g) shows how 351

the KL divergence (Eq ??) also increases with T . We see that the largest 352

gain in information for this Case occurs when T is increased from 24 hours 353

(DKL = 0.33) to 48 hours (DKL = 0.84). The quantitative measures in Fig 354

??(e)-(g) suggest that there is always value in increasing T , however the value 355

of increasing T varies. For example, there is a substantial benefit in extending 356

the experiment from T = 48 to 72 hours, whereas the benefit in extending the 357

experiment from T = 72 to 96 hours is less pronounced. 358

Results in Fig ??(a)-(d) and Fig ??(a)-(d) show the bivariate posterior 359

distributions of α and β for Cases 2 and 3, respectively. Note that all data 360

presented for Cases 2 and 3 is given in the same format as used for the results 361

corresponding to Case 1 in Fig ??. As before, we always observe a narrowing 362

of the posterior distribution as T increases. Results in Fig ??(e) and Fig ??(e) 363

clearly show that the target parameter combination becomes more likely as 364

T is increased. Data for d in Fig ??(f) confirms that the distance between 365

the target and the mode is reduced for larger values of T . Data for d in Fig 366

??(f) shows that the distance between the target and the mode increases, at 367

first, when T is increased from 24 to 48 hours. However, the most important 368
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feature is that d always decreases eventually for large enough T . Again, as T 369

is increased, DKL increases in both Fig ??(g) and Fig ??(g). 370

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147678doi: bioRxiv preprint 

https://doi.org/10.1101/147678


22 Alexander P Browning et al.

0
  

1
.2 Posterior density

T
 =

 9
6

 h
o

u
rs

  

α

β
 0
  

3
  

3
  

(d
)   

0
  

1
.2 Posterior density

T
 =

 7
2

 h
o

u
rs

  

α
 

β 0
  

3
  

3
  

(c
)  

0
  

0
.5

5
  

Posterior density

T
 =

 4
8

 h
o

u
rs

  

α
 

β 0
  

3
  

3
  

(b
)   

0
  

0
.2 Posterior density

T
 =

 2
4

 h
o

u
rs

  

α
 

β 0
  

3
  

3
  

(a
)   

2
4

4
8

7
2

9
6

T
 (

h
o

u
rs

) 

012 Posterior density

M
o

d
e

T
a

rg
e

t

(e
)

2
4

4
8

7
2

9
6

T
 (

h
o
u
rs

) 

012(f
)

2
4

4
8

7
2

9
6

T
 (

h
o
u
rs

) 

0

2
.5(g
)

d
D

K
L

1
.2

5

F
ig

.4
.P

os
te

ri
or

di
st

ri
bu

ti
on

s
fo

r
C

as
e

2:
(α

,β
)
=

(2
,1

).
(a

)-
(d

)
A

BC
po

st
er

io
r

di
st

rib
ut

io
ns

fo
r:

(a
)
T

=
24

ho
ur

s;
(b

)
T

=
48

ho
ur

s;
(c

)
T

=
7
2

ho
ur

s
an

d
(d

)
T

=
96

ho
ur

s.
T

he
po

st
er

io
r

di
st

rib
ut

io
ns

ar
e

ap
pr

ox
im

at
ed

us
in

g
th

e
be

st
10

,0
00

sa
m

pl
es

fro
m

1,
00

0,
00

0
pr

io
r

sa
m

pl
es

(u
=

0
.0
1
),

as
m

ea
su

re
d

by
ρ
,g

iv
en

by
Eq

??
.T

he
re

d
ci

rc
le

s
sh

ow
th

e
lo

ca
tio

n
of

th
e

ta
rg

et
pa

ra
m

et
er

s
us

ed
to

ge
ne

ra
te

th
e

ob
se

rv
ed

da
ta

(α
=

2
, β

=
1
).

T
he

bl
ac

k
sq

ua
re

s
in

di
ca

te
th

e
m

od
e

of
th

e
po

st
er

io
r

di
st

rib
ut

io
n.

T
he

m
od

es
ar

e
(1

.8
9,

1.
81

),
(2

.5
5,

1.
38

),
(2

.5
4,

1.
46

)
an

d
(2

.5
3,

1.
41

)
in

(a
)-

(d
),

re
sp

ec
tiv

el
y.

(e
)-

(g
)

Sh
ow

m
ea

su
re

s
of

ac
cu

ra
cy

an
d

pr
ec

isi
on

.(
e)

Q
ua

nt
ita

tiv
el

y
co

m
pa

re
s

th
e

po
st

er
io

r
de

ns
ity

at
th

e
m

od
e

an
d

th
e

ta
rg

et
pa

ra
m

et
er

va
lu

es
.(

f)
Sh

ow
s
d
,t

he
Eu

cl
id

ea
n

di
st

an
ce

be
tw

ee
n

th
e

m
od

e
an

d
ta

rg
et

pa
ra

m
et

er
va

lu
es

,g
iv

en
by

Eq
??

.(
g)

Sh
ow

s
D

K
L

,
th

e
K

ul
lb

ac
k-

Le
ib

le
r

di
ve

rg
en

ce
fro

m
th

e
pr

io
r,

fo
r

ea
ch

po
st

er
io

r
di

st
rib

ut
io

n,
gi

ve
n

by
Eq

??
.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147678doi: bioRxiv preprint 

https://doi.org/10.1101/147678


Exploring the optimal duration of a cell proliferation assay 23

0
  

1
.8 Posterior density

T
 =

 9
6

 h
o

u
rs

  

α

β
 0
  

3
  

3
  

(d
)   

0
  

1
.5

5

Posterior density

T
 =

 7
2

 h
o

u
rs

  

α
 

β 0
  

3
  

3
  

(c
)   

0
  

1
.4 Posterior density

T
 =

 4
8

 h
o

u
rs

  

α
 

β 0
  

3
  

3
  

(b
)   

0
  

0
.2

5

Posterior density

T
 =

 2
4

 h
o

u
rs

  

α
 

β 0
  

3
  

3
  

(a
)   

2
4

4
8

7
2

9
6

T
 (

h
o

u
rs

) 

012 Posterior density

M
o

d
e

T
a
rg

e
t

(e
)

2
4

4
8

7
2

9
6

T
 (

h
o
u
rs

) 

012(f
)

2
4

4
8

7
2

9
6

T
 (

h
o
u
rs

) 

0

2
.5(g
)

d
D

K
L

1
.2

5

F
ig

.5
.P

os
te

ri
or

di
st

ri
bu

ti
on

s
fo

r
C

as
e

3:
(α

,β
)
=

(1
,2

).
(a

)-
(d

)
A

BC
po

st
er

io
r

di
st

rib
ut

io
ns

fo
r:

(a
)
T

=
24

ho
ur

s;
(b

)
T

=
48

ho
ur

s;
(c

)
T

=
7
2

ho
ur

s
an

d
(d

)
T

=
96

ho
ur

s.
T

he
po

st
er

io
r

di
st

rib
ut

io
ns

ar
e

ap
pr

ox
im

at
ed

us
in

g
th

e
be

st
10

,0
00

sa
m

pl
es

fro
m

1,
00

0,
00

0
pr

io
r

sa
m

pl
es

(u
=

0
.0
1
),

as
m

ea
su

re
d

by
ρ
,g

iv
en

by
Eq

??
.T

he
re

d
ci

rc
le

s
sh

ow
th

e
lo

ca
tio

n
of

th
e

ta
rg

et
pa

ra
m

et
er

s
us

ed
to

ge
ne

ra
te

th
e

ob
se

rv
ed

da
ta

(α
=

1
, β

=
2
).

T
he

bl
ac

k
sq

ua
re

s
in

di
ca

te
th

e
m

od
e

of
th

e
po

st
er

io
r

di
st

rib
ut

io
n.

T
he

m
od

es
ar

e
(1

.1
3,

1.
70

),
(1

.0
9,

2.
57

),
(1

.2
0,

2.
67

)
an

d
(1

.0
3,

2.
11

)
in

(a
)-

(d
),

re
sp

ec
tiv

el
y.

(e
)-

(g
)

Sh
ow

m
ea

su
re

s
of

ac
cu

ra
cy

an
d

pr
ec

isi
on

.(
e)

Q
ua

nt
ita

tiv
el

y
co

m
pa

re
s

th
e

po
st

er
io

r
de

ns
ity

at
th

e
m

od
e

an
d

th
e

ta
rg

et
pa

ra
m

et
er

va
lu

es
.(

f)
Sh

ow
s
d
,t

he
Eu

cl
id

ea
n

di
st

an
ce

be
tw

ee
n

th
e

m
od

e
an

d
ta

rg
et

pa
ra

m
et

er
va

lu
es

,g
iv

en
by

Eq
??

.(
g)

Sh
ow

s
D

K
L

,
th

e
K

ul
lb

ac
k-

Le
ib

le
r

di
ve

rg
en

ce
fro

m
th

e
pr

io
r,

fo
r

ea
ch

po
st

er
io

r
di

st
rib

ut
io

n,
gi

ve
n

by
Eq

??
.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147678doi: bioRxiv preprint 

https://doi.org/10.1101/147678


24 Alexander P Browning et al.

Overall, the essential trends in Fig ?? and Fig ?? are consistent with those 371

in Fig ??, namely: (i) the standard choice of T = 24 hours is insufficient to 372

determine the parameters in the crowding function and hence it is impossible to 373

reliably distinguish between classical logistic growth and more general logistic 374

growth models; and, (ii) as the value of T is increased, our ability to recover the 375

parameters in the crowding function increases. However, certain details differ 376

between the cases. For example, choosing T = 72 hours allows us to recover 377

estimates of α and β to an accuracy of at least 6, 46 and 34% in Cases 1, 2 378

and 3, respectively. Therefore, with this choice of T we are able to recover the 379

parameters for Case 1 relatively accurately. In contrast, if we choose T = 96 380

hours, we recover estimates of α and β to an accuracy of at least 14, 41 and 381

6% in Cases 1, 2 and 3, respectively. Therefore, with this choice of T we are 382

able to recover the parameters for Cases 1 and 3 relatively accurately, yet Case 383

2 remains relatively unclear. 384

4 Conclusion 385

In this work, we implement a random walk model to simulate a cell prolifera- 386

tion assay. In particular, we focus on exploring whether the typical experimen- 387

tal design of a cell proliferation assay, with C(0) ≈ 0.1, λ ≈ 0.05 /hour and 388

T = 24 hours, is sufficient to make a clear distinction between classical logistic 389

growth and more general logistic growth models. We are motivated to explore 390

this question because many theoretical modelling studies choose to represent 391

cell proliferation with the classical logistic model, yet this assumption is rarely 392

tested using experimental data. Furthermore, there is a growing awareness in 393

the mathematical biology literature that the choice of using a classical logistic 394

model can be inappropriate. For example, Sarapata and de Pillis (2014) show 395

that a range of tumour growth data is more accurately predicted using a gen- 396
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eralised logistic model rather than the classical logistic model. Therefore, the 397

question of whether standard designs of cell proliferation assays can make a 398

clear and unambiguous distinction between classical logistic growth and more 399

general logistic growth is important as cell proliferation assays are commonly 400

employed. It is currently unclear whether the standard experimental design is 401

sufficient to distinguish between different sigmoid growth mechanisms. This 402

study is the first time that a stochastic individual based model has been used 403

to explore the optimal duration of a cell proliferation assay. In particular, we 404

explore how to choose the duration of the assay to reliably distinguish between 405

different types of growth models. 406

One of the main conclusions of our study is that the typical experimental 407

design for a cell proliferation assay, with C(0) ≈ 0.1, λ ≈ 0.05 /hour and 408

T = 24 hours, can not be used to make a distinction between classical logistic 409

growth and more general logistic growth. Further, we use our stochastic mod- 410

elling and parameter inference tools to explore how the experimental design 411

can be altered so that this distinction can be made with confidence. In par- 412

ticular we explore the option of increasing the duration of the experiment, T . 413

Our parameter inference results show that increasing T always provides more 414

information about the crowding function parameters. However, the trends are 415

subtle, and there is no simple guideline for prescribing the ideal experimental 416

duration that one could implement in practice. Our results show that we can 417

recover the crowding function for the case of classical logistic growth (Case 418

1: α = 1, β = 1) to within an accuracy of 6% if the experimental duration 419

is increased to T = 72 hours. Beyond this duration, we encounter dimin- 420

ishing returns for this Case. For example, further increasing the duration of 421

the experiment to T = 96 hours leads to only a small increase in additional 422

information about the crowding function. In other cases where we consider 423

generalised logistic growth (Case 2: α = 1, β = 2), we see that the parameter 424
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estimates remain relatively poor, even if the experimental duration is increased 425

to T = 72 hours. For Case 2 we recover the parameters to an accuracy of within 426

33% if T = 72 hours, and to within 5% if T = 96 hours. Therefore, it is not 427

possible to make a simple conclusion that cell proliferation assays ought to 428

be conducted until T = 48 or T = 72 hours since the increase in information 429

with T is subtle. Despite this complication, our results certainly show that the 430

standard choice of T = 24 hours is insufficient, and that the experiment ought 431

to be conducted for a long as practically possible. 432

One aspect of a cell proliferation assay that we have not explored is the 433

dependence of the results on the initial cell density, C(0). All results in this 434

work, both the in vitro experimental data in Fig ??, and the in silico data in 435

Figs ??-??, deal with initial densities of C(0) ≈ 0.1, where C = 1 corresponds 436

to the maximum carrying capacity of the confluent monolayer. This initial 437

density corresponds to a fairly standard choice of initiating a cell proliferation 438

assay with approximately 20,000 cells placed into the wells of a 24-well tissue 439

culture plate where each well has a diameter of approximately 15 mm. Alterna- 440

tively, a similar initial density can be obtained by initiating a cell proliferation 441

assay with approximately 10,000 cells placed into the wells of a 96-well tissue 442

culture plate, where each well has a diameter of approximately 9 mm. While 443

it is true that crowding effects in a cell proliferation assay might be more 444

clearly discernable by initiating the experiment with larger numbers of cells, 445

we warn against this for two reasons. First, from a practical point of view, our 446

experience in initiating a two-dimensional in vitro cell biology assay with large 447

numbers of cells is problematic as the cells can tend to cluster together, and 448

pile up in the vertical direction instead of spreading as a monolayer (Treloar 449

et al. 2013). Second, established methods for initiating cell proliferation assays 450

with C(0) ≈ 0.1 are perfectly well suited to observe the low density exponen- 451

tial phase of the growth process, which is important to estimate the intrinsic 452
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proliferation rate, λ. For example, the data shown in Fig ??(a)-(c) corresponds 453

to a cell proliferation assay initialised with 20,000 cells in a 24-well tissue cul- 454

ture plate, and results in Fig ??(d) show C(t) grows linearly over the first 24 455

hours. This result is consistent with the early part of the growth process where 456

we expect C(t) ∼ C(0)exp(λt) = C(0)
[
1 + λt+O(t2)

]
. Therefore, we do not 457

suggest that the standard experimental design for a cell proliferation assay 458

ought to be altered by increasing C(0). This is why, throughout this study, 459

we have treated λ and C(0) as known, constant values, in the experimental 460

design. 461

All of the results presented here have focused on exploring whether we can 462

make a reliable distinction between classical logistic growth and more general 463

logistic growth in a cell proliferation assay. To achieve this we use in silico sim- 464

ulations in which the crowding function can be specified. While the discrete 465

simulation algorithm can be used to model a cell proliferation assay with any 466

crowding function, f(C), to illustrate the key points of our study we focus on 467

three particular cases. Case 1 corresponds to classical logistic growth, while 468

Cases 2 and 3 are examples of more general logistic growth. Of course, the 469

methods outlined in this work apply equally well to any other choice of crowd- 470

ing function. Furthermore, while all crowding functions explored here involve 471

two parameters, α and β, it is possible that other choices of crowding function 472

might contain additional parameters. Under these conditions, the procedures 473

described here to quantitatively measure the potential for parameter recov- 474

ery as a function of the experimental design apply in exactly the same way 475

regardless of the number of unknown parameters in the crowding function. 476

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147678doi: bioRxiv preprint 

https://doi.org/10.1101/147678


28 Alexander P Browning et al.

5 Acknowledgments 477

This work is supported by the Australian Research Council (DP140100249, 478

DP170100474). Computational resources were provided by the High Perfor- 479

mance Computing and Research Support Group. We thank the two anony- 480

mous referees for their helpful comments. 481

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147678doi: bioRxiv preprint 

https://doi.org/10.1101/147678


Exploring the optimal duration of a cell proliferation assay 29

References

1. Bosco DB, Kenworthy R, Zorio DAR, Sang Q-XA (2015) Human mesenchymal stem cells

Are resistant to paclitaxel by adopting a non-proliferative fibroblastic state. PLOS ONE.

10: e0128511.

2. Bourseguin J et al. (2016) FANCD2 functions as a critical factor downstream of MiTF

to maintain the proliferation and survival of melanoma cells. Sci Rep. 6: 36539.

3. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical

information-theoretic approach. Springer, Berlin.

4. Cai AQ, Landman KA, Hughes BD (2007) Multi–scale modeling of a wound–healing cell

migration assay. J Theor Biol. 245: 576-594.

5. Collis J, Connor AJ, Paczkowski M, Kannan P, Pitt-Francis J, Byrne HM, Hubbard

ME (2017) Bayesian calibration, validation and uncertainty quantification for predictive

modelling of tumour growth: a tutorial. B Math Biol. 79: 939-973.

6. Dale PD, Sherratt JA, Maini PK (1994) The speed of corneal epithelial wound healing.

Appl Math Lett. 9: 11-14.

7. Deroulers C, Aubert M, Badoual M, Grammaticos B (2009) Modeling tumor cell migra-

tion: From microscopic to macroscopic models. Phys Rev E. 79: 031917.

8. Doran MR, Mills RJ, Parker AJ, Landman KA, Cooper-White JJ (2009) A cell migra-

tion device that maintains a defined surface with no cellular damage during wound edge

generation. Lab on a Chip. 9: 2364-2369.

9. Edelstein-Keshet L (1988) Mathematical models in biology. Random House, New York.

10. Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis. CRC Press,

Florida.

11. Gerlee P (2013) The model muddle: in search of tumour growth laws. Cancer Res. 73:

2407-2411.

12. Jin W, Shah ET, Penington CP, McCue SW, Chopin LK, Simpson MJ (2016a) Repro-

ducibility of scratch assays is affected by the initial degree of confluence: Expeimrents,

modelling and model selection. J Theor Biol. 390: 136–145.

13. Jin W, Penington CJ, McCue SW, Simpson MJ (2016b) Stochastic simulation tools and

continuum models for describing two-dimensional collective cell spreading with universal

growth functions. Phys Biol. 13: 056003.

14. Jin W, Shah ET, Penington CJ, McCue SW, Maini PK, Simpson MJ (2017) Logistic

proliferation of cells in scratch assays is delayed. B Math Biol. 79: 1028-1050.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147678doi: bioRxiv preprint 

https://doi.org/10.1101/147678


30 Alexander P Browning et al.

15. Johnston ST, Shah ET, Chopin LK, McElwain DLS, Simpson MJ (2015) Estimating

cell diffusivity and cell proliferation rate by interpreting IncuCyte ZOOMTM assay data

using the Fisher-Kolmogorov model. BMC Syst Biol. 9: 38.

16. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat. 22:

79-86.

17. Laird AK (1964) Dynamics of tumour growth. Brit J Cancer. 18: 490-502.

18. Liepe J, Kirk P, Filippi S, Toni T, Barnes CP, Stumpf MPH (2014) A framework for

parameter estimation and model selection from experimental data in systems biology using

approximate Bayesian computation. Nat Protoc. 9: 439-456.

19. Liang CC, Park AY, Guan J-L (2007) In vitro scratch assay: a convenient and inexpen-

sive method for analysis of cell migration in vitro. Nat Protoc. 2: 329-333.

20. Liggett TM (1999) Stochastic interacting systems: contact, voter and exclusion pro-

cesses. Springer, Berlin.

21. Maini PK, McElwain DLS, Leavesley DI (2004a) Traveling wave model to interpret a

wound-healing cell migration assay for human peritoneal mesothelial cells. Tissue Eng. 10:

475-482.

22. Maini PK, McElwain DLS, Leavesley D (2004b) Travelling waves in a wound healing

assay. Appl Math Lett. 17: 575-580.

23. Mathworks (2017) Kernel smoothing function estimate for univariate and bivariate data.

Mathworks. http://au.mathworks.com/help/stats/ksdensity.html. Accessed June 2007.

24. Murray JD (2002) Mathematical biology. Springer, Berlin.

25. O’Dea RD, Byrne HM, Waters SL (2012) Continuum modelling of in vitro tissue engi-

neering: a review. Springer, Berlin.

26. Pearl R (1927) The growth of populations. Q Rev Biol. 2: 532-548.

27. Sarapata EA, de Pillis LG (2014) A comparison and catalog of intrinsic tumor growth

models. B Math Biol. 76: 2010-2024.

28. Savla U, Olson LE, Waters CM. (2004) Mathematical modeling of airway epithelial

wound closure during cyclic mechanical strain. J Appl Physiol. 96: 566-574.

29. Sengers BG, Please CP, Oreffo ROC (2007) Experimental characterization and com-

putational modelling of two-dimensional cell spreading for skeletal regeneration. J R Soc

Interface. 4: 1107.

30. Shakeel M, Matthews PC, Graham RS, Waters SL (2013) A continuum model of cell

proliferation and nutrient transport in a perfusion bioreactor. Math Med Biol. 30: 21–44.

31. Sheardown H, Cheng YL. (1996) Mechanisms of corneal epithelial wound healing. Chem

Eng Sci. 51: 4517-4529.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147678doi: bioRxiv preprint 

https://doi.org/10.1101/147678


Exploring the optimal duration of a cell proliferation assay 31

32. Sherratt JA, Murray JD. (1990) Models of epidermal wound healing. Proc R Soc Lond

B. 241: 29-36.

33. Simpson MJ, Treloar KK, Binder BJ, Haridas P, Manton KJ, Leavesley DI, McElwain

DLS, Baker RE (2013) Quantifying the roles of cell motility and cell proliferation in a

circular barrier assay. J R Soc Interface. 10: 20130007.

34. Sunnaker M, Busetto AG, Numminen E, Corander J, Foll M, Dessimoz C (2013) Ap-

proximate Bayesian Computation. PLOS Comput Biol. 9: e1002803.

35. Tanaka MM, Francis AR, Luciani F, Sisson SA (2006) Using approximate Bayesian com-

putation to estimate tuberculosis transmission parameters from genotype data. Genetics.

173: 1511-1520.

36. Treloar KK, Simpson MJ, Haridas P, Manton KJ, Leavesley DI, McElwain DLS, Baker

RE (2013) Multiple types of data are required to identify the mechanisms influencing the

spatial expansion of melanoma cell colonies. BMC Syst Biol. 7: 137.

37. Treloar KK, Simpson MJ, McElwain DLS, Baker RE (2014) Are in vitro estimates of

cell diffusivity and cell proliferation rate sensitive to assay geometry? J Theor Biol. 356:

71-84.

38. Tsoularis A, Wallace J (2002) Analysis of logistic growth models. Math Biosci. 179:

21-55.

39. Vo BN, Drovandi CC, Pettit AN, Simpson MJ (2015) Quantifying uncertainty in pa-

rameter estimates for stochastic models of collective cell spreading using approximate

Bayesian computation. Math Biosci. 263: 133-142.

40. West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth. Nature.

413: 628-631.

41. Zwietering MH, Jongenburger I, Rombouts FM, van’t Riet K (1990) Modeling of the

bacterial growth curve. Appl Environ Microb. 56: 1875-1881.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147678doi: bioRxiv preprint 

https://doi.org/10.1101/147678

