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Abstract

This article is addressed to researchers and students in theoretical ecol-
ogy, as an introduction to “disordered systems” approaches from statisti-
cal physics, and how they can help understand large ecological communi-
ties. We discuss the relevance of these approaches, and how they fit within
the broader landscape of models in community ecology. We focus on a
remarkably simple technique, the cavity method, which allows to derive
the equilibrium properties of Lotka-Volterra systems. We present its pre-
dictions, the new intuitions it suggests, and its technical underpinnings.
We also discuss a number of new results concerning possible extensions,
including different functional responses and community structures.
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1 Context

1.1 Disordered systems

Many foundational insights of ecological theory were derived from the careful
study of simplified patterns of interaction between a few distinct entities (in-
dividuals or species). Examples include trophic chains [18], competition and
exclusion over a few resources [19, 34], mutualism [12] and parasite-host in-
teractions [23]. These archetypal structures can be used as modules [14, 5] to
understand more complex systems, when this complexity does not interfere with
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their order and structure. For instance, our intuitions on multitrophic commu-
nities combine simple trophic mechanisms to understand inter-guild relations,
and simple competitive mechanisms for intra-guild dynamics. Many theories
also distinguish between ecosystems shaped by top-down control from preda-
tors, and those shaped by bottom-up control from resources. In all cases, these
intuitions can only work if these interaction structures remain distinct even in
a complex community.

In parallel, neutral models [15] have shown that many quantitative predic-
tions can be made with minimal assumptions of structure, or even of distinctive-
ness of the entities. In most such works, the only accounting for an ecosystem’s
diversity is its number of otherwise identical species. These theories belong
to the mean-field class, meaning that intrinsic differences between entities are
erased statistically, owing to large numbers and some form of stochasticity.
More precisely, such differences lose their importance in the collective dynam-
ics – and therefore also in individual species’ dynamics, provided that those
are mostly shaped by collective factors (e.g. aggregate competition from many
other species).

Disordered systems stand between these extremes, in that they exhibit het-
erogeneity without order: they represent situations where one cannot neglect
the existence of differences between species, but no clear-cut structural patterns
can be identified. As in neutral theories, it is either impossible or unnecessary
to assign clear “roles” to individual species. But instead of being modelled as
identical, all species appear to be completely heterogeneous in their biological
features and interactions, without regular motifs. What we can know is the
range and frequency of these traits in the community as a whole, and we in-
vestigate how much can be predicted about an ecosystem from that limited
knowledge. While the notion of disordered system originates in physics1, per-
haps the simplest analogy is found in models of neural networks [24]. Each
neuron has a distinct set of interactions, but it is difficult to identify the role of
any given neuron, or group them into functional classes; mainly, we can access
summary statistics of “how different” neurons and their interactions are in a
given network.

This approach shares a conceptual starting point with Random Matrix The-
ory, which has long become a staple of theoretical ecology [22, 1]. In both cases,
one considers a “simple sort of complexity”: in large disordered communities,
most details cease to matter and a few general mechanisms emerge, allowing
us to unify many superficially different systems and models. However, Random
Matrix Theory has developed with a specific focus on stability, whereas disor-
dered systems techniques give access to properties – functioning, coexistence,
abundance distributions, trait selection – which are usually predicted using neu-
tral or structured models. In fact, many ecological models already fall into this
category, especially numerical models that contain many species with uncertain
attributes (lacking empirical or mechanistic constraints) such as large random

1It became prominent with the study of disordered materials such as glasses [26], before
being applied to algorithmics and information theory [25], chemistry [27], economics [29] and
systems biology [30].
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Lotka-Volterra communities. What has perhaps not been sufficiently realized
is the availability of mathematical techniques for making broader and more ro-
bust statements about such systems, thus helping guide, validate or even bypass
heavy simulation work. It is only recently that these techniques and ideas have
been brought to bear on ecological problems [11, 16, 6, 32, 33].

Of particular interest is the application of this framework to ecosystem as-
sembly, i.e. how dynamics and interactions shape the realized community from
a pool of potential invaders. Indeed, it is easier to imagine that the pool itself
is disordered: it may consist of species immigrating from a number of different
environments, with independent evolutionary histories. By contrast, the assem-
bled state that emerges from that pool will be less random. By following the
process of assembly from that pool, it is possible to see which properties are
selected by the ecological dynamics, i.e. how traits in the assembled community
differ from those in the pool. Multiple works have thus explored what shapes
species coexistence and invadability, in the context of assembly from a fixed
regional pool [6], from immigration and stochastic extinction in an island bio-
geography perspective [16], or from two consumer communities “coalescing” –
starting to compete on the same resources [32]. These methods have proven apt
at generalizing to many species what was previously understood for modules of
a few heterogeneous species, e.g. the conditions of competitive coexistence [33].

1.2 Models of ecological dynamics

1.2.1 The disordered systems framework

Practically speaking, the notion of disordered systems, and the fact that it allows
for a simple and generic analytical approach, comes with significant method-
ological potential: it connects a class of commonly used models in ecology,
synthesizing their insights and explaining why and when they may give similar
or different predictions. We illustrate this in another work [3] with a “model
meta-analysis” demonstrating that a variety of community structures, including
mutualistic networks and resource competition, can still fall within the realm of
disordered systems and create assembly patterns that we can predict with this
framework.

This also means that if there were reasons to outright reject our results
as a valid representation of ecological reality, then an entire class of models
would become disqualified at once, as well as many qualitative arguments based
on certain notions of complexity. That would be a useful result for ecological
theory, limiting the field of investigation in models and simulations.

More concretely, to help situate this framework among preexisting work in
theoretical ecology, we show in Fig. 1 a bird’s eye view of the main types of
dynamical models we identified in the field. They roughly fall between three ex-
tremes. First, fully independent populations, where we use physiological and be-
havioral traits to predict existence and functioning within a given environment.
Second, fully dependent (i.e. very strongly interacting) populations where, for
instance, the coexistence of competitors requires precise tradeoffs between their
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Figure 1: An abstract representation of the main classes of dynamical models in
theoretical ecology, and the regime of collective organization where the notions
and methods developed here are meant to apply.

traits. Third, fully stochastic models, where the characteristics of species and
their interactions are all blurred and dominated by noise coming from internal
(demographic) or external (environmental) sources. On this graph, our posi-
tion is represented by the orange dot, a regime of collective organization where
interactions are individually weak but collectively strong.

The two main axes of opposition on this graph are the following. First, deter-
ministic versus stochastic: in deterministic approaches such as ours, we generally
expect that real ecosystem properties can be understood from the equilibrium
or near-equilibrium properties of a given dynamical model, controlled by some
combination of intrinsic species fitness and by their interactions. The opposite
pole includes theories that are dominated by stochastic and transient dynamics,
where “noise” – in the demographics, the environment, or the immigration pro-
cess – prevents the system from ever being close to some deterministic assembled
equilibrium2. Those include neutral theories [15] and island biogeography and
its variants [20, 10, 16]. These two viewpoints are complementary; only careful
confrontation to empirical data can decide whether an ecosystem’s dynamics are

2The term of “equilibrium” is ambiguous as it has been used for the Theory Island Bio-
geography among others. A fully stochastic system can indeed be characterized by probability
distributions that attain a stationary state – in physics, this is called a Non-Equilibrium Sta-
tionary State, or driven stationary state, to distinguish it from the concept of equilibrium in
deterministic dynamics and from thermodynamic equilibrium.
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governed by transient, far-from equilibrium dynamics such as neutral turnover,
or by the sort of near-equilibrium features described here.

The second axis of opposition confronts models whose dynamics are domi-
nated by species characteristics, and those that are determined by interactions.
Independent populations illustrate the former, competitive exclusion the latter.
In these two extremes, results are often very sensitive to model assumptions: for
instance, the colonization-competition tradeoff model ensures global coexistence
by requiring a very precise ordering of competitive and dispersive ability. It may
be surprising to see that the middle-ground – collective organization, where in-
teractions are individually weak but collectively strong (because distributed
among many species) – gives rise to very generic and predictable patterns.

This is the class of systems that we can describe with this framework. Note
however that it could, fairly easily, be extended to include noise; by contrast,
systems where species are strongly influenced by other individual species tend
to have very dramatic dynamics (e.g. predator-prey cycles) which typically
preclude the existence of any non-trivial equilibrium. Such dynamics are not
entirely beyond the reach of disordered system approaches, but will almost
certainly require more involved techniques than the simple one presented here.

1.2.2 Example: History dependence

Importantly, each class of models makes different predictions for the mechanisms
of various ecological phenomena. We can illustrate it in the case of history-
dependence (e.g. founder effects). In a deterministic equilibrium viewpoint,
the long-term state of a system is dependent on its history only if its dynamics
allow for multiple attractors. Of course, even with a single global attractor
(e.g. a single final, stable and uninvadable community), if the time to reach
it is very long, the system may retain some memory of its previous states at
visible timescales. But this memory should become fainter as time passes, and
any shock should only reset the dynamics to some earlier stage along a similar
trajectory. This perspective is compatible with the intuitive notion of maturity3

as found e.g. in Margalef [21].
By contrast, in a stochastic perspective, any composition is to some degree

an accident, though it may hold for a long time if there are positive feedbacks
(e.g. self-reinforcing density dependence) that transform an early advantage into
a long-lasting one. Nevertheless, the composition may well undergo a dramatic
shift, due to a shock or even out of steady noise, without it signalling any
change in intrinsic species fitness. This is closer to the usual intuition behind
the founder effect.

3Even with many local attractors, this picture may remain valid if the dynamics exhibit
aging, i.e. the sytem is prone to falling into deeper and deeper attractors as time passes.
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2 General framework

2.1 The assembly process

Here is the central conceit of this theory of assembly: we define a pool of species
that can invade the community, and whose dynamical traits, such as growth
rates and interactions, are known only statistically. We then allow sequences
of invasions until the community reaches an uninvadable state, and investigate
the properties of this “assembled” state – among others, species diversity, abun-
dance, and how traits selected by the dynamics differ from the pool baseline.

This can represent a variety of physical settings: the pool could be a entire
region and the community a local patch [28], they could be a mainland and
an island connected by migration fluxes [20, 10, 16], or even oceanic water and
the microbiome of an individual sponge [31]. More generally, this suggests a
stable reservoir of biodiversity with some known aggregate properties, and an
environment that is being populated from that reservoir, even if the reservoir
is not larger (e.g. a forest serving as a biodiversity shelter for surrounding
plains), provided that it can serve as a stable supply of potential invaders for
the timescales considered.

But this can also represent, more abstractly, a “separation of concerns”
between, for example, physiology and ecology. Properties of the pool reflect the
traits of species “in potential”; by contrast, the assembled community retains
only the subset of traits that are dynamically selected to survive together. Thus,
in an abstract model, the pool could represent the range of species that are
allowed to exist by physiological constraints, while assembly would single out
combinations of such species that can coexist in the same ecosystem. Even in the
spatial interpretation suggested before, there is such a separation of concerns:
species-species interactions are properties of the pool, but species-environment
interactions (e.g. carrying capacities) could be specific to a location, leading to
different assembled states in different locales.

This means that the size of the pool, S, admits very different interpretations
depending on the ecological scenario represented: S could be regional diversity
or mainland diversity, if one is interested in invasion through immigration, but
it could also represent the mutant strains that try to invade a microbial com-
munity over a given timescale (the pool being disordered would then reflect an
assumption of random mutations). Carefully teasing apart these various inter-
pretations and the hypotheses they hide is one of our purposes in this article.

2.2 The assembled state

Within this general setting, we decide to look only at the final assembled state,
i.e. a feasible, stable and uninvadable community. As discussed in Sec. 1.2.1,
this stands in stark contrast with theories that are dominated by stochastic and
transient dynamics.

The mathematical techniques of disordered systems can be applied to many
different dynamics. For convenience, we investigate the very commonly used
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Lotka-Volterra dynamics4:

d

dt
Ni = Ni

Ri −DiNi −
S∑
j 6=i

AijNj

 (1)

Here Aij is the interaction between species i and j, and Ri is the growth rate of
species i, that combines growth on external resources and mortality (and could
thus be negative). Di is intra-species competition, hereafter self-interaction.
We can define

Di = Ri/Ki (2)

where Ki is properly the carrying capacity of species i in the case of consumers
with Ri > 0. If Ri < 0, then Ki is negative and cannot be interpreted as a
carrying capacity, but remains an important mathematical quantity (a measure
of self-interaction or density-dependent mortality).

We will concern ourselves only with the equilibrium solutions, meaning
dNi/dt = 0 and

0 = Ri −DiNi −
S∑
j 6=i

AijNj . (3)

Only the species for which a positive solution Ni > 0 exists will then survive
together in an assembled state. This state is obtained after long immigration
sequence, during which all species that could invade did. As we explain below
in Sec. 3.3, in a certain region of parameters, the precise sequence of invasions
is irrelevant to the final state, which is a global attractor of the dynamics.

Important: To simplify the exposition, we assume starting now
that all the self-interaction terms are equal Di = 〈D〉 = 1, so that
Ki = Ri. This assumption is relaxed and the consequences of hetero-
geneous Di are discussed starting in Sec. 4.

We will proceed to show that, to predict many properties of the assembled
state, it is sufficient to know four simple statistical features of the pool of poten-
tial invaders. First, we need a measure of intrinsic fitness differences between
species; for this we take ζ the standard deviation of the growth rates Ri. Sec-
ond, we need to characterize interactions at a collective level. We thus ask how
much a species is affected by the sum of all its interactions: how adverse this
total interaction is on average, represented by a parameter µ (µ > 0 means that
biomass is on average lost through interactions, µ < 0 means it is gained), and
how much that varies from species to species, represented by a parameter σ.
Hence, for any species, the total effect of interactions can be understood to fall
roughly in the range µ ± σ. Finally, to understand feedbacks between species,
we need to know how similar the effect of species i and j is to the reciprocal
effect of j on i, and we encapsulate this in a parameter γ.

4Note however that in Sec. 7.1, we extend these results to a saturating functional response.
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Formally, these parameters are defined as follows:

ζ2 =
〈
R2
i

〉
− 〈Ri〉2 , µ = s 〈Aij〉 ,

σ2 = s(
〈
A2
ij

〉
− 〈Aij〉2), γ =

s

σ2

(
〈AijAji〉 − 〈Aij〉2

)
. (4)

where s = Sc is the average number of interaction partners for each species (c
being the connectivity of the interaction network). This factor s means that
µ and σ2 indeed represent the total interaction strength and variance faced
by one species from all its partners. Given our definition of γ, it takes values
in the range [−1, 1]: γ = 1 means that two partners affect each other identi-
cally, while γ = −1 means that reciprocal effects are maximally different, see
Sec. 4.2.2. Examples from competitive and trophic communities are given in
the next section.

These parameters suggest how disordered systems differ from both mean-
field and structured systems. The various species traits retain a non-negligible
heterogeneity, encapsulated by ζ and σ. Yet, little more information is needed
than those simple metrics, which give a basic estimate of “how different” species
can be. The precise interpretation of these abstract parameters will become
clearer, first from seeing what role they play in model results, and later in more
in-depth discussion.

All higher-order correlations, that capture more precise structural informa-
tion about the pool, are neglected. If more order is needed (e.g. for trophic
systems, given that trophic roles are an essential feature that is not represented
here), one could consistently push the formalism further, incorporating more
and more structural properties in the form of correlations5.

3 What can we predict?

While the following sections discuss the methods that we will use to solve the
equations above, this one gives an overview of some of the main system proper-
ties that can be computed in this framework. These results fall roughly in four
categories of important ecological properties: functioning, diversity, stability,
and features selected by the assembly process.

We present these results in the abstract parameter space defined in (4). The
interpretation of the parameters comes in Sec. 4. Importantly, the results that
we show are exact for the region of parameters where there exists a single,
globally stable, uninvadable final assembled state. However, most results hold
approximately past the boundary of this region, and we later discuss in Sec. 4.1
when systems are likely to be found in this region. The complex region that
lays beyond is still being investigated.

5The reader may recognize this idea as similar to that of moment equations, see e.g. [7].
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3.1 Functioning

For functioning, we can for instance compute the total biomass

Ntot =
∑
i

Ni (5)

and total productivity or growth from external resources

Gtot =
∑
i

NiRiΘ(Ri) (6)

with the Heaviside function Θ(x) = 1 if x > 0, Θ(x) = 0 otherwise. In fact,
since Gtot scales with the total biomass, it is more practical to look at the
productivity ratio Gtot/Ntot, which increases when faster-growing species are
favored.

Note that throughout, we make no difference between biomass and abun-
dance, as we are not considering individual mass as a particular species trait.
Our choice is equivalent to assuming that biomass has no systematic correlation
with either interactions or carrying capacities in the pool of potential invaders,
so that converting total abundance to total biomass only requires multiplying
by the average individual’s mass in the community. However the framework
could easily be extended to account for individual mass as a trait controlling
other dynamical properties (e.g. via metabolic scaling).

3.2 Diversity and coexistence

For diversity we will consider two main metrics. The first is the number of
species surviving in the assembled state S∗ = Sφ, see Fig. 2. As one would
expect, coexistence decreases with increasing σ and ζ, since more variance in
growth rates and interactions entails that some species are more likely to be
overall stronger competitors than some others. Interestingly, as we discuss be-
low, decreasing γ tends to increase coexistence. The second is Simpson’s index,
which gives a measure of biomass concentration,

I =
∑
i

(
Ni
Ntot

)2

(7)

Its inverse, Simpson diversity D, tells us how effectively diverse the community
is, in terms of the biomass being equitably distributed among all species. The
index is related to the second moment of the abundance distribution. In fact,
the full distribution can be computed within this framework, with some caveats
discussed in Sec. 5.

3.3 Stability

We discuss three aspects of stability: the existence of multiple equilibria, vari-
ability around an equilibrium under stochastic perturbations, and the conse-
quences of permanent community shifts – be they due to environmental changes
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Figure 2: Coexistence, abundance and stability properties in the space (µ, σ) for
γ = 1, 0,−1 (top to bottom) and ζ = 0. Since all species have the same growth
rate, the productivity/biomass ratio is always constant here. The uniform area
in the left of each graph signals the parameter region where some interactions are
mutualistic enough that abundances diverge, see Fig. 4 below. As is apparent
here, when ζ = 0, the average coupling strength µ only affects the total biomass
Ntot, while all other panels show purely vertical gradients, i.e. they only depend
on σ (and γ). Results for ζ = 0.3 are shown below in Fig 5.
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or species extinction. All three can be shown to be related via simple expressions
to pool parameters and to the fraction of surviving species φ.

First, we can find an expression for invariability as defined in [2], i.e. the
inverse of the response of the system to demographic noise.

I = 1− µ

s
− σ2

2
(γ + 1)

φ

1− µ/s
(8)

It can formally be related to the response to other types of noise, and is also
the basis for deriving a prediction for Taylor’s law.

Second, we can derive the number of secondary extinctions resulting from
the extinction of one species in the system. In a disordered system, secondary
extinctions are more or less numerous depending on parameters, but never make
up a significant fraction of the community, due to species abundances being
controlled by the community as a whole rather than by individual partners.

The final important result is χ the order parameter for multistability. Let
us imagine that we perturb all the carrying capacities

Ki → Ki + ξi (9)

with a perturbation that is on average 〈ξi〉 = 0, representing a small change in
the environment that leads to different species being favored, without making
the environment overall better or worse for the community. Then we can ask
how much the abundances of the species are changed in response,

Ni → Ni + xi (10)

and this change (with zero mean) is characterized by its variance, which we
compute in Sec. 5.6 below:

χ2 =

〈
x2
i

ξ2
i

〉
=

1

1
4

(√
u2 − 4γσ2φ+ u

)2

− σ2φ
. (11)

where u = 1 − µ/s. This expression reflects the deep relationship between
coexistence φ and sensitivity to the environment χ.

The divergence of χ2 when the denominator of (11) vanishes, i.e. when

σ2 → 1

φ

(
1− µ/s
1 + γ

)2

(12)

signals the boundary of the region where multiple equilibria exist: precisely at
the boundary, an infinitesimal change in intrinsic fitness can lead to different
species being present in the final assembled state. Of course, while the quantity
formally diverges, the community’s response is not truly infinitely steep – it only
signals that the approximations we use to compute the single globally attractive
equilibrium break down. Indeed, as one gets close to the divergence, χ stops
predicting the simulated response to a press perturbation, which plateaus as
shown in Fig. 3.
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Figure 3: Average effect of a random perturbation of carrying capacities, calcu-
lated as χ (solid line) or directly from the assembled community in simulations
(dots), depending on coupling heterogeneity σ. Left: γ = 1, with divergence of
χ at finite σ, revealing the loss of stability of the single global attractor and the
start of the multistable phase. Right: γ = −1, no divergence (no multistable
phase).

Hence, it is possible to construct the phase diagram shown in Fig. 4, which
indicates where in parameter space one will find a single, multiple or no equilib-
ria. As we discuss more below, lowering γ has a stabilizing effect, as it extends
the single equilibrium phase – in fact, it is apparent from (12) above that, in the
limit γ = −1, the threshold to the multiple equilibria phase becomes infinite,
and there can only be one attractor which is globally stable.

3.4 Selected features

Previous work [6] has shown that it is possible to use this framework to infer
not only the distributions of abundances, growth rates and interactions in the
assembled state, but also correlations between those, including the frequency of
various small network motifs [14]. How these distributions differ from the pool
baseline tells us how non-random properties have been selected from a random
pool. This gives us worthwhile information on which factors are likely to enable
a species to survive into the assembled state, or conversely, how ecosystems may
adapt to ensure coexistence. We demonstrate this idea in this article with the
selection of carrying capacities or growth rates, but see the Appendices in [6]
for details on the selection of interaction patterns.

3.5 Discussion

Most striking is the role of γ the reciprocity of interactions: as γ becomes
negative, sensitivity to perturbations decreases, the single attractor region ex-
pands and coexistence increases. This suggests that asymmetrical interactions
– including commensalism, amensalism and trophic interactions – lead to easier
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Figure 4: Phase diagram in the (µ, σ) plane for various γ and ζ = 0, based
on phase parameter χ2 from Sec. 3.3. There are three regions depending on
parameters. In the first region, there is a single global attractor, meaning that
– after a long enough sequence of invasions and extinctions – a given community
will reach a single uninvadable state, no matter what sequence it went through.
In the second region however (up of the dashed line, signalling a divergence of
χ2), there are multiple such attractors, and the final assembled state depends
on the history of the system. As γ → −1, the transition to the second region
disappears. Finally, the third region (left of the solid line, signaling a Rdiver-
gence of 〈N〉) has no attractor, as some species have mutualistic interactions
that are stronger than any negative feedback and their abundances grow to in-
finity. This signals a breakdown of the Lotka-Volterra approximation for more
realistic dynamics.
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assembly than symmetrical ones, echoing the conclusions of other authors [1]
who noted “remarkable differences between predator-prey interactions, which
increase stability, and mutualistic and competitive, which are destabilizing”.
Yet, we can also show that γ < 0 may very well be achieved by competitive
interactions. It is in fact possible to construct trophic and competitive com-
munities so that the latter have more negative γ than the former. Hence, this
statement should not be taken as generally valid, and the meaning of γ should
be discussed much more carefully, as we do in Sec. 4.2.2.

In the single attractor region, many different ecological scenarios become
indistinguishable as long as one is only interested in the eventual assembled
state. Whether invaders from the pool come from migrations or mutations,
frequent or rare, correlated or not with the species dominating the community
at any given time, interspersed with extinctions and recoveries or not – these
distinctions become irrelevant in the long run, as any dynamical trajectory that
does not involve irreversible changes in the pool of potential invaders (e.g. a
permanent extinction) will end at the same point.

If we look at a pool that lies on the boundary between the two regions, mul-
tiple attractors first emerge as small deviations from the single attractor that
existed below that boundary - most species remain, and only a few rare ones
distinguish the multiple attractors by their absence or presence. Therefore,
even though the results presented in this work focus on the single attractor
region, where our analytical results hold exactly, we will demonstrate multi-
ple times that our framework still provides good approximations some distance
into the multiple attractor region. When our framework ceases to be predic-
tive altogether, it is likely that the various attractors are different enough that
perturbations may engender significant regime shifts.

If ζ 6= 0, the model predictions seen on Fig. 5 are still quite similar to those
shown in Fig. 2 for ζ = 0, except for the fact that average coupling µ plays
a much more important role: instead of controlling only the average biomass
〈N〉, it affects all the metrics, favoring the existence of a global attractor while
reducing coexistence.

4 Mathematical setting

This section is meant to be an qualitative explanation of the mathematical
concepts that are crucial for a better understanding of the methods and results
shown in this paper. Sec. 5 below gives a detailed explanation of the derivation,
of interest to the more mathematically-inclined reader.

We recall that the central equation we investigate is (3) which defines the
equilibrium for Lotka-Volterra dynamics:

0 = Ri −DiNi −
S∑
j 6=i

AijNj .

Before solving this equation, we show that it is possible to better isolate the
role of the various parameters, thanks to two simple tricks of rescaling. First,
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Figure 5: Coexistence, abundance and stability properties in the space (µ, σ)
for γ = 1, 0,−1 (top to bottom) and ζ = 0.3. See Fig. 2 for results at ζ = 0.
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it is easily seen in (1) that Ri, Di and Aij could all be multiplied by the same
number, without changing the dynamics (only making them globally faster or
slower). Hence we can arbitrarily choose the time scale so that, for instance,
growth rates have unit mean:

〈Ri〉 = 1. (13)

Now, we can look more specifically at equilibria, i.e. equation (3). Clearly, we
could multiply all Di and Aij by some number, and divide all Ni and Nj by
the same number, without changing the equilibrium: the average intensity of
interactions, inter- and intra-species, simply changes the average abundance at
equilibrium. Hence we can also arbitrarily take

〈Di〉 = 1 (14)

so that now, interactionsAij are measured in units of the average self-interaction,
and abundances are measured in units of “carrying capacity” – indeed, if it
were alone with positive growth rate, the average equilibrium abundance of the
species would be around 1 (or equal to 1 if Di = 1). Neither of these choices
subtract anything from the generality of the equations. An important conse-
quence is that any change of the absolute value of growth rates or interactions,
for instance via nutrient enrichment, will affect only the total amount of biomass
and no other property of the assembled state.

The second trick is using the fact that interactions can always be rewritten
as

Aij = A+ σAaij (15)

with two parameters: the average interaction A = 〈Aij〉 and the variance of
interactions σ2

A =
〈
A2
ij

〉
− A2, so that the rescaled interactions aij have zero

mean and unit variance

〈aij〉 = 0,
〈
a2
ij

〉
= 1 (16)

For now, we make no further assumption on what the distribution of the Aij
and aij may be, beyond the fact that it has a well-defined mean and variance.
We simply suggest that is important to know both how intense interactions are
on average, i.e. A, and how much they differ between pairs of species, σA.

Hence, we transform (3) into the following equation

0 = Ri −DiNi −A
∑
j

Nj − σA
∑
j

aijNj (17)

and using
S∑
j 6=i

Nj = S 〈N〉 −Ni. (18)

we finally get

0 = (Ri − SA 〈N〉)−Ni(Di −A)− σA
∑
j

aijNj (19)
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The first term is an effective growth rate including the overall biomass loss due
to competition (A > 0) or gain due to mutualism (A < 0). The second term
contains the effective intra-species competition, and the third the relative gain or
loss of fitness of species i due to the heterogeneity of inter-species interactions.
Multiple insights already arise from this simple reformulation, without even
solving the equation, and we discuss them now.

4.1 Scaling of interactions: when are large disordered com-
munities not neutral?

4.1.1 Inter-species versus intra-species effects

It is well-known that intra-species competition plays a large role in stabilizing
the dynamics: interactions with other species become important only if they are
not negligible compared to this self-interaction. Strongly interacting communi-
ties can exhibit complex dynamics with multiple equilibria and limit cycles. If
interactions with others are negligible, each species (with positive growth rate)
simply follows its own logistic equation, and the system is sure to evolve toward
a globally attractive equilibrium.

The equation (19) above shows that the effective importance of interactions,
compared to self-interaction (and beyond a simple change in the mean biomass),
is controlled by the ratio

σA
Di −A

(20)

This gives a clear intuition of why species heterogeneity, as encapsulated by σA,
can be important in the dynamics. If species are too similar, σA → 0, then the
abundances Ni decouple from each other: species are only coupled collectively
through the average value 〈N〉 in the effective growth rate, except in the very
special case of the Hubbell point Di = A where all inter- and intra-specific
interactions are equal [15, 16]. Away from that singular point, we see that what
truly destabilizes the system is not only how intense interactions are, i.e. A at
the denominator, but also how diverse they are, i.e. σA at the numerator.

4.1.2 Comparing communities of different sizes and connectivities

A second central insight comes from asking: what does it mean to say that
two pools with different sizes S have the same amount of heterogeneity? Let
us assume that each species is connected to si other species in the interaction
matrix, on average

〈si〉 = s = cS (21)

with c ∈ [0, 1] the connectivity of the network. If s is the same in the two pools6,
then species from either pool have the same average number of interactions. In
that case, it makes sense to directly compare the properties of these interactions,

6Note that keeping the same s for different pool sizes S means that connectivity c = s/S
must decrease with pool size.
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i.e. the values of A and σA,s to decide which pool has stronger or more diverse
interactions.

However, let us assume that c is the same for both pools, for instance c =
1. In that case, the number of interactions, and hence the strength of the
interaction between one species and all the others, will increase with pool size
S proportionally to the quantity

Fi =
s∑
j 6=i

Aij = sA+ σA

s∑
j 6=i

aij (22)

(this gives a general trend; the real interaction strength will depend on species
abundances). This quantity is on average

〈Fi〉 = sA (23)

which increases with the size of the community. This term is seen in (19) to
intervene in the effective growth rate. As for how much Fi varies between
species, that comes from the sum

s∑
j 6=i

aij ∼ ±
√
s (24)

By assumption, this sum is an unbiased random walk of mean 0 and typical step
size 1; hence, after s steps (with s large enough), no matter the distribution of
aij , the random walk will typically have gone a distance of order

√
s toward

either positive or negative values. There are two important assumptions here:
one of large numbers, which can only be checked numerically (in fact, we can
often find good agreement even for s ∼ 10), and one of randomness which is
discussed more carefully in Sec. 5. If one accepts these assumptions for now,
the final interaction strength perceived by any species falls roughly in the range

Fi ∼ sA±
√
s σA (25)

This is a crucial point: if we consider different systems with the same values
of A and σA, but different values of S or c, then we can see from (25) that,
the larger and more connected the pool, the smaller the relative variation in Fi
compared to its mean. In fact, for very large communities, there will be prac-
tically no difference in the interaction strength perceived by different species,
making them mean-field (all species are effectively identical from the point of
view of interactions) rather than disordered.

Instead, two pools of different size S have “equal” interaction strength and
heterogeneity if their pools exhibit the same values of

µ = sA = s 〈Aij〉 , σ2 = s σ2
A = s(

〈
A2
ij

〉
−A2) (26)

rather than the same values of A and σA. To understand this, we can see that,
no matter the pool size or connectivity, a species’ total interaction with others
is given by

Fi ∼ µ± σ. (27)
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We can indeed show that µ and σ (in addition to a few other parameters) are
what controls the properties of the assembled state – systems with different S
but the same µ and σ will obey the same trends in terms of diversity, stability,
abundance distribution, and so on. This rescaling means that systems with more
connections between species (i.e. larger S or larger c) must have proportionally
more varied interactions to retain the same σ, so that heterogeneity still matters
and is not “averaged out”.

4.1.3 Tradeoffs and global stability in large systems

We now further investigate this inverse perspective: instead of asking how com-
munity parameters µ and σ change with diversity S if we keep the same distri-
bution of individual parameters Aij , we ask how these Aij should change with
S to achieve a given type of community µ and σ. This simple question actually
contains an important insight on the properties of large assembled communities.
It is easy to see that if one wants to fix connectivity c as well as µ and σ, but
increase S, then necessarily interactions should vary like

〈Aij〉 =
µ

s
∝ 1

S
, σA =

σ√
s
∝ 1√

S
. (28)

For large enough systems S � 1, if we maintain the same values of µ and σ,
we thus expect σA � 〈Aij〉. Having a standard deviation much larger than the
mean is not achievable with usual distributions7, unless we allow the interactions
to take any sign (the mean can thus go to zero).

Hence, due to simple mathematical constraints, large systems must have
at least one of these four properties: large µ, small σ, small connectivity c,
or mixed interactions allowing for all signs. For instance, a large competitive
community where all species can potentially interact (c = 1) must have either
large µ, meaning very strong competition and low biomass, or small σ, meaning
that heterogeneities in species interactions cease to matter and the system is ef-
fectively mean-field. This “biomass–heterogeneity” tradeoff in large connected
competitive communities, which we emphasize comes from simple algebra in-
dependent of any model, is indeed very apparent in our analysis of resource
consumer models in [4].

This tradeoff has a very important consequence: as shown in recent work [35],
small σ is effectively the condition under which a complex ecosystem can be re-
duced to a single dimension, leading to predictions of “universal” behavior [8].
Furthermore, small σ and small ζ taken together constitute the basic hypothesis
of neutral theory – that we can take all species as identical in large communi-
ties, despite their very real heterogeneities. Hence, the fact that simple algebraic
constraints can limit σ in large competitive communities (unless interactions are

7It can be achieved with a power-law tail whose exponent is arbitrarily close to 2, meaning
that the variance of the distribution is close to diverging. This is somewhat equivalent to
effectively having low connectivity, since there will be a few very strong interactions and a
massive number of almost-zero ties that do not even sum up to much.
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extremely strong) provides formal grounding for the intuitions behind “univer-
sal” and neutral dynamics.

4.2 Couplings rather than interactions

4.2.1 Allowing heterogeneous self-interactions

At multiple points in the discussion above, we have suggested that interactions
are not, by themselves, the quantities that control the equilibria: instead, that
role is taken by couplings, i.e. the ratios of interactions to self-interaction, which
represents how much the influence of another species could cause one to deviate
from its independent logistic trajectory.

In Sec. 2, we presented results assuming that all self-interactions were equal,
Di = 1. But in fact, we can easily see that we can transfer our conclusions to
the Lotka-Volterra equilibrium equation (3) divided by Di

8:

0 =
Ri
Di
−Ni −

S∑
j 6=i

Aij
Di

Nj

= Ki −Ni −
S∑
j 6=i

αijNj . (29)

Here, we recall Ki = Ri/Di the carrying capacity of species i, and αij = Aij/Di

the coupling of species i to species j. Thus, all the results we presented in Sec. 2
still hold if, instead of using the variance of growth rates, we use that of carrying
capacities, and instead of using the statistics of Aij , we use those of αij . In other
words, we formally redefine the parameters of (4) as follows:

ζ2 =
〈
K2
i

〉
− 〈Ki〉2 , µ = s 〈αij〉 ,

σ2 = s(
〈
α2
ij

〉
− 〈αij〉2), γ =

s

σ2

(
〈αijαji〉 − 〈αij〉2

)
. (30)

We can relabel the parameters and retain the same mathematical struc-
ture, and their interpretation does not change too dramatically – except in the
important case of γ, as we soon discuss. Previously in this section, we used
A = 〈Aij〉 and σA extensively to discuss simple and general properties of the
dynamics – the distribution of the interactions Aij is otherwise entirely unspec-
ified, and could take arbitrary forms (normal, exponential, uniform, gamma,
multimodal...) except for the pathological. We saw in examples that almost all
other properties of this distribution P (Aij) were irrelevant to assembly for large
enough communities, one of the very counter-intuitive and attractive traits of
disordered systems. In fact, we see now that, if self-interactions differ, we should
use the αij instead; but thankfully, results remain insensitive to the details of

8In fact, this is a useful parametrization, since the Lotka-Volterra approximation to more
realistic dynamics may not hold if couplings are too large |αij| > 1 (e.g. mutualistic inter-
actions would then cause abundances to diverge). Hence couplings also give an idea of the
range of validity of the model.
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P (αij). The subtlety is found in the fact that σ now includes not only the
heterogeneity of interactions, but also that of self-interaction – in other words,
species with identical interactions but very different growth rates and carrying
capacities will have large σ, with all the consequences shown in Sec. 2 in terms
of coexistence and multistability.

This of course requires that Di 6= 0 – and in fact that A < Di, as the case of
very strong interactions A > Di tends to lead to very unstable dynamics that
we wish to avoid entirely in this approach9, as discussed in 1.2.1.

4.2.2 Reinterpreting γ

However, there is one crucial change in interpretation. The parameter γ ∈
[−1, 1] represents the average degree of reciprocity between the dynamical cou-
pling of species i to j, and that of j to i. The extreme case γ = 1 indicates
fully symmetrical couplings αij = αji, while γ = −1 means anticorrelated cou-
plings. Unfortunately, while this parameter is the one that truly encapsulates
how asymmetry between interaction partners affects the assembly process, its
interpretation is very subtle and counter-intuitive.

Let us first discuss γ in the previous case where all self-interactions are
equal, Di = 1, as even that simpler situation has some difficulties. If A = 0,
then γ < 0 suggests trophic interactions, since Aij and Aji will typically be of
opposite signs. However, if A � σA, then even with γ = −1, Aij ∼ A + σA
and Aji ∼ A − σA will have the same sign. They will simply be maximally
anticorrelated: for every pair of species, one will affect the other much more
than it is affected by it. This can for instance give rise to “rock-paper-scissors”
intransitive competition.

If we now return to varied self-interactions Di 6= 1 so that couplings are
different from bare interactions, even that refined notion of reciprocity becomes
more complex. Consider for example the classic resource competition mod-
els [19, 9, 34]. By construction, interactions come from two species harvesting
the same resource and are therefore perfectly symmetrical, Aij = Aji. However,
couplings are not – in fact, depending on parameters, the model can give any γ
between −1 and 1, and most plausible parameter values correspond to γ < 0.
In any pair of competitors, each reduces the other’s growth equally, yet this
will on average have a much larger impact on the dynamical trajectory of one
species than the other.

Hence, the proper way to understand γ is in relative terms: no matter
whether the interaction is positive or negative or even symmetrical, if γ = −1,
one species will respond much more to the interaction (in the sense that it will
be more affected compared to the trajectory it would have if alone), while for
γ = 1 they will respond equally. Given that assembly is a process of selecting
species that are most compatible among a larger pool, it can be understood
that what really matters is not the net outcome of each interaction, but how

9A classic case is Levins and Culvers’s colonization-competition tradeoff [17] where only
a very special and asymmetrical structure ensures the survival of more than a single species.
We discuss it further in [4].
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differently it affects the partners’ dynamics. But despite its predictive power,
any intuitive interpretation of this parameter can only be made in the context
of a more concrete model.

4.3 Computing the assembled state

At the start of Sec. 4, we showed that the equilibrium of the Lotka-Volterra
equations (3), which we recall is given by

0 = Ri −DiNi −
S∑
j 6=i

AijNj ,

can be rewritten in all generality as

0 = (Ri − SA 〈N〉)−Ni(Di −A)− σA
∑
j

aijNj . (31)

given the mean A = 〈Aij〉 and the variance of interactions σ2
A =

〈
A2
ij

〉
− A2,

with the rescaled interactions aij = (Aij −A)/σA.
As we argued in Sec. 4.2.1, the quantities that truly control the dynamics

are not “bare” interactions Aij , but couplings

αij =
Aij
Di

which represent how much species j can cause species i to deviate from its
baseline (logistic) trajectory controlled only by self-interaction Di. We now
rewrite

αij =
µ

s
+

σ√
s
aij (32)

with
〈aij〉 = 0,

〈
a2
ij

〉
= 1. (33)

Then, we have

0 = Ki −Ni −
S∑
j 6=i

αijNj .

and instead of (31) we get

0 = ki − uNi −
σ√
s

∑
j

aijNj (34)

where we have defined the effective self-interaction

u = 1− µ

s
(35)

and the effective carrying capacities

ki = Ki − µ 〈N〉 (36)
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Following previous work [6], we use the cavity method from physics [26] to
find the properties of the equilibria of equation (34). Technical details are given
in Sec. 5. To understand the results and their limitations, it is enough to grasp
the following simplified discussion, introducing some important concepts.

Let us take an assembled state created from a pool with S−1 species. When
the final species i invades, if S is large, the properties of the assembled state
should not change significantly10. Hence, we imagine that we can move from
S−1 to S species holding everything constant, except for the fact that the other
species have their final abundance Nj shifted a small amount, in the direction
suggested by their couplings with i,

Nj → Nj − vajiNi (37)

with v a positive “response coefficient” that we can compute. Inserting this
shifted abundance in (34), a feedback is created on species Ni. This is where
the parameter γ enters the picture: if γ > 0 the feedback is positive (e.g. a
species reduces its competitors’ abundance, which in turn allows it to grow
more), while if γ < 0 the feedback is negative (e.g. a predator reduces its preys’
abundance, which stifles its growth). This explains how negative γ can play a
stabilizing role in the dynamics, as we have seen above starting in Sec. 3.3.

The finite trick is to see that this equation expresses Ni as a random variable
obeying:

Ni =
ki − σan

1− µ

S
− σ2γv

(38)

where a is a Gaussian random variable of mean 0, derived from the random
walk (24) on the aij ’s, and n is a random variable drawn from the distribu-
tion P (N) of surviving species. This simplification can be made technically
precise, and relies on a crucial property of disordered systems: there is no cor-
relation between the aij , which represent direct couplings, and the Nj before
the shift (37), which are shaped by all the other indirect couplings in the sys-
tem. These two could not be taken as independent parameters if each species
depended strongly on a few others, but the disordered nature of interactions
means that species abundances are shaped mostly by collective dynamics in-
volving the whole community. A failure of this approach to correctly predict
the behavior of some model could signal that local ordered dynamics prevail
over collective disordered dynamics.

The second central assumption that is made here is the existence of a single
global attractor, meaning that no matter which initial condition is taken, the
same assembled state is reached provided all species are given a chance to invade
when they can. This premise is hidden in the fact that we assume that equi-
librium species abundances do not shift drastically with the addition of a new

10This assumption is correct if there is only one globally stable assembled state; the method
should later be extended to settings with alternative stable states, where the addition of a
new species could cause a sudden shift between different equilibria.
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species. As we have mentioned in Sec. 3.3, we can compute a quantity that be-
comes infinite precisely at parameter values for which there ceases to be a single
attractor, thus signalling the appearance of potential tipping points. Methods
in physics have been derived for the express purpose of investigating such mul-
tistable regimes, and quantifying the number and stability of attractors. In the
case of Lotka-Volterra dynamics, however, this task is ongoing.

The assembled state must be feasible and uninvadable, and therefore, study-
ing it reveals what controls species coexistence. But it also contains information
on the ecosystem’s sensitivity to external change: the quantities that arise nat-
urally when computing the assembled state are long-term responses to a press
perturbation, i.e. how the whole community’s equilibrium shifts in response to
some species being pushed toward an abnormal abundance. This can come from
durable environmental changes that affect the fitness of some species, but also
from the introduction of a new invader into the system.

5 Detailed calculations

5.1 The cavity trick

The assembly process shapes the community by changing the abundances of
species until an equilibrium is reached. From the imposed properties of the
pool, assembly uses the abundances as its tool to select and reweigh species
features, crafting a state that is feasible, stable and uninvadable by any other
species in the pool. Hence, all the properties of the solution can be derived from
the distribution of abundances and their correlations with species features (such
as carrying capacities and interactions).

The logic of the cavity method is remarkably simple: 1) we compute what
happens after a single invasion in an already large community, and 2) we then
require that the equilibrium features before and after the invasion be unchanged.
The second part means that we are computing the fixed point of the invasion pro-
cess, i.e. an equilibrium which cannot be invaded nor destabilized, rather than
a single-step invasion as is often done in population genetics (testing whether a
given mutant species can invade).

As shown in Fig. 6, the calculation of the invasion is made simpler by as-
suming that, even though the invader itself retains its nonlinear dynamics, the
effect of the invader on each existing species is small enough to be approximated
by a linear change of abundance. This assumption may seem intuitive if the fi-
nal abundance of each species is the result of many interactions, so adding one
more should not cause a dramatic change. A more formal justification is given
in Appendix.

Let us introduce species 0 into a community of S−1 species. Its equilibrium
abundance N0 changes other Ni a little, as they now obey:

0 = ki − uNi − σA
∑
j

aijNj − σAai0N0 (39)
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(where we recall that σA = σ/
√
s ) This is equivalent to changing their carrying

capacities ki a little

0 = (ki − σAai0N0)− uNi − σA
∑
j

aijNj (40)

We now assume that Ni responds linearly to this small perturbation: using a
Taylor expansion around the previous equilibrium abundance, without species
0, we can write

Ni ≈ N∗i −
dNi
dki

σAai0N0 (41)

In fact, all other species in the community perceive the effect of adding species
0, so the full linear response can be generically expressed as

Ni = N∗i − σA
∑
j

vijaj0N0 (42)

where we define the response coefficient

vij =
dNi
dkj

(43)

Now, this shift feeds back into the equation for N0, which is

0 = k0 − uN0 − σA
∑
i

a0iNi (44)

= k0 −

u− σ2

s

∑
i,j

a0ivijaj0

N0 − σA
∑
i

a0iN
∗
i (45)

As we discuss in Appendix, the complicated-looking sum on i and j is in fact
a self-averaging quantity, meaning that it tends to become a single well-defined
number for all species in the community.

σ2

s

∑
i,j

a0ivijaj0 ≈
σ2

s

s∗∑
i=1

a0iviiai0 ≈
σ2

s
sφγv (46)

with
v = 〈vii〉 . (47)

and s∗ = sφ is the number of species that interact with species 0 and are still
alive in the assembled state (we recall that φ is the overall fraction of surviving
species). To interpret v, let us remark that, if species were independent, then

N0 = k0, v00 =
N0

k0
= 1 (independent species). (48)

Hence, v < 1 indicates that species abundances are not defined by their intrinsic
fitness, but by their effective fitness including interactions – it is possible to
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1) Add species 0 to stable community 2) Linear response of others

3) Nonlinear feedback on species 0 4) Everyone is (statistically) species 0 

Figure 6: Cartoon of the cavity method.

change their carrying capacity without affecting their abundance proportionally.
The lower v, the more different this effective fitness.

Finally, we obtain the equation for N0 which will be solved below.(
u− φσ2γv

)
N0 = k0 −

σ√
s

∑
i

a0iN
∗
i (49)

5.2 Universality of cavity results

Isolating N0 on the left-hand side,

N0 =

k0 −
σ√
s

∑
i a0iN

∗
i

û
=
k0

û
− Σ0

û
(50)

where
û = u− φσ2γv (51)

and we have defined
Σ0 =

σ√
s

∑
i

a0iN
∗
i (52)

We can see in N0 two main contributions: the effective carrying capacity
k0, and a fitness shift Σ0 arising only from to the heterogeneity of interspecies
interactions. The former is obviously model-dependent (we have no reason to
constrain the distribution of carrying capacities), but the latter becomes uni-
versal in the limit of many interactions. This relies on the sum

∑
i a0iN

∗
i being

effectively a random walk.
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Here, we are going to assume that interactions between species are not cor-
related in the pool (we discuss a weaker assumption that is still tractable in
Sec 7.4). This lack of correlation has two consequences. First, note that a0i is
uncorrelated with N∗i : the abundance of species i before species 0 was introduced
depends on aji for j 6= 0, but bears no relationship to a0i. More importantly,
a0i and a0j are uncorrelated, which means that all terms in the sum above are
uncorrelated variables, and if they have finite variance, then the sum must tend
to a normal law by the Central Limit Theorem. This normal law has mean 0 and
variance sφ

〈
N2
〉∗

, where the mean is taken here over P (N∗) the equilibrium
distribution of values for N∗i .

Hence, for any model where interactions have finite variance, the final abun-
dance distribution will be composed from the model-specific distribution of
carrying capacities, and from a generic Gaussian term emerging from inter-
actions11. And even if P (N∗) has a model-specific shape due to P (K), the
interaction term, being Gaussian, is always entirely parametrized by the first
two moments of P (N∗), meaning that one never needs a lot of information on
P (K) to correctly evaluate the effect of interactions.

This entire reasoning however weakens if P (K) and therefore P (N) have fat
tails; any other structure (e.g. multimodal P (K)) will somewhat increase the
necessary number of species and interactions to converge toward the Gaussian
distribution of σ0, but fat tails may prevent this convergence altogether (if
variance is formally infinite) or make it dramatically slow. This possibility
would call for an extreme value calculation instead: what would matter in Σ0

would not be its variance anymore, but its extreme values, which obey a different
but still universal distribution.

5.3 Abundance distribution

Equation (50) allows for N0 < 0, hence, N0 is a “virtual abundance” that is
equal to the real abundance of some species if N0 > 0, or signals that the species
goes extinct if N0 ≤ 0. We can compute the equilibrium abundance distribution
by finding out P0(N0) the distribution of N0 as a function of that of N∗i , then
require that the two distributions are equal for positive values.

We can now compute the first moments of the distribution ofN0 as a function
of those of N∗i . Taking the mean of both sides in (50), we find

〈k0〉 = 〈K〉 − φµ 〈N〉∗ , 〈Σ0〉 = 0 (53)

(where we used 〈N〉 = φ 〈N〉∗ since when we introduced 〈N〉 earlier, we took
the mean over all S species, including those that are dead) hence

〈N0〉 =
〈k0〉
û
, (54)

while taking the variance, we find

Var(k0) = ζ2, Var(Σ0) = φσ2
〈
N2
〉∗

(55)

11Further clarifications on how randomness intervenes in interactions can be found in Ap-
pendix “The role of disorder”.

28

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2017. ; https://doi.org/10.1101/147728doi: bioRxiv preprint 

https://doi.org/10.1101/147728
http://creativecommons.org/licenses/by-nc/4.0/


hence

σ2
0 = Var(N0) =

ζ2 + σ2φ
〈
N2
〉∗

û2
(56)

Then, we approximate P0(N0) by a normal law with the mean and variance
given above. Hence, we can express 〈N〉∗,

〈
N2
〉∗

and φ by restricting P0(N0)
to its positive values

φ =

∫ ∞
0

dN0 P0(N0) (57)

〈N〉∗ =
1

φ

∫ ∞
0

dN0 P0(N0) N0 (58)

〈
N2
〉∗

=
1

φ

∫ ∞
0

dN0 P0(N0) N2
0 (59)

(60)

where the 1/φ factor ensures normalization. On the other hand, v is given by
taking the derivative (43) in (50)

v = 〈v00〉 =

〈
dN0

dk0

〉
=

1

u− φσ2γv
(61)

We now have a closed set of four equations for four unknowns: v, φ, 〈N〉∗,〈
N2
〉∗

which appear on the left-hand side of each equation and in P0(N0).
These equations can be solved together numerically. It is then immediate to
compute quantities such as total biomass

Ntot = Sφ 〈N〉∗ (62)

and Simpson index

I =
∑
i

(
Ni
Ntot

)2

=

〈
N2
〉∗

Sφ(〈N〉∗)2
(63)

More generally,

P0(N0) =

∫
P (k0, a0i, Ni) δ

(
N0 −

1

u− γv

(
k0 −

σ√
s

s∑
i=1

a0iNi

))
(64)

The equilibrium solution is obtained by solving this equation under the con-
straint that P (N∗) ∝ P0(N0). If P (Ki) is normal, we get that P0(N0) is also
exactly normal in the limit of many interactions (large s)

P0(N0) =
e−(N0−〈N0〉)2/σ2

0

√
2πσ0

, (65)
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for any reasonable distribution P (a0i). Then, we restrict it to positive values to
get the real abundance distribution at equilibrium

P (N∗) =
P0(N0)

φ
, N∗ > 0 (66)

P (N∗) = 0, N∗ ≤ 0 (67)

If P (Ki) is not normal but has thinner tails (e.g. a uniform distribution), P (N∗)
will still be very close to normal, as its tails will come from the interaction
term. If however P (Ki) is exponential for instance, P (N∗) inherits its longer
tail. This may result in the moment method giving a poorer approximation to
all computed quantities, as seen below in Sec. 6 – in that case, we instead need
to integrate (64) numerically, which can easily be done in Fourier transform.

The previous calculation assumed Ki and Aij to be independent variables.
If there is a correlation between them, then

σ2
0 =

ζ2 + σ2
N − 2φ 〈k0a0i〉

(u− σγv)2
(68)

where

〈k0a0i〉 = 〈K0A0i〉 −
µ

S
. (69)

Hence, the correlation can be accounted for by a shift in the effective value of
ζ.

The fact that the abundance distribution found above is a truncated Gaus-
sian contradicts much evidence on empirical abundance distributions being fat-
tailed – possibly log-normal or even power-law. No fault lies with the mathemat-
ical analysis, as it is in perfect quantitative agreement with simulations, see [4].
Hence the issue will occur for any system with Lotka-Volterra dynamics (1) with
random interactions and without noise.

Still, this discrepancy is not a definite mark against random Lotka-Volterra
models. There are two avenues to addressing it: first, the addition of noise,
which is a central ingredient in neutral models that successfully predict abun-
dance distributions. Second, the role of spatial aggregation in the data, as it
is well known that aggregating over Gaussian distributions with different vari-
ances can create the appearance of more complex distributions and even fat
tails - indeed, this is seen in an extension of this work to metacommunities (to
be published).

5.4 Carrying capacities

We have seen above that equilibrium abundances are made up of two indepen-
dent contributions: one coming from the effective carrying capacity, the other
a shift in abundance due to the heterogeneity of interactions

N0 =
k0

û
− Σ0

û
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We also recall that
k0 = K0 − µ 〈N〉

If we want to know the equilibrium distribution of carrying capacities K∗i , we
start from the joint distribution of abundance N0 and effective carrying capacity
k0, which we will then restrict only to surviving species N0 > 0.

P (N0, k0) dN0 dk0 = P (Σ0, k0) dΣ0 dk0 (70)

hence

P (N0, k0) =
dΣ0

dN0
P (Σ0, k0) = ûP (Σ0, k0) (71)

Now, since Σ0 and k0 are independent, P (Σ0, k0) = P (Σ0)P (k0), so

P (N0, k0) = ûP (Σ0 = k0 − ûN0)P (k0) (72)

We argued above that P (Σ0) is Gaussian with mean 0 and variance σ2
Σ

P (Σ0) = N (Σ0, 0, σ
2
Σ) (73)

with
σ2

Σ = σ2φ
〈
N2
〉∗

(74)

Now, we want to isolate P0(N0) within P (N0, k0), so that the integral over
N0 > 0 causes the moments we have already computed, φ, 〈N〉 and

〈
N2
〉
, to

appear. We recall

P0(N0) =
e−(ûN0−〈k0〉)2/(ζ2+σ2

Σ)

√
2πσ0

, σ2
0 =

ζ2 + σ2φ
〈
N2
〉∗

û2
=
ζ2 + σ2

Σ

û2

With some manipulations (assuming a normal distribution for Ki), we can see
that

P (N0, k0) = P0(N0)N
(
k0,

ζ2ûN0 + σ2
Σ 〈k0〉

ζ2 + σ2
Σ

,
ζ2σ2

Σ

ζ2 + σ2
Σ

)
. (75)

In particular, we find the averages over surviving species

〈Ki〉∗ =

∫ ∞
0

dN0 P0(N0)

∫ ∞
−∞

dk0
P (N0, k0)

P0(N0)
(k0 + µ 〈N〉)

= 〈K〉+
(û+ µ) 〈N〉+ 〈K〉

1 + σ2 〈N2〉 /ζ2
(76)

and

〈KiNi〉∗ =

∫ ∞
0

dN0 P0(N0) N0

∫ ∞
−∞

dk0
P (N0, k0)

P0(N0)
(k0 + µ 〈N〉)

=

û
〈
N2
〉

+ µ 〈N〉2 +
σ2

ζ2

〈
N2
〉
〈K〉 〈N〉

1 +
σ2

ζ2
〈N2〉

(77)

where we recall 〈N〉 = φ 〈N〉∗,
〈
N2
〉

= φ
〈
N2
〉∗

.
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5.5 Productivity

Given the abundance distribution P (Ni), it is possible to compute the produc-
tivity distribution – or at least the distribution of growth on external resources,

gi = RiNi (78)

which acts as a proxy for productivity. If the quantities that are drawn inde-
pendently are Ki, αij and Di, then straightforwardly

P (gi) =

∫
dNi P (gi, Ni) (79)

=

∫ ∞
0

dNidRi P (Ri, Ni) δ(Ri − gi/Ni) (80)

=

∫ ∞
0

dNidKidDi P (Ki, Ni) P (Di) δ(KiDi − gi/Ni) (81)

and we get P (Ki, Ni) from the previous section. In particular, taking the average
over surviving species, we find (if all Ki > 0)

〈gi〉∗ =

∫
dgi P (gi) gi = 〈KiNi〉∗ (82)

where we used 〈Di〉 = 1. If however the independent quantities are Ri, Aij and
Di, the calculation is less straightforward: we must now start from

N0 =
1

D0û

(
R0 − S∗A 〈N〉∗ − Σ̂0

)
where

Σ̂0 =
∑
i

(A0i −A)N∗i ,
〈

Σ̂0

〉
= 0, Var

(
Σ̂0

)
= S∗σ2

A

〈
N2
〉∗

(83)

and we now have P (R0, Σ̂0, D0) = P (R0) P (Σ̂0) P (D0), hence

P (N0|R0) =

∫
dΣ̂0dD0 P (Σ̂0) P (D0) δ

(
N0 −

1

D0û

(
R0 − S∗A 〈N〉∗ − Σ̂0

))
(84)

and we get the total productivity

Gtot = S

∫ ∞
0

dN0

∫ ∞
0

dR0 R0N0 P (N0|R0) P (R0) (85)

5.6 Response to perturbations

Let us now assume that some small permanent (press) perturbation ξi is added
to the system at equilibrium (acting only on the surviving species)

0 = ki + ξi − uNi −
σ√
s

∑
j

aijNj (86)
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We can write Ni = N∗i +xi, with xi the displacement around equilibrium, which
obeys

0 = ξi − µ 〈x〉 − uxi −
σ√
s

∑
j

aijxj (87)

a very similar equation to that obeyed by equilibrium abundances, except for
the fact that the carrying capacity Ki has been replaced by the perturbation
ξi, and of course that xi is not constrained to be positive. Following the same
logic as before, we isolate the response of species 0

(u− φσ2γv)x0 = ξ0 − µ 〈x〉 −
σ√
s

∑
j

aijx
∗
j (88)

If there are no constraints on x0 (see Sec. 5.6.2 below), we can simply assume

〈x0〉 = 〈x〉 = 〈x∗i 〉 (89)

and thus get the average displacement:

(u− φσ2γv + µ) 〈x〉 = 〈ξ〉 (90)

5.6.1 Multistability order parameter

To test whether the equilibrium we are obtaining as the fixed point of the in-
vasion process is globally stable, or might be exited through some small pertur-
bation in the appropriate direction, we must consider the response to a random
perturbation with zero mean,

〈ξ〉 = 0 (91)

representing random shifts in relative fitness that advantage some species over
others, without changing the mean species fitness. Since the mean is zero, the
response to the perturbation is characterized by the variance,

χ2 =

〈
x2
i

ξ2

〉
(92)

Now the equation above, using 〈x〉 = 0, can be taken to the square to get:

(u− φσ2γv)2
〈
x2

0

〉
= ξ2

0 + φσ2
〈
x∗j
〉2

(93)

hence

χ2 =
1

(u− φσ2γv)2 − φσ2
(94)

which is seen to diverge when σ = σc such that

φσc = u− φσ2
cγv (95)

and by using (u− φσ2γv)v = 1 we find as above in (12)

σc =
1

φ

(
u

1 + γ

)2

(96)
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5.6.2 Secondary extinctions

In the case of secondary extinctions following the extinction of species 0, the
perturbation is

ξi =
σ√
s
ai0N

∗
0 (97)

Now however, the perturbation is potentially large enough that we may need to
impose xi > −N∗i , meaning that the response cannot cause a species’ abundance
to become negative. Hence, in a way similar to our previous calculation on
abundances, the average change in abundance due to the extinction is

〈x〉 =

∫
dNiP (Ni)

∫ ∞
−Ni

dx0P0(x0)x0 (98)

while the fraction of secondary extinctions is given by

∆φ =

∫
dNiP (Ni)

∫ −Ni

−∞
dx0P0(x0) (99)

5.6.3 Variability

Calculations for the variability are more technical and left in Appendix.

6 Sensitivity testing

6.1 Distributions

In this section, we test how sensitive the results above are to the choice of
distributions for growth rates and interactions. Throughout, we have assumed
that these distributions had finite mean and variance, which is not the case for,
e.g., a power-law tailed distribution P (x) ∼ x−a with exponent a ≤ 3.

For reasons explained in Sec. 5.2 above, we expect results to be more sensitive
to the distribution of growth rates than to that of interactions. Indeed, Fig. 7
shows that, while normal or uniform distributions lead to very good agreement
with predictions, distributions with fatter tails (e.g. exponential tails) – and
a fortiori multimodal distributions – lead to significant deviations from our
baseline predictions. It is however not difficult to adapt the theory to fit any
distribution P (Ri) as long as it is known.

6.2 Interaction strength

We now test how small the interaction strength must be compared to self-
interaction for cavity predictions to work. Fig. 8 shows that when average
coupling strength is significantly larger than 0.1, the method stops being as
accurate, in particular with fewer species surviving than expected.
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Figure 7: Sensitivity of results to distribution of growth rates P (Ri).

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2017. ; https://doi.org/10.1101/147728doi: bioRxiv preprint 

https://doi.org/10.1101/147728
http://creativecommons.org/licenses/by-nc/4.0/


36

Figure 8: Sensitivity of results to interaction strength. By varying the con-
nectivity from 0.1 to 1, we change the average interaction strength needed to
achieve the same value of µ. Each curve is labelled here by the average coupling
strength needed to obtain µ = 10.
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7 Extending the model

There are two main types of limitations to the model so far. The first is dy-
namical: we started from Lotka-Volterra dynamics, which might work as an
approximation in many limits, but do not always enable us to find the equi-
libria reached by more complex dynamics. Since the most usual variant to
Lotka-Volterra dynamics is having a nonlinear functional response, especially a
saturating one, we treat that case below to show that it is still largely amenable
(at least approximately or qualitatively) to our approach.

The second limitation is structural. Even though species are heterogeneous,
we have treated them as if they all belong to the same functional group: their
traits are all drawn from the same distributions. These distributions may be
multimodal, but that does not convey the fact that different positions in the
community may be truly different in many respects at once. There are two
simple ways to address this concern, one discrete and one continuous.

The continuous approximation, which we call “ordered species”, supposes
that we can characterize the network by a simple axis of possible niches or
roles, knowing only how various traits (e.g. carrying capacity, interaction mean
and variance) correlate to linear order with position on that axis.

The discrete approximation, which we call “species groups”, instead divides
the network into distinct groups, each disordered inside, but with determinis-
tic patterns within and between groups. In essence, this is extending simple
reductionist descriptions (e.g. one predator and one prey) by replacing each
species by a group of heterogeneous but functionally similar species, treated
like a disordered community.

7.1 Functional response

The coefficientsAij come from two distinct factors: first, how much an individual
of species i can affect an individual of species j, which may be a property
of their behavior and biology, and second, how often these individuals may
meet and interact. For simplicity, let us say that the individual-level effects
are fixed. Then, the frequency of pair encounters is what controls interaction
strength. The interaction between species i and j is independent from any
other interaction in relatively “sparse” environments where any pair can meet,
and adding new individuals or new species always increases the number of such
meetings. On the other hand, interactions may saturate if there is a limiting
factor such as plants competing only with their neighbors, or a predator taking
time to handle prey, preventing it from consuming more than a given number
of prey among those available in a given timespan.

The same reasoning led Holling [13] to postulate a saturating functional
response in the interaction between two species: instead of being a number, Aij
becomes a function of abundances such as

Ãij(N1, ...NS)NiNj =
AijNiNj

1 + 1
〈A〉Nc

∑
k AikNk

(100)
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Figure 9: Effect of saturating functional response. Symbols are simulations with
a Holling Type II functional response, while solid lines are analytical predictions
using the approximate linear-saturating functional response (104).

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2017. ; https://doi.org/10.1101/147728doi: bioRxiv preprint 

https://doi.org/10.1101/147728
http://creativecommons.org/licenses/by-nc/4.0/


with constants Aij , their average 〈A〉 and the population threshold Nc. This
means that the interaction between species i and j cannot keep growing indef-
initely with NiNj the product of their abundances, as in Lotka-Volterra equa-
tions. Hence, the sum is bounded

Ni
∑
j

Ãij Nj = Ni

∑
k AikNk

1 + 1
ANc

∑
k AikNk

(101)

≈ ANiNc if

∣∣∣∣∣∑
k

AikNk

∣∣∣∣∣� |ANc| (102)

Analytically, it is possible to deal with the saturating functional response by
a simple approximation. For each species, we replace it with a piecewise linear
function:

∑
j

Ãij Nj ≈ F

(∑
k

AikNk

)
, F (x) =

{
x |x| < |ANc|
ANc |x| ≥ |ANc|

(103)

then at the community level, we use the real saturating function to evaluate the
expected fraction f of species whose interactions are saturated.

For simplicity, we will “cheat” and instead apply the piecewise functional
response to the couplings (which differ from interactions if species have hetero-
geneous self-interaction Di), i.e.

0 = K0 −N0 − F̃

(∑
i

α0iNi

)
, F̃ (x) =

{
x |x| < |µNc/s|
µNc/s |x| ≥ |µNc/s|

(104)

Avoiding this simplification is possible but requires keeping track of more pa-
rameters, and does not make much of a qualitative change.

Going through the same steps as before, then for each species

N0 =
1

u− (1− f)φσ2γv

{
K0 − µφ 〈N〉∗ −

σ√
s

∑
i a0iN

∗
i with probability 1− f

K0 − µNc/s with probability f

(105)

Notice the 1− f factor in front of the feedback term in the denominator: only
species whose interactions have not saturated will contribute to the feedback of
the invader on itself through its interaction partners. The mean is now

〈N0〉 =
〈K〉 − µ(fNc/s+ (1− f)φ 〈N〉∗)

u− (1− f)φσ2γv
(106)

while taking the variance, we find

σ2
0 =

ζ2 + (1− f)2σ2φ
〈
N2
〉∗

(u− (1− f)φσ2γv)2
(107)
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The rest of the calculations follow as in Sec. 5.3, except we additionally need
to know the fraction f of species with saturated interactions. This is where the
real saturation function reappears (slightly rearranged):

f =

∫ ∞
−∞

dxP

(
x =

∑
k

α0kNk

)
1

1 +

∣∣∣∣µNcsx

∣∣∣∣ (108)

where, as usual, we can approximate P (x) by a normal distribution with

〈x〉 = |µ|φ (109)

Var(x) = σ2φ
〈
N2
〉∗

(110)

Note that if we want to make an equivalent model without saturation, we can
apply the equivalence

µ̃ = µ

(
f

Nc
s 〈N〉∗

+ (1− f)φ

)
, σ̃ = (1− f)σ, γ̃ =

γ

1− f
(111)

which is possible only if γ̃ ∈ [−1,−1]. Then, a Lotka-Volterra system with
parameters µ̃, σ̃ and γ̃ will have identical equilibrium properties to the system
with a saturating functional response studied here. Of course, this equivalence
can only be computed once we know f and 〈N〉∗, i.e. after having solved the
calculation above for this system.

In Fig. 9, we show that predictions from our calculations match simulation
results quite well, despite many simplifications which tend to create a more
abrupt transition between the saturated and unsaturated regimes. By the same
reasoning, we can easily extend the approach to any functional response, includ-
ing an approximation of Type-III sigmoid response, with two thresholds instead
of a single one.

7.2 Heterogeneous means

Let us come back to the cavity method:

0 = K0 −N0 −
S∗∑
i

A0iNi (112)

Now let us assume that
A0i = 〈A〉0 +

σ0√
S
a0i (113)

where the mean and the variance both depend on species 0.

0 = K0 − S∗ 〈A〉0 〈N〉
∗ −N0 −

σ0√
S

S∗∑
i

a0iNi (114)
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where we still assume that 〈N〉 over partners of 0 does not differ from the
community average. Then,

Ni ≈ N∗i −
dNi
dKi

σi√
S
ai0N0 (115)

hence(
1− 1

S

∑
i

σiσ0ai0a0i
dNi
dKi

)
N0 = K0 − S∗ 〈A〉0 〈N〉

∗ − σ0√
S

S∗∑
i

a0iN
∗
i (116)

≈ (1− φσ0σγv)N0 (117)

where

v =

〈
1

1− φσ0σγv

〉
≈ 1

1− φσ2γv
(118)

and finally

〈N0〉 = v(〈K〉 − φµ 〈N〉∗) (119)〈
N2

0

〉
= 〈N0〉2 + v2(σ2

K + S∗2(σ2
〈A〉) 〈N〉

∗2 − 2S∗(〈K0A0〉 − 〈K〉 〈A〉) + σ2φ
〈
N2
〉∗

)

(120)

7.3 Species groups

The equations can be extended to any structure comprised of discrete groups,
with disordered interactions within and between groups, but different statistics
for each set of interactions. Coming back to the equilibrium equation, we can
write for species i in group x (which contains Sx species) as

0 = Kx
i −Nx

i −
∑
j,y

αxyij N
y
j (121)

Thus, we now have vector K and ζ and matrices µ, σ, γ, defined by

αxyij =
µxy

S
+
σxy√
S
axyij (122)

with
〈a〉 = 0,

〈
a2
〉

= 1,
〈
axyij a

yx
ji

〉
= γxy. (123)

The equations to solve are the same as above, except there are now four equa-
tions per group, all coupled: for each group we solve

φx =

∫ ∞
0

dN0 P
x
0 (N0) (124)

〈N〉x =

∫ ∞
0

dN0 P
x
0 (N0) N0 (125)

〈
N2
〉x

=

∫ ∞
0

dN0 P
x
0 (N0) N2

0 (126)

V x =
φx

ũx
(127)
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with

〈N0〉x =
〈K〉x −

∑
y µ

xyρy 〈N〉y

ux
, (128)

(σ2
0)x =

(ζx)2 +
∑
y(σxy)2ρy

〈
N2
〉y

(ux)2
, (129)

ũx = 1−
∑
y

ρyV yγxyσxyσyx. (130)

where

ρx =
Sx

S
. (131)

7.4 Ordered species

We can take the continuous limit of the mixture model:

φ(x) =

∫ ∞
0

dN0 P0(N0, x) (132)

〈N〉 (x) =

∫ ∞
0

dN0 P0(N0, x) N0 (133)

〈
N2
〉

(x) =

∫ ∞
0

dN0 P0(N0, x) N2
0 (134)

V (x) =
φ(x)

ũ(x)
(135)

with P0(n, x) a Gaussian with mean 〈N0〉 (x) and variance σ2
0(x), and

〈N0〉 (x) =
〈K〉 (x)−

∫
dyµ(x, y)ρ(y) 〈N〉 (y)

u(x)
, (136)

σ2
0(x) =

ζ2(x) +
∫
dyσ2(x, y)ρ(y)

〈
N2
〉

(y)

u2(x)
, (137)

ũ(x) = 1−
∫
dyρ(y)V (y)γ(x, y)σ(x, y)σ(y, x). (138)

where ρ(x) is the density of species with rank x.
There are two cases that allow for a simple solution: first, we must assume

that all functions of x and y depend only on rank difference x− y. Then, these
functions are separable if they are either exponential or linear, see Fig. 10.
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Figure 10: Results for ordered species with exponential and linear scaling. The
bottom-right panel is 〈x〉∗ the average value of the niche value for surviving
species, given that niche values are initially distributed uniformly over [0, 1].
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7.4.1 Exponential order: trophic interactions

We can choose exponential functions

µ(x, y) = µcx−yµ (139)

σ2(x, y) = σ2cx−yσ (140)

γ(x, y) = γcx−yγ (141)

〈K〉 (x) = KcxK (142)

ζ2(x) = ζ2cxζ (143)

Then, we have

〈N0〉 (x) =
KcxK − µcxµ

〈
Nc−xµ

〉
ũ(x)

, (144)

σ2
0(x) =

ζ2cxζ + σ2cxσ
〈
N2c−xσ

〉
ũ2(x)

, (145)

ũ(x) = 1− γ
〈
V cxγ

〉
)σ2. (146)

and therefore we must compute

〈
Nc−xµ

〉
=

∫
dxρ(x)c−xµ

∫ ∞
0

dNP0(N, x)N (147)

〈
N2c−xσ

〉
=

∫
dxρ(x)c−xσ

∫ ∞
0

dNP0(N, x)N2 (148)

〈
V cxγ

〉
=

∫
dxρ(x)cxγ

φ(x)

ũ(x)
(149)

to close the equations. A typical example is metabolic scaling in trophic in-
teractions: given metabolic rate mi and its scaling with to bodymass Mi,

mi ∝ M
1/4
i , we expect self-interaction Di ∝ mi and interaction Aji ∝ mj ,

hence αji ∝ mj/mi = (1/4)x−y with the niche values given by the logarithm of
body mass x = logMi and y = logMj .

7.4.2 Linear order: competition-colonization tradeoff

If we choose linear functions instead

µ(x, y) = µ+ cµ(x− y) (150)

σ2(x, y) = σ2 + cσ(x− y) (151)

γ(x, y) = γ + cγ(x− y) (152)

〈K〉 (x) = K + cKx (153)

ζ2(x) = ζ2 + cζx (154)
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Then we have

〈N0〉 (x) =
K + cKx− (µ+ cµx) 〈ϕN〉+ cµ 〈ϕNx〉

ũ(x)
, (155)

σ2
0(x) =

ζ2 + cζx+ (σ2 + cσx)
〈
ϕN2

〉
− cσ

〈
ϕN2x

〉
ũ2(x)

, (156)

ũ(x) ≈ 1− ((γ + cγx) 〈ϕv〉 − cγ 〈ϕvx〉)σ2. (157)

(in fact σ(x, y)σ(y, x) = σ2
√

1− c2σ(x− y)2/σ4 but this makes separation im-
possible, so we must assume that cσ is small enough). Hence there are two sets
of coupled unknowns: for Ψ = N,N2, V we must compute

〈ϕΨ〉 =

∫
dxP (x)

∫ ∞
0

dNP0(N, x)Ψ (158)

and

〈ϕΨx〉 =

∫
dxρ(x)x

∫ ∞
0

dNP0(N, x)Ψ. (159)

In the competition-colonization example, we have

µ(x, y) = µ
y − x+ 1

2
(160)

〈K〉 (x) = 2K(1− x) (161)

and cσ = cγ = cζ = 0.
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8 Appendices

A. The role of disorder

Computing the equilibrium state in effect requires inverting the matrix aij in
the equation:

0 = ki − uNi − σA
∑
j

aijNj (162)

In principle we could expand this equation, substituting

Nj =
kj − σA

∑
j ajkNk

u
(163)

into the sum, and so on recursively, causing all paths aijajk... (i → j → k...)
in the community matrix to appear in the first equation above. The crucial
idea of disordered systems methods is that, for any reasonably complex system,
these paths soon lose coherence and start to interfere with each other. These
interferences are so complex as to produce seemingly-random results.

One way to see it is that each term in the sum is a (possibly very long)
product of coefficients akl and is weakly correlated with other such terms –
unless the same coefficients appear again and again in the same combinations
in many terms. That can happen in a very structured community, or one with
only small loops (the extreme is a collection of independent few-species motifs:
in each motif, there are not enough paths for them to interfere and create a
seemingly random result). This enables the cavity trick, which retains only the
first-order feedback of a species on itself, and for the rest needs only the mean
and variance of interactions, as the effect of interactions is essentially random.

Let us see a precise example of these ideas. In the main text, we noted
that the feedback of a species on itself through the rest of the network is a
self-averaging quantity. Consider the following sum:

s∗∑
i,j

a0ivijaj0 (164)

which occurs in (45) (we recall s∗ = φs is the average number of surviving
interaction partners for species 0). We separate the sum into two parts:

s∗∑
i

a0ivii +
s∗∑
i 6=j

a0ivijaj0 (165)

Recall that 〈a0iai0〉 = γ while 〈a0i〉 = 0. Hence, the second sum is a random
walk with s∗(s∗−1) terms, and its total scales like s. Now, we should note that

vij =
dNi
dkj
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for i 6= j is created by the interaction between species i and j, which is at best
proportional to σ/

√
s (if the species are linked directly) or even weaker.

Finally, we get the respective scalings:

s∗∑
i

a0iai0vii ∝ s∗γv (166)

s∗∑
i 6=j

a0ivijaj0 ∝ s∗
σ√
s
v (167)

In other words, even though the sum over i 6= j has many more terms, it ends up
being of order 1/

√
s compared to the first sum. That sum itself has variations

of order 1/
√
s compared to its mean, depending on which species is isolated

as species 0. As s becomes larger, the feedback thus tends to become a single
number, no matter which species we consider.

B. Linear response

Typical cavity method (Press)

Notation: a ji xj =
∑
j aijxj . 〈y·〉 = 1

S

∑
i yi. Let ξ be a random press-

perturbation. Its long term effect on the equilibrium associated to the Jacobian
B is

x = −B−1ξ

uxi = ξi − µ 〈x·〉 − σa ji xj − σai0x0; u = 1− µ/S

Where we isolated the effect of a generic species 0 (this is the starting point of
the cavity method). Assuming a small effect of that species we may write

xj = xj/0 − σx0Vkj ak0; Vkj :=
∂xj
∂ξk

Under the replica symmetry, species 0 is generic and its addition or removal does
not change any statistical properties of community, in particular

〈
x·/0

〉
= 〈x·〉.

Then
ux0 = ξ0 − µ 〈x·〉 − σa j0xj/0 + σ2x0 Vkj a

j
0 ak0︸ ︷︷ ︸

≈γ
〈
V q̇

·

〉
(
u− σ2γV

)
x0 ≈ ξ0 − µ 〈x·〉 − σa j0xj/0; V =

〈
V q̇
·

〉
Taking the square(

u− σ2γV
)2
x2

0 ≈ ξ2
0 + σ2a j0 a

i
0xj/0xi/0︸ ︷︷ ︸

≈σ2〈x2
· 〉

+µ2
〈
x2
·
〉

+ µσ
〈
x2
·
〉
a j0xj/0 +O(ξ0)
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taking the mean over ξ0, knowing that Eξi = 0; Eξiξj = δij , and by linearity,
Eξxi = 0, gives (

u− σ2γV
)2 Ex2

0 ≈ 1 + σ2
〈
Ex2
·
〉

Taking the mean over all species gives

χ2 :=
〈
Ex2
·
〉
≈ 1

(u− σ2γV)
2 − σ2

To conclude we need V. For that we write(
u− σ2γV

)
V ≈ 1− σ

〈
a j· V

j
j

〉
︸ ︷︷ ︸
≈0

Hence it is solution to (knowing that at σ = 0, V = u)

σ2γV2 − uV + 1 = 0

we thus have

χ2 ≈ 1

u2 (1− v)
2 − σ2

; v =
σ2γV
u

=
1−

√
1− 4σ2γ

u2

2

In the Lotka-Volterra assembly perspective, B is the interaction matrix and only
a fraction φ of species survive. We still have u = 1− µ/S but

χ2 ≈ 1

u2 (1− v)
2 − φσ2

Externally applied press

In the assembly perspective, the Jacobian matrix reads

Jij = − ri
ki
N∗i Bij

where ri is the growth rate of species i and ki its carrying capacity. A press
acting proportionally to N∗νi will induce a displacement

xi =
ki
ri
N∗ν−1
i ζi − a ji xj

so we can simply adapt the above calculations by replacing ξi by ki
ri
N∗ν−1
i ζi.

This gives us 〈
Eζx2

·
〉
≈ χ2

〈
(
k

r
)2N∗2ν−2

〉
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To compute (mean case) variability we must solve the Lyapunov equa-
tion

BC + CB> = −I⇔ 2C +AC + (AC)
>

= I

Off diagonal terms, if ϕ = S−1
S , read

2Ckj = −1− u
u

(Ckk + Cjj + ϕ 〈C·6=k〉+ ϕ 〈C·6=j〉)−
σ

u

(
a lkClj + a ljClk

)
taking the mean, the self-averaging of the terms proportional to σ makes the
problem reduce to the mean-field case, which gives us the relationship

〈C 6=〉 ≈ −
S − µ

S + µ(ϕS − 1)
〈C=〉

The interaction diversity (σ) enters on the diagonal (variances):

2Cjj = 1− σa kj 2Ckj − 2µϕ 〈C·6=j〉

in replacing Ckj in σa kj 2Ckj by its expression written above, we only need to

track terms proportional to σ2, the other will self average. So:

2Cjj ≈ 1 +
σ2

u
a kj a

l
kClj︸ ︷︷ ︸

≈γCjj

+
σ2

u
a kj a

l
jClk︸ ︷︷ ︸

≈〈C=〉

−2µϕ 〈C·6=j〉

2

(
1− σ2 (γ + 1)

2u

)
〈C=〉 ≈ 1− 2µϕ 〈C 6=〉

so that

〈C=〉 ≈ V =
1

2I
; I = IMF−

σ2

2
(γ + 1)

S

S − µ
; IMF =

1 + µϕ

1 + µϕ/u
= 1−µ/S+O

(
S−1

)
when µ = 0, u = 1, IMF = 1. When σ = 0, the expression for the mean variance
is exact (mean-field case).

Demographic noise in the assembly perspective for identical carrying
capacities and growth rates

B must be replaced with the Jacobian matrix

J = −D∗B = −D∗ −D∗A; D∗ = diag(N∗)

Where the N∗i are the equilibrium abundances of surviving species. The Lya-
punov equation becomes

D∗BC + CB>D∗ = −D∗ ⇔ D∗C + CD∗ +D∗AC + (AC)
>
D∗ = D∗
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Off diagonal terms if ϕ = S∗−1
S = φ− 1/S ≈ φ read

u
(
N∗k +N∗j

)
Ckj+N

∗
k

(
µϕ 〈C·6=j〉+

µ

S
Cjj + σa lkClj

)
+N∗j

(
µϕ 〈C·6=k〉+

µ

S
Ckk + σa ljClk

)
= 0

let us write

N (j)
k =

2N∗k
N∗k +N∗j

; N (k)
k = 1 and

〈
N (·)
·

〉
= 1

then

2Ckj = −µ/S
u

(
CkkN (k)

j +N (j)
k Cjj + ϕ 〈C·6=k〉N (k)

j + ϕN (j)
k 〈C·6=j〉

)
−σ
u

(
N (j)
k a lkClj +N (k)

j a ljClk

)
taking the mean over k 6= j gives the same approximate relationship between
〈C 6=〉 and 〈C=〉 as for the mean field case (and is exact when σ = 0). On the
diagonal:

2Cjj = 1− σa kj 2Ckj − 2µϕ 〈C·6=j〉

The abundances only enter via the expression of Ckj but always as a ratio N (j)
k

or N (k)
j whose average is 1 . We get

2Cjj ≈ 1 +
σ2

u
N (k)
j a kj a

l
kClj︸ ︷︷ ︸

≈φγ
〈
N (·)

j

〉
Cjj

+
σ2

u
N (j)
k a kj a

l
jClk︸ ︷︷ ︸

≈φγ
〈
N (j)

·

〉
〈C=〉

−2µϕ 〈C·6=j〉

taking the mean over j gives

2 〈C=〉 ≈ 1 +
σ2

u
φ (γ + 1) 〈C=〉 − 2µϕ 〈C 6=〉

so that

〈C=〉 ≈ V =
1

2

1

IMF − σ2φ
2u (γ + 1)

when µ = 0, u = 1, IMF = 1. All in all the approximation for (adimensional)
invariability is

I ≈ IMF −
σ2

2
(γ + 1)

φS

S − µ
; IMF =

1 + µφ

1 + µφ/u
= 1− µ/S +O(S−1)

More general case in the assembly perspective

In general B must be replaced with the Jacobian matrix

J = −DB = −D −DA; D = diag (N∗r/k)

Under stochastic perturbations scaling as N
∗ν/2
i (ν = 1 demographic noise,

ν = 2 environmental noise) the Lyapunov equation becomes

DBC + CB>D = −Dν
∗ ⇔ DC + CD +DAC + (AC)

>
D = Dν

∗
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For off-diagonal terms we may reproduce the previous calculations by replacing
N∗i by Ki = N∗i ri/ki and

K(j)
k =

2Kk
Kk +Kj

; K(k)
k = 1 and

〈
K(·)
·

〉
= 1

On the diagonal however we now have:

2Cjj +A l
jClj +A l

jClj =
kj
rj
N∗ν−1
j

which, as above, leads us to(
1− σ2

2u
φ (γ + 1)

)
〈C=〉 ≈

〈
k

2r
N∗ν−1

〉
− µϕ 〈C 6=〉

so that

〈C=〉 ≈ Vν =

〈
k

r
N∗ν−1

〉
V

In particular, for ν = 0, 1, 2 (immigration, demographic and environmental
noise, respectively):

V0 =

〈
k/r

N∗

〉
V; V1 =

〈
k

r

〉
V; V2 =

〈
k

r
N∗
〉
V

Taylor’s law

relates species mean abundance and their variance. In our context, under some
stochastic noise acting independently on species (mean case scenario) we have
that

Cjj ≈
1

2

kj
rj
N∗ν−1
j +

σ2γ

2

φS

S − µ

{〈
K(·)
j

〉
Cjj +

〈
K(j)
·

〉
〈C=〉

}
− µφ 〈C·6=j〉

We roughly approximate
〈
K(·)
j

〉
and

〈
K(j)
·

〉
by 1. Using that

2 〈C·6=j〉 ≈ −
1− u
u

(〈C=〉+ Cjj + φ 〈C 6=〉+ φ 〈C·6=j〉)

so

−µφ 〈C·6=j〉 ≈
µφµ

2(S − µ) + φµ
(〈C=〉+ Cjj + φ 〈C 6=〉)

If we define
µφµ

2 (S − µ) + φµ
= fS(µ, φ)

This leads us to(
1− σ2γ

2

φS

S − µ
− fS(µ, φ)

)
Cjj ≈

1

2

kj
rj
N∗ν−1
j +

(
σ2γ

2

φS

S − µ
+ fS(µ, φ)

)
Vν
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if µ is of order zero in 1/S then fS is of order one and for S large enough(
1− σ2φγ

2

)
Cjj ≈

1

2

kj
rj
N∗ν−1
j +

σ2φγ

2
Vν

We thus expect an exact power law Var(Ni) = Cjj ∼ Nν−1
i when γ = 0 and σ2

large enough (so that Nj and kj become uncorrelated).

C. Other calculations

Generating A with correlation to K

Here is how to generate Aij with prescribed correlation to Ki:

Aij =
µ

S
+ f(Ki) + σaij (168)

〈Aij〉j =
µ

S
+ f(Ki) (169)

〈Aij〉 =
µ

S
+ 〈f(Ki)〉 (170)

Let’s set 〈Ki〉 = 1, then:

〈KiAij〉 =
µ

S
+ 〈f(Ki)Ki〉 (171)

〈KiAij〉 − 〈Ki〉 〈Aij〉 = 〈f(Ki)Ki〉 − 〈f(Ki)〉 (172)〈
A2
ij

〉
=
µ2

S2
+ 2 〈f(Ki)〉

µ

S
+
〈
f(Ki)

2
〉

+
σ2

S
(173)

〈AijAji〉 =
µ2

S2
+ 2 〈f(Ki)〉

µ

S
+ 〈f(Ki)〉2 +

σ2γ

S
(174)〈

A2
ij

〉
− 〈Aij〉2 =

〈
f(Ki)

2
〉
− 〈f(Ki)〉2 +

σ2

S
(175)

〈AijAji〉 − 〈Aij〉2 =
σ2γ

S
(176)

Now, let’s set f(Ki) = c(Ki − 1) so that

〈f(Ki)〉 = 0 (177)〈
f(Ki)

2
〉

= c2(
〈
K2
i

〉
− 2 〈Ki〉+ 1) (178)

= c2σ2
K (179)
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Then

〈Aij〉 =
µ

S
(180)

〈KiAij〉 − 〈Ki〉 〈Aij〉 = c
〈
K2
i

〉
− c 〈Ki〉 = cσ2

K (181)〈
A2
ij

〉
− 〈Aij〉2 = c2σ2

K +
σ2

S
(182)

〈AijAji〉 − 〈Aij〉2〈
A2
ij

〉
− 〈Aij〉2

=
γ

1 + Sc2
σ2
K

σ2

(183)

Hence, achieving a prescribed correlation C = cσ2
K requires to generate a matrix

aij with parameters

σ̃2 = σ2 − Sc2σ2
K , γ̃ = γ(1 + sc2σ2

K/σ
2) (184)

before inserting it into Aij =
µ

S
+ c(Ki − 1) + σaij .
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