
Integrating long-range connectivity information into de

Bruijn graphs

Isaac Turner1,∗, Kiran V Garimella1,2∗, Zamin Iqbal1,3 and Gil McVean1,2

1Wellcome Trust Centre for Human Genetics, Oxford, OX3 7BN, UK
2Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, OX3 7LF, UK

3European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK

Abstract

Motivation: The de Bruijn graph is a simple and efficient data structure that is used in many
areas of sequence analysis including genome assembly, read error correction and variant calling. The
data structure has a single parameter k, is straightforward to implement and is tractable for large
genomes with high sequencing depth. It also enables representation of multiple samples simultane-
ously to facilitate comparison. However, unlike the string graph, a de Bruijn graph does not retain
long range information that is inherent in the read data. For this reason, applications that rely on
de Bruijn graphs can produce sub-optimal results given their input.
Results: We present a novel assembly graph data structure: the Linked de Bruijn Graph (LdBG).
Constructed by adding annotations on top of a de Bruijn graph, it stores long range connectivity
information through the graph. We show that with error-free data it is possible to losslessly store
and recover sequence from a Linked de Bruijn graph. With assembly simulations we demonstrate
that the LdBG data structure outperforms both the de Bruijn graph and the String Graph Assem-
bler (SGA). Finally we apply the LdBG to Klebsiella pneumoniae short read data to make large (12
kbp) variant calls, which we validate using PacBio sequencing data, and to characterise the genomic
context of drug-resistance genes.
Availability: Linked de Bruijn Graphs and associated algorithms are implemented as part of
McCortex, available under the MIT license at https://github.com/mcvean/mccortex .
Contact: turner.isaac@gmail.com .

1 Introduction

Most efforts to discover genetic variation in populations begin with alignment of high-throughput
sequencing (HTS) data to a high-quality reference genome for the organism under study. This
approach works well for regions with low divergence from the reference haplotype. However, many
biologically interesting loci reside in regions of high divergence. For example, antigenic genes in
Plasmodium falciparum, Trypanosoma brucei, and other pathogens often exhibit non-allelic ho-
mologous recombination underlying mechanisms of immune escape (Freitas-Junior et al., 2000;
Artzy-Randrup et al., 2012; Jackson et al., 2012). Similarly, structural mutations, such as rear-
rangements and amplifications, can promote tumourigenesis through dysregulation of oncogenes
or down-regulation of tumour suppressors (Difilippantonio et al., 2002; Aguilera and Gómez-
González, 2008). More generally, variants may be difficult to identify and characterise when the
altered haplotype differs substantially from the reference, and other regions of interest reside in
sequence absent from the reference sequence altogether. For example, in 13 isolates of the diploid
coccolithophore Emiliania huxleyi, 8 to 40 Mbp of the approximately 142 Mbp genome were found
to be isolate-specific; up to 25% of genes were found to be absent from the reference sequence
(Read et al., 2013). In these scenarios, reads may fail to map to the reference, preventing the an-
alyst from inspecting biologically interesting variation. Alternatively, reads may map incorrectly,
misleading the analyst to consider variation where none exists (Ribeiro et al., 2015).

∗These authors contributed equally to the work

1

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147777doi: bioRxiv preprint

https://doi.org/10.1101/147777
http://creativecommons.org/licenses/by/4.0/

One mitigation of this inadequate reference problem is to augment the reference with known
variation and alternative alleles to improve read mapping (Schneeberger et al., 2009; Huang et al.,
2013; Weisenfeld et al., 2014; Dilthey et al., 2015). Such approaches commonly convert flat ref-
erence genomes into a graph structure, effectively mapping reads to all references simultaneously
and choosing the path that best fits the data. In a study mapping to a fragmented human assem-
bly, Limasset et al. (2016) found that mapping to a reference graph instead of flat contigs led to
a 22% increase in the number of reads that map uniquely.

De novo assembly offers a means to overcome some of the limitations of reference-based analy-
ses. Rather than aligning reads to a reference, reads are aligned to one another. These alignments
are encoded in a graph data structure, a collection of “vertices” encapsulating sequence data and
“edges” representing overlaps of different sequences (Myers, 1995). Graphs from different sam-
ples (and any reference) can then be compared to discover variation directly (Bateman et al.,
2016). Should the variation be in a locus unrepresented in the reference genome, the graph-based
comparison can still capture the event (Iqbal et al., 2012).

The most common sequencers in use today (second-generation) produce tens of millions of short
reads (typically 75 to 150 bp in length) per sequencing run (Goodwin et al., 2016). It is common to
assemble such data using a so-called “de Bruijn” graph approach (de Bruijn, 1946; Pevzner, 1989;
Idury and Waterman, 1995). Vertices are constrained to be fixed-width substrings of length k (or
“k-mers”). Edges represent observed sequence adjacencies in the reads. With sufficient coverage,
overlaps are implicitly encoded because two reads which overlap will share k-mers. Thus the graph
is built up one read at a time at the cost of storing the graph in memory. Graphs of multiple
individuals can be compared in memory (Iqbal et al., 2012). However, there is a penalty for
this approach: long-range information in the read is sacrificed. This is particularly problematic
as genomes tend to have many repetitive regions and without context it is often not possible
to determine the origin of a random k-mer (Pevzner et al., 2004; Miller et al., 2010). However,
as k increases, so does the specificity of its location. String graphs address the issue of storing
long-range information by avoiding the read fragmentation step and instead find explicit overlaps
between reads. Unfortunately string graphs are not well suited to multi-sample comparison and
have a high per-sample memory cost (Bonizzoni et al., 2016).

We start by describing the de Bruijn graph and its benefits compared to the string graph. We
then describe an augmentation (LdBG) that allows long-range information to be kept. Theoretical
results and simulations are used to characterise its properties. We demonstrate its value by
application to variant discovery and characterisation of genomic context for drug resistance genes
in Klebsiella pneumoniae. Finally, we consider the possibility of using such structures for regular
analysis of human-scale genomes.

2 Background

2.1 Definitions and notation

DNA sequences are strings over the alphabet {A,C,G, T}. We denote a DNA sequence as S =
S1, . . . , SS where S is the length of the sequence. S[i, j] is sequence Si, . . . , Sj . S

′ is the reverse
of S (SS , . . . , S1). S̄ is the reverse complement of S. A k-mer is a sequence of length k over the
alphabet {A,C,G, T}.

2.2 Assembly graphs

An assembly graph is any graph where the the vertices represent sequence and edges represent
overlaps or adjacencies between those sequences. An assembly graph may not have parallel edges
(not a multigraph). Traversing a vertex v backwards (v̄) gives the reverse complement of the
sequence it represents. deg−(v) is the indegree and deg+(v) is the outdegree of vertex v. A
path through the graph is a list of adjacent vertices with edges between them. The reverse of
path P = v1, . . . , vn is P̄ = v̄n, . . . , v̄1. A unitig U = v1, . . . , vn, is a maximal path such that
deg−(vi) = deg+(vi) = 1 for 1 < i < n and deg+(v1) = deg−(vn) = 1 if n > 1. The maximal
property means the path cannot be extended without violating these conditions.

2

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147777doi: bioRxiv preprint

https://doi.org/10.1101/147777
http://creativecommons.org/licenses/by/4.0/

2.3 De Bruijn Graphs

A de Bruijn Graph G(k) is an assembly graph, constructed from a set of sequence reads R and
defined by {V,E} where V is a set of vertices representing k-mers and E a set of edges between
those k-mers. De Bruijn Graphs are constructed by breaking input reads into overlapping k-mers
that are added to the graph. With one k-mer starting at every base, a read of length ri will give
ri − k + 1 k-mers. A count is kept of how many times a given k-mer was seen in the input reads,
called k-mer coverage. Edges are added between two k-mers if they share an overlap of k − 1
bases. Some implementations additionally require that k-mers are seen overlapping by k−1 bases
in the read data, in order to have an edge between them.

Due to the double stranded nature of DNA and the fact that we don’t know which strand
a read originated from, storing all k-mers from reads results in k-mers occurring separately in
the graph in both their forward and reverse complement orientations. To overcome this it is
common to store only the lexically lower of each k-mer X and its reverse-complement X̄ (Zerbino,
2010). Requiring that k is odd prevents a k-mer from being its own reverse complement (a DNA
palindrome). When visiting a vertex in the de Bruijn graph we can visit it in its forward or reverse
complement orientation. The orientation in which we arrive at it determines if we leave by its
out- or in- edges (forward, reverse respectively).

A de Bruijn graph only stores connectivity information one base either side of a given k-mer.
This means that for three adjacent k-mers in the graph (va, vb, vc), there is no information about
how the first and third are connected if the middle k-mer has deg−(vb) > 1 and deg+(vb) > 1.
This graph motif is known as a ‘tangle’ and is caused by the graph collapsing down at a repeat
and splitting out again afterwards. De Bruijn graphs collapse down at repeats in the genome of
lengths ≥ k. It is not possible to traverse a dBG past a tangle, even if the input reads are long
enough to resolve it (i.e. pair-up k-mers going-into and coming-out of it). This makes analyses
that use a de Bruijn graph sensitive to the parameter k.

While increasing k can overcome the problem of short repeats, it also has the effect of reducing
the number of k-mers given by each read and increases the number of k-mers lost to each sequencing
error. Both these effects reduce k-mer coverage, which is determined by the k-mer size, the read
length and the error rate (Iqbal et al., 2012). As k-mer coverage drops, read overlaps are lost and
gaps in coverage increase. Together with tangles, coverage gaps interrupt assembly and shorten
contigs.

Picking a value for k is ultimately a trade-off. It is common to run analyses multiple times
with different values of k and pick the best results according to a quality metric (e.g. assembly
N50 or number of variants called) (Iqbal et al., 2013). Alternatively the genome and read data
can be sampled to estimate which value would be optimal (Zerbino, 2010).

The dBG can be augmented to support multiple data sets, providing a single data structure
to describe and compare the genomes of many individuals (Iqbal et al., 2012). Graphs are built
separately for each data set c ∈ C and merged post-construction. The merge produces a union
graph Gu = {Vu, Eu}, where Vu =

⋃
c∈C Vc and Eu = {Ec : c ∈ C}. Each k-mer stores which

samples it was seen in. We refer to c as colour, a generic term that can mean a distinct individual,
pooled population or a specific data set on a single individual (e.g. tumour/normal), depending
on analysis context. We shall refer to this structure as a multi-colour de Bruijn graph.

De Bruijn graphs are used in many areas of sequence analysis, including in mapping-based
calling, as in the local alignment step of the variant caller Platypus (Rimmer et al., 2014), in de
novo assembly as in Velvet (Zerbino and Birney, 2008) and ABySS (Simpson et al., 2009), and in
de novo assembly for variant calling (Iqbal et al., 2012).

Recently there has been work on implementing low memory dBG construction (Chikhi et al.,
2014) and representations (Conway and Bromage, 2011; Rizk et al., 2013; Chikhi and Rizk, 2013;
Bowe et al., 2012). These have both provided great improvements over the naive hash table based
implementation, extending the contexts in which dBGs can be used.

2.4 String graphs

A String graph is an assembly graph where the vertices represent the input reads and the edges
are maximal non-transitive overlaps between them (Myers, 2005). The set of reads is reduced

3

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147777doi: bioRxiv preprint

https://doi.org/10.1101/147777
http://creativecommons.org/licenses/by/4.0/

to remove reads contained within other reads. A naive String Graph implementation would take
O(N2) time to compare all pairs of reads to find overlaps, before removing contained reads and
transitive edges. Simpson and Durbin (2010) showed that it is possible to construct a string graph
in linear time, by first generating an FM-index of the input reads R and an FM-index of their
reverse R′. Alternatively a single index can be constructed containing R and R̄ (Li, 2012).

The FM-index (Ferragina and Manzini, 2000) is a data structure for compression and fast
string searching. The FM-index of a set of strings S facilitates searching for a query Q in time
O(|Q|). Construction of the index has time and memory complexity O(|S|). The final index has
roughly the same size S, but can be efficiently compressed with run-length encoding.

FM-index construction has high memory requirements for high coverage data sets as all reads
must be loaded into memory. This requires building indices for subsets of the reads and recursively
merging the indices (Li, 2014a). In comparison, dBG memory is mostly determined by genome
size, with only the errors in high coverage data causing a slower increase in memory requirements.
Similar memory efficiency advantages are seen when building multi-colour dBGs from the same
species.

Since it is constructed from the reads without breaking them up, a string graph is an assembly
graph that stores all the connectivity information contained in the single-ended input reads (Myers,
2005). String graphs do not naturally lend themselves to storing information on read pairs,
although one such data structure has been proposed (Chikhi and Lavenier, 2011).

2.5 The linked de Bruijn graph

We propose a new assembly graph data structure called the Linked de Bruijn Graph (LdBG).
Defined as LG(k) = (V,E, L) where V,E are defined as in a de Bruijn graph. L(v) is a set of
paths through the graph that start at vertex v ∈ V . We call these paths links. Each of these links
l ∈ L(v) is stored as a list of junction choices that when followed, starting from vertex v, recreate
the path. Graph traversal is the same as with a de Bruijn graph, with the extension that when
we visit a vertex v, we pick up the links associated with it: L(v). The links held during traversal
record how many edges ago they were picked up, a value we call link “age”. Only when we reach a
bifurcation in the graph do we consult the links currently held. We follow the next junction choice
of the oldest link as this provides the most context as to where we are in the genome. Should
we have more than one oldest link and they disagree, we halt traversal. An illustration of links
resolving a cycle is shown in Figure 1.

As with a de Bruijn graphs we can look up any k-mer or edge between k-mers in time O(1)
and we can start graph traversal from any k-mer. As in a multi-coloured dBG, a multi-coloured
LdBG stores which samples have which k-mers and links.

A LdBG is a lossless representation of a genome when generated from error-free reads, as long
as the genome starts and ends with unique k-mers, there are no k-mer coverage gaps and each
repeat is spanned by at least one read (proof in online supplement). This is true regardless of the
value of k.

In constructing a LdBG we are effectively compressing reads against the de Bruijn graph.
However, since read start/end positions are not important for assembly we do not store them, so
although it is possible to recover the underlying genome (losslessly) through assembly, it is not
possible to recover the original set of input reads.

Reads used to annotate the graph do not need to have been used to construct the de Bruijn
graph. Sets of links may be merged by loading them together at runtime. We give an example of
the utility of such a construction in the applications section below.

3 Methods

3.1 de Bruijn Graph construction

Each input read r is broken into r− k+ 1 overlapping k-mers (v1, . . . , vn) which are added to the
graph. If a k-mer already exists in the graph, we increment its coverage. Edges are added between
vi and vi+1 for all 1 ≤ i < n.

4

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147777doi: bioRxiv preprint

https://doi.org/10.1101/147777
http://creativecommons.org/licenses/by/4.0/

ACTGATTTCGATGCGATGCGATGCCACGGTGG
TTTCGATGCGATGCGATGCCACG

a. genome and repeat-spanning read

b. de Bruijn graph (k=5) and contig output without link information

c. read threading, links, and contig output with link information

ACTGA CTGAT TGATT GATTT ATTTC TTTCG TTCGA TCGAT CGATG GATGC ATGCC TGCCA GCCAC CCACG CACGG ACGGT CGGTG GGTGG

ATGCG

TGCGA

GCGAT

1

2

3

genome:
read:

ACTGA CTGAT TGATT GATTT ATTTC TTTCG TTCGA TCGAT CGATG GATGC ATGCC TGCCA GCCAC CCACG CACGG ACGGT CGGTG GGTGG

ATGCG

TGCGA

GCGAT
{gt,t}

{ggt}{GGC}

{GC,C}

contig 1:
contig 2:
contig 3:

ACTGATTTCGATGCGATGCGATGCCACGGTGGgenome:
ACTGATTTCGATGC

CGATGCGATGC
CGATGCCACGGTGG

contig:
ACTGATTTCGATGCGATGCGATGCCACGGTGGgenome:
ACTGATTTCGATGCGATGCGATGCCACGGTGG

Figure 1: Utility of link information in traversing a graph cycle. (a) A 32-bp genome and a
23-bp read, each containing three (colour-coded) repeats of the 5-mer, GATGC. (b) The result-
ing de Bruijn graph (k = 5) with a repeat cycle, constructed from the genome sequence. The
k-mers grouped by dashed boxes indicate the result of graph traversals to emit contigs, with fi-
nal sequences written below and positioned along the input genome for clarity. (c) Reads are
“threaded” (aligned) through the graph (top); the repeated k-mers are colour-coded. The align-
ment information is distilled to a set of junction choices to make when navigating the graph and
stored as annotations on k-mers preceding junctions (middle). Multiple links are separated by a
comma. Uppercase (lowercase) links indicate the choices to be made when traversing forwards
(backwards). A k-mer’s links are picked up when we visit it. When we reach a junction, the
next edge suggested by the oldest link(s) is taken, links that disagree are dropped, all remaining
links trim off a junction choice and exhausted links are also dropped. The resultant contig reca-
pitulating the entire genome is shown (bottom). Highlighted bases indicate the junction choices
originating from the left-most link.

5

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147777doi: bioRxiv preprint

https://doi.org/10.1101/147777
http://creativecommons.org/licenses/by/4.0/

To remove k-mers due to sequencing error, unitigs with median k-mer coverage below T are
removed, where T is a user-specified threshold. If not specified, a threshold T is picked such that
the expectation of a k-mer with coverage T being an error is < 10−3 (see online supplement).

Graph tips, that is unitigs (vi, . . . , vj) with deg−(vi)+deg
+(vj) < 2, are the result of sequencing

errors near the end of reads and gaps in coverage. Tips are removed if they are shorter than a
user specified value, the default being k, the maximum number of erroneous k-mers generated by
a single-base sequencing error near the end of a read.

3.2 Read-to-graph alignment

Reads are aligned to the de Bruijn graph one-at-a-time and in doing so are error-corrected. For a
read r, we look up each of its k-mers, resulting in a list of k-mers that describe a path through
the graph. There may be gaps in this path due to k-mers removed from the graph during k-mer
error cleaning (or if the read was not used in dBG construction). Gaps are closed by walking the
graph between the k-mers either side of the gap (vi and vj). If we cannot traverse from vi to vj ,
we attempt going from vj to vi. Should such a traversal succeed (giving k-mers v1, . . . , vk) and
k ∼ j − i, the k-mers v1, . . . , vk are used to fill in the gap in the path between vi and vj . This
error step is sequence agnostic in that it does not compare the new k-mers (v1, . . . , vk) to the
read k-mers it is replacing (vi+1, . . . , vj−1). This speeds up the error correction step and ensures
it does not make assumptions about the error process of the input sequence data. The output of
the alignment step is a set of sequences that perfectly match the de Bruijn graph k-mers i.e. they
describe a path through the graph.

Gaps between paired-end reads are treated like gaps in reads caused by sequencing errors.
LdBG naturally captures information from paired end reads once the insert gap is filled. Links
can be generated in two passes: first with single-end reads against a dBG to create a LdBG; then
with paired-end reads against the LdBG. This allows the single-ended read links to be used to aid
traversal between read pairs.

3.3 Link annotation

A link is a path, starting from a given k-mer and stored as a series of junction choices. The
function J(vi, . . . , vj) takes a path and returns the junction choices it describes.

Given a path P = v1, . . . , vn through the graph, we identify the maximum j such that
deg+(vj) > 1; 1 < j < n. Then for each i such that deg−(vi) > 1; 1 < i ≤ j, we add a link
to vertex vi−1: L(vi−1)← L(vi−1)∪J(vi−1, . . . , vj+1). Link annotation is repeated for the reverse
path P̄ . Link counts record how many times a given link is seen in a sample starting at a particular
k-mer.

Links are cleaned by building a tree of links L(v), and trimming junction choices with coverage
below threshold T. This link cleaning threshold is determined by applying the same model as used
for k-mer cleaning to the link coverage distribution of the first junction choice of all links.

3.4 Implementation

We have implemented the LdBG data structure and associated algorithms as part of McCortex, a
modular set of multi-threaded programs for manipulating assembly graphs written in C. McCortex
supports FASTA, FASTQ, SAM, BAM & CRAM file formats and is released under the MIT license.
McCortex has been used as the backend for sequence analysis by Bradley et al. (2015).

3.5 Multi-coloured linked de Bruijn graphs

Multi-colour LdBGs can be constructed by building single sample LdBGs and loading them to-
gether into McCortex. For graph traversal tasks, such as assembly, we only store a single bit per
sample per k-mer and per sample per link to record which k-mers/links are present in each sample.
These are stored in a packed bitset. Graph traversal of a colour through a multi-coloured LdBG
proceeds as per for a single-sample LdBG, only using links and k-mers of the given colour. At

6

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147777doi: bioRxiv preprint

https://doi.org/10.1101/147777
http://creativecommons.org/licenses/by/4.0/

coverage gaps, traversal can fall back to using any k-mers in the graph (but not other colour’s
links).

4 Results: simulations

4.1 Equivalence of LdBG and input string

To test the lossless recovery of a genome from the LdBG we generated a random 10 kbp haploid
genome, ensuring it started and ended with unique 7-mers. We identified the length of longest
repeat (LR) in our genome. We generated perfect error-free coverage of the genome with a read
length of LR+ 2 starting at each base. We then built a LdBG (k = 7) from the reads, assembled
contigs and removed contained contigs (those that were substrings of other contigs). After checking
that we were left with a single contig, we compared it for an exact match to the original genome.
This simulation was run 100 times without fail. With k = 7, there are only 47 = 16384 possible
k-mers, so a random 10 kbp genome will have many repeats that could not be traversed by the
unannotated de Bruijn graph.

4.2 Correcting errors in reads

To assess the accuracy of our error correction step when aligning reads to the graph, we simulated
a haploid 1 Mbp genome (from human GRCh37 chr22:28,000,000-28,999,999). Single-ended 250
bp reads with 50X coverage were simulated with a 0.49% empirically distributed sequencing error
(reads paired with real MiSeq data, FASTQ scores used as per base error rate). We built a dBG
(k = 31) and removed tips and unitigs with coverage < 7 (automatically chosen). Once reads
were aligned to the graph we wrote them to disk instead of generating links. The input reads had
247, 075 (0.49%) errors, the output had 30, 148 (0.06%) errors. Of the bases changed by the error
correction step, 99.19% changes were correct.

4.3 Sensitivity to word length

Lowering the value of k in a dBG raises k-mer coverage and reduces coverage gaps but it also
reduces the length of the longest repeats that can be traversed. If we improve the ability to resolve
repeats with links, we hypothesised that we should reduce the assembly performance’s sensitivity
to the parameter k. Therefore we simulated an assembly task with different k values.

We simulated three haploid sequencing data sets from 1 Mbp of human (chr22:28,000,000-
28,999,999) using 100 bp single ended reads, each giving 100X coverage. First, we generated
‘perfect coverage’ – an error-free read starting at every base. Second, we generated ‘stochastic
coverage’ – read starts distributed uniformly across the 1 Mbp genome. Third, we generated ‘reads
with error’ – stochastically sampled reads with a uniform 0.5% rate of single base errors.

We assembled these three data sets using a dBG and LdBG at k = 21, 31, . . . , 91. To compare
assemblies we used the NG50 metric, defined as the contig length C such that contigs longer than
C sum to at least half of the genome size. NG50 and assembly errors were counted by aligning the
contigs to the truth sequence. Single base mismatches were allowed as long as they were flanked
by 21 bases that match the graph. Breaks between two alignments were counted as misassemblies.
The lengths of aligned sequences were used to calculate NG50.

The NG50 comparisons are shown in Figure 2. In the “perfect” data sets reconstructed without
links, NG50 rises as k-mer size increases. This is to be expected as a longer k-mer size essentially
encodes more connectivity information. Links, however, encode all available connectivity infor-
mation at any value of k. Thus the linked NG50 value (solid green line) is equal to the best
unlinked NG50 (dashed green line) over all values of k. The “stochastic” data sets (orange) follow
a similar pattern, with the exception that the top value of k = 91 does not necessarily yield better
NG50. As read starts are not available at every single base, some read overlaps are not present
and the resulting contig is thus truncated. Finally, the “error” data set (blue) shows improved
NG50 results when link information is used. When faced with sequencing error, our algorithms
are not as readily capable of delivering k−independent reconstructions, although using links does
improve performance at all values of k.

7

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147777doi: bioRxiv preprint

https://doi.org/10.1101/147777
http://creativecommons.org/licenses/by/4.0/

k

N
G

50
 (

K
bp

)

●
●

●

●

●

●

●

●● ● ● ● ● ● ● ●

21 31 41 51 61 71 81 91

0

20

40

60

80

100

● perfect
stochastic
error

with links
without links

Figure 2: Assembly length metric NG50 on raw de Bruijn graphs (i.e. without links, dashed lines)
and linked de Bruijn graphs (i.e. with links, solid lines), as a function of k-mer size. Assembling 1
Mbp of sequence (human GRCh37 chr22:28,000,000-28,999,999) with three simulated 100X read
data sets: error free 100 bp reads, one read starting at every base (“perfect”, green); error free
stochastic coverage (uniformly distributed read starts) (“stochastic”, orange); an error rate of
0.5% and stochastic coverage (“error”, purple).

8

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147777doi: bioRxiv preprint

https://doi.org/10.1101/147777
http://creativecommons.org/licenses/by/4.0/

To explain this behaviour, we note that at low k, sequencing errors introduce false edges
between true k-mers. Since error correction on dBGs use k-mer counts rather than edge counts,
these false edges do not get cleaned off. We estimated the number of false edges induced at
various k to be 604, 139, 30, 7, 2, 1, 0, 0, 0 for k = 21, 31, . . . , 91. Each false edge introduces a new
bifurcation that may halt traversal. dBG implementations that use counts on edges instead of
k-mers (as described in Conway and Bromage (2011)) may overcome this issue.

4.4 Comparison to string graph assembly

Next, we compared assembly performance between our LdBG implementation and the String
Graph Assembler (SGA) (Simpson and Durbin, 2010). As stated above, string graphs are notable
as their construction is based on the direct computation of read-to-read overlaps, facilitated by an
FM-index on the reads. Similar to our work, SGA is able to use the full length of the read during
assembly and should thus be able to assemble repeats shorter than a read length. However, SGA
differs from our work in some key ways. Overlaps between reads need not be perfect, but rather
are parametrised at run time to accept a minimum overlap of τmin bases and maximum error
rate εmax. Additionally, SGA attempts to correct sequencing errors, rather than discarding them
completely. In practice, these two factors may yield longer contigs, but at the expense of accuracy
(Bradnam et al., 2013).

The previous simulated haploid genome “error” read data set was used. As shown in Figure
2, McCortex is sensitive to sequencing error, so we ran bfc error correction (Li, 2015) on the reads
before assembling. bfc error correction did not have a beneficial effect on SGA and was therefore
not used. SGA was used to assemble at various values of τmin. While τmin and k are not identical
parameters (without setting εmax = 0) they are still informative in terms of how many bases
between reads are required to produce an overlap. Other SGA parameters were left to software
defaults (most notable for SGA’s error correction step, which learns the appropriate k-mer coverage
cutoff threshold automatically). We did not carry out scaffolding or use paired end information
in link construction.

SGA and McCortex assemblies were compared using the same NG50 and assembly error metrics
as above (see Figure 3). When compared to the the true genome, McCortex’s NG50 is roughly
the same as SGA at low and high k, but is much better at k = 41, . . . , 71. Assembly errors are
about an order of magnitude lower.

5 Results: applications

To assess LdBG on real data, we examined short read data from Klebsiella pneumoniae, a gram-
negative bacteria that usually lives harmlessly in the mouth and gut of humans. However in the
event of a weakened immune system, it can establish pathogenic colonies in the lung leading to
inflammation and bleeding. It is also found in some cases of urinary tract infections. Antibiotic
resistant strains of K. pneumoniae have been found in patients. We used McCortex for two tasks
where long-range information is likely to be beneficial – finding large differences from a reference
and analysis of genomic context for drug resistance genes, which we validated using a PacBio
reference assembled for the sample (Sheppard et al., 2016).

5.1 Large-variant discovery

As links should provide useful guidance to navigating junctions in a graph, we examined their util-
ity in calling large variants (insertions or deletions greater than 100 bp in length). We implemented
a “bubble caller” (named for the characteristic motif produced by a biallelic mutation in a graph
wherein paths diverge from one k-mer and rejoin at another) and tested it by calling variants in
CAV1016, a K. pneumoniae isolate for which a high-quality PacBio sequence was available for vali-
dation. We constructed dBGs of the canonical reference sequence (GCF 000016305.1 ASM1630v1)
and Illumina data for CAV1016. From these, we built LdBGs using the single-end Illumina reads
for link construction. We applied our bubble caller to the dBG and LdBGs, allowing for a mini-
mum event size of 100 bp and maximum of 200 kbp, and removing duplicate events. We validated

9

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147777doi: bioRxiv preprint

https://doi.org/10.1101/147777
http://creativecommons.org/licenses/by/4.0/

τmin (SGA) or k (McCortex)

N
G

50
 (K

bp
)

21 31 41 51 61 71 81 91

0

20

40

60

80

100

McCortex
SGA

τmin (SGA) or k (McCortex)

A

ss
em

bl
y

er
ro

rs
 (l

og
)

21 31 41 51 61 71 81 91

0
1

10

50
100
200

500
McCortex
SGA

Figure 3: Assembly results for SGA and McCortex compared using a simulation on 1 Mbp of
sequence (human GRCh37 chr22:28,000,000-28,999,999), using 100 bp reads with a per base error
rate of 0.5% and stochastic 100X coverage (“error” data set from Figure 2). Top panel: contig
NG50 at different parameters of τmin (SGA) and k (LdBG). Bottom panel: number of assembly
errors in contigs compared to truth.

10

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147777doi: bioRxiv preprint

https://doi.org/10.1101/147777
http://creativecommons.org/licenses/by/4.0/

called alleles by aligning the reference and alternate alleles to the canonical reference sequence and
CAV1016 PacBio sequence, respectively. The resulting callsets without and with link information
are presented in Supplementary Table 1.

Our bubble caller discovered 55 large indels in the dBG and 59 indels in the LdBG. All 55
variants from the dBG callset were recovered in the LdBG callset. The four remaining variants
exclusive to the LdBG callset are all insertions of varying size (134, 246, 7, 952 and 11, 946 bp).

That the LdBG-exclusive events should all be insertions (particularly large ones) is perhaps not
surprising; in a graphical framework, calling insertions against a high-quality reference sequence
with comparatively lower quality Illumina data is expected to be more difficult than calling dele-
tions. With insertions, sequencing error in the study sample will produce spurious paths in the
graph, not all of which can be removed successfully, and thus graph traversal from the 5’ to the
3’ end of the alternate allele has many opportunities to fail. With deletions, the graph navigation
burden is on the reference allele which should have substantially fewer errors (and thus fewer spu-
rious paths) to confound traversal. Link-informed traversal helps alleviate this insertion/deletion
detection bias, enabling the recovery of large events like the 8 and 12 kb events listed above. This
improves our access to large variants underrepresented in current variant call sets (Weisenfeld
et al., 2014; Li, 2014b).

5.2 Reference-link guided assembly

Finally, we show that with links, we can use a panel of reference contigs derived from multiple
sources to improve drug resistance locus characterisation in K. pneumoniae isolates. As the un-
derlying graphs are considered immutable after construction, links derived from this panel cannot
add k-mers to a sample. We hypothesised that the links panel could still provide valuable connec-
tivity information where they were consistent with the graph without misleading the assembler
in regions where they were divergent. We selected 21 K. pneumoniae isolates with known drug
resistance status and that carry combinations of two alleles and two plasmid backgrounds at the
K. pneumoniae carbapenemase (KPC) resistance locus, see Table 1. As references, we constructed
links from a panel of four plasmid backgrounds carrying three different KPC alleles: PacBio se-
quences from two of the 21 isolates (carrying allele KPC-2), a KPC-harbouring plasmid from E.
coli (carrying allele KPC-3), and a fourth K. pneumoniae plasmid known to harbour a resistance
allele and background absent from the 21 isolates (carrying allele KPC-5). All accessions are de-
scribed in Supplementary Table 2. Two assemblies were generated per isolate: one without links,
and one with links.

Contigs harbouring the KPC sequence within the 21 isolates were identified by aligning to the
KPC-2 allele sequence with LASTZ (Harris, 2007) and extracting the longest such contig from
each assembly. These were aligned back to both the reference data sources and the validation data
(Mathers et al., 2015). For alignments that ran off the end of a sequence owing to the circular
nature of the plasmids, we attempted to shift the contig sequence such that a linear alignment
of maximum length was achieved; where this was not possible we have reported the length of
the aligned region. The contig selected from each assembly was evaluated for correct KPC allele
recovery, correct identification of plasmid background (i.e. sequence context of KPC allele), and
mismatches/gaps to the relevant reference sequence. These results are shown in Table 1.

Without link information, we find that in 57% of cases the plasmid background on which the
KPC allele resides cannot be identified. In such cases, LASTZ reports alignments of the short
contigs with 100% sequence identity to plasmids 1 and 2. Moreover, for the CAV1360 isolate,
the aligner determines the background incorrectly as the E. coli plasmid due to the presence of
KPC-3.

Reconstruction with the link panel provides an order of magnitude increase in contig length over
the link-uninformed reconstructions and the inferred plasmid membership matches the Mathers
et al. (2015) determination in all 21 cases. Reconstructions from two isolates stand out. CAV1351
was known to carry the KPC-3 allele, while all other isolates carried the KPC-2 allele. The link-
uninformed assembly produces a contig that maps to the E. coli KPC-3 sequence perfectly, but
infers the wrong plasmid membership. The link-informed reconstruction, however, produces both
the correct plasmid membership and correct allele. In another case, Mathers et al. (2015) reported
CAV1077 to possess plasmid 1, but with an unspecified sequence alteration. Our reconstruction is

11

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147777doi: bioRxiv preprint

https://doi.org/10.1101/147777
http://creativecommons.org/licenses/by/4.0/

able to establish both the correct plasmid membership and identify a 188 bp deletion in the inter-
genic region upstream from the transposase and downstream from the KPC genes (detected both
with and without links). Combined, these analyses demonstrate how using external data sources
as a means to guide assembly through “reference links” can lead to highly accurate reconstruction
of even complex regions of the genome.

5.3 Scaling to human genomes

Finally, to assess the scalability of LdBG to large genomes, we constructed an LdBG (k = 31) from
paired-end PCR-free human (NA12878) whole-genome Illumina data (2x150bp, 50X, accession
ERR194147). Construction has a peak memory usage of 400 GiB; loading the cleaned LdBG into
memory requires 70 GiB of RAM (50 GiB for the dBG, 20 GiB for links). Although the memory
footprint of construction is high, there is large scope for improvement using compressed and/or
disk-based methods (Chikhi and Rizk, 2013).

6 Discussion

We have presented a de novo assembly method that addresses the most important limitation of de
Bruijn graphs: the ability to leverage long-range connectivity information inherent in read data.
While cutting reads into small k-mers has long been a useful way of simultaneously computing read-
to-read overlaps and overcoming high rates of sequencing error, increasing sequencing quality and
read lengths have rendered de Bruijn assembly methods less attractive. String graphs have been
successful in incorporating long-range data into assemblies, but sacrifice desirable computational
properties of de Bruijn graphs. Our solution, Linked de Bruijn Graphs, combine the connectivity
properties of string graphs with the rapid lookup of specific (multi-coloured) k-mers. Due to the
wide range of uses of dBGs in sequence analysis, we believe this offers a potential improvement to
many existing algorithms. Path encoding of reads has been suggested for read compression before
(Conway and Bromage, 2011; Kingsford and Patro, 2015). However we believe this is the first
implementation to use it for multi-colour assembly that can scale up to large mammalian genomes
on modern computer hardware.

We have shown that read error correction and graph annotation can improve assembly perfor-
mance of de Bruijn graphs and that this can be seen with the recovery of large (12kbp) events in
short read sequences. Moreover, through application to real data we have shown that links can
be generated from a wide range of sequencing technologies including data not used to construct
the underlying dBG, and that this can be exploited to identify sequences of biological interest.
LdBGs can also naturally represent paired-end connectivity information. We have proved that in
the error-free setting, Linked de Bruijn Graphs losslessly store the genome sequence, even when
constructed from short reads and agnostic of k.

Our method is useful for reconstructing complex loci across multiple samples using a common
panel of pre-determined haplotypes. Link information derived from a haplotype panel cannot
add k-mers or edges to the graph that were not observed in the original dataset. Nevertheless,
assembly is enhanced in regions where the links are consistent with the graph, and naturally
defaults to link-uninformed navigation in regions of discrepancy. Threading a panel of haplotypes
from multiple samples through each graph thus identifies only the relevant sections of each donor
haplotype.

One shortcoming of long links is the accumulated probability of encountering an error during
traversal. If a link takes the wrong branch of an error-induced bubble, cleaning that junction
choice trims off all the remaining information about the junction choices made beyond the bubble.
This shortcoming results in link coverage dropping off quicker than expected as links get longer,
resulting in truncated links. This could be addressed by error-correcting groups of links that start
at the same k-mer.

We have implemented a very simple read mapping, which trusts all k-mers from a read if there
is a perfect match in the graph, and which only attempts to fill gaps using linear time graph
traversal. Optimal mapping is ultimately NP-hard, but more advanced heuristic methods are

12

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147777doi: bioRxiv preprint

https://doi.org/10.1101/147777
http://creativecommons.org/licenses/by/4.0/

T
ab

le
1:

C
om

p
ar

is
on

o
f

K
P

C
-c

on
ta

in
in

g
co

n
ti

gs
to

va
li

d
at

io
n

d
at

a,
in

fe
rr

ed
w

it
h

an
d

w
it

h
ou

t
li

n
k
s

w
it
h
o
u
t
li
n
k
in
fo
rm

a
ti
o
n

w
it
h
li
n
k
in
fo
rm

a
ti
o
n

Is
ol

a
te

K
n

ow
n

p
la

sm
id

an
d

K
P

C
al

le
le

L
en

gt
h

(b
p

)
M

at
ch

es
u

n
iq

u
el

y
an

d
co

rr
ec

tl
y

M
is

m
at

ch
es

,
ga

p
s

L
en

gt
h

(b
p

)
M

at
ch

es
u

n
iq

u
el

y
an

d
co

rr
ec

tl
y

M
is

m
at

ch
es

,
ga

p
s

C
A

V
10

16
1,

K
P

C
-2

38
93

n
on

-u
n

iq
u

e
0,

0
43

63
0

ye
s

0,
0

C
A

V
10

17
1,

K
P

C
-2

38
95

n
on

-u
n

iq
u

e
0,

0
43

62
8

ye
s

0,
0

C
A

V
10

42
1,

K
P

C
-2

25
57

n
on

-u
n

iq
u

e
0,

0
43

66
9

ye
s

0,
0

C
A

V
10

77
1,

K
P

C
-2

37
08

n
on

-u
n

iq
u

e
0,

1
(1

88
bp
d
el

)
15

79
6

ye
s

0,
1

(1
88

bp
d
el

)
C

A
V

11
42

1,
K

P
C

-2
38

92
n

on
-u

n
iq

u
e

0,
0

43
61

2
ye

s
2,

0
C

A
V

11
45

1,
K

P
C

-2
51

58
ye

s
0,

0
43

64
3

ye
s

1,
0

C
A

V
11

82
1,

K
P

C
-2

25
58

n
on

-u
n

iq
u

e
0,

0
97

22
ye

s
1,

0
C

A
V

12
03

1,
K

P
C

-2
39

11
n

on
-u

n
iq

u
e

0,
0

43
67

0
ye

s
0,

0
C

A
V

12
05

2,
K

P
C

-2
59

78
ye

s
0,

0
14

01
9

ye
s

2,
1

(2
bp
d
el

)
C

A
V

12
07

2,
K

P
C

-2
13

24
9

ye
s

0,
0

13
99

1
ye

s
3,

1
(2
bp
d
el

)
C

A
V

12
37

1,
K

P
C

-2
20

44
4

ye
s

1,
0

43
61

3
ye

s
2,

1
(8
bp
d
el

)
C

A
V

12
90

1,
K

P
C

-2
50

99
ye

s
0,

0
29

34
0

ye
s

4,
1

(2
bp
d
el

)
C

A
V

12
92

1,
K

P
C

-2
50

94
ye

s
0,

0
29

33
7

ye
s

1,
1

(2
bp
d
el

)
C

A
V

13
38

2,
K

P
C

-2
59

63
ye

s
0,

0
14

00
3

ye
s

2,
1

(2
bp
d
el

)
C

A
V

13
44

1,
K

P
C

-2
48

39
ye

s
0,

0
96

94
ye

s
1,

0
C

A
V

13
51

1,
K

P
C

-3
38

98
in

co
rr

ec
t

0,
0

43
61

6
ye

s
1,

1
(5
bp
d
el

)
C

A
V

13
60

1,
K

P
C

-2
7
34

n
on

-u
n

iq
u

e
0,

0
43

62
1

ye
s

1,
0

C
A

V
13

91
1,

K
P

C
-2

51
06

ye
s

0,
0

97
26

ye
s

1,
0

C
A

V
15

76
2,

K
P

C
-2

91
61

ye
s

0,
0

14
00

3
ye

s
2,

1
(2
bp
d
el

)
C

A
V

15
78

2,
K

P
C

-2
52

43
ye

s
0,

0
89

56
ye

s
0,

0
C

A
V

15
97

2,
K

P
C

-2
12

62
7

ye
s

0,
0

14
00

9
ye

s
2,

1
(2
bp
d
el

)

13

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147777doi: bioRxiv preprint

https://doi.org/10.1101/147777
http://creativecommons.org/licenses/by/4.0/

available which may perform better than our approach (Limasset et al., 2016). Improvement may
be most noticeable for high error rate sequencing data and in low complexity regions of the graph.

Finally, there is scope for reducing memory consumption, given very few k-mers actually have
links attached (see Supplementary Figure 6) and could be further reduced with better encoding
in memory of the junction choice tree held by a k-mer (i.e. L(v)). For example, using a binary
encoding of the tree of junction choices, or generative path encoding proposed to compress sequence
data (Kingsford and Patro, 2015).

Acknowledgements

We thank Jerome Kelleher for his many useful comments and edits, Rachel Norris for her pointers
and insight into the K. pneumoniae dataset, and the other members of the McVean group for
useful discussions during the preparation of this manuscript.

Funding This work was supported by the Wellcome Trust (grant numbers 090532/Z/09/Z
and 100956/Z/13/Z). K.V.G. was supported by Wellcome Trust Research Studentship award
(097310/Z/11/Z). I.T. was supported by a PhD studentship from the BBSRC. Z.I. was funded by
a Wellcome Trust/Royal Society Sir Henry Dale Fellowship (grant 102541/Z/13/Z).

Conflicts of interest None.

References

Aguilera,A. and Gómez-González,B. (2008). Genome instability: a mechanistic view of its causes and consequences. Nature

Reviews Genetics, 9(3), 204–217.

Artzy-Randrup,Y. et al. (2012). Population structuring of multi-copy, antigen-encoding genes in Plasmodium falciparum.

eLife, 1, e00093–e00093.

Bateman,A. et al. (2016). Limitations of Current Approaches for Reference-Free, Graph-Based Variant Detection. In

Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health In-

formatics, pages 499–500, New York, NY, USA. ACM.

Bonizzoni et al. (2016) An external-memory algorithm for string graph construction. Algorithmica, 78(2):394–424.

Bowe,A. et al. (2012). Succinct de Bruijn Graphs. In B. Raphael and J. Tang, editors, Algorithms in Bioinformatics,

pages 225–235. Springer Berlin Heidelberg, Berlin, Heidelberg.

Bradley,P. et al. (2015). Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and

Mycobacterium tuberculosis. Nature Communications, 6, 10063–10063.

Bradnam,K.R. et al. (2013). Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species.

GigaScience, 2(1), 10–10.

Chikhi,R. and Lavenier,D. (2011). Localized Genome Assembly from Reads to Scaffolds: Practical Traversal of the Paired

String Graph. In T. Przytycka and M.-F. Sagot, editors, Algorithms in Bioinformatics, pages 39–48. Springer Berlin

Heidelberg, Berlin, Heidelberg.

Chikhi,R. and Rizk,G. (2013). Space-efficient and exact de Bruijn graph representation based on a Bloom filter. Algorithms

for Molecular Biology, 8(1), 22–22.

Chikhi,R. et al. (2014). On the representation of de Bruijn graphs. Journal of Computational Biology, 22(5), 336–352.

Conway,T.C. and Bromage,A.J. (2011). Succinct data structures for assembling large genomes. Bioinformatics, 27(4),

479–486.

Dilthey, A. et al. (2015) Improved genome inference in the MHC using a population reference graph. Nat. Genet. 47,

682–688.

de Bruijn,N.G. (1946). A Combinatorial Problem. Koninklijke Nederlandsche Akademie Van Wetenschappen, 49(6),

758–764.

Difilippantonio,M.J. et al. (2002). Evidence for replicative repair of DNA double-strand breaks leading to oncogenic

translocation and gene amplification. The Journal of Experimental Medicine, 196(4), 469–480.

Ferragina,P. and Manzini,G. (2000). Opportunistic data structures with applications. In Foundations of Computer

Science, 2000. Proceedings. 41st Annual Symposium on, pages 390–398, Los Alamitos, CA, USA. IEEE.

14

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147777doi: bioRxiv preprint

https://doi.org/10.1101/147777
http://creativecommons.org/licenses/by/4.0/

Freitas-Junior,L.H. et al. (2000). Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters

of P. falciparum. Nature, 407(6807), 1018–1022.

Goodwin,S. et al. (2016). Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics,

17(6), 333–351.

Harris,R.S. (2007). Improved Pairwise Alignment of Genomic DNA. PhD thesis, Pennsylvania State Univ.

Huang L. et al. (2013). Short read alignment with populations of genomes. Bioinformatics 29, i361-i370.

Idury,R.M. and Waterman, M.S. (1995). A new algorithm for DNA sequence assembly. Journal of Computational Biology,

2(2), 291–306.

Iqbal,Z. et al. (2012). De novo assembly and genotyping of variants using colored de Bruijn graphs. Nature Genetics,

44(2), 226–232.

Iqbal,Z. et al. (2013). High-throughput microbial population genomics using the Cortex variation assembler. Bioinfor-

matics, 29(2), 275–276.

Jackson,A.P. et al. (2012). Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome

species. Proceedings of the National Academy of Sciences, 109(9), 3416–3421.

Kingsford,C. and Patro,R. (2015). Reference-based compression of short-read sequences using path encoding. Bioinfor-

matics, 31(12), 1920–1928.

Li,H. (2012). Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics,

28(14), 1838–1844.

Li,H. (2014a). Fast construction of FM-index for long sequence reads. Bioinformatics, 30(22), 3274–3275.

Li,H. (2014b). Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics,

30(20), 2843–2851.

Li,H. (2015). BFC: correcting Illumina sequencing errors. Bioinformatics, 31(17), 2885–2887.

Limasset,A. et al. (2016). Read mapping on de Bruijn graphs. BMC Bioinformatics, 17(1), 237–237.

Mathers,A.J. et al. (2015). Klebsiella pneumoniae carbapenemase (KPC) producing K. pneumoniae at a Single Institution:

Insights into Endemicity from Whole Genome Sequencing. Antimicrobial Agents and Chemotherapy, 59(3), 1656–1663

McVean,G.A. et al. (2012). An integrated map of genetic variation from 1,092 human genomes. Nature, 491(7422), 56–65.

Miller,J.R. et al. (2010). Assembly algorithms for next-generation sequencing data. Genomics, 95(6), 315–327.

Myers,E.W. (1995). Toward simplifying and accurately formulating fragment assembly. Journal of Computational Biology,

2(2), 275–290.

Myers,E.W. (2005). The fragment assembly string graph. Bioinformatics, 21(suppl 2), ii79–ii85.

Pevzner,P.A. (1989). l-Tuple DNA sequencing: computer analysis. Journal of Biomolecular Structure & Dynamics, 7(1),

63–73.

Pevzner,P.A. et al. (2004). De Novo Repeat Classification and Fragment Assembly. Genome Research, 14(9), 1786–1796.

Read,B.A. et al. (2013). Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature, 499(7457),

209–213.

Ribeiro,A. et al. (2015). An investigation of causes of false positive single nucleotide polymorphisms using simulated reads

from a small eukaryote genome. BMC Bioinformatics, 16(1), 382.

Rimmer,A. et al. (2014). Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical

sequencing applications. Nature Genetics, 46(8), 912–918.

Rizk,G. et al. (2013). DSK: k-mer counting with very low memory usage. Bioinformatics, 29(5), 652–653.

Schneeberger, K. et al. (2009). Simultaneous alignment of short reads against multiple genomes. Genome Biol., 10, R98.

Sheppard,A.E. et al. (2016). Nested Russian Doll-Like Genetic Mobility Drives Rapid Dissemination of the Carbapenem

Resistance Gene blaKPC. Antimicrobial Agents and Chemotherapy, 60(6), 3767–3778.

Simpson,J.T. and Durbin, R. (2010). Efficient construction of an assembly string graph using the FM-index. Bioinfor-

matics, 26(12), i367–i373.

Simpson,J.T. et al. (2009). ABySS: A parallel assembler for short read sequence data. Genome Research, 19(6), 1117–

1123.

Weisenfeld,N.I. et al. (2014). Comprehensive variation discovery in single human genomes. Nature Genetics, 46(12),

1350–1355.

Zerbino,D.R. (2010). Using the Velvet de novo assembler for short-read sequencing technologies. Curr. Protoc. Bioinfor-

matics, 31, 11.5.1–11.5.12.

Zerbino,D.R. and Birney, E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome

Research, 18(5), 821–829.

15

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted June 8, 2017. ; https://doi.org/10.1101/147777doi: bioRxiv preprint

https://doi.org/10.1101/147777
http://creativecommons.org/licenses/by/4.0/

