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ABSTRACT: Failure in protein quality control can often lead to protein aggregation, yet in neuro-9 

degenerative diseases, by the time aggregates can be seen, the cells have advanced well into the 10 

disease pathology. Here, we develop a quantitative imaging approach to study the protein aggregation 11 

process in living mammalian cells with unprecedented spatio-temporal resolution. We find that sub-12 

diffractive precursor aggregates may form even in untreated cells, and their size distribution is exactly 13 

as predicted for a system undergoing a first order phase transition. Practically, this implies that as 14 

soon as aggregates reach a critical size (Rc = 162 ± 4 nm in untreated cells), they will spontaneously 15 

grow into large inclusions. Our data suggest that a previously uncharacterized, RuvBL1 dependent 16 

mechanism clears aggregates above the critical size. Our study unveils the existence of sub-diffractive 17 

aggregates in living cells; and the strong agreement between cellular data and a nucleation theory, 18 

based on first order phase transition, provides insight into regulatory steps in the early stages of 19 

aggregate formation in vivo. 20 

 21 

  22 



Neurodegenerative diseases, such as Parkinson’s Disease, Amyotrophic Lateral Sclerosis, and 23 

Alzheimer’s Disease, are characterized by the appearance of large protein aggregates in cells and in 24 

the extracellular space (1). It is hypothesized that intermediate species in the aggregation process are 25 

likely more toxic moieties (2-9) than conventionally visible large aggregates, plaques or fibres. 26 

However detecting and characterizing intermediate aggregates remains a fantastic technical challenge. 27 

Capturing the early steps of  protein aggregation in living cells can help uncover hidden mechanisms 28 

in their formation and regulation in vivo, as well as elucidate their putative roles in protein misfolding 29 

diseases (2-9). 30 

Here we develop a quantitative super-resolution assay to study the early steps protein 31 

aggregation in mammalian cells.  We adopt proteasome inhibition as an approach used to study the 32 

formation of large aggregates in living mammalian cells (10-12). Treatment of cells with the 33 

proteasome inhibitor MG132 (13) leads to the gradual accumulation of misfolded, aggregation-prone 34 

proteins, and to the formation of the aggresome, a large juxta-nuclear inclusion body akin to Lewy 35 

bodies (14, 15) in Parkinson’s disease cells.  We engineered mammalian cell lines expressing 36 

Synphilin 1 - a marker of aggregates in Parkinson’s disease (10, 16, 17) - fused to a fluorescent 37 

protein Dendra2 (18). Dendra2 is a green to red photo-convertible protein that enables photo-38 

activation localization microscopy (PALM) (19), a single-molecule based super-resolution (19-21) 39 

approach we used previously to quantitatively image protein clustering with high spatio-temporal 40 

resolutions in living cells (22, 23).  41 

Imaging Synphilin 1 by conventional fluorescence, shows emergence of the aggresome 42 

around 135 minutes after treatment (Fig. 1A-E, top panels and supplementary movie 1) but 43 

formation dynamics of the aggresome cannot be readily measured with this imaging approach. 44 

Instead, when we perform live cell super-resolution imaging (24)  (Fig. 1A-E, bottom panels), we can 45 

detect and quantify the growth of individual aggresomes (Fig. 1F), from their inception at length 46 

scales unattainable in previous live cell studies (25).  Furthermore, in addition to the large aggresome, 47 

the examination of Fig. 1A-E (bottom panels and supplementary movie 1) shows a population of 48 

sub-diffractive aggregates throughout the cellular cytoplasm and indiscernible in the conventional 49 



images (top panels). Thus, our live cell super-resolution imaging approach reveals a previously 50 

undetected population of sub-diffractive aggregates. 51 

We characterize the properties of these sub-diffractive aggregates using density based spatial 52 

clustering of applications with noise (DBSCAN) (26). We record for each aggregate, the radius, and 53 

the number of localization events (fluorescence detection events) ((24) and supplementary text 1). 54 

Only aggregates with a radius greater than our localization accuracy (estimated to be ~20nm (22)) are 55 

interpreted in our analysis; aggregates of radius less than 25nm are discarded.  56 

As represented in Fig. 1G, we find that the number of localization events per aggregate is 57 

proportional to the radius cubed (volume) of the aggregate (also supplementary text 1). This 58 

observation implies that sub-diffractive aggregates have a defined density, with the aggregate size 59 

scaling linearly with volume. Relying on the precise number of molecular detections to estimate 60 

aggregate size can be complicated by single molecule photo-physical variability (27). Here, we rely 61 

on the existence of a well-defined density to use the spatial extent (radius cubed) of the aggregate as 62 

the measure of the size. For subsequent theoretical analyses, we found it practical to define the 63 

aggregate size as a reduced numerical parameter ‘n’ (see supplementary text 1, and Fig. S1]. 64 

  Previous studies, from experiments done in vitro,  have invoked nucleation and growth as a 65 

potential mechanism underlying aggregate formation (28). However, such models imply that 66 

aggregation occurs through a first order phase transition into a so-called state of super-saturation, 67 

characterized by a well-defined nucleation barrier (29). The nucleation barrier reflects a critical 68 

aggregate size above which spontaneous growth is energetically favoured, and below which aggregate 69 

disassembly is favoured. Such a critical aggregate size, if it exists, has been difficult to measure 70 

experimentally (28), due in part to the challenge of detecting the stochastically formed, transient 71 

precursor clusters; and it is unclear even if proven in vitro, whether phase transition formalism may 72 

still hold inside the cells where complex biological quality control mechanisms exist. If a first order 73 

phase transition is pertinent,  there are clear theoretical expectations for the distribution and evolution 74 

of aggregate sizes. Therefore, we  investigate the mechanism behind sub-diffractive aggregates 75 



formation and growth in mammalian cells, initially, by studying the size distribution of the 76 

aggregates, and how the distribution evolves with time. 77 

In nucleation and growth a system may be either in a sub-saturated state (Fig. 2A), or in a 78 

super-saturated state (Fig. 2B & C). In the first case the formation and growth of sub-diffractive 79 

aggregates is not favoured energetically. In such a sub-saturated system, an exponential distribution 80 

of aggregate sizes is expected (29, 30). For a sub-saturated state, the overall distribution of aggregate 81 

sizes does not change with time even as individual aggregates may grow or disassemble 82 

(supplementary text 2, and simulations in  Fig. 2D). 83 

 Alternatively, in a super-saturated state, the system is poised such that aggregates that 84 

stochastically reach the critical size become energetically favoured to grow spontaneously (see 85 

supplementary text 2 and Fig. S2).  In such a case the distribution of aggregate sizes is time-86 

evolving (simulations in Fig. 2E& F) and may result in a peak at large aggregate sizes when the total 87 

pool of contributing proteins is conserved (Fig. 2E). Alternatively , the pool of contributing proteins 88 

may be continuously replenished, leading to an exponential distribution of small aggregates coexisting 89 

with a growing shoulder at larger aggregate sizes (Fig. 2F); This may likely be the case in living cells 90 

when new misfolded proteins can constantly be added to the system.  As represent in Fig. 2G our 91 

super-resolution data reveals a distribution of aggregate sizes with a shoulder growing towards larger 92 

aggregates, as a function of time after treatment, more consistent with the simulations in Fig. 2F. This 93 

result suggests that sub-diffractive aggregate formation and time evolution may behave as a super-94 

saturated condensation system.   95 

A super-saturated system is expected to exhibit precise energetics, underlain by a critical 96 

aggregate size (29) (noted here as 𝑛𝑐 or 𝑅𝑐). 𝑛𝑐  is the point at which the surface energy cost is 97 

balanced by the minimising energy of the molecules buried in the bulk of the aggregate. In particular 98 

the expected form of the free energy cost to form a aggregate of size “n”, is given by 𝑈(𝑛) = 𝑎𝑛2/3 −99 

𝑏𝑛, with two terms (𝑎𝑛2/3 and 𝑏𝑛) representing the surface and bulk contributions respectively 100 

(supplementary text 2, and Fig. S2). Moreover, in this formalism, for aggregates below the critical 101 



size (i.e 𝑛 < 𝑛𝑐) the Boltzmann distribution (𝑃(𝑛) ∝ 𝑒−𝑈(𝑛)), the equilibrium thermodynamics 102 

exponentially-suppressed distribution,  would be expected even though the full system may not be in 103 

equilibrium (29).  104 

We examine whether the sub-diffractive aggregates in the mammalian cells truly exhibit such 105 

stringent energetics. Given that for a super-saturated system the sub-critical aggregate (𝑛 < 𝑛𝑐) size 106 

distribution may be approximated as 𝑃(𝑛) ∝ 𝑒−𝑈(𝑛), 𝑛 < 𝑛𝑐, , then the negative logarithm should give 107 

the free energy cost 𝑈(𝑛), i.e −𝐿𝑜𝑔(𝑃(𝑛)) ∝ 𝑈(𝑛), for 𝑛 < 𝑛𝑐 . By plotting the negative logarithm 108 

of the size distribution  one can test how well the distribution is governed by the precise free energy 109 

cost 𝑈(𝑛) = 𝑎𝑛2/3 − 𝑏𝑛   (see prediction in Fig. 3A). We find a remarkable agreement between the 110 

experimentally measured sub-critical size distribution shown in Fig. 3B and this very specific 111 

prediction of simple condensation theory (see (24) and supplementary text 2).  112 

The agreement between theory and experiment in Fig. 3B involves a fit with two model-113 

parameters (surface and bulk terms respectively). We test even further whether the two terms can be 114 

decoupled. That is, whether a fit of the only the surface term at a physically appropriate limit, would 115 

result in a data-set which is accounted for primarily by the remaining bulk term. 116 

The surface term ( 𝑎𝑛2/3 ) must dominate for very low-n.  Thus we posit that by fitting only 117 

the first few data points of the −𝐿𝑜𝑔(𝑃(𝑛))   graph to the surface term 𝑎𝑛2/3 , and subtracting it off 118 

of the data (24), then for all remaining sub-critical aggregates the resultant should be the volume term, 119 

i.e. [−𝐿𝑜𝑔(𝑃(𝑛)) − 𝑎𝑛
2

3] ∝ −𝑏𝑛  .  This resultant should be a straight line when plotted versus 120 

aggregate size 𝑛,   (see theoretical prediction in Fig. 3C). We note that there is, a-priori, nothing  else 121 

in our dataset imposing that the resulting data should be linear upon correction of the surface term. 122 

Thus if the data deviate from the first order phase transition energetics, we would expect a scattered 123 

resultant, or the revelation of a different energy dependence. In Fig. 3D the data show a strikingly 124 

linear resultant, demonstrating a high quality agreement between the theory and super-resolution 125 

experimental data.  126 



From the results in Fig. 3, therefore, we conclude that while other bio-regulatory processes 127 

might be at play, the simple condensation picture with specific energetic dependence 𝑈(𝑛) = 𝑎𝑛2/3 −128 

𝑏𝑛, describes how sub-diffractive aggregates can form and grow to a well-defined critical size 𝑛𝑐  in 129 

the mammalian cells.  We also tested aggregates with the Neuro2A cell line (neuronal precursor cells, 130 

see supplementary text 3) and observe the very same conclusions (Fig. S3) suggesting the physical 131 

mechanism for sub-diffractive aggregation may be general to a range of mammalian cells. 132 

 Biochemically, the specific parameters in the energetics for nucleation and growth would 133 

depend on the concentration of aggregating proteins and on their effective energy of interactions. To 134 

further test this notion, we sought to increase the concentration of misfolded aggregating polypeptides 135 

in living cells by incubation with a proline analog azetidine-2-carboxylic acid (AZC). This molecule 136 

incorporates in newly synthesized polypeptides instead of proline, and prevents normal folding, thus 137 

generating a massive build-up of misfolded proteins in the cell (31). In a condensation model, such a 138 

build-up would result in a greater degree of super-saturation with a stronger bulk (linear) term.  139 

We find in Fig. 3E&F that the distribution of aggregates sizes in the presence of AZC fits the 140 

same functional form, and with a larger linear slope indicative of a larger bulk term (also see further 141 

AZC characterization in supplementary text 4, Fig. S4 and general applicability of our results under 142 

other perturbations in supplementary text 5, Fig. S5). The AZC incubation data further validates the 143 

agreement between cellular aggregation data and the nucleation model, and with interpretations 144 

consistent with that expected of a classical super-saturated system. 145 

 Implicit to phase transition theory is the notion that any cell including healthy cells or those 146 

untreated with proteasome inhibitor, may readily form sub-diffractive aggregates which 147 

spontaneously grow into large inclusions after reaching 𝑛𝑐. This expectation is counter to a widely 148 

held belief that the presence of precursor aggregates may directly indicate cell pathology (2).  In Fig. 149 

4A (left panel) we find that untreated cells do in fact show sub-diffractive aggregates implying that 150 

aggregates readily formed inside the cell without chemical treatments. 151 



  However, untreated cells are distinctly void of large super-critical aggregates.  A violin plot 152 

of aggregate sizes from untreated cells (Fig. 4C, black) indicates that while a large population of 153 

small aggregate sizes is apparent (indicated by the width of the violin plot in Fig. 4C), untreated cells 154 

do not have a significant population of large aggregates. For instance we rarely found aggregates of 155 

radius greater than 250nm in untreated cells.  We measure the critical radius to be Rc =162±4 nm for 156 

untreated cell (Fig. 4D, black bar, see Supplementary text 2 for calculation of 𝑛𝑐  or 𝑅𝑐).  Therefore, 157 

despite the fact that clusters should reach 𝑛𝑐 and then stably grow, such a population of super-critical 158 

clusters seems to be suppressed in healthy cells. These results imply that a hidden mechanism may 159 

exist to clear the cells of super-critical aggregates (i.e. aggregates that have reached sizes greater that 160 

the critical radius) in untreated cells. 161 

We sought to test whether a clearance pathway could account for the absence of super-critical 162 

aggregates in untreated cells.   Because a AAA+ ATPase, RuvBL, was previously suggested as a 163 

potential protein disaggregase in mammalian cells and in yeast (32), we tested whether RuvBL may 164 

be involved in the preferential clearance of super-critical aggregates. We find that knocking down 165 

RuvBL1 in untreated cells, results in the appearance of large aggregates (Fig. 4B, compare to 166 

untreated cell Fig. 4A).  A violin plot of aggregate sizes from RuvBL1 knocked-down cells shows a 167 

clear population of large aggregate sizes, with some aggregates with radii greater than 1𝜇𝑚 , a size 168 

range that could only be observed previously after hours of proteasome inhibition (Fig. 4C). These 169 

results implicate RuvBL1 in the clearance of large aggregates from untreated cells (see 170 

supplementary text 6, and Fig. S6 for further tests of RuvBL1). 171 

 Importantly, we find that upon RuvBL1 knockdown, 𝑅𝑐 = 157 ± 6 𝑛𝑚 did not change 172 

significantly from 𝑅𝑐 in control untreated cells (162 ± 4 𝑛𝑚) (Fig. 4D) suggesting that RuvBL1 173 

knockdown did not significantly change the sub-critical distribution. This observation implies that 174 

RuvbL1 did not affect the concentration of aggregating molecules or their interactions, unlike, for 175 

instance, proteasome inhibition which gradually reduced 𝑅𝑐 (Fig. 4D). Indeed, depletion of RuvBL1 176 

prevented clearance of large aggregates following washout of MG132 without affecting either the 177 

distribution of aggregates in the sub-critical range or Rc (supplementary text 6 and Fig. S6). Our data 178 



indicate that RuvBL1 dependent clearance of aggregates acts specifically on aggregates that have 179 

reached a size above 𝑅𝑐, without changing the nucleation process. 180 

The measured critical sizes, 𝑅𝑐, range from ~160 nm in untreated or siRNA knockdown cells, 181 

to ~120 nm 3 hours after proteasome inhibition.  These small magnitudes for 𝑅𝑐 indicate that a super-182 

resolution technique is needed to unveil and measure this transition point in vivo, as by the time 183 

individual aggregates are sufficiently large to be detected in conventional cell imaging techniques 184 

they are already in the post-nucleation regime.  185 

Previous studies bypass the direct observation of a nuclear barrier, and observe instead a 186 

sigmoidal response in the number of visible aggregates (28). This signmodial response is 187 

characterized by a lag-time followed by rapid growth after nucleation when a sufficiently large 188 

number of aggregates have crossed the nucleation barrier. However in the living cell, biological 189 

mechanisms may intervene in the post-nucleation regime to regulate the presence of larger aggregates. 190 

Our results indicate that a hidden pathway may exist to clear cells of aggregates above the 191 

critical size, and we have identified RuvBL1 as a necessary effector in this putative super-critical 192 

clearance pathway. The mechanism by which RuvBL1, and perhaps other effectors work to 193 

preferentially clear super-critical aggregates in the cell remains currently unknown.  Nonetheless, the 194 

agreement between our cellular super-resolution data and condensation systems with first order phase 195 

transition opens an avenue in the study of protein aggregation, whereby detailed theoretical 196 

predictions may be proposed and falsified experimentally, directly with quantitative in vivo imaging.  197 

While our investigation has focused on aggregates related to Parkinsons disease, we note that 198 

the methodology can be readily extended to any protein that can be fluorescently tagged (for example 199 

fused to the GFP-like Dendra2). Thus we anticipate that this approach can help address protein 200 

aggregation in a broad range of cellular processes or disease pathologies.  201 

  202 
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 204 

Figure 1: Super-resolution imaging of Synphilin1-Dendra2 in live mammalian cells recapitulates 205 
aggresome formation and shows the existence of sub-diffractive aggregates.  206 

A-E Conventional imaging of Pre-converted Dendra2 (GFP-like) signal (top panels) and Super-207 
resolution localization map of Photo-converted Dendra2 signals(bottom panels) in a living cell 208 
expressing Synphilin1-Dendra at time points: between 105 to 165 minutes of incubation with 209 
proteasome inhibitor MG132. Both conventional and super-resolved imaging show the formation of 210 
an aggresome and development of a kidney shaped nucleus, but in addition the super-resolved images 211 
show both more detailed and earlier visible aggresome as well as a large population of sub-diffractive 212 
aggregates. Insets: detailed view of the evolving aggresome. F Growth of aggresomes in ten cells. G 213 
Super-resolution microscopy approach allows quantitative assessment of aggregate sizes besides the 214 
aggresome. We find the number of localizations – proportional to the number of molecules in the 215 
aggregate – scales as the cube of the radial spread up to the apparent focal depth of our 2-dimensional 216 
microscope (see supplementary text 1 for details). Therefore (a) radius cubed reflects the number of 217 
molecules in the aggregate, and (b) aggregates exhibit a constant density. Data in G includes ~ 4000 218 
found aggregates from 6 cells incubated with MG132 for 120 minutes 219 
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 221 

 222 

Figure 2: Similarities between the experimental data on evolution of Synphillin1 aggregates 223 
upon proteasome inhibition and expectations from systems in condensing systems: A-C Size 224 
dependent free energy cost of aggregate formation for various scenarios - A A sub-saturated system 225 
where the vapor phase is the thermodynamically favored ground state (supplementary text 2).  B A 226 
closed super-saturated system. where the system evolves to the aggregated (condensed) phase.  C An 227 
open super-saturated system with constant monomer replenishment. Similar to B but with constant 228 
creation of new vapor even as the system evolves towards the aggregated (condensed) state. D Time 229 
independent, exponential size distribution (simulated) and resulting survival function (inset) in the 230 
sub-saturated phase. E Time evolving size distribution (simulated) and resulting survival function 231 
(inset) in the super-saturated case as the system evolves to one large aggregate of system size. F Time 232 
evolving shoulder of large aggregates coexisting with a continuously replenished population of small 233 
aggregates and resulting survival function (inset) in the case of a super-saturated system with 234 
constant monomer input (simulated). G Experimentally determined aggregate size distributions in 235 
untreated cells (light grey), cells after 150 minutes of proteasome inhibition (grey) and cells after 180 236 
minutes of proteasome inhibition (dark grey) - resulting survival function in inset. Note the similarity 237 
to sub-figure F. Data in G represents the normalized distributions from 10000 aggregates (light grey) 238 
from 10 untreated cells, 6500 aggregates (grey) from 8 cells and 4000 (dark grey) from 10 cells. 239 
Details of simulation in D-F in (24) 240 
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 243 

Figure 3: Aggregate size distributions are well described by condensation theory. A The 244 
expected sub-critical aggregate size distribution in the case of a super-saturated vapor is 𝑃(𝑛) ∝245 

𝑒−𝑈(𝑛); 𝑊𝑖𝑡ℎ 𝑈(𝑛) = 𝑎𝑛2/3 − 𝑏𝑛.  [supplementary text 2]. 𝑎𝑛2/3 is a measure of surface tension of 246 
the condensing aggregates while  −𝑏𝑛 is a measure of the bulk energy gain  from n molecules joining 247 

an aggregate. Plotting −𝐿𝑜𝑔(𝑃(𝑛)) therefore directly gives us access to the energy function U(n). B 248 
The measured sub-critical aggregate size distribution from untreated cells and its fit to the form 249 

−𝐿𝑜𝑔(𝑃(𝑛))   ∝  𝑏𝑛 + 𝑎𝑛2/3 C  The expected sign of the 𝑏 in the energy cost function for the super-250 

saturated case is positive and this can be extracted from the experimentally measured 𝐿𝑜𝑔(𝑃(𝑛))   by 251 

fitting the low n values to a pure 𝑛2/3 dependence and subtracting away this dependence to leave the 252 
purely linear bulk term (𝑏𝑛) D The −𝑏𝑛 term in the energy cost function extracted from the data is 253 
both strikingly linear and its positive slope implies untreated cells are super-saturated. E The 254 
measured sub-critical aggregate size distribution from azetidine-2-carboxylic acid treated cells and its 255 

fit to the form −𝐿𝑜𝑔(𝑃(𝑛))   ∝  𝑏𝑛 + 𝑎𝑛2/3(grey circles and black line) with light grey circles and 256 
line for comparison to untreated cells. F The −𝑏𝑛 term in the free energy cost function extracted from 257 
the data in the case of azetidine-2-carboxylic acid treated cells ( black circles) remains linear and its 258 
positive slope is increased compared to data from untreated cells (light grey circles) consistent with an 259 
super-saturation. Untreated cell data is from the normalized distribution of 10,000 aggregates from 10 260 
cells and AZC data from 4000 aggregates from 7 cells 261 
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 264 

Figure 4: RuvBL1 dependent mechanism may clear super-critical aggregate in untreated cells. 265 

A  Representative super-resolved localization heat map for an untreated cell showing many sub-266 

diffractive aggregates but few large aggregates (white line delineates nucleus). B Representative 267 

super-resolution localization maps with RuvBL1 depletion showing the cytoplasmic accumulation of 268 

super-critical aggregates marked by white arrows (white line delineates nucleus). Insets in A, B show 269 

detailed view of the largest aggregates in each condition. C Violin plots showing the distribution of 270 

observed aggregate radii in the untreated (black), proteasome inhibited (grey) and RuvBL1 depleted 271 

(red) cases.  Untreated cell data is from the normalized distribution of 10,000 aggregates from 10 272 

cells, RuvBL1 knockdown of 8000 aggregates from 9 cells, and inhibition data of 5000-8000 273 

aggregates from 6-10 cells per time point. D The effect of proteasome inhibition (grey bars) and 274 

RuvBL1 depletion (red bar) on the critical radius, which in unperturbed cells (black bar) is ~ 162 nm. 275 

Unlike proteasome inhibition the effect of RuvBL1 depletion on the condensation energetics and 276 

consequently on the critical radius is small [error bars represent errors in fit estimation as explained 277 

in(24)].  278 

 279 
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