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ABSTRACT: Failure in protein quality control can often lead to protein aggregation, yet in neuro-9 

degenerative diseases, by the time aggregates can be seen, the cells have advanced well into the 10 

disease pathology. Here, we develop a quantitative imaging approach to study the protein aggregation 11 

process in living mammalian cells with unprecedented spatio-temporal resolution. We find that sub-12 

diffractive precursor aggregates may form even in untreated cells, and their size distribution is exactly 13 

as predicted for a system undergoing a first order phase transition. Practically, this implies that as 14 

soon as aggregates reach a critical size (𝑅𝑐 = 162 ± 4 nm untreated cells), they will spontaneously 15 

grow into large inclusions. Our data suggest that a previously uncharacterized, RuvBL1 dependent 16 

mechanism clears aggregates above the critical size. Our study unveils the existence of sub-diffractive 17 

aggregates in living cells; and the strong agreement between cellular data and a nucleation theory, 18 

based on first order phase transition, provides insight into regulatory steps in the early stages of 19 

aggregate formation in vivo. 20 

 21 

  22 
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Neurodegenerative diseases, such as Parkinson’s Disease, Amyotrophic Lateral Sclerosis, and 23 

Alzheimer’s Disease, are characterized by the appearance of large protein aggregates in cells and in 24 

the extracellular space (1). It is hypothesized that intermediate species in the aggregation process are 25 

likely more toxic moieties (2-9) than conventionally visible large aggregates, plaques or fibres. 26 

However detecting and characterizing intermediate aggregates remains a fantastic technical challenge. 27 

Capturing the early steps of  protein aggregation in living cells can help uncover hidden mechanisms 28 

in their formation and regulation in vivo, as well as elucidate their putative roles in protein misfolding 29 

diseases (2-9). 30 

Here we develop a quantitative super-resolution assay to study the early steps protein 31 

aggregation in mammalian cells.  We adopt proteasome inhibition as an approach used to study the 32 

formation of large aggregates in living mammalian cells (10-13). Treatment of cells with the 33 

proteasome inhibitor MG132 (14) leads to the gradual accumulation of misfolded, aggregation-prone 34 

proteins, and to the formation of the aggresome, a large juxta-nuclear inclusion body akin to Lewy 35 

bodies (15, 16) in Parkinson’s disease cells.  We engineered mammalian cell lines expressing 36 

Synphilin 1 - a marker of aggregates in Parkinson’s disease (10, 17, 18) - fused to a fluorescent 37 

protein Dendra2 (19). Dendra2 is a green to red photo-convertible protein that enables photo-38 

activation localization microscopy (PALM) (20), a single-molecule based super-resolution (20-22) 39 

approach we used previously to quantitatively image protein clustering with high spatio-temporal 40 

resolutions in living cells (23, 24).  41 

Imaging Synphilin 1 by conventional fluorescence, shows emergence of the aggresome 42 

around 135 minutes after treatment (Fig. 1A-E, top panels and supplementary movie 1) but 43 

formation dynamics of the aggresome cannot be readily measured with this imaging approach. 44 

Instead, when we perform live cell super-resolution imaging (25)  (Fig. 1A-E, bottom panels), we can 45 

detect and quantify the growth of individual aggresomes (Fig. 1F), from their inception at length 46 

scales unattainable in previous live cell studies (26).  Furthermore, in addition to the large aggresome, 47 

the examination of Fig. 1A-E (bottom panels and supplementary movie 1) shows a population of 48 

sub-diffractive aggregates throughout the cellular cytoplasm and indiscernible in the conventional 49 
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images (top panels). Thus, our live cell super-resolution imaging approach reveals a previously 50 

undetected population of sub-diffractive aggregates. 51 

We characterize the properties of these sub-diffractive aggregates using density based spatial 52 

clustering of applications with noise (DBSCAN) (27). We record for each aggregate, the radius, and 53 

the number of localization events (fluorescence detection events) ((25) and supplementary text 1). 54 

Only aggregates with a radius greater than our localization accuracy (estimated to be ~20nm (23)) are 55 

interpreted in our analysis; aggregates of radius less than 25nm are discarded.  56 

As represented in Fig. 1G, we find that the number of localization events per aggregate is 57 

proportional to the radius cubed (volume) of the aggregate (also see supplementary text 1). This 58 

observation implies that sub-diffractive aggregates have a defined density, with the aggregate size 59 

scaling linearly with volume. Relying on the precise number of molecular detections to estimate 60 

aggregate size can be complicated by single molecule photo-physical variability (28). Here, we rely 61 

on the existence of a well-defined density to use the spatial extent (radius cubed) of the aggregate as 62 

the measure of the size. For subsequent theoretical analyses, we found it practical to define the 63 

aggregate size as a reduced numerical parameter ‘n’ (see supplementary text 1, and Fig. S1]. 64 

  Previous studies, from experiments done in vitro,  have invoked nucleation and growth as a 65 

potential mechanism underlying aggregate formation (29). However, such models imply that 66 

aggregation occurs through a first order phase transition into a so-called state of super-saturation, 67 

characterized by a well-defined nucleation barrier (30). The nucleation barrier reflects a critical 68 

aggregate size above which spontaneous growth is energetically favoured, and below which aggregate 69 

disassembly is favoured. Such a critical aggregate size, if it exists, has been difficult to measure 70 

experimentally (29), due in part to the challenge of detecting the stochastically formed, transient 71 

precursor clusters; and it is unclear even if proven in vitro, whether phase transition formalism may 72 

still hold inside the cells where complex biological quality control mechanisms exist. If a first order 73 

phase transition is pertinent,  there are clear theoretical expectations for the distribution and evolution 74 

of aggregate sizes. Therefore, we  investigate the mechanism behind sub-diffractive aggregates 75 
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formation and growth in mammalian cells, initially, by studying the size distribution of the 76 

aggregates, and how the distribution evolves with time. 77 

In nucleation and growth a system may be either in a sub-saturated state (Fig. 2A), or in a 78 

super-saturated state (Fig. 2B & C). In the first case the formation and growth of sub-diffractive 79 

aggregates is not favoured energetically. In such a sub-saturated system, an exponential distribution 80 

of aggregate sizes is expected (30, 31). For a sub-saturated state, the overall distribution of aggregate 81 

sizes does not change with time even as individual aggregates may grow or disassemble 82 

(supplementary text 2, and simulations in  Fig. 2D). 83 

 Alternatively, in a super-saturated state, the system is poised such that aggregates that 84 

stochastically reach the critical size become energetically favoured to grow spontaneously (see 85 

supplementary text 2 and Fig. S2).  In such a case the distribution of aggregate sizes is time-86 

evolving (simulations in Fig. 2E& F) and may result in a peak at large aggregate sizes when the total 87 

pool of contributing proteins is conserved (Fig. 2E). Alternatively , the pool of contributing proteins 88 

may be continuously replenished, leading to an exponential distribution of small aggregates coexisting 89 

with a growing shoulder at larger aggregate sizes (Fig. 2F); This may likely be the case in living cells 90 

when new misfolded proteins can constantly be added to the system.  As represent in Fig. 2G our 91 

super-resolution data reveals a distribution of aggregate sizes with a shoulder growing towards larger 92 

aggregates, as a function of time after treatment, more consistent with the simulations in Fig. 2F. This 93 

result suggests that sub-diffractive aggregate formation and time evolution may behave as a super-94 

saturated condensation system.   95 

A super-saturated system is expected to exhibit precise energetics, underlain by a critical 96 

aggregate size (30) (noted here as 𝑛𝑐 or 𝑅𝑐). 𝑛𝑐  (or 𝑅𝑐)  is the point at which the surface energy cost 97 

is balanced by the minimising energy of the molecules buried in the bulk of the aggregate. In 98 

particular the expected form of the free energy cost to form a aggregate of size “n”, is given 99 

by 𝑈(𝑛) = 𝑎𝑛2/3 − 𝑏𝑛, with two terms (𝑎𝑛2/3 and 𝑏𝑛) representing the surface and bulk 100 

contributions respectively (supplementary text 2, and Fig. S2). Moreover, in this formalism, for 101 
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aggregates below the critical size (i.e 𝑛 < 𝑛𝑐) the Boltzmann distribution (𝑃(𝑛) ∝ 𝑒−𝑈(𝑛)), the 102 

equilibrium thermodynamics exponentially-suppressed distribution,  would be expected even though 103 

the full system may not be in equilibrium (30).  104 

We examine whether the sub-diffractive aggregates in the mammalian cells truly exhibit such 105 

stringent energetics. Given that for a super-saturated system the sub-critical aggregate (𝑛 < 𝑛𝑐) size 106 

distribution may be approximated as 𝑃(𝑛) ∝ 𝑒−𝑈(𝑛) (𝑛 < 𝑛𝑐), then the negative logarithm should 107 

give the free energy cost 𝑈(𝑛), i.e −𝐿𝑜𝑔(𝑃(𝑛)) ∝ 𝑈(𝑛), for 𝑛 < 𝑛𝑐 . By plotting the negative 108 

logarithm of the size distribution  one can test how well the distribution is governed by the precise 109 

free energy cost 𝑈(𝑛) = 𝑎𝑛2/3 − 𝑏𝑛   (see prediction in Fig. 3A). We find a remarkable agreement 110 

between the experimentally measured sub-critical size distribution shown in Fig. 3B and this very 111 

specific prediction of simple condensation theory (see (25) and supplementary text 2).  112 

The agreement between theory and experiment in Fig. 3B involves a fit with two model-113 

parameters (surface and bulk terms respectively). We test even further whether the two terms can be 114 

decoupled. That is, whether a fit of the only the surface term at a physically appropriate limit, would 115 

result in a data-set which is accounted for primarily by the remaining bulk term. 116 

The surface term ( 𝑎𝑛2/3 ) must dominate for very low-n.  Thus we posit that by fitting only 117 

the first few data points of the −𝐿𝑜𝑔(𝑃(𝑛))   graph to the surface term 𝑎𝑛2/3 , and subtracting it off 118 

of the data (25), then for all remaining sub-critical aggregates the resultant should be the volume term, 119 

i.e. [−𝐿𝑜𝑔(𝑃(𝑛)) − 𝑎𝑛
2

3] ∝ −𝑏𝑛  .  This resultant should be a straight line when plotted versus 120 

aggregate size 𝑛,   (see theoretical prediction in Fig. 3C). We note that there is, a-priori, nothing  else 121 

in our dataset imposing that the resulting data should be linear upon correction of the surface term. 122 

Thus if the data deviate from the first order phase transition energetics, we would expect a scattered 123 

resultant, or the revelation of a different energy dependence. In Fig. 3D the data show a strikingly 124 

linear resultant, demonstrating a high quality agreement between the theory and super-resolution 125 

experimental data.  126 
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From the results in Fig. 3, therefore, we conclude that while other bio-regulatory processes 127 

might be at play, the simple condensation picture with specific energetic dependence 𝑈(𝑛) = 𝑎𝑛2/3 −128 

𝑏𝑛, describes how sub-diffractive aggregates can form and grow to a well-defined critical size 𝑛𝑐  in 129 

the mammalian cells.  We also tested aggregates with the Neuro2A cell line (neuronal precursor cells, 130 

see supplementary text 3) and observe the very same conclusions (Fig. S3) suggesting the physical 131 

mechanism for sub-diffractive aggregation may be general to a range of mammalian cells. 132 

 Biochemically, the specific parameters in the energetics for nucleation and growth would 133 

depend on the concentration of aggregating proteins and on their effective energy of interactions. To 134 

further test this notion, we sought to increase the concentration of misfolded aggregating polypeptides 135 

in living cells by incubation with a proline analog azetidine-2-carboxylic acid (AZC). This molecule 136 

incorporates in newly synthesized polypeptides instead of proline, and prevents normal folding, thus 137 

generating a massive build-up of misfolded proteins in the cell (32). In a condensation model, such a 138 

build-up would result in a greater degree of super-saturation with a stronger bulk (linear) term.  139 

We find in Fig. 3E&F that the distribution of aggregates sizes in the presence of AZC fits the 140 

same functional form, and with a larger linear slope indicative of a larger bulk term (also see further 141 

AZC characterization in supplementary text 4, Fig. S4 and general applicability of our results under 142 

other perturbations in supplementary text 5, Fig. S5). The AZC incubation data further validates the 143 

agreement between cellular aggregation data and the nucleation model, and with interpretations 144 

consistent with that expected of a classical super-saturated system. 145 

 Implicit to phase transition theory is the notion that any cell including healthy cells or those 146 

untreated with proteasome inhibitor, may readily form sub-diffractive aggregates which 147 

spontaneously grow into large inclusions after reaching 𝑛𝑐. This expectation is counter to a widely 148 

held belief that the presence of precursor aggregates may directly indicate cell pathology (2).  In Fig. 149 

4A (left panel) we find that untreated cells do in fact show sub-diffractive aggregates implying that 150 

aggregates readily formed inside the cell without chemical treatments. 151 
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  However, untreated cells are distinctly void of large super-critical aggregates.  A violin plot 152 

of aggregate sizes from untreated cells (Fig. 4C, black) indicates that while a large population of 153 

small aggregate sizes is apparent (indicated by the width of the violin plot in Fig. 4C), untreated cells 154 

do not have a significant population of large aggregates. For instance we rarely found aggregates of 155 

radius greater than 250nm in untreated cells.  We measure the critical radius to be Rc =162±4 nm for 156 

untreated cell (Fig. 4D, black bar, see Supplementary text 2 for calculation of 𝑛𝑐  or 𝑅𝑐).  Therefore, 157 

despite the fact that clusters should reach 𝑛𝑐 and then stably grow, such a population of super-critical 158 

clusters seems to be suppressed in healthy cells. These results imply that a hidden mechanism may 159 

exist to clear the cells of super-critical aggregates (i.e. aggregates that have reached sizes greater that 160 

the critical radius) in untreated cells. 161 

We sought to test whether a clearance pathway could account for the absence of super-critical 162 

aggregates in untreated cells.   Because a AAA+ ATPase, RuvBL, was previously suggested as a 163 

potential protein disaggregase in mammalian cells and in yeast (33), we tested whether RuvBL may 164 

be involved in the preferential clearance of super-critical aggregates. We find that knocking down 165 

RuvBL1 in untreated cells, results in the appearance of large aggregates (Fig. 4B, compare to 166 

untreated cell Fig. 4A).  A violin plot of aggregate sizes from RuvBL1 knocked-down cells shows a 167 

clear population of large aggregate sizes, with some aggregates with radii greater than 1𝜇𝑚 , a size 168 

range that could only be observed previously after hours of proteasome inhibition (Fig. 4C). These 169 

results implicate RuvBL1 in the clearance of large aggregates from untreated cells (see 170 

supplementary text 6, and Fig. S6 for further tests of RuvBL1). 171 

 Importantly, we find that upon RuvBL1 knockdown, 𝑅𝑐 = 157 ± 6 𝑛𝑚 did not change 172 

significantly from 𝑅𝑐 in control untreated cells (162 ± 4 𝑛𝑚) (Fig. 4D) suggesting that RuvBL1 173 

knockdown did not significantly change the sub-critical distribution. This observation implies that 174 

RuvbL1 did not affect the concentration of aggregating molecules or their interactions, unlike, for 175 

instance, proteasome inhibition which gradually reduced 𝑅𝑐 (Fig. 4D). Indeed, depletion of RuvBL1 176 

prevented clearance of large aggregates following washout of MG132 without affecting either the 177 

distribution of aggregates in the sub-critical range or Rc (supplementary text 6 and Fig. S6). Our data 178 
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indicate that RuvBL1 dependent clearance of aggregates acts specifically on aggregates that have 179 

reached a size above 𝑅𝑐, without changing the nucleation process. 180 

The measured critical sizes, 𝑅𝑐, range from ~160 nm in untreated or siRNA knockdown cells, 181 

to ~120 nm 3 hours after proteasome inhibition.  These small magnitudes for 𝑅𝑐 indicate that a super-182 

resolution technique is needed to unveil and measure this transition point in vivo, as by the time 183 

individual aggregates are sufficiently large to be detected in conventional cell imaging techniques 184 

they are already in the post-nucleation regime.  185 

Previous studies bypass the direct observation of a nuclear barrier, and observe instead a 186 

sigmoidal response in the number of visible aggregates (29). This sigmoidal response is characterized 187 

by a lag-time followed by rapid growth after nucleation when a sufficiently large number of 188 

aggregates have crossed the nucleation barrier. However in the living cell, biological mechanisms 189 

may intervene in the post-nucleation regime to regulate the presence of larger aggregates. 190 

Our results indicate that a hidden pathway may exist to clear cells of aggregates above the 191 

critical size, and we have identified RuvBL1 as a necessary effector in this putative super-critical 192 

clearance pathway. The mechanism by which RuvBL1, and perhaps other effectors work to 193 

preferentially clear super-critical aggregates in the cell remains currently unknown.  Nonetheless, the 194 

agreement between our cellular super-resolution data and condensation systems with first order phase 195 

transition opens an avenue in the study of protein aggregation, whereby detailed theoretical 196 

predictions may be proposed and falsified experimentally, directly with quantitative in vivo imaging.  197 

While our investigation has focused on aggregates related to Parkinsons disease, we note that 198 

the methodology can be readily extended to any protein that can be fluorescently tagged (for example 199 

fused to the GFP-like Dendra2). For instance, our technique may be applicable in the search for 200 

intracellular manifestations of the valency driven phase separations being studied in various contexts 201 

(34). Alternatively our methods could yield a thermodynamic framework underlying phase separation 202 

suggested in the formation and maintenance of membraneless organelles (35). Finally There is 203 

increasing evidence that the thermodynamics of first order transitions elucidated here may constitute a 204 
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general organizing principle for cell biology applicable for example  in cellular aging (36), common 205 

stress responses (37), and even in transcription (38) and other functioning of healthy cells (39). Thus 206 

we anticipate that this approach can help address protein aggregation directly in cells with high 207 

quantitative details, for a broad range of cellular processes and disease pathologies.  208 

  209 
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 211 

Figure 1: Live cell super-resolution imaging unveils sub-diffractive aggregates in addition to 212 
classically observed perinuclear inclusion. 213 

A-E:  A single living cell expressing Dendra2-Synphillin as observed by conventional imaging (top 214 

panels, green) and time-lapse super-resolution reconstructions (bottom panels, red-hot color code)  is 215 

represented for select time points between 105 minutes to 165 minutes after treatment with 216 

proteasome inhibitor MG132. White line delineates cell nucleus; a red-hot color code is used to 217 

represent the local density of detections. Both conventional and super-resolution images show the 218 

gradual formation of a large perinuclear inclusion (the aggresome, see insets in bottom panel).. F: The 219 

time-dependent sizes of individual aggresomes (gray dots) are measured from super-resolution images 220 

of ten cells, illustrating cell to cell variability in the growth dynamics; the average time dependent size 221 

from the ten cells is also plotted (black diamonds). In addition to the aggresomes, super-resolution 222 

images (A-E bottom panels) reveal many sub-diffractive aggregates profusively distributed 223 

throughout the cytoplasm, that were not observed by conventional imaging (A-E top panels). G: The 224 

sub-diffractive aggregate size as measured by number of super-resolution localization events per 225 

aggregate is plotted against the spatial size (radius cube) of aggregate. The data suggests that size of 226 

sub-diffractive aggregates scales with the volume of the aggregates, suggesting a uniform density of 227 

Dendra2-Synphilin detections throughout the aggregates, up to the z-axial (400 nm) cut-off of our 228 

super-resolution microscope (see supplementary text 1 for details). Data in G includes N= 4000 229 

aggregates from 6 cells imaged 120 minutes after MG132 treatment.   230 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 19, 2017. ; https://doi.org/10.1101/148395doi: bioRxiv preprint 

https://doi.org/10.1101/148395
http://creativecommons.org/licenses/by-nc-nd/4.0/


 231 

 232 

Figure 2: The time evolution of aggregates size distribution is indicative of a super-saturated 233 
system: A-C Free energy cost of aggregate formation is plotted as a function of aggregate size as 234 
predicted by condensation theory in three different regimes. A: In a sub-saturated system free energy 235 
cost increases monotonically with aggregate size, and spontaneous disaggregation is 236 
favored  (supplementary text 2).  B & C: In a super-saturated system, a nucleation barrier exists 237 
above which free energy cost decreases with aggregate size, and spontaneous growth is favoured. D-238 
F: Simulations of the aggregate size distributions as predicted by the energetics illustrated in A, B and 239 
C respectively.  D For the sub-saturated system (in A), an exponential distribution is obtained, 240 
independent of time. E: For a super-saturated system without addition of new constituents (closed 241 
system in B) a time dependent distribution is obtained where by small aggregates are depleted and the 242 
system evolves towards a peak at large aggregate size. F: For a super-saturated system with addition 243 
of constituents, there is no depletion of small aggregate size, but progressive shoulder towards larger 244 
aggregate sizes is obtained with time.  Insets in D-F represents the survival (cumulative distribution) 245 
function for the corresponding simulation. G Super-resolution data representing the histogram of 246 
aggregate sizes from cells fixed and imaged at three representative time points after inhibition by 247 
MG132, shows a time evolution consistent with the super-saturated system in  C & F. These results 248 
indicate that aggregation in the mammalian cells are consistent with super-saturated condensing 249 
system. Data in G represents the normalized  histogram from 10000 aggregates (light grey) from 10 250 
untreated cells, 6500 aggregates (grey) from 8 cells and 4000 (dark grey) from 10 cells. Details of 251 
simulation in D-F in (25) 252 

  253 
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 255 

Figure 3: Figure 3: Aggregate size distributions are precisely described by the kinetics 256 
of first order phase transition. A: The energetics of a super-saturated system as expected 257 
from theory on the kinetics of first order phase transition [supplementary text 2]. Since the 258 
expected distribution of subcritical clusters is the boltzmann (exponential) distribution, i.e. 259 

𝑃(𝑛) ∝ 𝑒−𝑈(𝑛); 𝑊𝑖𝑡ℎ 𝑈(𝑛) = 𝑎𝑛2/3 − 𝑏𝑛, the energy cost dependence on cluster size can be 260 

derived from the logarithm of the distribution, i.e. −𝐿𝑜𝑔(𝑃(𝑛)). In the energetics, 𝑎𝑛2/3 is a 261 

measure of surface tension of the condensing aggregates while  −𝑏𝑛 is a measure of the bulk 262 
energy gain  from n molecules joining an aggregate. B Plotting the logarithm of the 263 
distribution (histogram) of measured sub-critical aggregates (gray dots) shows the predicted 264 
curved dependence with the aggregate size (n), and fits well to the predicted energy form 265 

𝑈(𝑛) = 𝑎𝑛2/3 − 𝑏𝑛.  C: Theoretically, the surface dominates for the smallest cluster size 266 
(i.e. very low n), and subtracting the surface term from the data should result in a predicted 267 

linear dependence on cluster size (representing the resultant bulk term) i.e. −𝐿𝑜𝑔(𝑃(𝑛)) −268 

𝑎𝑛
2

3   ∝  −𝑏𝑛,  or as represented here 𝐿𝑜𝑔(𝑃(𝑛)) + 𝑎𝑛
2

3   ∝  𝑏𝑛.  D:  Subtracting the surface 269 

term fit for low n (here n<200) yields a resultant data set that is remarkably linear, further 270 

indicating that the specific energetics of first order phase transition precisely accounts for the 271 
population of aggregates in mammalian cells. E-F: Further test of agreement between theory 272 
and super-resolution data is performed by treating cell with azetidine-2-carboxylic acid 273 
(AZC), and data from AZC treated cells in grey dots are compared directly with untreated 274 
cells (from B&D) represent with open circles. E: Upon AZC treatment, again, the data (grey) 275 

fit well to the predicted theoretical form (black line)  F:  With subtraction of surface term-fit 276 
for low n (here n<200),   the resultant also remains linear in AZC treated cells suggesting that 277 
even upon perturbation the distribution changes in a manner still consistent with the physical 278 
formalism.  In addition, compared to data from untreated cells (open circles),AZC data has an 279 
increased bulk (linear) term consistent  with the notion that the treatment increase the degree 280 

of super-saturation without changing the transition mechnanism. Untreated cell data (in B & 281 
D) are from the normalized histogram of 10,000 aggregates from 10 cells and AZC data (in E 282 

& F) from 4000 aggregates from 7 cells. 283 
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 284 

Figure 4: RuvBL1 dependent mechanism may clear super-critical aggregate in untreated cells 285 

without affecting the nucleation barrier. A  Representative super-resolution reconstruction for an 286 

untreated cell visually shows many sub-diffractive aggregates (dark red) but few large aggregates (red 287 

hot). Red-hot color code is used to indicate the relative density of detections, and a white line 288 

delineates nucleus. B Super-resolution reconstruction from a representative cell after RuvBL1 289 
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knockdown show the cytoplasmic accumulation of relatively more intense aggregates (red hot); white 290 

arrows are used to indicate example super-critical aggregates; a red hot color code is used to indicate 291 

the relative density of detections and a white line delineates nucleus. Insets in A, B show zoomed in 292 

view of the largest, more intense aggregates found in each condition. C Violin plots showing the 293 

distribution of observed aggregate sizes (as measured by the radius) in the untreated (black), 294 

proteasome inhibited (grey) and RuvBL1 knocked-down (red) cells. Untreated cells (black) show a 295 

depletion of large clusters, and RuvBL knockdown (red) rescues the population of large clusters. D 296 

The critical radius (Rc) is plotted for untreated cells (black bar), as a function of time after MG132 297 

treatment (white bars), or upon RuvBL knockdown (red bar). RuvBL knockdown (red) did not 298 

significantly change Rc as compared to untreated (black) suggesting that RuvBL acted on super-299 

critical clusters (red in C) without significantly changing sub-critical cluster distribution (nor the 300 

nucleation barrier). This is in contra MG132 treatments which gradually increased the population of 301 

large aggregates (gray plots in C) while gradually decreasing Rc. Error bars in D represent errors in fit 302 

estimation as described in (25). Untreated cell data are from the normalized histogram of 10,000 303 

aggregates from 10 cells, RuvBL1 knockdown from 8000 aggregates from 9 cells, and inhibition data 304 

from 5000-8000 aggregates from 6-10 cells per time point. 305 

 306 
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