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Hybridization is a key molecular process in biology and biotechnology, but to date there is no pre-
dictive model for accurately determining hybridization rate constants based on sequence information.
To approach this problem systematically, we first performed 210 fluorescence kinetics experiments
to observe the hybridization kinetics of 100 di↵erent DNA target and probe pairs (subsequences of
the CYCS and VEGF genes) at temperatures ranging from 28 �C to 55 �C. Next, we rationally
designed 38 features computable based on sequence, each feature individually correlated with hy-
bridization kinetics. These features are used in our implementation of a weighted neighbor voting
(WNV) algorithm, in which the hybridization rate constant of an unknown sequence is predicted
based on similarity reactions with known rate constants (a.k.a. labeled instances). Automated
feature selection and weighting optimization resulted in a final 6-feature WNV model, which can
predict hybridization rate constants of new sequences to within a factor of 2 with ⇡74% accuracy
and within a factor of 3 with ⇡92% accuracy, based on leave-one-out cross-validation. Predictive
understanding of hybridization kinetics allows more e�cient design of nucleic acid probes, for exam-
ple in allowing sparse hybrid-capture panels to more quickly and economically enrich desired regions
from genomic DNA.

Hybridization of complementary DNA and RNA sequences
is a fundamental molecular mechanism that underlies both
biological processes [1–3] and nucleic acid analytic biotech-
nologies [4–7]. The thermodynamics of hybridization have
been well-studied, and algorithms based on the nearest-
neighbor model of base stacking [8, 9] predicts minimum free
energy structures and melting temperatures [10, 11] with rea-
sonably good accuracy. In contrast, the kinetics of hybridiza-
tion remain poorly understood, and to date no models or
algorithms have been reported that accurately predict hy-
bridization rate constants from sequence and reaction condi-
tions (temperature, salinity). This knowledge deficiency has
adversely impacted the research community by requiring ei-
ther trial-and-error optimization of DNA primer and probe
sequences for new genetic regions of interest, or brute-force
use of thousands of DNA probes for target enrichment.
Predictive modeling of hybridization kinetics faces two

main challenges. First, the hybridization of complementary
sequences can follow many di↵erent pathways, rendering sim-
ple reaction models inaccurate for a large fraction of DNA
sequences. It is not practical to construct a comprehen-
sive model that considers every potential DNA hybridiza-
tion mechanism, due to the large variety of possible DNA
sequences. Second, there is a very limited number of DNA se-
quences whose kinetics have been carefully directly, either in
bulk solution [12–14] or at the single-molecule level [15–17].
One reason for the relative lack of data is the requirement
of fluorophore-functionalized DNA oligonucleotides, which at
roughly $200 per sequence becomes cost-prohibitive for the
hundreds of experiments needed to establish sequence gener-
ality.
Here, we present a new approach to predicting DNA

hybridization rate constants from sequence, which we call
Weighted Neighbor Voting (WNV). WNV is inspired by ma-

chine learning concepts such as weighted k-nearest neighbor
classification [18] and kernel smoothing [19]. In brief, each
hybridization reaction (comprising a target sequence, a probe
sequence, and a set of temperature and bu↵er conditions) is
mapped to a set of feature values (Fig. 1). Features are scalar
metrics that we rationally designed based on our understand-
ing of potential factors that may influence hybridization ki-
netics. Each hybridization reaction is thus represented by
a point in a high-dimensional feature space. Given a set
of properly designed and weighted features, two hybridiza-
tion reactions that are close in feature space are expected
to exhibit similar kinetics. The rate constant of an unknown
hybridization reaction is predicted based on the weighted av-
erage of observed rate constants for all experimentally tested
reactions, with weights dropping exponentially for reactions
that are farther away in feature space.

To create a su�ciently representative and sequence-
general dataset for optimizing and validating features and
weights, we experimentally characterized the kinetics of 210
individual hybridization reactions on 100 di↵erent pairs of
complementary sequences. We rationally designed an initial
pool of 38 features, which were pruned down by computa-
tional optimization to 6 in our final model. Under leave-one-
out (LOO) cross-validation, our final WNV model predicts
rate constants to within a factor of 2 for 74% of reactions,
and within a factor of 3 for 92%. Next-generation NGS stud-
ies show a significant correlation (R2 ⇡ 0.6) between the rate
constants of DNA hybridization in single-plex vs. multiplex,
suggesting that the current work is a good starting point for
rational design and selection of DNA probes for highly multi-
plexed applications, such as target enrichment from genomic
DNA.

Experimental Results
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FIG. 1: Method overview. (a) Rate constant prediction workflow for a user-defined target sequence and temperature. Six features
are numerically computed from the input sequence and temperature, and subsequently renormalized. The target’s features values are
compared to those in our database, and the observed rate constants in the database are integrated via a weighted voting system, with
weight decreasing exponentially based on distance to the target in feature space. (b) Steps taken to generate final hybridization rate
constant prediction model. Box colors mark the corresponding steps where the information is used in panel (a).

a

+

Time (min) 
100

Fl
uo

r. 
(a

.u
.)

1

2

3

4

5

806040200
0

c Systematic Random

ACATAAAAATTAGC C
AG
GT

GT
  
GG
TG

GTGG

 GCACCTG

CA
GG
TG

T  

 GG
TGGTGG

 GCACCTG TAATCTCAGCTACTCA
GG

TG
T 

 
GG
TGGTGG

 GCACCTG TAATCTCAATTAGC

TC
AG

 T
 A T

 A

 T
 T 

CTGA 
  AAAATCCGTCA

GC
T 
C 
T T T T

 GGC

TCCCTGTAC 

CT
CC

 

TA
TA
AA

ATCAGCAT 

GGAG

CCTGG AGGTGA  G
CA

T
 G

 
CC
T

 GG
GG

GTGTTG 
GGG

 AG
 ATGC 

AAT

b CYCS (Targets 1-50)

VEGF (51-100)

exon intron

Target 85, 37 ºCd

Target 13 14 15

[T] = 45 nM; [P] = 22.5 nM

43 90 84

Target T

Probe P

FIG. 2: Experimental characterization of hybridization kinetics. (a) Fluorescent probes with universal functionalized oligonucleotides.
The blue regions show universal sequences, and the green regions show the variable regions corresponding to the target or probe
sequence. Fluorescence is initially high, and decreases as the hybridization reaction proceeds because the fluorophore (purple star)
becomes localized to the quencher (black dot). (b) 100 di↵erent subsequences of the CYCS and VEGF genes were selected to be
the target sequences. In this study, all target and probe sequences are 36 nt long (excluding universal regions). 25 targets for each
gene were chosen randomly with uniform distribution across the entire intron and exon region, and the other 25 targets were selected
as close overlapping frames to systematically test the position e↵ects of secondary structures. (c) Examples of secondary structures
encountered in target sequences. Shown are predicted minimum free energy (mfe) structures predicted for the target sequences at 37 �C.
See Supplementary Table ST1 for sequences of the 100 targets. (d) Example kinetic traces (triplicate) of a hybridization reaction. All
reactions proceeded in 5x PBS bu↵er. See Supplementary Section S1 for fluorescence traces for all 210 experiments.

To systematically but economically characterize the hy-
bridization kinetics of many di↵erent sequences, we used the
X-Probe architecture [20] that employ universal fluorophore
and quencher-labeled oligonucleotides (Fig. 2a). Universal
sequences (blue in Fig. 2a) were appended to the 50 end
of each target and the 30 of each probe; the universal se-
quence for targets di↵ers from that for probes. A univer-
sal fluorophore-labeled oligonucleotide was pre-hybridized to
the probe, and a universal quencher-labeled oligonucleotide
was pre-hybridized to the target. When the target and the
probe solutions were mixed, the solution fluorescence was

initially high because the fluorophore was delocalized from
the quencher, but dropped over time as the hybridization re-
action proceeds. The solution fluorescence at any given time
can thus be linearly mapped to the instantaneous hybridiza-
tion reaction yield.

To obtain a reasonable sampling of potential biological tar-
get sequences, we selected as targets 100 subsequences of the
CYCS and VEGF genes, each target subsequence being 36
nucleotides (nt) long. Of the 50 targets for each gene, 25
of them were selected randomly with uniform position dis-
tribution across the gene, and the other 25 were selected
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systematically so that the e↵ects of secondary structure po-
sition could be examined (Fig. 2b). For example, Fig. 2c
shows likely secondary structures of 6 di↵erent targets at
37 �C; random target sequences exhibited a broader diver-
sity of predicted secondary structures.
Fig. 2d shows triplicate kinetics traces for one hybridiza-

tion reaction. A total of 210 hybridization experiments were
characterized (100 reactions at 37�C, 96 at 55�C, 7 at 28�C,
and 7 at 46�C); see Supplementary Section S1 for fluores-
cence traces for all experiments. There was very low exper-
imental error in our fluorescence experiments; all triplicate
data points agreed with each other to within 2%. To obtain
maximally reliable experimental data for rate constant infer-
ence, we performed multiple experiments until determining
a set of target and probe concentrations such that each hy-
bridization reaction undergoes between 2 and 10 half-lives
within the 80 to 180 minute observation time.

Model Construction

Hybridization rate constant (kHyb) fitting. From the
experimental kinetics traces, we wish to determine a single
rate constant kHyb that describes the dominant hybridization
kinetics pathway. However, a simple two-state T + P ! TP
reaction model fails to reasonably capture a significant por-
tion of the kinetic behavior. Most notably, over 40% of the
observed reactions appeared to asymptote to a final reaction
yield of less than 85%, based on positive and negative control
fluorescence values. Consequently, we considered 3 slightly
more complex reaction models of hybridization, in order to
evaluate which best fits the observed data (Fig. 3a).
Model H1 assumes that the T + P ! TP reaction is

correct, but that a fraction of the probes P are poorly
synthesized, or otherwise incapable of proper hybridization
with target T or the accompanying fluorescence quenching.
Thus, in addition to kHyb, H1 has one extra fitting parame-
ter: [Pgood]0, the initial concentration (or fraction) of viable
probe P.
Model H2, in contrast, assumes that all probe P is cor-

rectly synthesized, but that some fraction of the T + P re-
action undergoes an alternative pathway with rate constant
k1 to result in a state TPbad with high fluorescence. This
frustrated state TPbad may represent states in which T and
P are co-localized by misaligned base pairs. Model H2 as-
sumes that TPbad undergoes first-order rearrangement with
rate constant k2 to form the correct product TP. H2 has a
total of 3 fitting parameters: kHyb, k1, and k2. Model H3 is
a simple combination of models H1 and H2, wherein there
exists both a fraction of poorly synthesized P as well as the
alternative pathway involving TPbad, and has a total of 4
fitting parameters: kHyb, [Pgood]0, k1, and k2.
For each of our 210 fluorescence kinetics experiments,

we used a custom stochastic fitting function to determine
the best-fit values of each rate constant parameter for each
model. Here, best-fit is determined as the minimal sum-
of-square relative error RE, where RE = (Data - Simulation

Data ).
Minimum and maximum fluorescence values corresponding
to 0% and 100% yields were determined through separate

control experiments. Fig. 3b shows RE values of best-fit
parameters for two hybridization reactions. While all three
models describe the observed fluorescence data well for some
reactions, other reactions show a significant di↵erence among
the three models. See Supplementary Section S1 for relative
error plots for all kinetics experiments.

For each hybridization reaction, we have between 60 and
180 RE values, each corresponding to a time point at which
fluorescence was measured. The RE values of each hybridiza-
tion experiment are summarized as a single root mean square
relative error (RMSRE) value, defined as

RMSRE =

s
1

↵

X

t

RE(t)2 (1)

where ↵ is the total number of time points t during which
fluorescence was measured for the reaction. Fig. 3c shows the
distribution of RMSRE values for each hybridization model;
H3 appears to give the best overall fit to the data. We also
evaluated more complex reaction models with additional fit-
ting parameters, but these did not significantly improve RM-
SRE over H3 (data not shown). Consequently, H3’s best-fit
kHyb rate constants were used for all subsequent work.

Fig. 3d summarizes H3’s best-fit kHyb values for paired
hybridization experiments at 37 �C and 55 �C. The values
of kHyb ranged roughly 3 orders of magnitude at both tem-
peratures. Even among relatively fast reactions correspond-
ing to target/probe sequences with relatively low secondary
structure, there is still significant variation in hybridization
kinetics. The large diversity of kHyb values for di↵erent se-
quences and the imperfect correlation between rate constants
for the same sequence at di↵erent temperatures emphasizes
the di�culty and need for a predictive kinetics model.

Weighted Neighbor Voting (WNV) Model. To predict
the rate constant of a new hybridization reaction, the WNV
model checks the reaction for similarity against labeled in-
stances (hybridization reactions with known rate constants)
in our existing database, and allow each instance in the
database to make a weighted “vote.” Instances that are more
similar to the new reaction are weighted more heavily.

To quantitate the similarity or dissimilarity between two
hybridization reactions, we abstract each reaction into a
number of features. The value of each feature for a particular
hybridization reaction is computable based on the sequences
of the target and probe, and the reaction temperature and
bu↵er conditions. Each hybridization reaction is thus a point
in feature space. With an optimally designed and weighted
set of features, the two points close in feature space should
exhibit similar kHyb values. The converse is not necessarily
true: two hybridization reactions with coincidentally similar
kHyb values may possess very di↵erent feature values.

Mapping the hybridization reactions into feature space
is important because targets that are similar in sequence
space may not have similar hybridization kinetics, and vice
versa, due to the sensitivity of secondary structure to small
changes in DNA sequence in certain regions, but not in
others. For example, oligonucleotide (2) with sequence
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FIG. 3: Hybridization model and rate constant parameterization. (a) Three di↵erent reaction models considered for fitting rate
constant kHyb to fluorescence kinetics data. Model H1 is the simplest model and has 2 free parameters: kHyb and [Pgood]. [Pgood]
denotes the concentration of properly synthesized probes that are capable of hybridization, with the remainder of the [P] assumed to be
unhybridizable and constitutively fluorescent. Model H2 has 3 free parameters (kHyb, k1, and k2), and Model H3 has 4 (kHyb, [Pgood],
k1, and k2). An even simpler model H0 with only kHyb as a parameter fails to reasonably fit the observed fluorescence data. (b) Two
examples of fit quality for the 3 reaction models. The y-axis plots the relative error RE as a function of time for each model using
best-fit parameters. For Target 12, all three models show low relative error across all time points, but H1 is significantly worse than
H2 and H3 for target and 37. (c) Summary of fit performance for the three models across all 210 fluorescence kinetics experiments.
Each point corresponds to the root mean square relative error (RMSRE) of all time points for a particular fluorescence experiment.
Based on this result, we chose to proceed with H3 and its best-fit kHyb values for all subsequent studies. (d) Observed rate constants
for 96 targets at 37 �C and 55 �C. 4 of the targets did not stably bind to their corresponds probes at 55 �C due to being A/T rich,
and were not included in this plot. See Supplementary Section S1 for best-fit simulations using Model H3.

“ACACACACTTAAAATTGTGTGTGTCCC” has higher
Hamming distance to oligo (1) with sequence “ACACA-
CACTTTTTTTTGTGTGTGTCCC” than oligo (3) with se-
quence “ACTCAGACTTTTTTTTGTGTGTGTCCC”, but
is expected to exhibit much more similar kinetics in hy-
bridization to each’s respective complement. In this case, one
possible feature could be the number of base pairs formed in
the hairpin stem of the minimum free energy structure: oli-
gos (1) and (2) would have feature value 8, while oligo (3)
would have feature value 6.

There are many potential approaches to the prediction of
an analog desired parameter (kHyb in this paper) based on a
set of features, the simplest of which is multilinear regression
(MLR). We opted for WNV because WNV significantly out-
performs MLR when the relationships between the desired
parameter and the features are nonlinear. Simultaneously,
WNV is a highly scalable framework, in the sense that ad-
ditional labeled instances can easily be incorporated for im-
proved prediction accuracy without requiring reoptimization
of model parameters (feature weights). See Supplementary
Section S2 for two simple examples comparing WNV and

MLR.

Feature Construction and Normalization. We started
by rationally designing 38 potential features, each based on
some aspect of DNA biophysics that we believed may in-
fluence kinetics. Supplementary Section S3 shows our full
feature list and descriptions, as well as the correlation of
each feature value with kHyb; see Supplementary Table ST1
for values of the features for the 210 hybridization experi-
ments. Fig. 4a shows Gb, one of the 6 features used in our
final model; Gb can be thought of as the weighted average of
the �G� of formation of the TP complex, based on proba-
bilities of state existence/occupancy at equilibrium. Fig. 4b
shows the relationship between the observed kHyb (according
to model H3) and the value of Gb. There is significant corre-
lation between kHyb and Gb; simultaneously, the relationship
is not clearly linear. There may not be good physical inter-
pretations of all e↵ective features—in these cases, the feature
in question is likely correlated with a yet-undiscovered com-
plex feature with a firm physical basis.

The features that we constructed had di↵erent units and
di↵erent ranges of values. In order to calculate a distance
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FIG. 4: Rate constant prediction using the Weighted Neighbor Voting (WNV) model. (a) The values of a number of rationally
designed features are computed based on the sequences of the target and probe, as well as the reaction conditions (temperature,
salinity). Shown here is an example calculation for feature Gb, the weighted average �G� of the hybridized complex. The �G� of
formation for a number of likely states Sa are computed using Nupack [11], and subsequently used to compute their probability of
existence at equilibrium Pr(Sa). (b) Relationship between the base-10 logarithm of the experimental hybridization rate constants kHyb

(based on reaction model H3) vs. Gb values for the 210 hybridization experiments. There is moderate correlation between kHyb and
Gb, indicating that Gb may be an e↵ective feature for rate constant prediction. (c) Feature nenormalization based on 75th and 25th
percentile values. Plotted to the left are the raw values of the Gb and dGavg features for all 210 experiments. These feature values are
linearly transformed (re-normalized) based on a set of feature weights w(i): The 75th percentile value of a feature i is renormalized to

+w(i)
2

and the 25th percentile value is renormalized to �w(i)
2

. (d) Given a reaction whose rate constant kHyb is to be predicted (red
dot), the reaction’s renormalized feature values are first calculated and compared to the feature values of reactions with known kHyb

values (blue dots). The feature space distance dj,m between the unknown reaction j and each known reaction m is used to determine
the prediction weight of reaction m. Prediction weight drops exponentially with distance and is calculated as 2�dj,m ; Zj is the sum of
all prediction weights involving j. Both the predicted rate constant ˆkHyb and the known rate constants are expressed in logarithm base
10. (e) Relationship between feature space distance d and the absolute value of di↵erence in experimental rate constants (log 10) for
two hybridization reactions. Here, feature space distances are calculated using the final 6-feature model (see Fig. 5), for one reaction
(arbitrarily assigned j = 1) vs. all 209 other reactions. Pairs of reactions with small d generally have similar rate constants. The
converse statement is not true because two very di↵erent reactions may coincidentally have similar rate constants. (f) Summary plot
of Abs(log10(kHyb(j)) - log10(kHyb(m))) vs. feature distance dj,m for all

�
210
2

�
pairs of experiments. The black line shows the mean,

and the red region shows ±1 standard deviation on the mean.

between two hybridization reactions, it is necessary to nor-
malize the di↵erent features into a consistent scale. Because
the distributions of most feature values were distinctively
non-Gaussian for our 210 reactions, normalization was per-
formed based on the interquartile range: the 75th percentile
feature value is mapped to a score of +w(i)

2 , and the 25th

percentile value is mapped to �w(i)
2 (Fig. 4c), where w(i)

is the weight of feature i. The feature space distance dj,m
between an unknown reaction j and a known reaction m is
calculated as a Euclidean distance:

dj,m =

sX

i

(fi(j)� fi(m))2 (2)

where fi(j) is the value of renormalized feature i for reaction

j (Fig. 4d). Because a feature i with larger weight w(i) allows
a larger range of scores, it can contribute more to the distance
between two hybridization reactions. Fig. 4ef confirms that
the di↵erence in kHyb values for a pair of reactions increases
with feature space distance d.

Rate Constant Prediction. From a database of hybridiza-
tion experiments m with known kHyb(m) and renormalized
feature values, our WNV model makes the following predic-
tion for kHyb(j) of an unknown hybridization reaction j:

log10(
ˆkHyb(j)) =

1

Zj

X

m

2�dj,m · log10(kHyb(m)) (3)

where Zj =
P

m 2�dj,m is the “partition function” of the
distances involving reaction j.
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To quantitate the overall performance of a particular WNV
model (defined by its set of features and corresponding fea-
ture weights w(i)), we constructed the following “Badness”
metric:

Badness = 3 · (1� F2acc) + 3 · (1� F3acc) + 4 · RMSE (4)

where F2acc is the fraction of all predicted reactions j in
which predicted ˆkHyb(j) and the experimental kHyb(j) agrees
to within a factor of 2, F3acc the fraction that agrees to
within a factor of 3, and

RMSE =

s
1

N

X

j

⇣
log10(kHyb(j))� log10(

ˆkHyb(j))
⌘2

(5)

is the root mean square error of the logarithm of the hy-
bridization rate constant (where N = 210 is the number of
experiments).
We chose to use this Badness metric rather than RMSE

only (i.e. a least-squares fit) because we felt that it is more
relevant for many applications involving the design of DNA
oligonucleotide probes and primers: Rather than marginally
improving the predictions of outlier sequences that are o↵ by
more than an order of magnitude, our Badness metric em-
phasizes instead improving the fraction of predictions that
are correct to within a factor of 3, or better yet within a
factor of 2. Simultaneously, to allow e�cient computational
optimization of feature weights, the Badness metric to be
minimized cannot be locally flat, so RMSE is included as
a component of Badness. Use of di↵erent Badness metrics
will result in optimized feature weights that exhibit a di↵er-
ent tradeo↵ between the magnitude and frequency of large
prediction errors.

Feature Selection and Weighting. All 38 potential
features we constructed showed significant correlation with
kHyb, but it is inappropriate to include all of these in our
WNV prediction model both because several features may
consider redundant information, and because large sets of
feature weights are computationally di�cult to optimize. We
first manually pruned the list of potential features down to
17 most promising features, based on single-feature WNV
performance (using each feature’s optimized feature weight).
Due to the complexity and nonlinearity of the Badness land-
scape over the feature weight parameter space, it was not
feasible to determine an analytic solution of optimal weights.
Instead, we used a stochastic numerical optimization algo-
rithm to find weight values that achieve Badness minima.
Next, we implemented a greedy algorithm in which indi-

vidual features that best improve the Badness at each round
are iteratively added to an initially empty feature set. Fig. 5a
shows that the Badness decreases as the number of features
included increases up to 8; at 9 features, the WNV model
showed no additional Badness improvement. Also plotted
in Fig. 5a are the Badness of for MLR model using vari-
ous numbers of features. Up to 4 features, the WNV and
MLR models provide similar prediction accuracies; however,
WNV continues improving with additional features whereas

MLR performance plateaus. See Supplementary Section S4
for MLR optimization details.

The optimized feature weights for the 8-feature WNV
model included two features very small weights (w < 0.1);
these were removed, and the final WNV model consist of the
following 6 features: dGavg, Pap, Gb, T, nGp, and Pm, with
weights of 12.30, 11.89, 10.72, 6.88, 6.54, and 0.94, respec-
tively. A brief text description of these each feature follows;
see Supplementary Section S3 for additional feature details.
dGavg corresponds to the sum of the �G� of binding for
all subsequences of the target weighted by the probability
of all nucleotides of the subsequence being unpaired. Pap
corresponds to the sum of the probability-weighted �G� of
the strongest continuous subsequence that is expected to be
unpaired. Gb was described in Fig. 4a and corresponds to
the sum of the probability-weighted �G� of formation of the
target-probe complex. T is the reaction temperature in Cel-
sius. nGp corresponds to the partition function energy of the
probe secondary structure, as calculated by Nupack. Pm is
similar to Pap, but is calculated for misaligned target-probe
complexes.

Fig. 5b shows the accuracy of the final 6-feature WNV
model. Each blue dot plots the predicted log10 ( ˆkHyb) value
vs. the experimentally observed log10 (kHyb) value for a
single hybridization experiment. Each prediction was per-
formed using 209 labeled instances (all reactions except the
one to be predicted), using the feature weights trained on
all 210 data points. Predictions were accurate to within a
factor of 2 for 80% of the reactions, and within a factor of
3 for 94.8% of the reactions. For comparison, Fig. 5c shows
histograms of the distribution of prediction errors in log10
(kHyb) for WNV models using 0, 1, 3, and 6 features.

Leave-one-out Validation of Final WNV Model. The
fact that the final model’s feature weights were fitted to all
210 experiments raises potential concern regarding whether
the WNV model’s prediction accuracy would generalize to
new hybridization reactions, because the latter’s (unknown)
rate constant cannot be used for training feature weights.
Here, we performed leave-one-out (LOO) validation on the
model to study the generalizability of the WNV model.

In our LOO studies, we performed 210 separate feature
weight optimizations, each using a di↵erent set of 209 hy-
bridization experiments. Thus, each of the 210 models pos-
sessed di↵erent feature weights, and each model was used
to predict the hybridization rate constants of the single hy-
bridization experiment not included for its feature weight
optimization (red dot in top panel of Fig. 5d). The aggre-
gate performance of these 210 LOO models are shown in the
bottom panel of Fig. 5d. F2acc and F3acc are marginally
lower than in Fig. 5b at 73.8% and 92.4%, respectively.

To help the research community predict hybridization
rate constants for DNA oligo probes and primers, we
have constructed a web-based software tool, available at
http://nablab.rice.edu/nabtools/kinetics The software typ-
ically completes predicting kHyb within 30 seconds, with the
bulk of the computing time devoted to computation of the
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FIG. 5: Prediction accuracy of the WNV model. (a) The green dots show the results of a greedy optimization algorithm in which
individual weight-optimized features are sequentially added to the WNV model. The Badness metric (y-axis) is calculated based on
the fraction accurate to within a factor of 2 (F2acc), fraction accurate to within a factor of 3 (F3acc), and the root-mean-square
error (RMSE). The final 6-feature WNV model (green X) comprise the 6 features from the 8-feature model with the largest weights.
Performance of a multilinear regression (MLR) model is also shown for comparison; see Supplementary Section S4 for MLR feature
selection and weight optimization details. (b) Rate constant prediction performance of the final WNV model, using feature weights
were optimized on all 210 experimental reactions. Each blue dot corresponds to the prediction of each reaction’s rate constant based
on the data from the other 209 reactions’ rate constants. (c) Histograms of experimental minus predicted log10(kHyb) values for WNV
using 0, 1, 3, and 6 features. The 0-feature model represents a naive model predicting the same log10(kHyb) value for all sequences,
and the 1-feature model represents a simple model that considers only secondary structure. (d) To estimate the accuracy of the final
WNV model on prediction of rate constants for new sequences, we performed leave-one-out (LOO) validation. In the top panel, feature
weights were optimized on the 209 blue data points, and this model was used to predict the rate constant of the single “unknown” red
data point. The bottom panel summarizes the prediction performance of the 210 distinct models (with weights optimized on di↵erent
sets of 209 points).

Pap and Pm feature values. It is currently seeded with the
210 hybridization experiment results performed in this pa-
per, but will be updated with additional hybridization ex-
periment results in the future, which should further improve
prediction accuracy.

Enrichment from Human Genomic DNA. The human
genome is over 3 billion nucleotides long, but the coding re-
gions that form the exome collectively only span 30 million
nucleotides, or 1% of the genome. Within the 20,000 genes
of the exome, typically there are only between 10-400 are
that are relevant to any particular disease. Consequently,
solid-phase enrichment of relevant gene regions using highly
multiplexed hybridization of synthetic DNA oligonucleotide
probes [6] is the preferred approach for targeted sequencing.

Current commercial multiplex hybrid-capture panels gen-
erally use a very large number of synthetic probe oligonu-
cleotides to fully tile or overlap-tile the genomic regions of
interest; for example, the whole exome requires more than
200,000 distinct oligonucleotide probe species. Due to the

large number of oligo species involved, the concentration of
each species is thus necessarily quite low (tens of picomolar),
resulting in hybrid-capture protocols that typically span at
least 4 hours, and more frequently more than 16 hours. Be-
cause of the varying hybridization kinetics of di↵erent probes
(Fig. 3d), it is likely that many probes do not contribute sig-
nificantly to hybridization yield, and in fact slow down the
hybrid-capture process by forcing lower concentrations of the
fast-hybridizing probes.

To experimentally test this possibility, we first applied our
hybridization rate constant prediction algorithm to all pos-
sible 36 nt probes to exon regions of 21 genes. Because the
exon regions are typically 3000 nt long, this corresponds to
roughly 3000 possible probes. Predicted rate constants typ-
ically range about 2 orders of magnitude (see Supplemen-
tary Fig. S5-4), with the fast (�95th percentile) probes be-
ing typically a factor of 3 faster than median probes (⇡50th
percentile). NGS hybrid-capture enrichment typically uses
probes longer than 36 nt (e.g. Agilent SureSelect uses 120 nt
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FIG. 6: Comparison of probes predicted to possess median vs. fast hybridization kinetics for enrichment from human genomic DNA.
(a) Hybridization rate constant kHyb were predicted for all possible 36-mer hybridization probes to the exon regions of 21 cancer-related
genes. The middle and lower panels express the idea behind probe selection and library design, and do not accurately reflect kinetics
distributions or trajectories of any particular gene or probe; see Supplementary Fig. S5-4 for the distribution of predicted kHyb for
the AQP1 gene. (b) Genomic DNA enrichment and library preparation workflow. All hybridization probes were present at 50 pM
concentration. See Methods for detailed protocol. (c) Beeswarm plot of NGS reads aligned to each probe, excluding 15 fast and 15
median probes to 4 genes with low read depth (see Supplementary Section S5). In the library in which probes were hybridized to the
fragmented gDNA for 24 hours (top panel), there is no significant di↵erence in the read count distribution between the median and fast
probes. In the 20 minute hybridization library, the fast probes showed significantly higher reads than the median probes, indicating
that the probes our algorithm predicted to be faster did in fact provide a higher degree of hybridization within 20 minutes. (d) Ratio
of aligned reads in the 20 minute library to the 24 hour library for each probe. A high ratio indicates fast hybridization kinetics; ratio
can exceed 1 because libraries were normalized, so that fast probes are more dominant and occupy more reads in the 20 minute library.

probes), but there is likely a similar if not greater range of
hybridization kinetics rate constants for longer probes due to
the greater possibility of secondary structure and nonspecific
interactions.

Subsequently, we picked a total of 65 fast probes and 65
median probes across the exon regions of 21 di↵erent cancer-
related genes. The expectation is that after a 24 hour hy-
bridization protocol, the fast and median probes would pro-
duce similar reads, but with a short 20 minute hybridization
protocol, the fast probes would exhibit significantly greater
reads than median probes (Fig. 6a). Our library prepa-
ration protocol is summarized in Fig. 6b; all 130 probes
are hybridized to the adaptor-ligated DNA simultaneously.
However, the number of reads aligned to a particular probe
is not directly proportional to its hybridization yield, due
to well-documented sequencing bias [24, 25]. For example,
some adaptor-ligated amplicons exhibit significant secondary
structure and is less e�ciently PCR amplified during nor-
malization, or less e�ciently sequenced due to lower flow cell
binding e�ciency. For this reason, 15 fast and 15 median
probes targeting 4 genes resulted in less than 100x sequenc-
ing depth, and were excluded from subsequent analysis (see

Supplementary Section S5); we do not believe this to a↵ect
the conclusions from our genomic DNA enrichment study.

Our comparison of reads for the 20 minute hybridization
library and for the 24 hour hybridization library indicates
that the probes predicted to be fast on average exhibited
both a 2-fold increase in reads in the 20 minute library, and
a 2-fold increase in the ratio of reads at 20 min vs. 24 hours.
This is slightly worse than our algorithm’s predicted 3-fold
di↵erence between median and fast probes, but understand-
able given that our rate constant prediction algorithm was
trained on single-plex hybridization rather than on multiplex
hybridization. Our calibration experiments (Supplementary
Section S5) indicate that the correlation constant between
single-plex and multiplex kHyb values are roughly r2 = 0.6.

Our results thus suggest that sparse hybrid-capture enrich-
ment panels would produce faster kinetics at a significantly
lower cost. Rather than fully tiling or overlap-tiling the ge-
netic regions of interest, it would be better to use a higher
concentration of a few probes with fastest hybridization ki-
netics. Multiple probes are only needed insofar as biological
genomic DNA may be fragmented, and a di↵erent probe is
needed to capture each fragment. With the notable excep-
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tion of cell-free DNA [26], most genomic DNA from clinical
samples are longer than 500 nucleotides.

The concentrations of the probes used for this study was
50 pM per probe, and was intentionally selected so as to
be similar to the concentrations of probes used by commer-
cial enrichment kit providers At 50 pM concentrations, up to
200,000 probes can be used and the total oligo concentration
would still be at a reasonable 10 µM.. At the significantly
(e.g. 10x) higher individual probe concentrations that be-
come feasible with a sparse coverage of target genetic regions,
even the 20 minutes allotted here for hybridization could be
further reduced, greatly speeding up the NGS library prepa-
ration workflow from current practice of 4-24 hours.

Discussion

In this work, we combined the rational design of features
and the WNV framework with computational optimization
of feature selection and feature weights, resulting in a final
model that is capable of accurately predicting hybridization
kinetics rate constants based on sequence and temperature
information. The final WNV rate constant prediction model
is highly scalable and easily incorporates new experimen-
tal data to provide improved predictions, without requir-
ing model retraining. With every additional hybridization
experiment and its accompanying fitted kHyb value, the 6-
dimensional feature space becomes denser, ensuring that on
average a new hybridization experiment will be closer to an
existing labeled instance. Thus, prediction accuracy will fur-
ther increase and as we and other researchers collect addi-
tional hybridization kinetics data.

To seed the model with a reliable initial database of labeled
instances that is representative of the diversity of genomic
DNA sequences, we experimentally characterized the kinet-
ics of 210 hybridization experiments across 100 biological tar-
get sequences using fluorescence. The X-probe architecture
allowed us to economically study kinetics for a reasonably
large number of target sequences, but extra nucleotides of
the universal arms may cause hybridization kinetics to dif-
fer slightly from that of a standard single-stranded probe.
For example, there may be a systematic bias towards lower
rate constants because of the reduced di↵usion constants.
Nonetheless, because all targets/probes use the same univer-
sal arm sequences, it is likely that the relative ordering of
rate constants is preserved.

In this work, we started with 38 rationally designed fea-
tures that we eventually pruned down to 6 in the final model.
The high LOO validation accuracy of the WNV model indi-
cates that these features capture a significant, if not ma-
jority, portion of the complexity of the hybridization pro-
cess. Simultaneously, there remain pairs of experiments in
our database with similar feature values (feature space dis-
tance d 3) but with 3-fold di↵erences in kHyb. This implies
the existence of undiscovered features that would distinguish
these pairs of experiments; additional insight and creativity
from the community in designing additional features would
be welcomed.

The hybridization reactions experimentally characterized
in the work were all performed in 5x PBS bu↵er, and all
target and probe sequences were 36 nt long. These exper-
iment constraints were designed to reduce the diversity of
hybridization reactions, in order to ease the training of the
WNV model. We plan to expand experimental studies to
these various conditions, in order to allow the WNV model
to accurately account for bu↵er conditions and probe length.
Additionally, with genomic DNA targets, the long-range sec-
ondary structure and the fragmentation pattern of genomic
DNA targets should also be considered. An expanded model
to accommodate varying length targets and probes (includ-
ing targets overhangs) and other bu↵er conditions will re-
quire the construction of new features.

Multiplex hybrid-capture panels for enriching target re-
gions from genomic DNA is commonly used in targeted se-
quencing for scientific and clinical studies. In the absence
of reliable kinetics prediction software, researchers and com-
panies have taken a brute-force probe design approach, us-
ing fully tiled or overlapping-tiled probes to cover genetic
loci of interest. While this approach ensures the presence of
at least some fast-binding probes, it is both expensive (in
terms of synthesis and QC of thousands of probes) and re-
sults in slower workflows. Accurately predicting multiplexed
hybridization kinetics will enable precision design of sparse,
high-performance probe panels for target enrichment.
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