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Abstract 

Recently Wiener’s causality theorem, which states that one variable could be regarded as the 

cause of another if the ability to predict the future of the second variable is enhanced by 

implementing information about the preceding values of the first variable, was linked to 

information theory through the development of a novel metric called ‘transfer entropy’. 

Intuitively, transfer entropy can be conceptualized as a model-free measure of directed 

information flow from one variable to another. In contrast, directionality of information flow is 

not reflected in traditional measures of association which are completely symmetric by design. 

Although information theoretic approaches have been applied before in epidemiology, their 

value for inferring causality from observational studies is still unknown. Therefore, in the 

present study we use a set of simulation experiments, reflecting the most classical and widely 

used epidemiological observational study design, to validate the application of transfer entropy 

in epidemiological research. Moreover, we illustrate the practical applicability of this 

information theoretic approach to ‘real-world’ epidemiological data by demonstrating that 

transfer entropy is able to extract the correct direction of information flow from longitudinal 

data concerning two well-known associations, i.e. that between smoking and lung cancer and 

that between obesity and diabetes risk. In conclusion, our results provide proof-of-concept that 

the recently developed transfer entropy method could be a welcome addition to the 

epidemiological armamentarium, especially to dissect those situations in which there is a well-

described association between two variables but no clear-cut inclination as to the directionality 

of the association. 
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Introduction 

Epidemiology has been defined as “the study of the distribution and determinants of disease 

frequency” [1,2]. Therefore, the concept of causation is central to epidemiological research. A 

uniform definition of causation, however, is lacking and subject to continuing debate and 

controversy [3-6]. Although several inductively oriented causal criteria are commonly used, 

especially those proposed by Hill [7], the validity of these criteria for causal inference is 

regarded as dubious at best [6]. Nevertheless, one criterion of causality which appears to be 

universally accepted is the condition of temporal precedence: For an exposure to qualify as 

causal it has to precede the putative effect [6]. Precisely an augmented version of this condition 

of temporality lies at the heart of the concept of causality as introduced by Norbert Wiener [8]. 

According to Wiener’s notion of causality one variable could be regarded as the cause of 

another if the ability to predict the future of the second variable is enhanced by implementing 

information about the present and past values of the first variable [9]. This concept of causality 

has been widely applied and validated in various areas of scientific research, most notably in the 

fields of econometrics and neuroscience [9,10].  

Relatively recently Wiener’s concept of causality was linked to information theory, a robust 

mathematical framework for the quantification of information in the widest sense [11,12]. In 

the framework of information theory the core measure of information of a variable is its 

associated Shannon entropy [12,13]. Information entropy represents the reduction of 

uncertainty which occurs when one actually measures the value of a variable [12-14]. Schreiber 

demonstrated that if one associates prediction improvement to uncertainty reduction, a 

measure for Wiener’s causality can be derived within the context of information theory which 

he defined as transfer entropy [11]. Unlike classical measures of association which are 

completely symmetric, transfer entropy is an inherently asymmetric measure and is able to 

detect asymmetries in the interaction of systems evolving in time [11]. Intuitively transfer 

entropy can be conceptualized as a model-free measure of directed information flow from one 

variable to another [11]. Therefore, in principle transfer entropy could be a useful measure for 

deducing causality from observational data in epidemiological research. 
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Albeit infrequently, information theoretic approaches have been applied before in epidemiology 

[15-17]. However, their value for inferring causality from observational studies is still 

unexplored. In the present work, we therefore used a set of simulation experiments as well as 

real-world data to demonstrate the potential usefulness of the information theoretic metric 

transfer entropy for causality inference in epidemiological research. Our results provide proof-

of-concept that transfer entropy can indeed be applied as a useful tool for assessing causal 

associations in observational epidemiological studies, especially when there are concerns 

regarding the direction of action of the presumed causes and effects. 

 

Methods 

Definitions 

The fundamental metric of information theory is Shannon’s entropy which is defined as the 

average number of bits necessary for optimally encoding a stream of symbols based on the 

probability of each symbol occurring. Formally, the Shannon’s entropy for variable 𝑋, 𝐻(𝑋), 

with a probability distribution 𝑝𝑖, is a measure of the expected uncertainty and is given by (the 

summation is over all states 𝑖 of 𝑋): 

𝐻(𝑋) = − ∑ 𝑝𝑖 log2 𝑝𝑖

𝑖

 

Assuming that two time-series 𝑋 and 𝑌could be approximated by Markov processes, then 

according to Schreiber a measure of causality could be defined as the deviation from the 

following generalized Markov condition [11,14]: 

𝑝(𝑦𝑡+1|𝒚𝒕
𝒏, 𝒙𝒕

𝒎) =  𝑝(𝑦𝑡+1|𝒚𝒕
𝒏) 

where   𝒙𝒕
𝒎 = (𝑥𝑡, … , 𝑥𝑡−𝑚+1) and 𝒚𝒕

𝒏 = (𝑦𝑡, … , 𝑦𝑡−𝑛+1) with 𝑚 and 𝑛 the orders of the Markov 

processes 𝑋 and 𝑌, respectively. Now, the deviation from the above Markov condition 

quantified using the Kullback entropy is defined as the transfer entropy of variable  𝑋 to variable 

𝑌as follows [11,14]: 
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𝑇𝑋→𝑌 = ∑ 𝑝(𝑦𝑡+1, 𝒚𝒕
𝒏, 𝒙𝒕

𝒎) log
𝑝(𝑦𝑡+1|𝒚𝒕

𝒏, 𝒙𝒕
𝒎)

𝑝(𝑦𝑡+1|𝒚𝒕
𝒏)

𝑦𝑡+1,𝒚𝒕
𝒏,𝒙𝒕

𝒎

 

Simulation experiments 

To evaluate the applicability of transfer entropy to observational studies we simulated a series 

of data sets based on the most fundamental type of epidemiological study, namely a cohort 

study in which the influence of an exposure E is assessed on the occurrence of a disease D. For 

simplicity, the simulations were further based on the following conditions: 

1) N individuals with a similar age were followed-up for t years and data were collected at 

yearly intervals. 

2) Both exposure and disease were assumed to be either present or absent, i.e. both E and 

D were represented by a dichotomous variable.   

3) The natural rate of occurrence of disease D in the unexposed group was assumed to be 

𝑝0 per year and the number of disease occurrences was assumed to follow a Poisson 

distribution. 

4) The rate of exposure was assumed to be 𝑝𝑒 per year and the number of exposed 

individuals was assumed to follow a Poisson distribution. 

5) There was no loss to follow-up. 

A total of four simulated data sets were created based on parameter values for N, t , 𝑝𝑒 and 𝑝0 

of 1000, 10, 0.1 and 0.01, respectively. Each data set was created to represent a different 

scenario. In scenario I we assumed that exposure E increased the risk of disease D by ten times. 

In scenario II we assumed that disease D increased the probability of being exposed by ten 

times, but that exposure E did not increase the risk of disease (i.e. reverse causation). In 

scenario III we assumed that exposure E increased the risk of disease D by ten times and that 

disease D on its turn also increased the probability of being exposed by ten times. Finally, in 

scenario IV we assumed that a dichotomous confounder C increased the probability of being 

exposed as well as the risk of disease by ten times in the absent of a causal association between 

E and D. In this last scenario, we assumed that the rate of exposure to C was 0.1 per year 
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according to a Poisson distribution. For clarity, these four scenarios are represented in Figure 1 

by graphs. 

Analyses of simulated data  

In order to yield robust estimates for transfer entropy each variable had to be converted into a 

long time-series. This was done for each variable by concatenation of the longitudinal 

measurements of all simulated subjects, resulting in a long time-series for exposure status and a 

similar one for disease status. Although by concatenating values for different subjects this 

method introduces some error into the data, due to the independence of the measurements on 

each simulated subject this error is completely random and will only result in a conservative 

estimate, i.e. favoring the null hypothesis of no causal association. For the calculation of the 

(multivariate) binary transfer entropy metrics we used the Java Information Dynamics Toolkit 

(version 1.2.1) [18] with the k parameter set to follow-up time in order to maximally exploit the 

information contained in the time-series [11]. Statistical significance for the transfer entropy 

metrics was determined by computing a distribution of 1000 surrogate values obtained via 

permutation-based resampling under the null hypothesis of no temporal association between E 

and D as described previously [18]. Importantly, for significance testing of multivariate transfer 

entropy we did not permute the component time-series individually but the vectors of the 

predictor variables at each time point [19]. Correlations were assessed by the Pearson’s (partial) 

correlation coefficients while χ2- or Fisher’s exact tests were applied to assess differences in risk 

ratios.  

 

Real-world data 

Annual data on age-adjusted lung cancer incidence for all fifty states of the United States of 

America (USA) were available online for the years 1999 to 2013 through the National Cancer 

Institute [20]. Data on the percentage of adult daily smokers per state were available online for 

the period 1995 to 2010 through the Behavioral Risk Factor Surveillance System (BRFSS) [21]. 

Therefore, we could extract state-level data on both lung cancer incidence and percentage of 

daily smokers for the period 1999-2010. Similarly, state-wise annual age-adjusted data on the 

prevalence of obesity (i.e. a body mass index ≥ 30) and diabetes for the years 1995-2015 were 
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available online through the BRFSS [22]. There were only very few missing data values (i.e. < 

1%), therefore, missing data points were linearly interpolated. 

Analyses of real-world data  

In order to yield robust estimates for transfer entropy we again converted each variable into a 

long time-series by concatenating the longitudinal measurements of all US states. Given the 

relatively low number of ‘cases’ (i.e. fifty), the concatenation order was determined completely 

at random, basing each estimation of transfer entropy on the analysis of 100 random re-

orderings of the states. For the calculation of the continuous transfer entropy metrics we used 

the Kraskov estimator with 4 nearest points using the Java Information Dynamics Toolkit 

(version 1.2.1) [18]. The history length was set to 1 which in this instance can be interpreted as 

the extent to which the prevalence of a risk factor (e.g. smoking) could predict the occurrence of 

a disease (e.g. lung cancer) in the following year. Statistical significance for the transfer entropy 

for each estimation was again determined by computing a distribution of 1000 surrogate values 

obtained via permutation-based resampling under the null hypothesis of no temporal 

association between the two variables of interest [18]. As we also used 100 random re-

orderings of the US states for each estimation, the final statistical significance was calculated by 

bias-corrected bootstrapping of the permutation-based test statistics. 

All simulations and analyses were performed using MATLAB Release 2014a (The MathWorks, 

Inc., Natick, Massachusetts, United States) and SPSS Statistics for Windows Version 21.0 

(Armonk, NY: IBM Corp.). All tests were two-tailed and statistical significance level was set at p < 

0.05. 

 

Results  

Simulation experiments 

Scenario I 
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In this scenario, the correlation coefficient was 0.357 between the two time-series (p <0.001). 

The transfer entropy of E to D (𝑻𝐸→𝐷) was 0.023 bits and was also highly significant (p <0.001). 

Conversely, however, the transfer entropy from D to E (𝑻𝐷→𝐸) was only 0.002 bits and was not 

statistically significant (p = 1.0). Therefore, under this scenario transfer entropy correctly 

identified the simulated causal relationship in the data which was not apparent from the 

correlation coefficient alone (Table 1).  

Scenario II 

In this scenario of ‘reverse causation’ both the correlation coefficient and the risk ratio as 

calculated from a contingency table were highly significant (Table 1). However, only the transfer 

entropy metrics could identify the true direction of the effect, namely that the disease increased 

the risk of exposure and not vice versa, reflected in a statistically significant 𝑻𝐷→𝐸  but not 𝑻𝐸→𝐷 

(Table 1). 

Scenario III 

In this scenario of mutual influence a statistically highly significant association between 

exposure and disease was indeed detected by the correlation coefficient and risk ratio metrics. 

Again, however, the bilateral direction of this ‘causation’ only became apparent through 

transfer entropy analysis: both 𝑻𝐸→𝐷 and 𝑻𝐷→𝐸 were statistically significant (Table 1). 

Scenario IV 

In this scenario, a spurious association was created between the exposure and disease through 

a confounding variable C which strongly influenced both E and D (Figure 1). As expected all 

univariate metrics detected an association between E and D. The difference between the 

metrics became only apparent when we corrected for the effect of variable C. Although the 

partial correlation between E and D (adjusted for C) was less than half of the uncorrected 

correlation, it still remained highly significant (Table 1). Conversely, the conditional entropy 

between E and D – which was calculated using the formula 𝑇𝐸→𝐷|𝐶 = 𝑇𝐸,𝐶→𝐷 − 𝑇𝐶→𝐷(see the 

appendix for a formal proof of this identity) – was not statistically significant (Table 1), thus 

correctly eliminating the spurious association mediated through the confounder C. 
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Real-world data 

Smoking and lung cancer incidence 

As expected there was a highly significant correlation between the two time-series representing 

the percentage of daily smokers and the incidence of lung cancer (bootstrapped values: r = 

0.719, p << 0.001; Figure 2).  Interestingly, the transfer entropy metrics in addition could 

identify the directionality of the effect: The transfer entropy from smoking to lung cancer 

incidence (i.e. 𝑻𝑆𝑚𝑜𝑘𝑖𝑛𝑔→𝐿𝑢𝑛𝑔 𝑐𝑎𝑛𝑐𝑒𝑟) was highly significant (bootstrapped values: 0.058 bits, p = 

0.008), whereas the transfer entropy from lung cancer incidence to smoking (i.e. 

𝑻𝐿𝑢𝑛𝑔 𝑐𝑎𝑛𝑐𝑒𝑟→𝑆𝑚𝑜𝑘𝑖𝑛𝑔) was not (bootstrapped values: 0.005 bits, p = 0.813). 

Obesity and diabetes prevalence 

The two time-series containing the prevalence of obesity and diabetes were highly correlated as 

expected (bootstrapped values: r = 0.888, p << 0.001, Figure 3). Again, transfer entropy analysis 

was able to distinguish between the putative cause and effect:  The transfer entropy from 

obesity prevalence to diabetes prevalence (i.e. 𝑻𝑂𝑏𝑒𝑠𝑖𝑡𝑦→𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠) was highly significant 

(bootstrapped values: 0.131 bits, p << 0.001), whereas the transfer entropy from diabetes 

prevalence to obesity prevalence (i.e. 𝑻𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠→𝑂𝑏𝑒𝑠𝑖𝑡𝑦) was not (bootstrapped values: 0.054 

bits, p = 0.236). 

 

Discussion 

One of the greatest challenges of epidemiological research  is to infer causal relationships from 

non-experimental observations [6]. In epidemiology, this challenge is in fact reflected in a 

fundamental dichotomy between ‘observational’ and ‘experimental’ studies because only the 

latter are deemed to be able to provide unequivocal evidence for or against a causal effect 

[23,24]. Epidemiologists however do not stand alone in facing this grand obstacle since the issue 

of inferring causality from non-experimental data is pervasive to all disciplines of science 

concerned with etiological research: From the neurosciences in which massive amounts of 
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connections between various parts of the brain have to be evaluated for ‘effective connectivity’, 

i.e. identifying the ‘driver’ and ‘responder’ components of neural networks [19,25], to cause-

effect relationships in various climate models [26], to  detecting causal links between different 

financial markets [10,27], just to name a few examples. The recent merging of Wiener’s 

causality theorem with information theory and the resulting notion of information flow as 

transfer entropy has revolutionized research in all these and many other disciplines [11,14], but 

surprisingly, not in epidemiology. 

In this paper, we therefore aimed to introduce the concept of transfer entropy and its potential 

applicability to epidemiological research. In order to assess the validity of transfer entropy when 

applied to epidemiological data we specifically simulated a series of data sets to obtain ground 

truth about the underlying causal associations which obviously would have not been possible in 

a ‘real’ data set. The simulations we chose concerned the most classical, basic and widely used 

epidemiological observational study design: the assessment of the effects of a dichotomous 

exposure on a dichotomous outcome in a cohort of individuals who were followed up for a 

certain amount of time [1,2]. Our results show that transfer entropy can indeed be used as a 

powerful tool to assess causal associations in observational epidemiological studies. 

Importantly, comparison with traditional epidemiological metrics showed that the application of 

transfer entropy can provide valuable insight into the direction of information flow. 

Directionality of information flow is simply not reflected in traditional (linear) measures of 

association which are completely symmetric by design, nicely reflected in the old adage 

“association is not causation”. This symmetric design of traditional measures of association 

implies that for the evaluation of the direction of association additional information will be 

necessary, whereas transfer entropy can deduce the direction of information flow from the data 

at hand [11].     

In order to illustrate the practical applicability of this information theoretic approach to ‘real-

world’ epidemiological data, we also assessed whether transfer entropy was able to extract the 

correct direction of information flow from longitudinal data on two well-known associations. 

The first association concerned that between smoking and lung cancer, while the second 

relation concerned that between obesity and diabetes risk [28,29]. We chose these examples as 
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in both instances there is ample theoretical and experimental evidence to consider one of the 

variables as the cause and the other as the effect, i.e. smoking and obesity cause lung cancer 

and diabetes, respectively, and not vice versa [28,29]. In both examples, our analysis 

demonstrated that transfer entropy could correctly pinpoint the direction of information flow, 

and thereby discern the cause from the effect, lending further support to the validity of this 

approach.  

Our results also demonstrate another notable advantage of transfer entropy over traditional 

measures of association, namely the fact that transfer entropy is a model-free measure of 

information flow [11]. An important corollary thereof is that in case no information is available 

about the underlying data structure, and especially when non-linear interactions are possible, 

transfer entropy is more likely to yield valid results as compared to model-based approaches. In 

our simulated data sets this advantage was most evident in scenario IV in which we had created 

a spurious association between an exposure and a disease completely mediated via a 

confounder which influenced both. In this scenario adjusting the association between exposure 

and disease for the confounder through application of partial correlation, which assumes 

linearity, only partly removed the confounding effect. In contrast, the transfer entropy of the 

association between the exposure and disease indicated no information flow when adjusted for 

the influence of the confounder. Although, obviously, stratification by the confounder would 

also have eliminated the spurious relationship between exposure and disease in this simple 

example with a dichotomous confounding variable, this example does illustrate that linear 

correction does not necessarily remove all confounding effects. Moreover, in more complex 

cases stratification becomes problematic and statistical adjustment will be required. The 

availability of multivariate transfer entropy methods is therefore very useful in cases were 

intricate association networks have to be assessed, a situation which is for example very 

common in the neurosciences where transfer entropy has proven to be very useful in the 

assessment of dozens of pathways in order to establish ‘effective connectivity’ [19].  

Furthermore, it should be noted that recently it was proven that transfer entropy reduces to 

Granger causality, a linear measure of causality, for normally distributed data [30,31].  
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It is also important to note that while in our simulations all variables were assumed to be 

dichotomous for simplicity, there is no reason to restrict the application of transfer entropy in 

epidemiology to binary data as exemplified by our ‘real-world’ data analyses. In fact there are 

very well described estimation methods for transfer entropy for both discrete as well as 

continuous data [18,32]. Additionally, these methods are readily available as they are 

conveniently implemented in various freely available software toolboxes and scripts for use in 

various programming languages [18,32-34]. Lizier provides a comprehensive overview and 

discussion of the currently available software [18].  

Despite the advantages of transfer entropy as a measure of directed association there are also 

some limitations to this method [14]. First, as transfer entropy is based on Wiener’s principle of 

causality which pertains to non-interventional, observational causality, it is like all traditional 

methods liable to the effects of unobserved confounders. The availability of multivariate 

transfer entropy does however allow for conditioning on the effects of observed variables which 

could potentially act as confounders. Secondly, the fact that transfer entropy is a model-free 

measure of information flow automatically entails that although it can accurately detect the 

direction and magnitude of information flow, it cannot describe the nature of the information 

conveyed. However, this problem can be overcome by using post-hoc model-based approaches 

to assess the specific nature of the interaction after significant information flow pathways have 

been identified through application of transfer entropy [14]. Another consequence of a model-

free measure is that there is no fixed probability distribution, although statistical significance 

testing is possible through resampling methods as described here.  

In conclusion, in this study we provide proof-of-concept for the usefulness of transfer entropy 

as a measure of directed association in observational studies in epidemiology. Our findings 

indicate that the recently developed transfer entropy method could be a welcome addition to 

the epidemiological armamentarium, especially to dissect those situations in which there is a 

well-described association between two variables but no clear-cut inclination as to the 

directionality of the association. Examples of the latter include the association between atrial 

fibrillation and cryptogenic stroke [35], the relation between statin use and cognitive decline 

[36] and the putative link between cancer and diabetes [37], although there are myriads more 
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of such clinically relevant associations which could be subjected to further scrutiny by transfer 

entropy analysis. Another potential use could be in observational follow-up studies in which 

large amounts of variables are periodically measured; in the analysis of data from these studies 

transfer entropy could be applied to reconstruct the contours of the information flow in an 

unbiased manner analogous to reconstruction of networks of effective connectivity from 

functional imaging data [19]. 

 

Appendix 

The transfer entropy of a stochastic time-varying variable 𝑋 on another 𝑌 can also be expressed 

in terms of their associated conditional Shannon entropies[32]: 

𝑇𝑋→𝑌 = 𝐻(𝑌𝑡|𝑌𝑡
−) − 𝐻(𝑌𝑡|𝑌𝑡

−, 𝑋𝑡
−) 

Where the subscript 𝑡 represents the present time, and  𝑋𝑡
− = [𝑋𝑡−1

− , 𝑋𝑡−2
− … ] and 𝑌𝑡

− =

[𝑌𝑡−1
− , 𝑌𝑡−2

− … ] denote vectors representing the whole past of the variables 𝑋 and 𝑌.  Similarly, 

the multivariate transfer entropy of two variables 𝑋 and 𝑍  on 𝑌 is given by[32]: 

𝑇𝑋,𝑍→𝑌 = 𝐻(𝑌𝑡|𝑌𝑡
−) − 𝐻(𝑌𝑡|𝑌𝑡

−, 𝑋𝑡
−, 𝑍𝑡

−) 

Where 𝑍𝑡
− = [𝑍𝑡−1

− , 𝑍𝑡−2
− … ] denotes a vector representing the whole past of the variable 𝑍. 

From the above it follows immediately that: 

𝑇𝑋,𝑍→𝑌 − 𝑇𝑋→𝑌= 𝐻(𝑌𝑡|𝑌𝑡
−, 𝑋𝑡

−) −  𝐻(𝑌𝑡|𝑌𝑡
−, 𝑋𝑡

−, 𝑍𝑡
−)=𝑇𝑍→𝑌|𝑋 

With 𝑇𝑍→𝑌|𝑋 thus representing the transfer entropy from variable 𝑍  to 𝑌 conditioned on 𝑋.  
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Figure 1: The four simulated scenarios based on the (causal) associations between three 

different variables (please refer to the text for details). 
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Figure 2: The incidence of lung cancer during the period 1999-2010 is strongly associated with 

the percentage of daily smokers in the USA. Each line represents a different US state. 
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Figure 3: The prevalence of obesity and diabetes during the period 1995-2015 are strongly 

associated in the USA. Each line represents a different US state. 
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Table 1: Simulated data and analysis of the results at 10 years follow-up. 

Simulation 

scenario 

 D=0 D=1 r 

(p-value)1 

partial r 

(p-value) 1 

RR 

(p-value)2 

𝑻𝐸→𝐷 

(p-value) 

𝑻𝐷→𝐸  

(p-value) 

𝑻𝐸→𝐷|𝐶  

(p-value) 

I E=0 345 33 0.357 

(<0.001) 

- 4.53 

(<0.001) 

0.023 

(<0.001) 

0.002 

(1.0) 

- 

E=1 376 246 

II E=0 343 4 0.200 

(<0.001) 

- 10.50 

(<0.001) 

0.001 

(0.359) 

0.010 

(<0.001) 

- 

E=1 574 79 

III E=0 344 8 0.321 

(<0.001) 

- 11.95 

(<0.001) 

0.010 

(<0.001) 

0.006 

(<0.001) 

- 

E=1 472 176 

IV E=0 131 17 0.271 

(<0.001) 

0.118 

(<0.001) 

2.75 

(p<0.001) 

0.006 

(<0.001) 

0.003 

(0.990) 

0.004 

(0.405) 
E=1 583 269 

Legend: D = disease status (0, no disease; 1, disease); E = exposure status (0, no exposure; 1, exposed); r = Pearson’s 

correlation coefficient of the two time-series; RR = calculated relative risk ratio; 𝑻𝐸→𝐷 = transfer entropy from 

variable E to D in bits per year; 𝑻𝐷→𝐸  = transfer entropy from variable D to E in bits per year; 𝑻𝐸→𝐷|𝐶  = transfer 

entropy from variable E to D conditioned on C  in bits per year 

1) Assessed by the Pearson’s (partial) correlation coefficient between the two time-series. 

2) Statistical significance was assessed by the χ2-test except when cell counts were smaller than 10, in which case 

the Fisher’s exact test was applied. 
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