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Abstract

Inference of gene regulatory network structures from RNA-Seq data is
challenging due to the nature of the data, as measurements take the form
of counts of reads mapped to a given gene. Here we present a model for
RNA-Seq time series data that applies a negative binomial distribution
for the observations, and uses sparse regression with a horseshoe prior to
learn a dynamic Bayesian network of interactions between genes. We use a
variational inference scheme to learn approximate posterior distributions
for the model parameters. The methodology is benchmarked on synthetic
data designed to replicate the distribution of real world RNA-Seq data.
We compare our method to other sparse regression approaches and infor-
mation theoretic methods. We demonstrate an application of our method
to a publicly available human neuronal stem cell differentiation RNA-Seq
time series.

1 Introduction

Methods for the inference of gene regulatory networks from RNA-Seq data are
currently not as mature as those developed for microarray datasets. Normalised
microarray data posses the desirable property of being approximately normally
distributed so that they are readily amenable to various forms of inference, and
in the literature many graphical modelling schemes have been explored that
exploit the normality of the data[47, 18, 38, 24, 25, 15, 44, 45, 46].

The data generated by RNA-Seq studies on the other hand present a more
challenging inference problem, as the data are no longer approximately normally
distributed, and before normalisation take the form of non-negative integers.
In the detection of differential expression in RNA-Seq data, negative binomial
distributions have been applied [16, 3, 41, 26], providing a good fit to the over-
dispersion typically seen in the data relative to a Poisson distribution. Following
similar graphical modelling approaches as applied in the analysis of microar-
ray data, it is natural to consider Poisson and negative binomially distributed
graphical models. Unfortunately in many cases when applying graphical mod-
elling approaches with Poisson distributed observations, only models that repre-
sent negative conditional dependencies are available, or inference is significantly
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complicated due to lack of conjugacy between distributions[19]. Poisson graph-
ical models have been applied successfully in the analysis of miRNA regulatory
interactions [2, 13], but we might expect to improve on these by modelling
the overdispersion seen in typical RNA-Seq data sets with a negative binomial
model.

One specific case of interest in the analysis of RNA-Seq data is the study
of time series in a manner that takes into account the temporal relationships
between data points. Previous work in the literature has developed sophisticated
models for the inference of networks from microarray time series data [24, 25],
but whilst methods have been developed for the analysis of differential behaviour
in RNA-Seq time series [1, 21], little attention has been given to the task of
learning networks from such data. Here we present a method for the inference of
networks from RNA-Seq time series data through the application of a Dynamic
Bayesian Network (DBN) approach, that models the RNA-Seq count data as
being negative binomially distributed conditional on the expression levels of a
set of predictors.

2 Methods

2.1 Dynamic Bayesian Networks

In a DBN framework[23], considering only edges between time points, we can
model a sequence of observations using a first order Markov model, where the
value of a variable at time t is dependent only on the values of a set of parent
variables at time t− 1. This can be written as

P (Yt) = P (Yt|Pa(Y )t−1) (1)

where Pa(Y ) is the set of parents of variable Y in the network. In our case
we wish to model the expression level of a gene conditional on a set of parent
genes that have some influence on it. To learn the set of parent variables of
a given gene, it is possible to perform variable selection in a Markov Chain
Monte Carlo framework, proposing to add or remove genes to the parent set in
a Metropolis-Hastings sampler. However this can be computationally expensive,
and so instead we consider applying a sparse regression approach to learn a set
of parents for each gene.

2.2 Sparse negative binomial regression

Given data D consisting of M columns and L rows, with columns corresponding
to genes and rows to time points, we seek to learn a parent set for each gene. To
do so we can employ a regularised regression approach that enforces sparsity of
the regression coefficients, and only take predictors (genes) whose coefficients are
significantly larger than zero as parents. To simplify the presentation, below we
consider the regression of the counts for a single gene i, y = D2:L,i, conditional
on the counts of the remaining W = M − 1 genes X = D1:(L−1),−i. The matrix
X is supplemented with a column vector 1. Where there are multiple replicates
for each time point these can be adjusted appropriately.
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The counts yt are then modelled as following a negative binomial distribu-
tion with mean exp (Xβ)t and dispersion ω, where β is a vector of regression
coefficients. The model is then

yt ∼ NB(st exp (Xβ)t, ω), (2)

where we have applied the NB2 formulation of the negative binomial dis-
tribution, and st is a scaling factor for each sample to account for sequencing
depth. This corresponds to a DBN where

p(Di
t|D

Pa(i)
t−1 ) ∼ NB

st exp

 ∑
j∈Pa(i)

βjD
j
t−1 + βc

 , ω

 . (3)

To enforce sparsity of the βw we apply a horseshoe prior[6, 7], assuming that
βw ∼ N (0, ζ2w), and placing a half-Cauchy prior on the ζ2w,

βw ∼ N (0, ζ2w) (4)

ζw ∼ C+(0, τ). (5)

Then as in Carvalho et al. [7] we set a prior on τ that allows the degree of
shrinkage to be learnt from the data

τ ∼ C+(0, σ) (6)

p(σ2) ∝ 1

σ2
. (7)

Finally we place a gamma prior on the dispersion parameter ω. This gives
a joint probability

p(y,X, θ) =
∏
i

p(yi|X,β, ω)p(ω|σ)
∏
w

p(βw|ζ2w)p(ζ2w|τ)p(τ |σ)p(σ2) (8)

We now apply a variational inference[28, 29, 5, 4, 36] scheme to learn approx-
imate posterior distributions over the model parameters. Unfortunately in this
model the optimal distribution q̂ for the regression coefficients βw does not have
a tractable solution. However following Luts and Wand [27] we can sidestep
this problem by applying non-conjugate variational message passing[22], and
we can then derive approximate posterior distributions for each of the model
parameters following a straightforward parameter update scheme. The full set
of variational updates are given in appendix A.

3 Results

3.1 Synthetic data

We apply our method to the task of inferring directed and undirected networks
from 10 simulated gene expression time series. The time series were gener-
ated by utilising the GeneNetWeaver[43] software to first generate subnetworks
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representative of the structure of the Saccharomyces cerevisiae gene regulatory
network, and then simulate the dynamics of the networks. Subnetworks of 50
nodes were generated and used to simulate 21 time points with 10 replicates,
as in the DREAM4 challenge[39, 31, 32]. Simulated gene expression levels were
then transformed by the inverse cumulative distribution function (CDF) F−1 of
a normal distribution with mean and variance estimated from the data, and sub-
sequently by the CDF of a negative binomial distribution G. The distributions
G for each variable were chosen with mean and dispersion parameters randomly
sampled from the empirically estimated means and dispersions of each gene
from a publicly available RNA-seq count data set from the recount2 database[8]
(accession ERP003613 ) consisting of 171 samples from 25 tissues in humans[10].
This was done so as to simulate the observed distributions of RNA-Seq counts
in a real world data set.

We compare our approach against the Lasso as implemented in the lars R
package[17] and the regularised Poisson regression method implemented in the
glmnet R package[12]. The degree of regularisation was selected using cross val-
idation as implemented in the respective software packages. For the undirected
network inference case we also consider networks inferred by the mutual infor-
mation based approaches implemented in the minet R package[35], specifically
the CLR[11], ARACNE[33] and MRNET[34] methods.

In figure 1 we show the area under the receiver operating curve (AUC-ROC)
and area under the precision recall curve (AUC-PR), as calculated by the PRROC
R package[14], and Matthews Correlation Coefficient (MCC), for the various
methods to be benchmarked in the undirected case. For the MCC, edges were
predicted as those where zero was not contained in the 95% credible interval of
the corresponding regression coefficients, and for the Lasso and glmnet meth-
ods, non-zero coefficients were taken as predicted edges. In the undirected case,
we ignore the directionality of the edges in the true network generated by the
GeneNetWeaver software, and take the strongest prediction in either direction
to be the given score for an edge. When benchmarking the methods we found
that there was variance in performance depending on the empirical means and
dispersions of the negative binomial distributions that were sampled from the
RNA-Seq data. Therefore we repeated benchmarking on each network 5 times
with resampled negative binomial means and dispersions to take this into ac-
count. Running time for our algorithm was under 10 minutes for the 50 node
networks considered.

For the undirected case, our method shows an improved performance over
the competing methods in terms of the AUC-PR, and also in terms of the MCC.
Although the distinction between the approaches is less marked for the AUC-
ROC, this is to be expected as the simulated biological network structures have
far fewer (< 10%) true positives than true negatives, a situation in which the
AUC-ROC does not distinguish performance as well as AUC-PR [9, 14].

As can be seen in figure 2 performance is slightly reduced in the directed
case, likely due to the extra complexity of correctly predicting the directionality
of edges. However our approach still clearly outperforms the competing methods
in terms of the AUC-PR and MCC.

It is clear that, as might be expected, taking into account the distribu-
tional properties observed in RNA-Seq data improves on the performance of
methods based on assumptions that do not hold for RNA-Seq count data. We
also see improvements over the nonparametric mutual information based ap-
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Figure 1: Boxplots of AUC-ROC, AUC-PR, and MCC for our method (Nb)
and the competing methods benchmarked when learning undirected networks
from synthetic data, for 10 subnetworks sampled from the S. cerevisiae gene
regulatory network.

proaches when learning undirected networks, perhaps due to our method taking
into account the sequential nature of the data, and the constraint of assum-
ing negative binomially distributed observations reducing the complexity of the
inference problem.

4 Neural progenitor cell differentiation

To illustrate an application of our model to a real world RNA-Seq data set,
we consider a publicly available RNA-Seq time course data set available from
the recount2 database[8], accession SRP041159. The data consist of RNA-Seq
counts from neuronal stem cells for 3 replicates over 7 time points after the in-
duction of neuronal differentiation[42]. To select a subset of genes to analyse we
performed a differential expression test between time points using the DESeq2
R package[26], and selected the 25 genes with the largest median fold-change
between time points that were also differentially expressed between all time
points. We chose to consider only an undirected network, as our benchmarking
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Figure 2: Boxplots of AUC-ROC, AUC-PR, and MCC for our method (Nb) and
the methods benchmarked when learning directed networks from synthetic data,
for 10 subnetworks sampled from the S. cerevisiae gene regulatory network.

shows that such networks are likely more reliable.
Applying our method produced the network shown in figure 3, where it

can be seen that there is a strongly interconnected network with four genes
(MCUR1, PARP12, COL17A1, CDON) acting as hubs, suggesting these genes
may be important in neuronal differentiation. Of these genes, CDON has
been shown to be promote neuronal differentiation through the activation of
p38MAPK pathway[48, 37] and inhibition of Wnt signalling[20], whilst MCUR1
is known to bind to MCU[30], that in turn has been shown to influence neuronal
differentiation[40].

5 Conclusions

We have developed a fast and robust methodology for the inference of gene regu-
latory networks from RNA-Seq data that specifically models the observed count
data as being negative binomially distributed. Our approach outperforms other
sparse regression and mutual information based methods in learning directed
and undirected networks from time series data.
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Figure 3: Undirected network inferred from the human neuronal differentiation
time series data set.

Another approach to network inference from RNA-Seq data could be to fur-
ther develop mutual information based methodologies with this specific problem
in mind. Mutual information based methods have the benefit of being indepen-
dent of any specific model of the distribution of the data, and so could help
sidestep issues in parametric modelling of RNA-Seq data. However this comes
at the cost of abandoning the simplifying assumptions that are made by apply-
ing a parametric model that provides a reasonable fit to the data, and presents
challenges of its own in the reliable estimation of the mutual information be-
tween random variables.
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A Variational inference

From the results in Luts and Wand [27] the model can be written as a Poisson-
Gamma mixture, so that

p(yt|λt) ∼ Pois(λt) (9)

p(λt|xt, β, ω) ∼ Gamma(ω, ω exp[−Xβ]) (10)

and the horseshoe prior on β represented using a mixture of inverse gamma
distributions,

p(βw|ζ2w) ∼ N (0, ζ2w) (11)

p(ζ2w|aw) ∼ InvGamma

(
1

2
,

1

aw

)
(12)

p(aw|τ2) ∼ InvGamma

(
1

2
,

1

τ2

)
(13)

p(τ2|b) ∼ InvGamma

(
1

2
,

1

b

)
(14)

p(b|σ2) ∼ InvGamma

(
1

2
,

1

σ2

)
. (15)

A.1 Mean field approximation

The mean field approximation of the posterior is then

∏
i

p(yi|λi)p(λi|Xi, β, ω)p(ω)
∏
w

p(βw|ζ2w)p(ζ2w)p(ζ2w|τ)p(τ |σ2)p(σ2)

≈
∏
i

[q(λi)]q(β)q(ω)
∏
w

[q(ζ2w)q(aw)]q(τ2)q(b). (16)

The variational updates for λt can be derived as

log q̂(λt) = Eq [log p(yt|λt)p(λt|Xt, β, ω)] + const.

= Eq
[
log

λytt e
−λt

yt!

(ω exp(−Xtβ))ωλω−1t e−λtω exp(−Xtβ)

Γ(ω)

]
+ const.

= Eq [yt log λt − λt + (ω − 1) log λt − λtω exp(−Xtβ)] + const.(17)

q̂(λt) ∼ Gamma (yt + Eq[ω], 1 + Eq[ω]Eq[exp(−Xtβ)]) (18)

and due to the properties of the log-normal distribution

Eq[exp(−Xtβ)] = exp(−XtE[β] +
1

2
XtΣX

T
t )], (19)

where Σ is the covariance matrix of β under q̂.
As derived in Luts and Wand [27], applying non-conjugate variational mes-

sage passing, q̂(β) ∼ N (µ,Σ) and the variational update for β is
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w = exp(−Xµ+
1

2
diagonal(XΣXT )) (20)

Σ = [ωXTdiag(E[λ] · w)X +M ]−1 (21)

M = diag(E[
1

σ2
w

]) (22)

µ = µ+ Σ
[
ωXT (E[λ] · w − 1)−Mµ

]
, (23)

and for the dispersion ω we apply numerical integration as described in Luts
and Wand [27].

Then for the horseshoe prior on β, the variational updates are

log q̂(ζ2w) = Eq
[
log p(βw|ζ2w)p(ζ2w)

]
+ const.

= Eq
[
−1

2
log ζ2w −

β2
w

2ζ2w
+ (−α− 1) log ζ2w −

γ

ζ2w

]
+ const. (24)

q̂(ζ2w) ∼ InvGamma

(
1,

1

2
E[β2

w] + Eq[aw]

)
(25)

log q̂(aw) = Eq
[
log p(ζ2w|aw)p(aw|τ2)

]
+ const.

= Eq
[
− 1

awζ2w
− 1

2
log aw −

3

2
log aw −

1

τ2aw

]
+ const. (26)

q̂(aw) ∼ InvGamma

(
1,Eq

[
1

ζ2w

]
+ Eq

[
1

τ2

])
(27)

log q̂(τ2) = Eq

[∑
w

log p(aw|τ2) + log p(τ2|b)

]
+ const.

= Eq

[
−
∑
w

(
1

2
log τ2 +

1

awτ2

)
− 3

2
log τ2 − 1

bτ2

]
+ const.(28)

q̂(τ2) ∼ InvGamma

(
1

2
+
W

2
,Eq[

1

b
] +
∑
w

Eq[
1

aw
]

)
(29)

log q̂(b) = Eq
[
log p(τ2|b)p(b|σ2)

]
+ const.

= Eq
[
−1

2
log b− 1

τ2b
− 3

2
log b− 1

σ2b

]
+ const. (30)

q̂(b) ∼ InvGamma

(
1,Eq

[
1

τ2

]
+ Eq

[
1

σ2

])
(31)

log q̂(σ2) = Eq
[
log p(b|σ2)p(σ2)

]
+ const.

= Eq
[
−1

2
log σ2 − 1

bσ2
− log σ2

]
+ const. (32)

q̂(σ2) ∼ InvGamma

(
1

2
,Eq

[
1

b

])
. (33)
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and D. Panáková. Ca2+-mediated mitochondrial reactive oxygen species
metabolism augments Wnt/β-catenin pathway activation to facilitate cell
differentiation. Journal of Biological Chemistry, 289(40):27937–27951, Oct.
2014.

[41] M. D. Robinson, D. J. McCarthy, and G. K. Smyth. edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics, 26(1):139–140, Jan. 2010.

[42] M. Sauvageau, L. A. Goff, S. Lodato, B. Bonev, A. F. Groff, C. Ger-
hardinger, D. B. Sanchez-Gomez, E. Hacisuleyman, E. Li, M. Spence,
S. C. Liapis, W. Mallard, M. Morse, M. R. Swerdel, M. F. D Ecclessis,
J. C. Moore, V. Lai, G. Gong, G. D. Yancopoulos, D. Frendewey, M. Kel-
lis, R. P. Hart, D. M. Valenzuela, P. Arlotta, and J. L. Rinn. Multiple
knockout mouse models reveal lincRNAs are required for life and brain
development. eLife, 2:360, Dec. 2013.

[43] T. Schaffter, D. Marbach, and D. Floreano. GeneNetWeaver: in sil-
ico benchmark generation and performance profiling of network inference
methods. Bioinformatics, 27(16):2263–2270, Aug. 2011.

[44] T. Thorne and M. P. H. Stumpf. Inference of temporally varying Bayesian
networks. Bioinformatics, 28(24):3298–3305, Dec. 2012.

[45] T. Thorne, P. Fratta, M. G. Hanna, A. Cortese, V. Plagnol, E. M. Fisher,
and M. P. H. Stumpf. Graphical modelling of molecular networks underly-
ing sporadic inclusion body myositis. Mol. BioSyst., 9(7):1736–1742, June
2013.

[46] T. Wang, Z. Ren, Y. Ding, Z. Fang, Z. Sun, M. L. MacDonald, R. A. Sweet,
J. Wang, and W. Chen. FastGGM: An Efficient Algorithm for the Inference
of Gaussian Graphical Model in Biological Networks. PLoS Computational
Biology, 12(2):e1004755, Feb. 2016.

[47] A. V. Werhli, M. Grzegorczyk, and D. Husmeier. Comparative evaluation
of reverse engineering gene regulatory networks with relevance networks,
graphical Gaussian models and Bayesian networks. Bioinformatics, 22(20):
2523–2531, Oct. 2006.

[48] W. Zhang, M.-J. Yi, X. Chen, F. Cole, R. S. Krauss, and J.-S. Kang.
Cortical thinning and hydrocephalus in mice lacking the immunoglobulin
superfamily member CDO. Molecular and Cellular Biology, 26(10):3764–
3772, May 2006.

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2017. ; https://doi.org/10.1101/149674doi: bioRxiv preprint 

https://doi.org/10.1101/149674
http://creativecommons.org/licenses/by-nc-nd/4.0/

