
 

1 

  

Genetic architecture of early childhood growth phenotypes gives insights into their link with later obesity 

 

N. Maneka G. De Silva1*, Sylvain Sebert1-3*, Alexessander Couto Alves1*, Ulla Sovio4*, Shikta Das1*, Rob Taal5,6*, 

Nicole M. Warrington7,8,72, Alexandra M. Lewin1,9, Marika Kaakinen1,10,11 , Diana Cousminer12, Elisabeth 

Thiering13,14, Nicholas J. Timpson15,16, Ville Karhunen2, Tom Bond1, Xavier Estivill17-21,, Virpi Lindi22, Jonathan P. 

Bradfield23, Frank Geller24, Lachlan J.M. Coin1,25, Marie Loh1,2,26, Sheila J. Barton27, Lawrence J. Beilin28, Hans 

Bisgaard29, Klaus Bønnelykke29,30, Rohia Alili31, Ida J. Hatoum32,,33, Katharina Schramm34,35, Rufus Cartwright1,36, 

Marie-Aline Charles37, Vincenzo Salerno1, Karine Clément31,37, Cornelia M.  van Duijn38, Elena Moltchanova39, 

Johan G. Eriksson40-42, Cathy Elks43, Bjarke Feenstra24, Claudia Flexeder13, Stephen Franks36, Timothy M. 

Frayling44, Rachel M. Freathy44, Paul Elliott1, Elisabeth Widén45, Hakon Hakonarson12,23,46,47, Andrew T. 

Hattersley44, Alina Rodriguez1,48, Marco Banterle9, Joachim Heinrich13, Barbara Heude37, John W. Holloway49, 

Albert Hofman6,38, Elina Hyppönen50,51, Hazel Inskip27, Lee M. Kaplan32,33, Asa K. Hedman52,53, Esa Läärä54, 

Holger Prokisch34,35, Harald Grallert55,56, Timo A. Lakka22,57,58, Debbie A. Lawlor15,16, Mads Melbye24, Tarunveer 

S. Ahluwalia,29 , Marcella Marinelli19,20,59, Iona Y. Millwood60,61, Lyle J. Palmer62, Craig E. Pennell7, John R. 

Perry43, Susan M. Ring15,16,63, Markku Savolainen64, Kari Stefansson65,66, Gudmar Thorleifsson65, Fernando 

Rivadeneira38,67, Marie Standl13, Jordi  Sunyer18-20,59, Carla M.T. Tiesler 13,14, Andre G. Uitterlinden38,67, Inga 

Prokopenko1,10,52,68, Karl-Heinz Herzig69-71, George Davey Smith15,16, Paul O'Reilly1,72 , Janine F. Felix6, Jessica L. 

Buxton73,  Alexandra I.F. Blakemore73,74,, Ken K. Ong43, Struan F.A. Grant12,23,46,47,$, Vincent W.V. Jaddoe6,38,$, 

Mark I. McCarthy52,68,75,$,  Marjo-Riitta Järvelin1-3,69,70,76,77,$ for the Early Growth Genetics (EGG) Consortium. 

 

1 Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of 
Public Health, Imperial College London, UK.    

2 Center for Life Course Health Research, Faculty of Medicine, University of Oulu 90014 Oulu, Finland.   
3  Biocenter Oulu, University of Oulu, Finland. 
4  Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK. 
5  Department of Paediatrics, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, 

Netherlands. 
6  The Generation R Study Group, Erasmus Medical Center, Rotterdam, Netherlands. 
7  School of Women’s and Infants’ Health, The University of Western Australia, Australia. 
8  The University of Queensland Diamantina Institute, The University of Queensland, Translational  

Research Institute, Brisbane, Queensland, 4102, Australia. 
9  Department of Mathematics, Brunel University, London, UK. 
10  Department of Genomics of Common Disease, School of Public Health, Imperial College London, 

Hammersmith Hospital, London, UK. 
11  Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, Department of Medicine, 

Imperial College London, Hammersmith Hospital, London, UK 
12 Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 16, 2017. ; https://doi.org/10.1101/150516doi: bioRxiv preprint 

https://doi.org/10.1101/150516
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

  

13 Institute of Epidemiology I, Helmholtz Zentrum München -, German Research Center for Environmental 
Health, Munich Neuherberg, Germany. 

14 Ludwig-Maximilians-University of Munich, Dr. von Hauner Children's Hospital, Division of Metabolic 
Diseases and Nutritional Medicine, Dr von Hauner Children’s Hospital, Ludwig-Maximilians University 
Munich, Munich, Germany. 

15 MRC Integrative Epidemiology Unit at the University of Bristol, UK. 
16 School of Social and Community Medicine, University of Bristol. 
17 Genomics and Disease Group, Bioinformatics and Genomics Programme, Centre for Genomic Regulation 

(CRG), Barcelona, Catalonia, Spain. 
18 Pompeu Fabra University (UPF), Barcelona, Catalonia, Spain. 
19 Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain. 
20 Spanish consortium for Research on Epidemiology and Public Health (CIBERESP), Spain. 
21 Sidra Medical and Research Center, Doha, Qatar. 
22 Institute of Biomedicine, Department of Physiology, University of Eastern Finland, Kuopio, Finland. 

23 Center for Applied Genomics, Abramson Research Center, The Children’s Hospital of Philadelphia, 

Philadelphia, Pennsylvania, USA. 

24 Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark. 

25 Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia. 

26 Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technologyand Research 

(A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648. 

27 MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, 

Southampton, UK. 

28 School of Medicine and Pharmacology, Royal Perth Hospital, The University of Western Australia, 

Australia. 

29 COPSAC, The Copenhagen Prospective Studies on Asthma in Childhood, Faculty of Health Sciences, 

University of Copenhagen, Copenhagen, Denmark. 

30 The Danish Pediatric Asthma Center, Copenhagen University Hospital, Gentofte, Denmark. 

31 CRNH Ile de France, Hôpital Pitié-Salpêtrière, Paris, France. 

32 Obesity, Metabolism, and Nutrition Institute and Gastrointestinal Unit, Massachusetts General Hospital, 

Boston, MA, USA. 

33 Department of Medicine, Harvard Medical School, Boston, MA, USA. 

34 Institute of Human Genetics, Helmholtz Center Munich, German Research Center for Environmental 

Health, Neuherberg, Germany. 

35 Institute of Human Genetics, Technische Universität München, München, Germany. 

36 Institute for Reproductive and Developmental Biology, Imperial College London, UK. 

37 Inserm, UMR 1153 (CRESS), Villejuif; Paris Descartes University, France.  

38 Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands. 

39 University of Canterbury, Department of Mathematics and Statistics, Christchurch, New Zealand. 

40 Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University 

Hospital, Helsinki, Finland.  

41 Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland. 

42 Folkhalsan Research Center, Helsinki, Finland. 

43 MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 57, Institute of 

Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 16, 2017. ; https://doi.org/10.1101/150516doi: bioRxiv preprint 

https://doi.org/10.1101/150516
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 

  

44 Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, 
Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK. 

45 Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland. 
46 Department of Paediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 

Pennsylvania, USA.  
47 Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, 

Philadelphia, Pennsylvania, USA. 
48 School of Psychology, College of Social Science, University of Lincoln Brayford Pool Lincoln, Lincolnshire, 

LN6 7TS, UK. 
49 Human Genetics and Medical Genomics, Faculty of Medicine, University of Southampton, UK. 
50 School of Population Health, University of South Australia, Adelaide, Australia. 
51 Centre for Paediatric Epidemiology and Biostatistics, University College London Institute of Child Health, 

London, UK. 

52 Wellcome Trust Centre for Human Genetics, University of Oxford, UK. 

53 Cardiovascular Medicine unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden. 

54 Research Unit of Mathematical Sciences, University of Oulu, Finland.  

55 Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for 

Environmental Health, Neuherberg, Germany. 

56 German Center for Diabetes Research (DZD). Neuherberg, Germany. 

57 Kuopio Research Institute of Exercise Medicine, Kuopio, Finland. 

58 Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland. 

59 ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain Center for 

Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain. 

60 Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), University of Oxford, Old Road 

Campus, UK. 

61 Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, 

Oxford,UK. 

62 School of Public Health and Robinson Research Institute, University of Adelaide, Australia. 

63 Avon Longitudinal Study of Parents and Children, School of Social and Community Medicine, University of 

Bristol, UK. 

64 Division of Internal Medicine, and Biocenter of Oulu, Faculty of Medicine, Oulu University, Finland. 

65 deCODE genetics, Reykjavik, Iceland. 

66 University of Iceland, Faculty of Medicine, Iceland. 

67 Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands. 

68 Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old 

Road, Headington, Oxford, UK. 

69 Research Unit of Biomedicine, and Biocenter of Oulu, Oulu University, 90014 Oulu, Finland. 

70 Medical Research Center and Oulu University Hospital, University of Oulu and Oulu University Hospital, 

Oulu, Finland. 

71 Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, 

Poland. 

72 MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, 

De Crespigny Park, London, UK. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 16, 2017. ; https://doi.org/10.1101/150516doi: bioRxiv preprint 

https://doi.org/10.1101/150516
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 

  

73 UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, 

London, UK. 

74 Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK. 

75 Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford, UK. 

76 Unit of Primary Care, Oulu University Hospital OYS, Finland. 

77 Department of Children and Young People and Families, National Institute for Health and Welfare, Oulu, 
Finland. 

*These authors equally contributed to the work. 
$These authors jointly directed this work. 
Correspondence should be addressed to M.-R.J. (m.jarvelin@imperial.ac.uk), M.I.M. 

(mark.mccarthy@drl.ox.ac.uk), S.F.A.G. (grants@chop.edu), V.W.V.J. (v.jaddoe@erasmusmc.nl) 

 

 

Abstract  

Early childhood growth patterns are associated with adult metabolic health, but the underlying mechanisms are unclear. 

We performed genome-wide meta-analyses and follow-up in up to 22,769 European children for six early growth 

phenotypes derived from longitudinal data: peak height and weight velocities, age and body mass index (BMI) at 

adiposity peak (AP ~9 months) and rebound (AR ~5-6 years). We identified four associated loci (P< 5x10-8): LEPR/LEPROT 

with BMI at AP, FTO and TFAP2B with Age at AR and GNPDA2 with BMI at AR. The observed AR-associated SNPs at FTO, 

TFAP2B and GNPDA2 represent known adult BMI-associated variants. The common BMI at AP associated variant at 

LEPR/LEPROT was not associated with adult BMI but was associated with LEPROT gene expression levels, especially in 

subcutaneous fat (P<2x10-51). We identify strong positive genetic correlations between early growth and later adiposity 

traits, and analysis of the full discovery stage results for Age at AR revealed enrichment for insulin-like growth factor 1 

(IGF-1) signaling and apolipoprotein pathways. This genome-wide association study suggests mechanistic links between 

early childhood growth and adiposity in later childhood and adulthood, highlighting these early growth phenotypes as 

potential targets for the prevention of obesity.  
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Introduction 

Complex developmental processes regulate changes in body mass and growth in early life. Multiple genetic variants are 

robustly associated with adult body mass index (BMI)1 and metabolic phenotypes 2-4 but much fewer data exist for 

childhood traits5,6. Discrete genetic variants may regulate developmental patterns during rapid growth in infancy 

compared to later growth periods in childhood7 as demonstrated by the age-dependent impact of variation at the FTO 

locus on BMI8 but there still remains a paucity of relevant data. On the other hand, robust observational associations 

between early growth traits and adult cardiometabolic risk 9-12 may, in part, be explained by shared genetic factors. In 

support of this hypothesis, studies from the Early Growth Genetics (EGG) consortium show that some of the genetic 

component contributing to size at birth also impacts type 2 diabetes, cardiovascular disease and blood pressure13. 

However, the extent of the genetic correlation between postnatal growth patterns and the regulation of adult body 

weight, energy metabolism and later metabolic health is unclear. 

 

In infancy and childhood, individuals follow well-characterized and predictable height, weight and BMI trajectories 

(Figure 1)14. For example, BMI trajectory encompasses three periods characterized by i) a rapid increase in BMI up to 

the age of 9 months (adiposity peak, AP); ii) a rapid decline in BMI up to the age of 5-6 years (adiposity rebound, AR); 

and iii) a steady increase in BMI after 5-6 years until early adulthood10. Here, we set out to model sex-specific individual 

weight, height and BMI curves in children, using unique data collected from primary health care or clinical research 

visits, to extract six early growth traits: peak height velocity (PHV; cm/month), peak weight velocity (PWV; kg/month), 

age at adiposity peak (Age-AP; year), BMI at adiposity peak (BMI-AP, kg/m2), age at adiposity rebound (Age-AR; year), 

BMI at adiposity rebound (BMI-AR, kg/m2) (Figure 1) and to test for genetic associations using genome-wide genotype 

data. Although a few previous studies have investigated the genetic basis of these well-established measures of 

longitudinal growth trajectory7,9,15,16, no systematic genome-wide analyses have been carried out to date. Understanding 

the genetic architecture of early childhood growth phenotypes will provide insight into their regulation and into the 

mechanisms underlying the observed associations with adult cardiometabolic disease, which will be fundamental for 

early promotion of metabolic health. 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 16, 2017. ; https://doi.org/10.1101/150516doi: bioRxiv preprint 

https://doi.org/10.1101/150516
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

  

Results 

Genome-wide association meta-analyses of early growth phenotypes 

We conducted genome-wide association study (GWAS) meta-analyses to identify genetic loci influencing each of the six 

early growth traits in up to 7,215 term-born children of European ancestry from up to four population-based studies 

that had both genetic and early growth trait data (stage 1; Online Methods, Supplementary Table 1, Supplementary 

Figure 1). From the stage 1 inverse variance meta-analyses, we selected a total of 8 loci with either P < 1 x 10-7 or with 

P < 1 x 10-5 in/near genes known to be associated with obesity and metabolic traits in published GWAS or candidate 

gene studies (Supplementary Table 2), and sought confirmation in up to 16,550 term-born children from up to 11 

additional studies (stage 2; Online Methods, Supplementary Table 3, Supplementary Figure 1). Our study design is 

summarized in Figure 2, while participant characteristics, genotyping arrays, imputation and quality control for the 

discovery and follow-up studies are summarized in Supplementary Tables 1 and 3. In combined meta-analyses of the 

discovery and follow-up studies (including up to 22,769 children), we identified common variants at four independent 

loci, each associated with any of the early growth phenotypes, at genome-wide levels of significance (i.e. P < 5 x 10-8) 

(Table 1, Figure 3, Supplementary Figure 2). The lead signals at each of the four loci were: rs9436303 at the 

LEPR/LEPROT (encoding the leptin receptor and an overlapping transcript) locus associated with BMI at AP, rs1421085 

at the FTO (encoding a 2-oxoglutarate-dependent demethylase) and rs2817419 at the TFAP2B (encoding transcription 

factor AP-2 beta) loci associated with Age at AR, and rs10938397 near the GNPDA2 (encoding adiposity regulating 

glucosamine-6-phosphate deaminase) locus associated with BMI at AR. The lead signals at each of the four loci were 

located within non-coding regions of the relevant genes except for rs10938397, which was located in an intergenic 

region proximal to the GNPDA2 gene (Figure 3). The common AR-associated SNPs at FTO, TFAP2B and GNPDA2 have 

previously been associated with other anthropometric measures, especially in adulthood1. However, the three loci 

LEPR/LEPROT, TFAP2B and GNPDA2 described here are novel with respect to their association with early growth 

phenotypes, while the association between SNPs at FTO and Age at AR in the current study replicates the findings of a 

previous gene-centric study8 at genome-wide levels of significance.  

At the LEPR/LEPROT locus, the minor G allele of rs9436303 was associated with higher BMI at AP, 0.07SD per allele (95% 

CI= 0.04, 0.09), Pcombined = 5.1 x 10-9, equivalent to a difference of 0.07 kg/m2 (95% CI= 0.05, 0.09) per effect allele. The 

same allele is also associated with earlier age at menarche (P= 0.00019 in the ReproGen consortium’s publically available 

age at menarche GWAS data)17 and with increased plasma soluble leptin receptor levels (P=1.19 x 10-9)18 but the SNP 

was not associated with sex combined adult BMI (P=0.96 in the GIANT consortium’s publicly available BMI GWAS data)1 

amidst a marginal association with BMI in females of <=50 years of age (P=0.029) in GIANT. Furthermore, this SNP is in 

low LD with other common variants at the LEPR/LEPROT locus that are also associated with severe early-onset obesity 

(rs11208659, r2=0.008; rs1137100, r2=0.128)19,20; plasma soluble leptin receptor levels (rs1137100, r2=0.128; rs1137101, 

r2=0.151)18 and age at menarche (rs10789181, r2=0.006)17. It is also in low LD with the CRP-associated variant identified 

in our own previous study (rs12753193, r2=0.015)21 (Supplementary Table 4). Using data from the Northern Finland 

Birth Cohort (NFBC) 1966 study (N=2585) we also show that the previously published genome-wide significant SNPs 
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associated with other traits in the LEPR/LEPROT locus are not associated with BMI at AP, and that our index SNP 

rs9436303 remains associated with BMI at AP (P< 1x10-6) after conditioning on those other trait-associated SNPs (Online 

Methods and Supplementary Table 5). Therefore, to our knowledge, rs9436303 represents a novel, distinct, signal for 

BMI at AP at this locus. 

At the FTO locus, the C allele of the index SNP rs1421085 was associated with earlier Age at AR, -0.12 SD per allele (-1.44 

months, 95% CI= -1.42, -1.46), Pcombined = 3.12 x 10-30, and is directionally consistent with a previous gene-centric study8. 

The FTO locus has the largest effect on BMI and obesity risk reported in GWAS carried out to date, and the same allele 

that is associated with earlier Age at AR is associated with higher childhood and adult BMI22. Close proxies for this index 

SNP have also been associated with adult BMI23, type 2 diabetes24, metabolic syndrome25, waist circumference26 and 

extreme obesity27 (Supplementary Table 4).  

At the TFAP2B locus each additional copy of the A allele of our index SNP rs2817419 was associated with earlier Age at 

AR, -0.08 SD per allele (~-0.96 months, 95% CI= -0.94, -0.98), Pcombined = 4.4 x 10-11, and the same allele is robustly 

associated with higher adult BMI, 0.03 SD per allele (95% CI= 0.02, 0.04), P=3.7 x10-15 in the GIANT consortium’s BMI 

GWAS data1. The G allele of the adult BMI1,28 and waist circumference29 associated index SNP rs2207139 in TFAP2B from 

GIANT results in earlier Age at AR in our data, -0.09 per SD (~-1.1months, 95% CI: -1.12, 1.08), Pdiscovery = 0.0002 

(Supplementary Table 6). However, rs2207139 is in very low LD (r2= 0.035) with our index SNP rs2817491, and these 

are likely to represent two distinct signals at this locus. In support of this, conditional analyses in the NFBC1986 data 

adjusting the effect of rs2817419 on Age at AR for rs2207139 and vice versa showed that the two SNPs have independent 

effects on Age at AR (-0.07 SD (95% CI= -0.13, -0.01), P=0.03 and -0.10 SD (95% CI= -0.17, -0.03), P=0.007 respectively) 

(Online Methods).  

Overall, the identified associations at FTO and TFAP2B are directionally consistent with observational associations 

between the timing of AR and adult BMI9 (i.e. reaching AR at an earlier age is associated with higher BMI whereas 

reaching AR later is associated with lower BMI). 

At the GNPDA2 locus, the G allele of the index SNP rs10938397 was associated with higher BMI at AR, 0.06 SD per allele 

(0.06 kg/m2, 95% CI= 0.04, 0.07), Pcombined = 2.9 x 10-8, with the same allele being associated with higher adult BMI in 

previous reports30. 

There was no heterogeneity between the studies, except at LEPR/LEPROT (Supplementary Figure 3). For example, in 

the fixed effect meta-analysis of the discovery stage results for the BMI at AP associated SNP rs9436303 in LEPR/LEPROT 

locus showed heterogeneity (Supplementary Figure 3a) and random effect meta-analysis did not change the 

heterogeneity (Supplementary Figure 3b). However, excluding the smaller LISA-D study (N=282) that showed 

directionally inconsistent effects to the other studies, from the discovery stage meta-analysis for this SNP reduced the 

heterogeneity but did not change the point estimates (Supplementary Figure 3c). Similarly, there was heterogeneity in 

the combined stage fixed meta-analysis for the same SNP in LEPR/LEPROT (Figure 3d), and random effect meta-analysis 
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did not change the heterogeneity (Figure 3e). Fixed effect meta-analysis excluding the EDEN and NFBC1966 studies that 

showed inflated results showed no heterogeneity, and the point estimates were similar with and without the two studies 

(Supplementary Figure 3f & 3g). All four SNPs together explain 0.1 %, 0.7% and 0.3 % variance in BMI at AP, Age at AR 

and BMI at AR, respectively.  

 

Prioritizing candidate genes and pathways in the four early growth trait associated loci for functional characterization 

We first considered the genes that harbor, or are nearest to, the index SNP as a potential candidate. The known 

biological functions and molecular mechanisms of the four proteins encoded by these are given in Supplementary Table 

7. However, as the four genome-wide significant signals are located in regions harboring multiple genes with dense 

linkage disequilibrium (LD) structure, we are unable to locate with certainty the causal gene or gene variant. Therefore, 

the gene nearest to the lead signals may not necessarily be the gene influenced by the underlying causal variant/s. For 

example, at the FTO locus more than one gene, which includes the FTO31,32, RPGRIP1L33 and IRX3/IRX5 in the IRXB gene 

cluster34,35 have been implicated as the candidates for mediating the observed associations with adult adiposity. Given 

our index SNP at FTO associated with Age at AR is highly correlated with the BMI associated SNPs at the same locus, it 

is plausible that the same genes play a role in the regulation of Age at AR and adult adiposity. 

To identify other potential candidate genes and provide further insights into the molecular mechanisms underlying the 

four genome-wide significant loci associated with BMI at AP, BMI at AR or Age at AR, we searched for association of the 

index SNP with cis–acting expression quantitative trait loci (eQTLs) in five different living tissues: liver, skin, whole blood 

and subcutaneous and omental fat, and repeated these lookups in 44 post-mortem tissues from the Genotype-Tissue 

Expression (GTEx) consortium36 (Online Methods), which mostly reproduced the results of the eQTL association in living 

tissues. For two out of the four loci analysed, the index SNP was strongly associated (at P < 0.001) with the expression 

of one or more nearby (+/-1 Mb) genes (Supplementary Table 8). For example, the BMI at AP associated SNP rs9436303 

in the LEPR/LEPROT locus was associated with gene expression levels in all five tissues: the strongest association was 

with LEPROT (P=1.5 x 10-51) gene expression levels in subcutaneous fat. The consistency of the results for this locus 

across five different tissues and in four different datasets (MuTHER, KORA, deCODE and Kaplan) suggests that these 

findings are robust and imply that, at least for this locus, the underlying causal variant functions through gene 

expression. Both the LEPR and LEPROT genes are good biological candidates for having a role in the regulation of BMI at 

AP in infancy because the LEPR gene encodes the receptor for leptin, an adipocyte-specific hormone that plays a major 

role in the regulation of appetite and energy balance, reproduction, growth and the immune system37,38. Variation in 

leptin concentrations is also associated with adult body mass38 and rare mutations in the LEPR gene cause monogenic 

obesity39. The LEPROT gene negatively regulates LEPR cell-surface expression40 and growth hormone (GH) receptor 

expression in the liver41, thereby decreasing hepatic responses to leptin and growth hormone. This is consistent with 

the finding by Wu et al42 in mice showing that LEPROT could be central to the nutritional regulation of growth and growth 

hormone binding in the liver and chondrocytes. This evidence further suggests a role for LEPROT in the hepatic synthesis 

of the insulin-like growth factor 1 (IGF-1)42. The BMI at AR associated index SNP rs10938397 in GNPDA2 was associated 
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with GUF1 (GUF1 Homolog, GTPase) transcription in subcutaneous fat (P=7.10 x10-4); a gene implicated in mitochondrial 

protein synthesis (Supplementary Table 8).  

 

To explore the biological pathways and networks underlying early growth, we applied a gene set enrichment analysis 

(MAGENTA)43 to the discovery stage GWAS results (Online Methods). We identified enrichment of two gene sets 

(Supplementary Tables 9 and 10), suggesting that genes in Age at AR associated regions are involved in the IGF-1 

signaling and apolipoprotein pathways (false discovery rate (FDR) < 0.05, P < 1.6 x 10-3) (Supplementary Figure 6). The 

apolipoprotein pathway has an important role in lipid transport and metabolism, while the IGF-1 signaling pathway has 

a well- established role in neonatal and pubertal growth44,45 and in the regulation of energy metabolism through the 

activation of PI3K/AKT pathway via either the insulin receptor or the IGF-1 receptor46. The present finding supporting 

the overexpression of the IGF-1 pathway with an earlier Age at AR is consistent with the IGF-1 and the high-protein 

hypothesis exemplified by the work of Rolland-Cachera and colleagues in pediatric nutrition (for a recent review see 

Rolland-Cachera et al. 2016)47. This hypothesis suggests that the risk of childhood obesity associated with high-protein 

intake during lactation could be caused by stimulation of the IGF-1/GH pathway leading to an early age at adiposity 

rebound. It is therefore possible that higher IGF-1 levels, via genetic and/or nutritional factors, might reduce GH levels 

and expression via a negative feedback48,49. Subsequent, lower circulating levels of GH might also suppress lipolysis and 

contribute to fat accumulation50,51, potentially affecting normal BMI trajectories and Age at AR, and thereby risk of adult 

obesity and metabolic disorders.  

In a look up of the index SNP, and the top 10 intragenic SNPs associated with Age at AR (at P<0.05) in genes from the 

IGF-1 and apolipoprotein pathways (Supplementary Note 1 and Supplementary Table 11) in cis eQTL data (Online 

Methods), a total of 29 eQTLs were associated with 16 different transcripts (all with P < 1 x10-3). The most significant 

association was observed between APOL4 RNA abundance in subcutaneous adipose tissue and rs132700 near the same 

gene in the apolipoprotein pathway (P = 1.02 x 10-11) (Supplementary Table 12). One SNP within PTK2 of the IGF-1 

signaling pathway was strongly associated with omental and subcutaneous adipose tissue expression of Argonaute 2 

(EIF2C2), a nearby gene encoding a protein involved in regulation of microRNA transcription. The SNPs within HDLBP, 

APOB and APOL4 of the apolipoprotein pathway and SNPs in IGF1R, PTK2, GRB10 in the IGF-1 signaling pathway are all 

likely to affect DNAse activity and chromatin state and expression, while SNPs within HDLBP, APOB and APOL4 are also 

likely to affect transcription factor binding according to RegulomeDB52 and Haploreg53. 

 

Association of the adult BMI associated loci with early growth traits 

In a look-up analysis of the 97 adult BMI associated loci from the GIANT consortium1 in our stage 1 GWAS meta-analysis 

data, we observed that an excess of adult BMI increasing alleles was associated (P<0.05) with increased BMI at AP (12/97 

associations, Pbinomial =0.003), BMI at AR (19/97 associations, Pbinomial =3.05 x 10-7) and earlier Age at AR (26/97 

associations, Pbinomial =1.27 x10-12) (Supplementary table 6). These were directionally consistent with the reported 

observational associations between the same early growth traits and adult BMI (Supplementary Table 13). We also 
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created weighted genetic risk scores using the 97 adult BMI associated SNPs from the GIANT consortium1 in the two 

NFBC studies (Online Methods). When comparing the bottom 20% of the children carrying a maximum of  ~ 84 weighted 

BMI increasing alleles (i.e. bottom quintile) to the top 20% of the children carrying a maximum of  ~111 weighted BMI 

increasing alleles (i.e. top quintile), there was a mean difference of 0.02 SD (95% CI= 0.01, 0.03) in PWV; 0.16 SD (95% 

CI= 0.07, 0.24) in Age at AP; 0.14 SD (95% CI= 0.05, 0.22) in BMI at AP; -0.64 SD (95% CI= -0.72, -0.56) in Age at AR and 

0.55 SD (95% CI= 0.47, 0.63) in BMI at AR (Supplementary Figure 4). Furthermore, we observed correlations (at 

P<0.0001) between the effects of the 97 adult BMI associated SNPs, and Age at AR and BMI at AR (Figure 4) but no 

correlations were observed with the effects on the other early growth phenotypes (Supplementary Figure 5). Taken 

together our results suggest that the variants involved in the regulation of adult BMI have effects that begin in early 

childhood, around the age at AR.  

 

Genetic link between early growth and health outcomes 

To further explore the genetic links and, thereby, help prioritize the potential causal relationships between early growth 

and adverse health outcomes, we estimated their genetic correlation using LD score regression (Online Methods). In 

contrast to observational associations, genetic correlations between complex traits can be useful in prioritizing 

observational associations for subsequent causal analyses, as genetic factors are less likely to be confounded and are 

not altered by the outcome. Here we summarize the key genetic correlations at 1% FDR, and full results are presented 

in Figure 5 and Supplementary Table 14. We uncovered several genetic correlations that were directionally consistent 

with the reported observational associations between the same traits (Supplementary Note 2  and Supplementary 

table 13).  

In these analyses PHV was not genetically correlated with any of the traits tested at 1% FDR. Conversely, PWV showed 

a strong positive genetic correlation with childhood obesity (rg=0.53, P=7.79 x 10-8) and was positively correlated with 

birth length (rg=0.50, P=0.0003), adult height (rg=0.21, P=0.0009) and waist circumference (rg=0.22, P=0.0008). We found 

very little evidence that PWV was genetically correlated with cardiometabolic traits. The shared genetic contribution of 

Age at AP with other traits could not be quantified due to low heritability estimates.  

BMI at AP also showed positive genetic correlations with childhood obesity (rg=0.65, P=1.19 x 10-8), adult BMI (rg=0.26, 

P=0.0002), adult overweight (rg=0.26, P=0.0007) and adult low-risk obesity class 1 (BMI 30.0-34.9kg/m2) (rg=0.32, 

P=0.0001).  

Age at AR showed a strong positive genetic correlation with age at menarche (rg=0.44, P=1.90 x 10-9), and strong inverse 

genetic correlations with childhood obesity (rg=-0.83, P=1.50 x 10-14), fasting insulin levels (rg=-0.58, P=8.69 x10-6) and 

several adult anthropometric traits including adult BMI (rg=-0.72, P=3.10 x 10-18) and waist circumference (rg=-0.62, P= 

8.40 x 10-12).  

In contrast to Age at AR, BMI at AR revealed an inverse genetic correlation with age at menarche (rg=-0.38, P=4.48 x 10-

9) and positive correlations with childhood obesity (rg=1.00 P=6.51 x 10-25), adult BMI (rg=0.64, P=1.60 x 10-15) and waist 

circumference (rg=0.48, P= 6.07 x 10-10). Together the genetic correlations of Age at AR and BMI at AR with age at 
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menarche and BMI are directionally consistent given that earlier age at menarche predicts higher adult BMI54 and both 

are associated with adverse cardiometabolic traits in observational studies55-57. 

 In summary, the results from LD score regression analysis define a robust link between the genetics of early growth and 

the genetics of later BMI and childhood /adult obesity. In contrast, the LD score regression analysis revealed relatively 

little evidence for a shared genetic link between early growth traits and lipid metabolism, blood pressure, type 2 diabetes 

or cardiovascular disease. 
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Discussion 

We report the first GWAS of six early growth phenotypes derived from longitudinal data. In samples of up to 22,769 

term-born children of European descent, we exploited a wealth of repeated weight and height data collected from birth 

until 13 years. These more refined phenotypes better capture childhood growth patterns relevant to later disease risk 

than single growth measures in childhood such as BMI and height. The four common variants identified here show 

consistent effects across several studies despite varying study designs, sample collection methods, and containing data 

obtained from children born at different geographical regions in Europe demonstrating that our results are robust, and 

are not affected by any differences between studies. One exception to this is the common variant at LEPR/LEPROT where 

we observed some evidence for heterogeneity. However, excluding the studies that showed inflated results from the 

meta-analyses reduced or showed no heterogeneity, and did not change the point estimates. Our findings contribute to 

the understanding of genetic influences on early growth in humans, and provide insights into the underlying molecular 

mechanisms that link early growth phenotypes with increased risk of obesity in later childhood and adulthood. An 

exception to this is the common variant in the LEPR/LEPROT locus associated with BMI at AP that was not associated 

with later obesity in childhood or adulthood, although other common variants in this gene are associated with childhood 

obesity and several metabolic traits, and rare mutations in the same gene cause early onset morbid obesity (OMIM ID: 

614963)39,58. This raises questions about how the yet-to-be-determined causal variant at LEPR/LEPROT, or the leptin/free 

leptin surge in infancy, impact on early development and health. It is noteworthy that research in animals has identified 

an early peak in leptin concentration, which is thought to be essential not only in regulating energy balance but also in 

brain development59.  

 

Our study has limitations that should be taken in to consideration for future genetic studies of early growth traits. First, 

dense longitudinal growth data meshed with GWAS data are only available in a few cohorts worldwide, so we had limited 

power to detect genetic variants with smaller effects and/or low allele frequencies. This affected our ability to identify 

robust associations of some of the promising variants identified in the discovery stage, in particular at PCSK1 (Table 1). 

Variants at this locus, which are known to be associated with severe obesity60, showed a suggestive association with 

BMI at AP in our discovery GWAS, but failed to replicate and were not included in further analyses. However, in our 

discovery stage GWAS for BMI at AP among ~6,222 infants, we had 85% power to detect a variant with an effect size of 

0.14 SD at P<5 x10-8 with minor allele frequency of 0.22. Second, it is noteworthy that these derived growth phenotypes 

are likely to be influenced by a degree of measurement error, especially in cohorts with fewer repeated measures 

around the time points being estimated, which in turn could have further hampered our power to detect true genetic 

associations. Despite this, we were still able to discover genetic variants showing robust associations with these derived 

growth phenotypes. Third, in the current GWAS we inferred genotypes based on HapMap Phase 2 imputation; 

imputation using more comprehensive reference panels can provide greater coverage of the genome and can aid in 

improving power to detect additional genetic variants. Fourth, the present results may not be directly applicable to 

other ethnic groups as growth patterns and disease risk vary by ethnicity. Trans-ethnic studies may help to identify 
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additional genetic risk variants due to differences in allele frequencies among different ethnic groups. For example, the 

type 2 diabetes-associated locus KCNQ1, which has an effect across multiple ethnic groups, was first discovered in an 

East Asian GWAS, due to the allele frequency difference between the East Asian and European populations61. Finally, 

we did not identify any variants associated with PHV, PWV and Age at AP at genome-wide levels of significance, and this 

may be due to a combination of smaller genetic effects on growth at this stage of development, reduced statistical 

power due to smaller sample size or because environmental factors are more influential than genetic influences at this 

age. The interplay with infant feeding and other environmental factors also warrants additional research.   

 

In conclusion, we have identified three novel loci associated with BMI at AP in infancy at around 9 months, and age and 

BMI at AR at around 5-6 years, and confirmed the previously reported association of FTO with Age at AR8, at genome-

wide significance levels. The genetic architecture of early growth shares a robust similarity with that of later BMI. For 

example, the three AR associated loci identified here are strongly associated with adult BMI (Figure 6), and the cross-

trait genetic correlations based on GWAS data showed the same relationship. The relationship of AR to later adiposity 

may be due to shared genetic mechanisms or Age at AR and BMI at AR might be on the causal pathway for later adiposity. 

To test this hypothesis, large independent study populations are required, in which causal analysis methods such as 

Mendelian randomization can be undertaken using the variants associated with these phenotypes as proxies for early 

growth phenotypes. However, such studies would currently be underpowered as the variants discovered here only 

explain a small proportion of the variance in the early growth traits. Taken together, our results suggest that adult 

obesity has its origins in early childhood, and interventions aiming to promote an optimal growth trajectory in infancy 

and early childhood could contribute to the prevention of obesity.  
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Methods 

 

Longitudinal growth modeling and derivation of early growth phenotypes 

Early growth phenotypes were derived from sex-specific individual growth curves using mixed effects models of height, 

weight and BMI measurements from birth to 13 years (Figure 1). All height and weight data were collected prospectively 

via either self-reported data or clinical measurements (Supplementary Table 1 and 2).These phenotypes were derived 

separately in each cohort (Supplementary Note 4). 

Derivation of peak height velocity (PHV) and peak weight velocity (PWV) - The methods for growth modeling and 

derivation of growth parameters from the fitted curves is described in detail in a previous publication7 Parametric Reed1 

growth model was fitted in sex stratified non-linear random-effect model as described previously62. Term-born 

singletons (defined as ≥ 37 completed weeks of gestation) with at least three height or weight measurements from birth 

to 24 months of age were included in the Reed1 model fitting. Maximum-likelihood method for best fitting curves for 

each individual was used to estimate the growth parameter, PHV (cm/months) and PWV (kg/months). 

Derivation of age and BMI at adiposity peak (AP) and adiposity rebound (AR) - The methods used for growth modeling 

of age and BMI has been previously described in detail by Sovio et al, 20118. Due to the specificity of longitudinal changes 

in BMI i.e. succession of peak and nadir as described in figure 1, the data was divided into two age windows for modeling 

i) growth in infancy using height and weight data from 2 weeks to 18 months of age and ii) growth in childhood using 

growth and weight data from 18 months to 13 years of age. Each cohort contributed most data available within any of 

these two age windows. In studies where the data available consisted of both height and weight data within a given 

window, then the data point nearest to the mid time points of that window were used as a proxy for the BMI 

measurement. Prior to model fitting, age was centered using the median age of the relevant age window. For example, 

in the infant growth model at 0-1.5 years, the median age was 0.75 years (which was close to the average age at AP), 

and in the childhood growth model at >1.5-13 years, the median age was 7.25 years (on average shortly after AR). Linear 

Mixed Effects (LME) models were then fitted for log-transformed BMI. We used sex and its interaction with age as 

covariates, with random effects for intercepts i.e. baseline BMI, and linear slope i.e. linear change in BMI over time. In 

addition to linear age effect, quadratic and cubic terms for age were included in the fixed effects to account for 

nonlinearity of BMI change over time.  

Growth in Infancy - The following model was used to calculate the age and BMI at adiposity peak (AP), and the analysis 

was restricted to singletons with BMI measures from two weeks to 18 months of age. The model is as follows:  

log(BMI) = β0 + β1 Age + β2 Age2 + β3 Age3 + β4 Sex + u0 + u1 (Age) + ε 

where BMI is expressed in kg/m2 and age in year. β0, β1, β2, β3, β4 are the fixed effects terms, u0 and u1 are the individual 

level random effects and ε is the residual error. The age at AP was calculated from the model as the age at maximum 

BMI between 0.25 and 1.25 year according to preliminary research7,11.  

Growth in Childhood. The model used to measure the age and BMI at adiposity rebound (AR) in childhood is as follows: 

log(BMI) = β0 + β1 Age + β2 Age2 + β3 Age3 + β4 Sex + β5 Age * Sex + β6 Age2 * Sex + u0 + u1 (Age) + ε 
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Where BMI is expressed in kg/m2 and age in year. β0, β1, β2, β3, β4, β5 and β6 are the fixed effects, u0 and u1 are the 

individual level random effects and ε is the residual error. Age at AR was calculated as the age at minimum BMI between 

2.5 and 8.5 year according to preliminary research7,11. 

 

Stage 1 genome-wide association studies, genotyping and imputation 

Stage 1 genome-wide association analyses included up to 7215 children of European descent from five studies (up to 

four studies for each early growth trait) that had growth data and genome-wide data. These included the Helsinki Birth 

Cohort Study (HBCS, Finland), Northern Finland Birth Cohort 1966 (NFBC1966, Finland), Lifestyle-Immune System-

Allergy Study (LISA, Germany), The Western Australian Pregnancy Cohort Study (Raine, Australia) and Generation R 

(Netherlands) (Figure 2). Informed consent was obtained from all study participants (or parental consent, as 

appropriate) and the local ethics committees as appropriate approved all study protocols. Study characteristics, 

genotyping platform, imputation and association test software used, as well as sample and genotyping and imputation 

quality control steps in each stage 1 study are given in Supplementary Table 1. The Stage 1 consisted of a GWAS based 

on ~2.5 million directly genotyped or imputed SNPs. Imputation of non-genotyped SNPs was undertaken either with 

MACH or with IMPUTE and were imputed to HapMap Phase 11 CEU reference panel after excluding genotyped SNPs 

with a minor allele frequency (MAF) < 1%, call rate of at least >95%, and a Hardy-Weinberg Equilibrium (HWE) P-value 

cut off as given in Supplementary Table 1. 

 

Stage 1 genome-wide association analyses and meta-analyses 

According to the availability of dense enough data for growth modeling, a total of up to 7215, 6222, 6219 and 6051 

children were used to analyse PHV/PWV, Age-AP, BMI-AP and Age-AR /BMI-AR respectively (Figure 2). We only included 

children who were born between 37 and 41 completed weeks of gestation (i.e.: term born) from singleton pregnancies 

and children who had more than three growth measurements available within the age range in question. Gestational 

age was either defined from the date of the last menstrual period or ultrasound scans depending on the study. All six 

early growth traits except for Age-AP and Age-AR were natural log transformed to reduce skewness, and all traits were 

converted to z-scores prior to association testing to facilitate the comparison of results across the studies. We tested 

the directly genotyped and imputed variants for association with each of the six early growth traits in a linear regression 

model assuming an additive genetic effect. The regression models were adjusted for sex and principal components (PC) 

derived from the genome-wide data to control for potential population substructure (the necessary number of principal 

components included varied by study). The regression models were also adjusted for gestational age, except for Age-AR 

and BMI-AR. The genome-wide association analyses (i.e. stage 1) were performed using either SNPTEST or MACH2QTL 

in each cohort, and data exchange facilities were provided by the AIMS server63. All stage 1 study beta estimates and 

their standard errors were meta-analysed using the inverse-variance fixed effects method in the METAL software64. SNPs 

with poor imputation quality (e.g. r2< 0.3 for MACH and ‘proper_info’ score < 0.4 for IMPUTE) and/or a HWE P <1 x 10-4 
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were excluded prior to the meta-analyses. Double genomic control65  was applied: firstly, to adjust the statistics 

generated within each cohort and secondly, to adjust the overall meta-analysis statistics. Results are reported as a 

change in standard deviation (SD) units per effect allele as reported in Table 1. 

 

Selection of SNPs for stage 2 follow up.  

All loci reaching P < 1 x 10-7 from stage 1 GWAS of each early growth trait were selected for follow-up in stage 2. These 

included the two SNPs associated with Age-AR in the FTO locus (rs1421085) and in the intergenic region between 

RANBP3L and SLC1A3 (rs2956578), and the SNP associated with BMI-AP in LEPR/LEPROT (rs9436303). Four further SNPs 

(one SNP associated with BMI-AP near PCSK1 (rs10515235), one SNP associated with Age-AR in TFAP2B (rs2817419), 

and two SNPs associated with BMI-AR near GNPDA2 (rs10938397) and in DLG2 (rs2055816)) were selected for follow-

up on the basis of showing an association with an early growth trait at P < 1 x 10-5 and being in/near genes with 

established links to adiposity and metabolic phenotypes except for DLG2, a possible candidate gene involved in glucose 

metabolism66. In addition, one locus with a plausible association (P = 5.91 x 10-5) with PWV, near TMEM18 (rs2860323), 

was also selected for follow-up based on previous reports showing an association with severe early onset obesity19  and 

its association with BMI in adulthood29 and childhood6 (Supplementary Table 3). No loci for PHV or AGE-AP passed the 

p-value threshold or other selection criteria used for follow up. Supplementary Table 3 shows the SNP selection criteria 

and proxies used in more detail. 

 

Stage 2 follow up of lead SNPs in single SNP association analyses 

For follow up of lead signals selected from stage 1 we used data from up to 16,550 children of European descent from 

12 additional population based studies (up to 11 studies for each early growth trait), namely the Avon Longitudinal Study 

of Parents and Children (ALSPAC, United Kingdom), Cambridge Baby Growth Study (CBGS, United Kingdom), Children’s 

Hospital of Philadelphia (CHOP, United States of America), Copenhagen Prospective Study on Children (COPSAC, 

Denmark), Danish National Birth Cohort (DNBC, Denmark), Étude des Déterminants pré- et postnatals du 

développement et de la santé de l’ENfant (EDEN, France), The Exeter Family Study of Childhood Health (EFSOCH, United 

Kingdom), INfancia y Medio Ambiente Project (INMA, Spain), Lifestyle-Immune System–Allergy Study (LISA (R), 

Germany), Northern Finland Birth Cohort Study 1986 (NFBC1986, Finland), The Physical Activity and Nutrition in Children 

(PANIC, Finland) and Southampton Women's Survey (SWS, United Kingdom).  We used directly genotyped or imputed 

data for the eight SNPs (or proxies of r2 >0.8) selected from stage 1 and tested their association in a total of 5367, 16550, 

12256, 12192 children of European ancestry with PWV, BMI-AP, Age-AR, BMI-AR respectively (Figure 2). Direct 

genotyping was performed in some follow-up studies by KBiosciences Ltd. (Hoddesdon, UK) using their own novel 

system of fluorescence-based competitive allele-specific PCR (KASPar). The call rates for all genotyped SNPs were >95%. 

Study characteristics, genotyping platform, imputation and association test software used, as well as sample and 

genotyping and imputation quality control steps in each stage 1 study are given in Supplementary Table 2. We used the 

same methods as in stage 1 for sample selection, genotyping quality control, association testing and meta-analysis. 
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Combined analysis of stage 1 and stage 2 samples. All stage 1 and 2 results were meta-analysed using the inverse-

variance fixed effects method in either METAL64 or R (version 3.2.0; http://www.r-project.org/). In these combined 

analyses, loci reaching P < 5 x 10-8 were considered as genome-wide significant and loci reaching P < 5 x 10-6 were 

considered as a suggestive association. Heterogeneity between studies was tested by Cochran's Q tests and the 

proportion of variance due to heterogeneity was assessed using I2 index for each individual SNP at each stage.  

 

Estimation of genetic variance explained 

The variance explained (VarExp) by each SNP was calculated using the effect allele frequency (f) and beta (β) from the 

meta-analyses using the formula VarExp = β2 (1 − f)2f. 

 

Analysis of the association of the index SNP associated with early growth phenotypes in other GWAS data sets 

We looked up the index SNP or a proxy associated with each early growth trait in publicly available published meta-

analysis data sets to assess their associations with other GWAS traits using the Pheno Scanner available at 

http://www.phenoscanner.medschl.cam.ac.uk/phenoscanner67. We used a P-value cut off of <5 x 10-8 for displaying the 

association results and r2 cut off of > 0.6 for proxy  SNP lookups from 1000G.  

 

Conditional analyses  

To test whether the index SNP (rs9436303) in LEPR/LEPROT locus associated with BMI at AP have an effect on BMI at AP 

independent of the other trait associated SNPs in the same locus we first, tested the individual association of our index 

SNP and each of the five previously published genome-wide significant SNPs associated with obesity and metabolic traits 

in the LEPR/LEPROT locus with BMI at AP using a linear regression model adjusted for sex and gestational age in 3459 

children from the NFBC1966 study using the same exclusion criteria described above. We next tested whether our index 

SNP has an independent effect on BMI at AP, by adjusting the linear regression model between the index SNP and BMI 

at AP for each of the five previously published genome-wide significant SNPs, sex and gestational age.  

To test whether our index SNP (rs2817419) and the adult BMI and waist circumference associated index SNP (rs2207139) 

at the TFAP2B locus in GIANT have independent effects on Age at AR we tested the association between rs2817419 and 

Age at AR in a linear regression model adjusting for rs2207139 and sex and vice versa in the NFBC1986 study. 

 

 

 

Expression quantitative locus (e-QTL) analysis.  

To study the molecular mechanisms underlying the significant genetic variants associated with growth patterns, we 

searched for cis eQTL using results obtained on liver, skin, whole blood and subcutaneous and omental fat living tissue 

made available by the MuTHER68, KORA69, DeCode70 and Lee Kaplan71 studies. Additional lookups were conducted in 44 
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post-mortem tissues from GTEx consortium36. The association analysis were performed with the index SNP. The analysis 

of eQTL was limited to genes in cis within a +/- 1Mb window of the index SNP  

 

Pathway enrichment analysis  

To explore the pathways associated with early growth phenotypes, we applied a Meta-Analysis Gene-set Enrichment of 

variaNT Associations (MAGENTA  (version 2))43 to the stage 1 GWAS results. Briefly, each gene in the genome is mapped 

to a single SNP with the lowest P-value within a 110 Kb upstream or 40kb downstream window of the gene. The 

corresponding P-value, representing each gene, is corrected for confounding factors such as gene size, LD patterns, SNP 

density and other genetic factors. The adjusted P-values are ranked and the observed number of genes in a given 

pathway above a specified P-value threshold (75th and 95th percentiles used) is calculated. This number is compared with 

that from repeating the process based on 10000 randomly permuted pathways of identical size. In doing so, an empirical 

gene set enrichment association (GSEA) P-value for each pathway is computed. In our study, individual pathways with a 

FDR < 0.05 and nominal GSEA P < 0.05 were deemed significant, and, unless otherwise stated, results for the 95th 

percentile cut-off analysis are reported. To test whether SNPs in LD with the index SNP were driving the enrichment of 

the significant pathways the top 10 intragenic SNPs associated with the relevant early growth phenotype (P<0.05) within 

genes of the significant MAGENTA pathways were selected by the regression models (Supplementary Note 1). These 

were then examined for association with cis eQTL data in the liver, skin, subcutaneous and omental fat dataset as 

described above, and a proxy (r2>0.5) was used if the top SNP was not available in the expression study. In addition, 

using all top intragenic SNPs and the index SNPs associated with the significant MAGENTA pathways, we searched the 

regulomeDB52 and Haploreg53 database for relevant functional data, including: coding variation, regulatory chromatin 

marks, DNaseI hypersensitivity, protein binding and motif alteration data. 

 

The association of BMI genetic risk score with early growth traits 

We calculated the weighted genetic risk scores in children from NFBC1966 and NFBC1986 studies separately using the 

97 SNPs associated with BMI at genome-wide levels of significance in the GIANT consortium in studies of up to 339,224 

individuals1. A proxy SNP (r2>0.8) was used if the index SNP associated with BMI was not available in the NFBC studies. 

Only 95/97 were used in the NFBC1986 cohort as no suitable proxies were available for two SNPs (rs6477694 and 

rs2112347). We used the same exclusion criteria applied in the GWAS analyses described above and calculated the 

weighted score of the 95/97 SNPs using the formula 1 below to account for varying effect sizes of the SNPs. The SNPs 

were recoded to reflect the number /dosage of the BMI increasing alleles for that SNP. The weight (W) for each locus is 

the effect size of the BMI increasing allele of each SNP from Locke et al1.   

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 = 𝑊1 ×  𝑆𝑁𝑃1 + 𝑊2  ×  𝑆𝑁𝑃2 + ⋯ . 𝑊𝑛 ×  𝑆𝑁𝑃𝑛                   (1) 
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The weighted genetic risk score was rescaled to reflect the number of BMI- increasing alleles using formula 2 as 

described in Lin et al72. 

 

𝐺𝑒𝑛𝑒𝑡𝑖𝑐 𝑟𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒 =
𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 𝑥 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑆𝑁𝑃𝑠

𝑆𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑆𝑁𝑃𝑠
    (2) 

 

We then created quintiles of weighted genetic risk score in each study containing approximately 20% children in each 

of the five groups, and tested the mean difference in each early growth phenotype between the lowest and the highest 

quintile of the weighted genetic risk score in a liner regression model. In the linear regression model we used the 

quintiles of weighted genetic risk score as the independent variable, and each early growth trait as the dependent 

variable adjusted for sex and gestational age except for Age-AR and BMI-AR where the regression model was only 

adjusted for sex. The genetic risk score analyses were carried out in StataMP 13 for Windows (StataCorp, Brownsville, 

TX). The results from NFBC1966 and NFBC1986 cohort was meta-analysed using the fixed effect inverse variance 

estimator implemented in the Stata command, “metan”. 

Linkage-disequilibrium (LD) score regression analyses 

The use of LD score regression in estimating the genetic correlation between two traits have been described 

previously73,74. Briefly the LD score regression uses GWAS meta-analysis summary statistics of several million SNPs of 

the two traits under comparison (here the GWAS meta-analysis summary statistics of each early growth trait and the 

other trait under comparison) and calculates the cross product of the test statistics at each SNP. This cross product of 

the test statistics is then regressed against the LD score of each SNP (i.e.: sum of the LD r2 between a variant and all the 

variants in a 1 cm region in the genome) and the slope of this regression line gives the genetic correlation between the 

two traits of interests. We primarily used the LD hub75 available at http://ldsc.broadinstitute.org to quantify the genetic 

correlation between each of the five early growth traits, and health related outcomes. LD hub is a centralised database 

of summary-level GWAS results from 36 GWAS consortia, and provides a web interface to automate multiple LD score 

regression analyses in a single run. The analyses can be conducted on selected phenotypes of interest or can be carried 

out on all traits available on the database in hypothesis free tests. We first reformatted GWAS summary statistics for 

each of the five early growth traits according to the sample input format provided on the developer’s website prior to 

uploading on their server. The diseases/traits of interest for LD score regression analyses were selected from the pre 

complied list of GWAS available on LD hub where summary statistics are available in the required format for running LD 

score regression. The LD hub uses pre-calculated LD scores based on European samples. We selected a total of 49 

disease/traits of interest from 33 GWAS studies in the following pre-compiled categories: education, anthropometric 

traits, lipids, glycaemic traits, bone mineral density, neurological / psychiatric diseases and other traits (including 

adiponectin, CAD, T2D, menarche) and submitted the request for LD score regression for each of the five early growth 

traits at a time. Following each analysis a genetic correlation matrix between the early growth trait and the selected 
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disease/traits were returned which included the genetic correlation value (rg) its standard error and the corresponding 

P-value for each trait comparison.   

However, LD hub currently does not harbour GWAS summary statistic data for lung function measures or blood pressure 

traits. To quantify the genetic correlation between early growth phenotypes and these measures we obtained GWAS 

summary statistics data from the SpiroMeta consortium for the lung function measures of FEV1, FCV, and FEV1/FCV 

ratio76.  To generate genetic association statistics for SBP and DBP we carried out GWAS of systolic and diastolic blood 

pressure (SBP and DBP) using 125,334 subjects from the UK Biobank study77 (Supplementary Note 3). For these LD score 

regression analyses we used the Python scripts provided on the developer’s website at https://github.com/bulik/ldsc. 

Prior to running the LD score regression analyses each summary statistics file was reformatted using the 

munge_sumstats.py Python script which filtered the SNPs to HAPMAP 3 SNPs as recommended on the developer’s 

website to minimise any bias from poor imputation quality. SNPs were also excluded if MAF<0.01, ambiguous strand, 

duplicate rsID and reported sample size is less than 60% of the total available. If the sample size for each SNP was 

available we used the –N-col to specify the relevant sample size column in the GWAS summary statistics file, and when 

no sample size column was available we used the maximum sample size reported in the GWAS meta-analysis. After the 

GWAS summary statistics files were reformatted we then used the ldsc.py Python script to run the LD score regression 

analyses between each of the six early growth traits, blood pressure and lung function measures. The pre-complied 

European LD scores calculated from 1000G data available on the developer’s website was used for LD score regression.  
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Table 1. Summary statistics of the eight independent SNPs associated with Peak Weight Velocity in infancy (PWV), BMI at Adiposity Peak in infancy (BMI-

AP), Age at Adiposity Rebound  (Age-AR) and BMI at Adiposity Rebound (BMI-AR) in discovery (stage 1), follow-up (stage 2) and in combined meta-analyses. 

     Stage 1  (n=7215) Stage 2 (n=16550) Combined (n=22769) 

Index SNP 
Chromosome 

Positiona 
In/near 

gene 
Effect allele/Other 

allele 
Effect allele 
frequency 

Effect size  
(SE)  

P value 
Effect size 

 (SE)  
P value 

Effect size 
(SE)  

P value 

PWV (kg/month) 

rs2860323  chr2:614210 TMEM18 G/A 0.12 0.09 (0.02) 5.9 x 10-5 0.02 (0.02) 4.7 x 10-1 0.06 (0.02) 3.9 x 10-4 

BMI-AP (kg/m2) 

rs9436303b chr1:65430991 
 

LEPR/LEP
ROT 

G/A 0.22 0.13 (0.02) 4.7 x 10-8 0.05 (0.01) 6.7 x 10-4 0.07 (0.01) 8.3 x 10-9 

rs10515235 chr5:96323352 PCSK1 A/G 0.21 0.09 (0.02) 9.7 x 10-7 0.03 (0.01) 1.5 x 10-2 0.05 (0.01) 2.4 x 10-6 

Age-AR (years) 

rs1421085  chr16:53767042 
 

FTO C/T  0.25 -0.10 (0.02) 6.1 x 10-8 -0.13 (0.01) 7.1 x 10-24 -0.12 (0.01) 3.1 x 10-30 

rs2956578 chr5:36497552 
intergenic 

regionc G/A  0.31 0.11 (0.02) 6.7 x 10-8 0.00 (0.01) 8.3 x 10-1 0.04 (0.01) 1.1 x 10-3 

rs2817419 chr6:50845193 TFAP2B A/G 0.76 -0.10 (0.02) 2.9 x 10-6 -0.07 (0.01) 1.8 x 10-6 -0.08 (0.01) 4.4 x 10-11 

BMI-AR (kg/m2) 

rs10938397 chr4:45180510 GNPDA2 G/A 0.35 0.09 (0.02) 5.4 x 10-6 0.05 (0.01) 3.1 x 10-4 0.06 (0.01) 2.9 x 10-8 

rs2055816 chr11:85406487 DLG2 C /T 0.25 -0.13 (0.02) 1.4 x 10-7 -0.03 (0.02) 1.8 x 10-1 -0.07 (0.02) 5.1 x 10-6 
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aSNP positions are according to dbSNP build 147. b Stage 1 meta-analysis results for this SNP is excluding the LISA-D study as this study showed 

heterogeneity. cIntergenic region between RANBP3L and SLC1A3. Results are from inverse-variance fixed-effects meta-analysis of European ancestry 

children. The effect allele for each SNP is labeled on the positive strand according to HapMap. The effect size is the change in standard deviations (SD) 

per effect allele from linear regression, adjusted for child’s sex and principal components assuming an additive genetic model. BMI at AP was additionally 

adjusted for gestational age. None of the loci for Peak Height Velocity (PHV) passed the selection criteria for stage 2 follow up. P values for discovery 

and combined analysis are shown in bold if genome-wide significant (P < 5 × 10−8). The maximum sample size used in meta-analyses of each stage is shown 

in (). Standard Error (SE). 
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F igure   1.    Graphical   illustration  of  height  and  weight  growth  patterns  and  the  derived  measures  of  early  growth  traits  used   in  the  present  study.  A)  Peak  Height  Velocity  

(PHV);  B)  Peak  Weight  Velocity  (PWV);  C)  Age  and  BMI  at  Adiposity  Peak  (AP)  and  Rebound  (AR).  The  growth  curves  for  males  are  in  blue  and  for  females  in  red.  Curves  are  

based  on  the  Northern  Finland  Birth  Cohort  (NFBC)  1986  data.     
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F igure  2.   Summary  of  study  design.  The  Flowchart  shows  the  studies  and  total  sample  size  used  in  Stage  1  genome-‐wide  association  meta-‐analyses  and  in  Stage  2  follow  up  

for  each  early  growth  trait  leading  to  Stage  3  follow-‐up  analyses.  Stage  1  included  up  to  7215  European  ancestry  children  from  up  to  four  population-‐based  studies  and  stage  

2  follow  up  included  up  to  16,550  European  ancestry  children  from  up  to  11  studies.      

Early growth phenotypic traits – Study flow-chart   

Stage 1.  Genome-wide association study meta-analyses (HapMap2 imputation)  

Stage 3. Follow-up analyses 

Stage 2.  Follow-up of the lead signals: custom genotyping and de novo genotyping    
8 SNPs selected for follow-up in stage 2 for relevant phenotypes based on a P < 1 x 10-7 or combined evidence 
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Figure   3.    Regional  association  and   forest  plots  of   the   four  genome-‐wide  significant   loci  associated  with  A)  BMI  at  AP*,  B)  AGE  at  AR  and  C)  BMI  at  AR.  Purple  diamond  

indicates  the  most  significantly  associated  SNP  in  stage  1  meta-‐analysis,  and  circles  represent  the  other  SNPs  in  the  region  with  colouring  from  blue  to  red  corresponding  to  r2  

values  from  0  to  1  with  the  index  SNP.  The  SNP  position  refers  to  the  NCBI  build  36.  Estimated  recombination  rates  are  from  HapMap  build  3678.  Forest  plots  from  the  meta-‐

analysis  for  each  of  the  identified  loci  are  plotted  abreast.  Effect  size  [95%  CI]  in  each  individual  study,  discovery,  follow-‐up  and  combined  meta-‐analysis  stages  are  presented  

from   fixed   effects  models   (heterogeneity   of   the   SNP   rs9436303   in   LEPR/LEPROT,   see   Supplementary   F igure   4).   *At   this   locus   there  was   heterogeneity   between   the  

studies  in  discovery  (I2=72.1%,  P=0.01)  and  combined  stage  (I2=59.3%,  P=0.002)  fixed  effect  meta-‐analyses  that  was  mainly  due  to  LISA-‐D,  EDEN  and  the  larger  well-‐defined  

NFBC1966   study   (Supplementary   F igure   4   a   &   d).   Removing   the   studies   that   showed   inflated   results   from   meta-‐analyses   did   not   change   the   point   estimates  

(Supplementary  F igure  4  c ,    f ,   g).  Both  fixed  and  random  effect  models  gave  very  similar  results  (Supplementary  F igure  4b  &  4e).  
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Figure  4.   Scatter plots of the effect size estimates (SD units) of the 97 adult BMI associated loci on adult BMI in GIANT consortium1 and Age at AR (A) 

and BMI at AR (B) in the current discovery stage GWAS meta-analyses. The effect size of the adult BMI increasing allele is plotted. The r represents the 

correlation coefficient between the effect size of the early growth phenotype and adult BMI and P is P-value for this correlation coefficient. The scatter 

plots of the other early growth phenotypes are given in Supplementary Figure 5.   
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F igure  5:  Genetic  correlations  between  five  early  growth  traits  and  54  other  GWAS  traits  analyzed  by  genome-‐wide  association  statistics.  Blue,  positive  

genetic  correlation;  red,  negative  genetic  correlation.  The  correlation  matrix  underneath  represents  the  genetic  correlation  among  the  five  early  growth  

traits  themselves.  The  size  of  the  coloured  squares  is  proportional  to  the  P-‐value  where  larger  squares  represent  a  smaller  P-‐value.  Genetic  correlations  

that  are  different  from  0  at  P  <0.05  is  marked  with  an  asterisk.  The  genetic  correlations  that  are  different  from  0  at  a  false  discovery  rate  (FDR)  of  1%  FDR  

are  marked  with  a  circle.  Genetic  correlations  represented  here  are  presented  in  tabular  format  in  Supplementary  Table  14.    

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 16, 2017. ; https://doi.org/10.1101/150516doi: bioRxiv preprint 

https://doi.org/10.1101/150516
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

  

F igure  6.   Schematic  diagram  showing  the  four  genome-‐wide  significant  loci  associated  with  early  childhood  growth  phenotypes  in  the  current  study  and  

adult  BMI  in  the  GIANT  consortium.  The  thick  grey  arrows  show  main  observational  relationships  between  the  early  growth  phenotypes  at  P<0.0001  in  

NFBC1966  and  NFBC1986  studies,  and  how  early  growth  phenotypes  may  be  linked  with  adult  BMI.  The  thin  arrows  represent  the  association  between  

the  index  SNPs  and  the  early  growth  phenotypes  in  combined  meta-‐analyses  or  in  look-‐ups  in  GIANT  consortium  data1;  P<0.05  (grey);  P<0.0001  (black).
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