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Abstract 

Human gut microbiome composition is shaped by multiple host intrinsic and extrinsic factors, 

but the relative contribution of host genetic compared to environmental factors remains 

elusive. Here, we genotyped a cohort of 696 healthy individuals from several distinct ancestral 

origins and a relatively common environment, and demonstrate that there is no statistically 

significant association between microbiome composition and ethnicity, single nucleotide 

polymorphisms (SNPs), or overall genetic similarity, and that only 5 of 211 (2.4%) previously 

reported microbiome-SNP associations replicate in our cohort. In contrast, we find similarities in 

the microbiome composition of genetically unrelated individuals who share a household. We 

define the term biome-explainability as the variance of a host phenotype explained by the 

microbiome after accounting for the contribution of human genetics. Consistent with our finding 

that microbiome and host genetics are largely independent, we find significant biome-

explainability levels of 16-33% for body mass index (BMI), fasting glucose, high-density 

lipoprotein (HDL) cholesterol, waist circumference, waist-hip ratio (WHR), and lactose 

consumption. We further show that several human phenotypes can be predicted substantially 

more accurately when adding microbiome data to host genetics data, and that the contribution 

of both data sources to prediction accuracy is largely additive. Overall, our results suggest that 

human microbiome composition is dominated by environmental factors rather than by host 

genetics. 
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Introduction 

The gut microbiome is increasingly recognized as having fundamental roles in multiple aspects 

of human physiology and health including obesity, non-alcoholic fatty liver disease, 

inflammatory diseases, cancer, metabolic diseases, aging, and neurodegenerative disorders1–14. 

Humans acquire bacteria at birth and are exposed to bacteria from the environment throughout 

their lifespan15–18. Although mammalian microbiome composition may change during life19, it is 

considered relatively stable20,21.  

A fundamental question is the extent to which microbiome composition is determined by host 

genetics as opposed to being shaped by the environment. Previous studies identified several 

heritable bacterial taxa and SNPs associated with the gut microbiome, but the effect of host 

genetics on the overall microbiome composition has not been investigated. For example, a study 

of twins identified 33 significantly heritable bacterial taxa22,23, but did not evaluate the 

combined relative abundance of these taxa. Another study identified several bacteria taxa 

shared among non-twin family members24, but could not distinguish between genetic and 

environmental factors, because teasing these two factors apart is typically only done with twin 

studies25. 

Several recent studies tested for association between host SNPs and individual taxa or 

pathways24,26–28. However, a major statistical challenge in such studies is the large number of 

hypotheses tested, since there are millions of human SNPs and thousands of bacterial taxa and 

pathways29–33. Consequently, most of the associations reported in these studies are not 

statistically significant after multiple hypothesis testing correction. To alleviate the multiple 

hypothesis burden that results from examining associations to individual bacteria, one study 

tested for associations between each SNP and gut microbiome -diversity, and found 42 

significant loci that together explain 10% of the variance of the β-diversity27. However, this study 

did not provide an assessment of the statistical significance of this result.  Thus, given the overall 

limited number of significant findings reported to date, the extent to which human genetics 

shapes microbiome composition remains unclear.  

In this work, we studied microbial-genetic associations using a cohort of 696 healthy Israeli 

individuals for whom we obtained information on genotypes, metagenome and 16S-sequenced 

gut microbiomes, numerous anthropometric and blood phenotypes, and dietary habits34. 

Notably, individuals in our cohort represent several different ancestral origins yet they share a 

relatively homogeneous environment, since most Israeli individuals lead similar ‘Western’ life 

styles. 

Our results demonstrate that environmental factors have a substantially stronger effect on 

microbiome composition than host genetics, suggesting that microbiome composition is 

predominantly shaped by environmental factors. Specifically, we show that there is no 

statistically significant association between microbiome composition and individual SNPs, 

genetic ancestry, or overall genetic similarity. Notably, our study is well powered to find 

microbiome associations with ancestry or genetic similarity, as such tests do not suffer from a 

multiple hypothesis burden. We further show that family relatives with no history of a shared 
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household do not have similar microbiomes, whereas we find microbiome similarity among 

genetically unrelated individuals who share a household.  

As our findings suggest that microbiome and host genetics are largely independent, we aimed to 

disentangle and compare the association of human phenotypes with microbiome and with host 

genetics. Several bacterial taxa have been shown to explain a significant fraction of the variance 

of BMI, HDL cholesterol, and triglycerides, after accounting for host genetics35, but the 

association of the overall microbiome composition with these and other phenotypes has not 

been quantified to date. We define the term biome-explainability, which analogously to genetic 

heritability quantifies the overall association between the microbiome and host phenotypes 

after accounting for the association of host genetics. We find significant biome-explainability 

levels of 16-33% for BMI, fasting glucose, glycemic status, HDL cholesterol, waist circumference, 

waist-hip ratio, and lactose consumption. Finally, we demonstrate that adding microbiome data 

on top of human genetics substantially improves human phenotype prediction accuracy and 

that the contribution of both data sources to the accuracy is mostly additive. These results 

suggest that the microbiome should be routinely considered in addition to genetics in studies 

aimed at explaining the variance of human phenotypes. 

 

Results 

Cohort and analysis description 

We studied a cohort of 696 healthy Israeli adults for whom we collected for every participant 

blood for genotyping and phenotyping, stool for metagenome and 16S rRNA-gene sequencing, 

anthropometric measurements, and answers to a food frequency questionnaire34 (Table 1). We 

performed genotyping at 712,540 SNPs and imputed them to 5,578,121 SNPs (Methods). Stool 

samples were profiled using both metagenome and 16S rRNA-gene sequencing. Metagenomes 

were subsampled to 10M reads per sample to achieve even sequencing depth across individuals.  

Unless stated otherwise, we excluded a subset of the individuals so that no pair of individuals 

are close relatives (having a fifth or stronger degree of relation) or share a household (Methods). 

Finally, we included covariates for age, gender, stool collection method, and self-reported daily 

average caloric, fat, protein and carbohydrates consumption (Methods). When not examining 

association of bacteria with ancestry or kinship, we also included the top five principal 

components (PCs) of the genotypes as covariates. 

 

Microbiome composition is not associated with ancestry or genetic kinship 

Our population is one of the largest cohorts of diverse Jewish individuals genotyped in a single 

study, consisting of self-reported Ashkenazi (n=346), North African (38), Middle Eastern (23), 

Sephardi (8), Yemenite (7), admixed (243) and unknown/other (31) ancestries (Methods). 

Genetic ancestry is often reflected in the top principal components (PCs) of the genotypes36. We 

therefore computed the PCs via PC-AiR37, which is robust to relatedness and admixture 
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(Methods), and verified that there is a close correspondence between the top two PCs and self-

reported ancestry of individuals with a single ancestral origin (P<10-21 for both PC1 and PC2, 

Kruskal-Wallis test; Fig. 1a, Table 2 column 1 row 1, Supplementary Table 1). 

In contrast to the association between ancestry and genetics, we found no significant 

association between ancestry and microbiome composition. Specifically, there was no 

significant correlation between any of the top five host genetic PCs and any of the top five 

microbiome β-diversity principal coordinates (computed using Bray-Curtis dissimilarity at the 

genus level; P>0.16 for all pairwise associations, Spearman correlation; Supplementary Table 2). 

We next tested if individuals sharing an ancestry have a more similar (1) microbiome 

composition (quantified by PCos of Bray-Curtis dissimilarities); (2) microbiome α-diversity 

(quantified by Shannon diversity index38); and (3) abundance of specific taxa. In all cases, we 

found no significant association (Kruskal-Wallis test; Fig. 1b-c, Table 2 column 1, Supplementary 

Table 1).  

The lack of microbiome-ancestry associations does not rule out the possibility that individuals 

who are more ancestrally or genetically similar have more similar microbiomes. To test this 

hypothesis, we first constructed an ancestral similarity matrix (using Euclidean distances of 

ancestry proportions; Methods) and a genetic similarity matrix (using genetic kinship; Methods) 

for all pairs of individuals, including individuals with more than one ancestral origin. We then 

tested if pairs of individuals who are more ancestrally or genetically similar have a more similar 

(1) microbiome composition (quantified by Bray-Curtis dissimilarity at the genus level); (2) α-

diversity; and (3) abundance of specific taxa. As before, in all cases we found no significant 

association (Mantel test39; Methods, Fig. 1d-f, Table 2 columns 2-3, Supplementary Tables 3-4). 

As a control, we verified that ancestrally similar individuals are significantly similar genetically 

(P<10-5, Mantel test; Table 2 column 2 row 1, Supplementary Table 3). 

We also applied several different machine learning prediction algorithms to try and predict 

ancestry proportions from microbiome but none were successful (prediction R2<0.01 for all 

ancestries; Methods). Additionally, canonical correlation analysis40, a well-known technique for 

testing for low rank linear dependencies between high dimensional objects, showed no 

association between host genotypes and microbiome abundances (P=0.21, permutation testing; 

Methods, Supplementary Table 5). 

While the above results are based on metagenome-derived genus level abundances after 

regressing out covariates, we obtained similar results also when using any of the following: 

Other metagenome-derived taxonomic and functional levels (phylum, class, order, family, 

species, and bacterial genes; see Methods); 16S data; non-metric multidimensional scaling41 

instead of PCoA; and when omitting covariates (Supplementary Figs. 1-3, Supplementary Tables 

1-5).  

 

Finally, we asked whether our results are in line with data from previous studies showing that 

several bacterial taxa are significantly heritable23,24,26–28, by analyzing data from the twins study 

of Goodrich et al23. First, we found that the sum of the relative abundances of all 33 taxa 

reported as significantly heritable in Goodrich et al.23 is only 5.6% (Methods).  Next, we found 
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that the combined heritability of significantly heritable taxa in this data set (weighted by their 

relative abundance) was only 1.9%, or at most 8.1% when not correcting for multiple 

comparisons (Methods, Figure 1g, Supplementary Table 6). These numbers can serve as 

estimates of the lower and upper bound of the true overall microbiome heritability. These 

results are thus consistent with the results obtained on our cohort and collectively, they suggest 

that host genetics is not a major determinant of gut microbiome composition. 

 

Microbiome β-diversity is not associated with individual SNPs 

We next tested for associations between individual SNPs and microbiome β-diversity, by testing 

if individuals with a smaller Bray-Curtis dissimilarity are more likely to share the same allele via 

MiRKAT42  (Methods), and found no significantly associated SNPs (Fig. 2a).  

In addition, our data did not replicate significant associations for any of the 42 SNPs reported by 

Wang et al. to be significantly associated with microbiome β-diversity27 (P>0.05 for all previously 

reported SNPs). To verify that this is not due to the different testing methods used, we also 

tested all SNPs in our cohort using the method of Wang et al. and again could not replicate 

these SNPs (P>0.05 for all SNPs; Methods). 

Wang et al. also reported that their 42 reported SNPs accounted for 10% of the β-diversity, but 

did not report statistical significance for this result. To assess the potential significance of such a 

result, we first applied the method of Wang et al. to our data and found that the 42 top ranked 

SNPs accounted for 13.5% of the β-diversity. We then estimated the significance of this result by 

randomly permuting the microbiome assignment of individuals in our data 100 times, so that 

every individual has the microbiome of a randomly selected individual. In each permutation, we 

ranked all SNPs, and explained the β-diversity variance using the 42 top ranked SNPs (which 

were all top ranked by chance due to the random permutations; Methods). The explained 

variance fractions across the permutations ranged from 11.2% to 20.0%, with 85% of the results 

being greater than the one obtained with non-permuted data, thus yielding P=0.85.  We 

conclude that accounting for >10% of the microbiome composition via top ranked SNPs may be 

an inherent property of the method employed and not a biologically meaningful result. 

Thus, we find no evidence in our data for association of any individual SNP with microbiome β-

diversity, including for SNPs previously reported to exhibit such association. 

 

Limited evidence for SNP associations with specific taxa 

We next tested for association between individual SNPs and specific taxa. Due to the large 

number of tested hypotheses, we maximized power by including pairs of individuals with a 

shared household or with close genetic relatedness, while appropriately controlling for these 

potential cofounding sources via a linear mixed model (LMM) (Methods). We dichotomized taxa 

with a zero-inflated distribution (Supplementary Table 7) and only tested for presence/absence 

patterns for these bacteria, in order to alleviate modeling violations (Methods). This analysis 
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identified 167 SNPs with P<5 × 10−8, corresponding to a false discovery rate (FDR) of 29%, but 

none remained statistically significant at an FDR of 5% (Fig. 2b, Supplementary Table 8). 

We next examined the association of 225 SNPs in 211 genetic loci reported as significantly 

associated with specific taxa or with β-diversity in any of five previous studies23,24,26–28 

(Methods). To maximize replication power, we used the minimal P value obtained for each SNP 

across all taxa belonging to the same phylum. Only 5 of the 211 loci (2.5%) replicated at P < 

0.05/211 (Fig. 2c, Supplementary Table 9; Methods). Two of these 5 loci reside in close vicinity 

to the LCT gene, and were found by several previous studies to be associated with the 

Bifidobacterium genus, possibly owing to its association with lactose consumption43,44.  

Notably, the LCT gene is the only case in which there was an overlap between the SNPs reported 

in any pair of five previous studies. Moreover, no pair of previously reported SNPs from any two 

studies were within 100Kb of each other, or within 1Mb of each other and associated with taxa 

belonging to the same phylum (Supplementary Table 9).  

 

Microbiome composition is not associated with familial relations but is moderately 

associated with household sharing 

We next asked whether family members with no history of household sharing have similar 

microbiome compositions. To this end, we extracted 11 pairs of individuals from our data whose 

kinship coefficient was between the standard cutoffs for 2nd degree and 5th degree relatives45 

and who do not share a household. We then asked whether their average Bray-Curtis 

dissimilarity is significantly smaller than across non-related pairs who do not share a household 

via permutation testing (Methods), and found no such evidence at any taxonomic level or at the 

level of bacterial gene abundance (P>0.9 for phylum, class, order, family, genus, species, and 

bacterial gene abundance; Fig. 3, Supplementary Table 10). In contrast, we found borderline 

significant microbiome sharing in 22 first-degree relative pairs, who are likely to have a history 

of household sharing, at the phylum (P=0.033) and order (P=0.006) taxonomic levels, but no 

significant sharing at other levels (Fig. 3, Supplementary Table 10). 

To test the effect of present household sharing, we repeated the above analysis for 12 pairs of 

genetically unrelated individuals who reported living in the same household during data 

collection. Although we did not detect microbiome sharing at any taxonomic level, we did find 

statistically significant microbiome sharing at the level of bacterial gene abundance (P=0.004; 

Fig. 3, Supplementary Table 10). 

Thus, these results suggest that past or present household sharing may partly determine gut 

microbiome composition, whereas we find no supporting evidence for microbiome sharing 

among family relatives with no past household sharing. While these results do not rule out the 

possibility of specific heritable bacterial taxa, it suggests that such taxa likely compose a small 

portion of the microbiome, with a minor effect on overall microbiome sharing. Our results 

corroborate those of Goodrich et al.22, who showed using larger samples than ours that twins 

have significantly correlated microbiomes compared to non-related individuals (P<0.009), and 

that microbiome similarity among monozygotic twins compared to dizygotic twins is only 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 26, 2017. ; https://doi.org/10.1101/150540doi: bioRxiv preprint 

https://doi.org/10.1101/150540


borderline significant (P=0.032 under an unweighted UniFrac dissimilarity, P>0.05 under Bray-

Curtis and weighted UniFrac dissimilarity). 

 

Biome-explainability can be assessed more accurately than genetic heritability 

Given the lack of evidence for strong genetic-microbiome associations, we next asked how well 

different host phenotypes can be inferred based on the microbiome, as compared to host 

genetics. In statistical genetics, the fraction of phenotypic variance explained by genetic factors 

is called heritability, and is typically evaluated under an LMM framework46. Intuitively, LMMs 

estimate heritability by measuring the correlation between the genetic kinship and the 

phenotypic similarity of pairs of individuals. We define the analogous term of biome-

explainability, which corresponds to the fraction of phenotypic variance explained by the 

microbiome. Specifically, we construct the microbiome “kinship” matrix as a microbiome-

similarity matrix based on presence-absence patterns of bacterial genes extracted from 

metagenomic samples (Methods). 

Genetic heritability estimation requires samples with thousands of individuals to yield reliable 

estimates47. We therefore first asked whether biome-explainability can be reliably estimated 

with our sample size. To this end, we computed confidence intervals (CIs) for a large number of 

biome-explainability values via parametric bootstrap, which constructs CIs by repeatedly 

drawing random realizations of the phenotypes according to the principle of test inversion48. We 

find that biome-explainability can be estimated more accurately than genetic heritability in our 

sample, with an average 95% biome-explainability CI width of 32.8% (averaged over different 

biome-explainability levels), compared with 98.7% for a genetic heritability CI in our cohort 

(Supplementary Table 11). 

We also verified that the reported results are not specific to our cohort, by using individuals 

from the Wellcome Trust Case Control Consortium 2 control cohorts49 (Methods). This sample 

yielded genetic heritability CIs similar to those of our cohort when subsampling to 540 

individuals to match our cohort size (average 95% CI width=98.7%). Genetic heritability CIs 

comparable to our biome-explainability CIs were only reached when increasing the sample size 

to 3000 genotypes (average 95% CI width=32.0%; Fig. 4a; Supplementary Table 11). 

This result demonstrates that microbiome data provides a larger effective sample size than host 

genetics towards the task of explaining host phenotypes, indicating that there is more 

microbiome diversity than host genetic diversity in a given sample size. Consequently, biome-

explainability estimation can be carried out with cohorts of hundreds rather than thousands of 

individuals. 

 

Microbiome explains a substantial fraction of the variance of several host 

phenotypes 

We next estimated the biome-explainability of several host phenotypes of interest (Table 1). To 

account for genetic factors, we made use of publicly available genetic summary statistics50 
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computed from tens of thousands of individuals, by computing a polygenic risk score (PRS) for 

every individual and including it as a covariate in the analysis (Methods). The resulting model 

corresponds to the formula: phenotype = genotype effect + microbiome effect + environmental 

effect. An alternative approach to include genetic information in the model is to directly 

estimate both genetic heritability and biome-explainability in the same analysis, but as noted 

above, doing this for genetics requires substantially larger sample sizes than ours. We therefore 

restricted our analysis to phenotypes with available summary statistics and to lactose 

consumption, as the genetic component of lactase persistence can be largely explained via only 

two SNPs in European populations43 (Methods). 

 
Our analysis identified several host phenotypes with a statistically significantly biome-

explainability component (Method, Fig. 4b-c, Supplementary Table 12). Specifically, we found 8 

of 12 traits that we tested to be significantly explained by the microbiome, with estimated 

biome-explainability levels of 33% for non-fasting HDL cholesterol levels, 32% for waist-hip ratio, 

29% for fasting glucose, 29% for lactose consumption, 27% for glycemic status, 21% for waist 

circumference, and 16% for BMI. 

 

Our estimated fraction of microbiome-explained variance for BMI and for HDL cholesterol are 

substantially greater than those of ref.35, which used a linear regression model to identify 

several bacterial taxa that jointly explained 4.5% of the variance of BMI and 5% of the variance 

of HDL cholesterol, after accounting for host genetics. We hypothesized that the difference 

could partly stem from our use of bacterial genes rather than bacterial taxa to explain 

phenotypic variance. Indeed, when using abundance of bacterial taxa rather than genes we 

obtained lower biome-explainability estimates (Supplementary Fig. 4, Supplementary Table 

13), suggesting that bacterial gene abundance is more informative of human phenotypes than 

other microbiome characteristics.  

 

Notably, the above biome-explainability estimates were obtained after accounting for genetic 

factors by including a PRS as a covariate. These biome-explainability estimates are comparable 

to existing SNP heritability estimates for these traits from the literature based on thousands or 

tens of thousands of individuals51–58 (Fig. 4b, Supplementary Table 12), indicating that the 

microbiome is an important factor associated with these traits. 

 

Microbiome data improves human phenotype prediction 

As another comparison between host genetics and microbiome, we evaluated their ability to 

predict human phenotypes of interest. To this end, for each phenotype, we constructed 

predictive machine learning models that use bacterial gene abundances, genetic polygenic risk 

score (PRSs), age, sex, and daily average caloric, carbohydrates, fats and proteins consumption. 

The contribution of a specific data source to the phenotype can be assessed by the reduction in 

prediction power when excluding this data source. A small reduction indicates that either the 

data source is not important or that other data sources can compensate for it, whereas a large 

reduction indicates high predictive power. Predictions were performed with an LMM59 

(Methods). 
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We found that prediction accuracy for 7 of 12 traits, including BMI, HDL cholesterol, and fasting 

glucose, is substantially improved when adding microbiome data on top of genetic PRSs (Fig. 4d, 

Supplementary Table 14). For example, in predicting HDL, a model without genetic or 

microbiome information achieves R2=0.17, while adding a genetic PRS improves to R2=0.21, and 

adding microbiome results in R2=0.27. Moreover, the contribution of both data sources is largely 

additive, consistent with our finding that microbiome and host genetics are mostly independent 

(Fig. 4e). We also attempted to construct predictive models by directly using our genotypes 

without a PRS, and obtained substantially inferior results (Supplementary Table 15), indicating 

that our sample size is not large enough to directly predict complex traits with human genomes. 

Taken together, these results demonstrate that host genetics and microbiome can serve as two 

separate and complementary factors that explain many host phenotypes of interest. Thus, 

phenotype prediction can often be substantially improved by combining host genetics and 

microbiome data within the same prediction model. 

 

Discussion 

In this study, we investigated the extent to which the gut microbiome composition is shaped by 

human genetics, using a cohort of 696 healthy Israeli individuals.  Our cohort is characterized by 

the presence of individuals of different ancestral origins living in a relatively shared 

environment, and is thus particularly well suited for testing the association between 

microbiome and host genetics while controlling for environmental factors. 

We did not detect any statistically significant microbiome-genetic associations, including 

associations between the microbiome and genetic ancestry, genetic kinship, or specific SNPs. 

From a statistical standpoint, our analysis was liberal towards trying to find a signal, as we did 

not apply a multiple hypothesis correction when repeating the same analysis using both 

metagenome and 16S data, or when using different taxonomic levels. 

In contrast to the lack of association between host genetics and gut microbiome, we found 

significant correlations between the functional composition of gut microbiomes among 

individuals sharing the same household. This result corroborates previous studies showing that 

the human oral microbiome is dominated by household sharing60, and that diet reproducibly 

alters the gut microbiota of mice with diverse genotypes61. Thus, an increasing body of evidence 

suggests that microbiome composition is dominated by environmental factors rather than by 

host genetics. As several recent studies reported that the microbiome is not only stable over 

time20,21, but also resilient to some extent to perturbations like antibiotics and pathogens62–66, an 

interesting unresolved question is the extent and determinants of such stability. As a small 

minority of heritable microbes are unlikely to bring it about, it will be interesting to further 

establish which mechanisms underline microbiome stability, and which perturbations cause 

dysbiosis that can lead to disease susceptibility2,67–70. 

We propose biome-explainability as a means of quantifying microbiome association with host 

phenotypes, show that it can be reliably estimated using metagenomic cohorts of only hundreds 
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of individuals, and find that several phenotypes exhibit substantial biome-explainability levels in 

the range of 16-33%. Finally, we show that adding microbiome data to host genetics data 

improves prediction accuracy for several host phenotypes and that the two data sources 

contribute additively. We note, however, that since microbiome composition can both affect 

and be affected by host phenotypes, biome-explainability and microbiome-based predictions 

cannot be used to infer causality. 

Previous studies identified heritable bacteria by observing co-occurrence among family 

members22,23, or by reporting associations between specific SNPs and bacterial taxa23,24,26–28. Our 

results are consistent with these published data, and collectively suggest that only a small 

number of bacteria are likely strongly heritable, and that most SNP-bacteria associations are 

either weak or population-dependent. These conclusions are supported by the fact that there is 

no overlap between the significant loci reported by any two previous studies, except for 2 SNPs 

in close vicinity to the LCT gene that are associated with the Bifidobacterium genus, which is 

likely an indirect effect as both the LCT gene and Bifidobacterium are associated with lactose 

consumption43,44. Additionally, only 5 of 211 previously reported loci replicated in our cohort. 

Our re-analysis of a recent twin study23 further estimates that the overall microbiome 

heritability lies between 1.9% and 8.1%. Future studies with larger sample sizes will likely 

identify additional heritable taxa, but are unlikely to change the overall conclusion that 

microbiome composition is predominantly shaped by non-genetic factors. 

 

Methods 

Cohort Description 
This study used a cohort of individuals collected in Israel, first described in ref.34 Study 

participants were healthy individuals aged 18–70 (see full inclusion and exclusion criteria in 

ref.34). Prior to the study, participants filled medical, lifestyle, and nutritional questionnaires. All 

participants were monitored by a continuous glucometer (CGM) for 7 days. During that period 

participants were instructed to record all daily activities, including standardized and real-life 

meals, in real-time using their smartphones. All participants were genotyped using Illumina 

metabochip71 and provided stool samples using either a swab or an OMNIGENE-GUT (OMR-200; 

DNA Genotek) stool collection kit, which were metagenome-sequenced using Illumina NextSeq 

and HiSeq, and 16S sequenced using PCR amplification of the V3/4 region using the 515F/806R 

16S rRNA gene primers followed by 500 bp paired-end sequencing Illumina MiSeq72. We 

validated that SNPs extracted from human reads in pre-filtered metagenomic sequences match 

SNPs extracted from the blood of their human host. 

Genotypes preprocessing and imputation 
We performed stringent quality control in our initial set of 712 individuals and 712,540 SNPs. 

We excluded SNPs with a missingness rate >5%, Hardy-Weinberg P< 10-9, minor allele frequency 

<5%, P<0.01 for differential missingness between two batches of individuals, or a logistic 

regression P<10-6 for separation of the two batches, using PLINK73, yielding 554,279 SNPs for 

subsequent analyses.  We additionally excluded individuals with >10% missing SNPs, leaving 696 

individuals. 
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Genotypes were pre-phased using EAGLE274 without a reference panel, and imputed using 

IMPUTE275 using the 1000 genomes data set76 and 128 Ashkenazi Jewish individuals77 as 

reference panels. We retained only SNPs with imputation probability > 90%, and applied the 

filtering stages above to the imputed data, yielding 5,578,121 imputed SNPs.  

Microbial preprocessing 
16S rRNA preprocessing was performed as described in our previous study34. For metagenome 

analysis, we filtered metagenomic reads containing Illumina adapters, filtered low quality reads 

and trimmed low quality read edges. We detected host DNA by mapping with GEM78 to the 

Human genome (hg19) with inclusive parameters, and removed human reads. We subsampled 

all samples to have at most 10M reads. Relative abundances from metagenomic sequencing 

were computed via MetaPhlAn279 with default parameters. MetaPhlAn relative abundances 

were capped at a level of 10−4.  We removed individuals with <10 observed species from the 

analysis. 

When testing for association between specific taxa and specific SNPs, we log transformed the 

data and only used taxa present in at least 5% of individuals in our cohort, leaving us with 7/19 

(remaining / total) phyla, 12/28 classes, 16/43 orders, 32/100 families, 68/229 genera and 

153/673 species.  

Additional Quality Control 

After all filtering stages, 665 individuals with metagenome data and 493 individuals with 16S 

data remained in the analysis. After additionally excluding 70 individuals with a close relative 

(using a kinship coefficient > 2-11/2, which corresponds to fifth or greater degree relatives45), and 

21 individuals with a shared household, 573 individuals with metagenome data and 418 

individuals with 16S data remained in the analysis. In the biome-explainability and phenotype 

prediction analyses, we used the relative abundance of genes, which required excluding 

individuals sequenced with only single-end reads, leaving 540 individuals. 

Gene mapping 
Biome-explainability estimation and phenotype prediction were performed using bacterial gene 

abundances. We performed gene mapping by computing the length-normalized relative 

abundances of genes, obtained by similar mapping with GEM to the gene reference catalog80,  

abundance correction using an iterative algorithm based on Pathoscope81, and normalization to 

sum to 1.0. Individuals that were only sequenced with single-end reads were excluded from this 

analysis. 

Fasting glucose phenotyping 
In the biome-explainability and phenotype prediction analyses, the fasting glucose phenotype 

was taken from data recorded by CGMs over a week, as described in ref.34 The median glucose 

measurement over a period of 30 minutes from self-reported wake-up time was used as a 

surrogate measure for fasting glucose.  

Glycemic status 
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For each patient we computed a quantity which we term "glycemic status" that can serve as an 

indicator of hyperglycemia, based on HbA1c, fasting glucose, response to standardized meals34, 

and top glucose percentiles and glucose noise as obtained from the CGM over one week. Each 

individual was first ranked according to each feature. The glycemic status of each individual was 

the median of the ranks of (1) HbA1C; (2) fasting glucose; (3) median response to standardized 

meals; (4) median of 90%, 95%, and 98% glucose percentiles; and (5) glucose noise. We used 

fasting glucose summary statistics as a surrogate measure for the PRS of this measure. 

 

Lactose consumption computations 
We computed an estimate of average monthly lactose consumption (in grams), using a 

questionnaire of consumption frequency of 23 dairy products. As lactose consumption was 

exponentially distributed in our data, we log transformed it to induce normality for the biome-

explainability and phenotype prediction analyses. 

 

Genetic kinship, principal components and relatedness estimation 

We used PC-Relate82 for estimating genetic kinship and PC-AiR37 for genetic PC computation, as 

these tools are robust to the presence of relatedness and admixture. We used a filtered data set 

of 75,384 SNPs in approximate linkage equilibrium (r2<0.15), and ran an iterative estimation 

procedure (with the initial kinship estimates provided by KING-Robust45) until the PC 

computation converged, as described in ref.83 We estimated the degree of relatedness between 

individuals via their kinship coefficient, using the cutoffs proposed in ref.45 When testing kinship-

ancestry associations we used the kinship matrix estimated by GCTA84, as the kinship matrix of 

PC-Relate is by definition not associated with ancestry. 

 

Ancestry proportions computation 
For each individual, the proportion of Ashkenazi, North African, Yemen, Sephardi, Middle 

Eastern or unknown/other ancestry is the fraction of self-reported grandparents with that origin 

(Supplementary Table 16). 

 

Multiple hypothesis correction 
Multiple hypothesis correction was performed via a Bonferonni correction. Note that while the 

Benjamini-Hochberg procedure is less conservative, it by definition cannot identify significant 

results when no result is significant under the Bonferonni correction. Unless stated otherwise, P 

values reported in the main text are corrected for multiple hypothesis testing. 

 

Mantel Tests 
Mantel tests used were performed using Spearman correlation with 100,000 permutations. 

When associating a matrix to a vector, we constructed a distance matrix for the vector and then 

performed the test. When including covariates, they were partialed out of the matrix prior to 
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performing the test, which is equivalent to regressing them out of its eigenvalues39. Unless 

stated otherwise, we used Euclidean distance between every pair of individuals. 

 

Ancestry proportions prediction 
We attempted to predict ancestry proportions from microbiome composition using a variety of 

different techniques: Ridge regression85, Lasso regression85 and extreme gradient boosting 

(XGB)86. We used as features either the top 100 PCos of the relative abundances (using Bray-

Curtis distances), the raw bacterial abundances (under various taxonomic levels) transformed to 

a logarithmic scale, or the PCs of the genes relative abundances, using presence/absence 

encoding. Prediction accuracy was measured via a 10-fold cross validation. The hyper-

parameters of the methods were determined in each fold via cross validation, using only the 

training set of each fold. 

 

Canonical correlation analysis 
We tested for microbiome association with host genetics via canonical correlation analysis 

(CCA)40, which takes two sets of high dimensional vectors and projects them to lower 

dimensional vectors that are maximally correlated. Here, the SNP vectors included all SNPs and 

the microbiome vector included log abundances. We regressed the covariates out of the log 

abundances and estimated the P value of the correlation via permutation testing. We ran CCA 

with either 1,2,5 or 10 components, using the implementation in Scikit-learn87. 

Analysis of twins data 
We estimated the overall microbiome heritability, and the abundance of heritable taxa, from a 

data set of 3,358 twins reported by Goodrich et al.23, using the same table of operational 

taxonomic units (OTU) used by Goodrich et al.  The abundance of each taxon was estimated via 

the sum of the relative abundances of all OTUs associated with this taxon. The overall 

microbiome heritability was estimated under the assumption that only taxa with heritability P 

value smaller than some cutoff are heritable, (using multiple cutoffs) as follows. We first 

assigned a heritability estimate to each OTU, given as the maximal heritability estimate among 

all heritable taxa associated with it. We then computed for every individual the weighted sum of 

the heritability estimates of OTUs associated with heritable taxa, weighted by their relative 

abundance.  The overall microbiome heritability was estimated by averaging the computed 

quantity over all individuals. 

 

Testing for microbiome association with SNPs 
We tested for associations between SNPs and microbiome β-diversity computed at various 

taxonomic and functional levels (phylum, class, order, family, genus, species and bacterial 

genes) via the MiRKAT test42 and with all covariates described in the main text, using the 

efficient implementation of RL-SKAT88.  We note that it is also possible to use a Mantel test here, 

but this is computationally challenging for millions of SNPs.  
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Testing for SNP-microbiome associations via the Vegan package 
We repeated the technique proposed in ref.27 for testing SNP associations with the microbiome 

via the envfit function in the vegan package89. We used both a regular analysis as done in ref.27 

and a partial analysis, which includes covariates in the model to prevent confounding. However, 

one disadvantage of this technique compared to our LMM-based test is that even if covariates 

are included in the model, the permuted SNP is assumed to be independent of these covariates, 

leading to an incorrect null distribution. We estimated the fraction of variance of the β-diversity 

matrix explained by the top ranked SNPs via the ordiR2step function in vegan. 

  

Testing for SNP associations with individual taxa 
Association testing between individual bacteria and individual SNPs was performed using FaST-

LMM90. We used all 665 individuals who passed quality control, including related individuals and 

individuals with a shared household, and controlled for these potential sources of confounding 

via two variance components that encode kinship (as computed via PC-Relate82) and household 

sharing (using a binary covariance matrix 𝐺 where 𝐺𝑖𝑗 = 1 if individuals 𝑖 and 𝑗 share a 

household and zero otherwise). When testing each SNP, we used the covariates described in the 

main text and a genetic kinship matrix based only on SNPs from other chromosomes to avoid 

proximal contamination91. 

The abundance of bacteria present in at least 95% of individuals was encoded via the log-

abundance (we excluded outlier individuals more than five standard deviations away from the 

mean). Otherwise, we dichotomized bacteria into presence/absence patterns and encoded the 

phenotype as a binary vector in order to prevent zero inflation, as it leads to a bimodal 

distribution (it has been demonstrated that LMMs handle binary phenotypes properly if the data 

was not collected via case-control sampling92).  

 

Comparing results of different studies 
We compared results of previous studies by counting the number of SNPs previously reported in 

different studies that were in the same locus and associated with taxa belonging to the same 

phylum (two SNPs were considered to be in the same locus if they were <100Kb apart).  We 

attempted to use our data to replicate results in previous studies by counting the number of 

SNPs with p<0.05/211, where 211 is the number of previously reported loci associated with a 

distinct locus and taxon. We used the closest imputed SNP when the reported SNP was not in 

our data. 

 

 

Relatives and household sharing tests 
We tested for significant microbiome sharing among related individuals or individuals sharing a 

household, by comparing their average Bray-Curtis dissimilarities to that of pairs with no family 

relation or household sharing, via a permutation test. In each permutation, we randomly divided 
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the combined set of all pairs into two disjoint sets while preserving the original set sizes, and 

asked whether the mean difference in Bray-Curtis dissimilarity between individuals in the two 

sets is greater than the difference observed with the real data.  To prevent confounding, we only 

considered individuals whose stool was collected with a swab (one of the two stool collection 

methods). We note that standard statistical tests such as a Kolmogorov-Smirnov test cannot be 

employed here because of dependencies between pairs associated with the same individual. 

 

Computing polygenic risk scores 
PRSs for traits of interest were computed using summary statistics as follows. For each 

phenotype, the PRS of individual 𝑖, �̂�𝑖, was given by �̂�𝑖 = ∑ 𝑥𝑖
𝑗

𝑗∈𝑅 �̂�𝑗𝐼[𝑝𝑗 < 𝑐], where 𝑅 is the 

set of SNPs found in both the genotyping array and in the summary statistics file, 𝑥𝑖
𝑗
 is the value 

of the 𝑗𝑡ℎ SNP in the set 𝑅 of individual 𝑖, �̂�𝑗 is the reported effect of SNP 𝑗, 𝑝𝑗  is the reported 

univariate P value of SNP 𝑗, 𝐼[⋅] is an indicator function, and 𝑐 is a P value cutoff. SNPs were 

normalized to have a zero mean and a unit variance (as used in the summary statistics) 

according to the allele frequency reported in the summary statistics. We used the original rather 

than the imputed set of SNPs for this task, as we empirically verified that using the imputed set 

of SNPs in conjunction with linkage disequilibrium pruning did not improve prediction results. 

The list of summary statistics used is provided in Supplementary Table 17.  

 

 The value of 𝑐 was selected by searching over the grid [100, 3 ⋅ 10−1, 10−1, 3 ⋅

10−2, 10−3, … , 10−8] and finding the value that maximizes the Spearman correlation between 

the true and estimated phenotypes. To prevent overfitting, we divided the data into 10 disjoint 

folds, estimated the value of 𝑐 separately for every division of 9/10 of the folds, and then 

computed the PRS of the remaining individuals using the selected value. Similarly, when 

performing cross validation in the phenotype prediction analysis, we estimated the value of 𝑐 

using only individuals in the training set of each fold, and then computed the PRS for individuals 

in the left-out fold using this value. 

 

Construction of a kinship matrix based on microbiome genes 
To construct a kinship matrix based on microbiome genes, we encoded the kinship of individuals 

i, j via ∑ gi
kgj

k
k /N, where k iterates over all genes, gi

k, gj
k are the presence/absence indicators of 

gene k in individuals i and j, respectively (using a relative abundance cutoff of 10-6, and 

normalized to have a zero mean and a unit variance), and N is the number of genes (809,665). In 

the phenotype prediction analysis, we regressed the stool collection method out of all genes 

after normalizing them, to prevent confounding (this was not required in the biome 

explainability analysis, where this variable was included as a covariate). 
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Biome-explainability estimation 
Biome-explainability was estimated using GCTA84, using the genes-based kinship matrix. For all 
phenotypes (except lactose consumption), the covariates included (1) the PRS of the 
investigated phenotype; and (2) the covariates used in other analyses.  In the analysis of lactose 
consumption, we replaced the PRS with the SNPs rs4988235 and rs182549, which largely explain 
the genetic component of lactase persistence in European populations43. P values were 
computed via RL-SKAT88 and confidence intervals were computed via FIESTA93. Outlier 
individuals with phenotypes more than five standard deviations away from the mean were 
excluded from the analysis. In several experiments reported in the Supplementary material we 
used a taxonomy based β-diversity matrix, which we transformed to a kinship matrix as 
described in ref.42 
 
In the experiments analyzing the accuracy of biome-explainability estimation, the average CI 
width was estimated by computing the CI widths for assumed biome-explainability values in the 
grid [0, 0.01, 0.02, ...., 1] and averaging the results. 

 
 

Analysis of data from the Wellcome Trust 
We computed confidence intervals for genetic heritability estimation using 5,652 control 

individuals from the Wellcome trust national blood service and 1958 birth cohorts49. SNPs were 

removed with >0.5% missing data, p<0.01 for allele frequency difference between the two 

groups, p<0.05 for deviation from Hardy-Weinberg equilibrium, or minor allele frequency<1%. 

The genetic kinship matrix was computed via GCTA84 and confidence intervals were estimated 

via FIESTA93. 

 

 

Phenotype prediction 
Phenotype prediction was performed with an LMM59 when including bacterial gene abundances 

in the model, and with linear regression otherwise. This is because LMMs reduce to linear 

regression in the absence of a kinship matrix. We note that LMMs are mathematically 

equivalent to a Ridge regression that uses the PCs of the kinship matrix as additional covariates, 

where only the PCs are regularized, and the regularization strength is determined via restricted 

maximum likelihood94. The LMM covariance matrix was the genes-based kinship matrix. The 

covariates for both models included age, sex, and daily average caloric, carbohydrates, fat and 

protein consumption. In some experiments we additionally included covariates for host genetic 

effects, represented either as a PRS (for all phenotypes except lactose consumption) or as the 

SNPs rs4988235, rs182549  for lactose consumption.  Prediction performance was evaluated via 

a 10-fold cross validation. Outlier individuals with phenotypes more than five standard 

deviations away from the mean were excluded from all analyses.  

We additionally performed experiments where we attempted to fit SNP effects directly rather 

than via a PRS, by including SNPs with a univariate linear regression P value <10-5 (estimated 

separately in each fold using only the training set of the fold), as additional covariates. We note 
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that it is possible in principle to include two kinship matrices corresponding to both microbiome 

and genetic effects, but this was not done here due to the small sample size, which leads to 

inaccurate LMM training (Fig. 4a). 

 

Human Cohorts 

The study was approved by Tel Aviv Sourasky Medical Center Institutional Review Board (IRB), 

approval numbers TLV-0658-12, TLV-0050-13 and TLV-0522-10; Kfar Shaul Hospital IRB, approval 

number 0-73; and Weizmann Institute of Science Bioethics and Embryonic Stem Cell Research 

oversight committee. Reported to http://clinicaltrials.gov/, NCT: NCT01892956. 

 

Data Availability 

The accession number for the data reported in this paper is ENA: PRJEB11532. 
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Property Value (mean±SD) 

Number of participants 696 

Age 43.6±13.0 

Gender (%female) 62% 

Avg. calories consumed daily (kcal) 1806±509 

Avg. carbohydrates consumed daily (gr) 207.4±61.0 

Avg. fat consumed daily (gr) 74.0±26.4 

Avg. protein consumed daily (gr) 68.1±23.4 

BMI 26.5±4.9 

Waist circumference (cm) 87.4±13.1 

Hips Circumference (cm) 104.4±12.9 

Waist-hip ratio 0.84±0.09 

Height (cm) 167±9.1 

Total cholesterol (mg/dl) 187±36 

HDL cholesterol (mg/dl) 57.8±17.5 

HbA1C% 5.47±0.49 

Fasting glucose (mg/dl) 92.7±11.8 

Creatinine (mg/dl) 0.86±0.18 

Lactose consumption (gr) 581±613 

 

Table 1. Baseline characteristics of the cohort. Shown are the mean and standard deviation of 

all properties used either as covariates or as investigated phenotypes. Dietary properties are 

based on information recorded in real time by study participants on their smartphones (see 

Methods). 
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Ancestry 

(categorical) 
Ancestry 

(proportions) 
Genetic kinship 

Host genetics 
(control) 

Kinship <0.03 <10-5 - 

Microbiome 

β-diversity >0.13 0.84 0.58 

α-diversity 0.25 0.92 0.67 

Specific taxa >0.05 >0.05 >0.05 
 

Table 2: No significant association between ancestral or genetic similarity and the gut 

microbiome. Each cell contains the P value of a single or multiple statistical tests, testing if 

individuals who are more similar according to ancestry or genetic kinship (in columns) are also 

more similar according to (1) microbiome β-diversity (using Bray-Curtis dissimilarity); (2) 

microbiome α-diversity (using Shannon diversity); (3) abundance of specific taxa; or (4) genetic 

kinship (in rows). The first column includes n=353 individuals with a single ancestral origin. The 

second and third columns include n=573 individuals. P values in the first column are based on 

Kruskal-Wallis tests (using the top 5 microbiome PCos for Bray-Curtis dissimilarity, and the top 5 

genetic PCs for genetic kinship); P values in the other columns are based on Mantel tests (using 

Euclidean distances for ancestry proportions; see Methods). 
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Figure 1: Genetic similarity is not associated with similarity in microbiome composition. (a)  

Principal component analysis of host genotypes. Markers represent individuals, with self-

reported ancestry being represented by different colored shapes. Admixed individuals and 

individuals with a partly unknown origin are assigned to the group Other. Note the clear 

separation of individuals by genetic ancestry, with the top two PCs significantly associated with 

genetic ancestry (Kruskal-Wallis test). (b) Same as (a), but for principal coordinate analysis of the 
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microbiome at the genus level, based on Bray-Curtis dissimilarity. Note that here individuals do 

not separate by ancestry, and no significant association is detected (Kruskal-Wallis test). (c) 

Distribution of average phylum abundance among individuals with a single ancestral origin (in 

log scale, normalized to sum to 1.0), for each phylum with an average study-wide relative 

abundance >0.1%. There is no significant difference in phyla distribution across different 

ancestral origins (Kruskal-Wallis test for each phylum).  (d) Box plots showing the distribution of 

Bray-Curtis dissimilarities at the genus level across pairs of individuals with a single ancestral 

origin (first five box plots), and across pairs with a single but different ancestral origin (right box 

plot). The numbers of pairs are Ashkenazi (n=41,905), North African (n=435), Yemenite (n=21), 

Sephardi (n=21), Middle Eastern (n=171) and pairs with different origins (n=57,575). The 

markers represent the (5%, 95%) percentiles of the distribution. There is no significant 

difference in Bray-Curtis dissimilarities across the different groups (Kruskal-Wallis test for the 

top five Bray-Curtis PCos). (e) Box plots showing the distribution of Bray-Curtis dissimilarities at 

the genus level across pairs of individuals, organized according to shared ancestry fraction (the 

fraction of grandparents born in countries associated with the same ancestry), for pairs with 0% 

(n=11,4254), 25% (n=23,880), 50% (n=77,142), 75% (n=24,430) and 100% (n=88,623) shared 

ancestry fractions. Pairs of individuals who are more ancestrally similar do not have significantly 

more similar microbiomes (Mantel test). (f) Genetic kinship values (x axis) versus Bray-Curtis 

dissimilarities at the genus level (y axis) between pairs of individuals. Markers represent pairs of 

individuals. The black line is the regression slope, and the Pearson correlation (r) is displayed. 

Pairs of individuals who are more genetically similar do not have significantly more similar 

microbiomes (Mantel test). (g) Analysis of the overall heritability of the microbiome, based on 

bacterial heritability estimates reported in the twins study of Goodrich et al.23. The x axis 

represents P values of heritability estimates of bacterial taxa, as reported in Goodrich et al. The 

y axis represents  (1) cumulative bacterial abundance, whose value at any point k along the x-

axis is the sum of relative abundances of all taxa with P<k (dark curve); and (2) cumulative 

estimated microbiome heritability, whose value at any point k along the x-axis is the sum of 

heritability estimates of all taxa with P<k, weighted by their relative abundance (light curve). 

When P corresponds to a 5% FDR, the overall microbiome heritability is 1.9%. 
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Figure 2: Limited evidence for microbiome associations with specific SNPs. (a) A quantile-

quantile (qq) plot of a genome-wide test which tests every genotyped SNP for association with 

microbiome β-diversity, by examining whether individuals with a smaller Bray-Curtis 

dissimilarity tend to carry more similar alleles at this SNP (using a linear mixed model based on 

Bray Curtis dissimilarities at the genus level, with n=573 individuals; see Methods). Markers 

represent obtained P values (y axis) versus their expected value under the null hypothesis of no 

association (x axis). No SNP is significantly associated with the microbiome β-diversity at a level 

of 5% FDR.  GC is the genomic control inflation factor95, where deviation from 1.0 indicates 

an inflation or deflation of P values.  (b) A Manhattan plot showing the lowest p-value obtained 

for every SNP tested for association with 288 taxa and with microbiome β-diversity, using n=665 

individuals. The dashed lines represent a genome-wide significant P value for a single tested 

taxon (5 × 10−8), and corrected for testing 288 different taxa (5 × 10−8 / 288). (c)  A 

Manhattan plot with the lowest P-value obtained for 225 SNPs in 211 loci previously reported in 

one or several previous studies to be significantly microbiome-associated23,24,26–28, using n=665 

individuals. The dashed line represents the P value for successful replication (0.05 / 211). Five 
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SNPs are successfully replicated (rs4988235, rs6730157, rs7581129, rs1360741, rs7801810), 

with two SNPs (rs4988235 and rs6730157) residing in close vicinity to the LCT gene. 
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Figure 3: Individuals who share a household at present or in the past have significantly 

correlated microbiomes. Shown are box plots depicting the distribution of Bray-Curtis 

dissimilarities across pairs of individuals at the (a) phylum; (b) genus; and (c) bacterial genes 

level. Each panel shows the Bray-Curtis dissimilaries among all pairs of (1) individuals who are 

1st degree relatives, and hence likely to once have shared a household (n=22 pairs); (2) 

individuals who are 2nd, 3rd, 4th or 5th degree relatives, and hence unlikely to have a present 

or past shared household (n=11 pairs); (3) individuals self-reported to currently share a 

household (n=12 pairs); and (4) all other pairs of individuals (n=53,923 pairs). P values were 

computed via 100,000 permutation tests. First degree relatives have significantly similar 

bacterial phyla and bacterial gene abundances, and individuals with present household sharing 

have significantly similar bacterial gene abundances. * P<0.05; ** P<0.005.  
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Figure 4: The microbiome explains a significant fraction of the variance of several human 
phenotypes.  (a) Biome-explainability, defined as the phenotypic variance explained by the 
microbiome, can be estimated more accurately than genetic heritability. For each sample size, 
the values shown (y-axis) are the average 95% CI width of biome-explainability (using a kinship 
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matrix based on bacterial genes from the present study; green curve), and of genetic heritability 
(using a kinship matrix of SNPs from WTCCC2 control cohorts; blue curve), computed via a 
parametric bootstrap and averaged over different values in the range [0,1] (Methods). Smaller 
CI widths indicate a greater confidence in the estimation. Biome-explainability estimation using 
540 individuals provides nearly the same accuracy as genetic heritability estimation using 3,000 
individuals (dashed line). Genetic heritability CIs based on our cohort of 696 individuals have a 
width greater than 98% for all evaluated subsets, and are omitted for clarity.  (b) Biome-
explainability estimates from our study (left column) are comparable to genetic heritability 
estimates from the literature (right column)51–58 for several human phenotypes of interest. 
Genetic heritability estimates are given as a range of values corresponding to the different 
literature estimates. (c) Biome-explainability estimates of several human phenotypes. Horizontal 
bars represent 95% confidence intervals. Glycemic status is an indicator of hyperglycemia, based 
on HbA1c%, fasting glucose, response to standardized meals, and data collected from 
continuous glucose monitors (see Methods).   * FDR<0.05;  ** FDR<0.01. (d) Phenotype 
prediction accuracy when using different sets of predictive features: (1) Basic: Age, gender, and 
self-reported daily average caloric, fat, protein and carbohydrates consumption; (2); 
Microbiome: Presence/absence patterns of 809,665 microbiome genes; and (3) Genetics - 
genetic factors, encoded via a polygenic risk score, which consists of obtaining effect size 
estimates for 554,279 SNPs from summary statistics, and then assigning a score for every 
individual by summing their SNPs (under a 0/1/2 encoding which corresponds to the number of 
minor alleles carried at each SNP), weighted by their reported effect. Prediction performance 
(𝑅2) was evaluated via a 10-fold cross validation, using ridge regression with regularization of 
bacterial genes (Methods). (e) The additive contribution of microbiome and genetics to 
prediction performance over the basic features. The shown quantities are the difference in 𝑅2 
prediction performance of a model that includes either microbiome, genetics or both, compared 
with a model that includes only basic features (gray bars in Figure 4d). Notice that the joint 
contribution of microbiome and genetics is similar to the sum of the individual contributions, 
suggesting that the contributions of microbiome and host genetics to phenotype prediction are 
additive and independent. 
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