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Abstract

Background: Obesity and its co-morbidities are characterized by a chronic low-grade inflammatory
state, uncontrolled expression of metabolic measurements and dis-regulation of various forms of stress
response. However, the contribution and correlation of inflammation, metabolism and stress responses to
the disease are not fully elucidated. In this paper a cross-sectional case study was conducted on clinical data
comprising 117 human male and female subjects with and without type 2 diabetes (T2D). Characteristics
such as anthropometric, clinical and bio-chemical measurements were collected.

Methods: Association of these variables with T2D and BMI were assessed using penalized hierarchical
linear and logistic regression. In particular, elastic net, hdi and glinternet were used as regularization
models to distinguish between cases and controls. Differential network analysis using closed-form approach
was performed to identify pairwise-interaction of variables that influence prediction of the phenotype.
Results: For the 117 participants, physical variables such as PBF, HDL and TBW had absolute coefficients
0.75, 0.65 and 0.34 using the glinternet approach, biochemical variables such as MIP, ROS and RANTES
were identified as determinants of obesity with some interaction between inflammatory markers such as IL-
4, IL-6, MIP, CSF, Eotaxin and ROS. Diabetes was associated with a significant increase in thiobarbituric
acid reactive substances (TBARS) which are considered as an index of endogenous lipid peroxidation and
an increase in two inflammatory markers, MIP-1 and RANTES. Furthermore, we obtained 13 pairwise
effects. The pairwise effects include pairs from and within physical, clinical and biochemical features, in
particular metabolic, inflammatory, and oxidative stress markers.

Conclusions: We showcase that markers of oxidative stress (derived from lipid peroxidation) such as
MIP-1 and RANTES participate in the pathogenesis of diseases such as diabetes and obesity in the Arab
population.
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Introduction

Obesity has emerged as a major risk factor for the
development of myriad chronic disorders that in-
clude insulin resistance (IR), type 2 diabetes (T2D),
and metabolic syndrome [1,2]. Moreover, poorly
managed diabetes can lead to several micro- and
macro-vascular complications such as heart failure,
blindness, nephropathy, neuropathy and foot ulcer-
ation or amputation that may culminate in death
[3,4]. Of extreme concerns is the escalating rate
by which obesity and diabetes are progressing across
the world. According to the most recent estima-
tions of the International Association for the Study
of Obesity (www.iaso.org), the World Health Orga-
nization (www.who.org) and approximately 1.5 bil-
lion individuals worldwide were obese in 2015. The
2012 report of the International Diabetes Federation
(www.idf.org) estimated the global number of dia-
betics to be about 371 million and it is projected to
increase to about 552 million by 2030 if no proactive
measures are promptly taken to control and prevent
this epidemic disaster. Countries of the Gulf Cooper-
ation Council (GCC) such as Saudi Arabia, Kuwait
and Qatar have the highest prevalence of obesity and
T2D in the world.

The pathophysiological mechanisms underlying these
metabolic disorders involve a complex interplay be-
tween genetic, aging, behavioral, and environmental
factors [5-7]. While genetic factors are key compo-
nents in determining the susceptibility of individuals
to weight gain and diabetes, they can be attenuated
or exacerbated by a wide variety of modifiable factors
involved in energy homeostasis, namely a sedentary
lifestyle and behaviour, food intake, physical activity,
smoking, and stress. Therefore, focus on population-
based public health interventions that target these
modifiable factors associated with the development of
these chronic diseases becomes an urgent task world-
wide.

At the cellular level, obesity and diabetes are charac-
terized by chronic low-grade inflammation and aber-
rant regulation of stress response in key metabolic
organs such as adipose tissue, muscle and liver [8,9].
The stress response; referred to as metabolic stress,
is highly complex and includes persistent endoplas-

mic reticulum (ER)-mediated stress [10], enhanced
oxidative stress [11], dysfunction of the mitochon-
dria or defect in its biogenesis [12], hypoxia [13] and
impairment of the host anti-stress defense system
[14-17]. Recent evidence indicated that the uncon-
trolled inflammatory response and metabolic stress
are highly integrated and they likely work in vicious
cycles [9,18,19]. This represents one of the great-
est challenges to identify therapeutic targets for the
treatment and management of these metabolic disor-
ders [9,20,21]. At the molecular level, the existence of
such an environment leads to the activation of c¢-Jun
NH2 terminal kinase (JNK) [22], and the inflamma-
tory xB kinase (IKK) [23]. Experimental evidence
indicated clearly that JNK and IKK play a key role
in the inhibition of the insulin receptor signaling cas-
cade by virtue of their ability to phosphorylate and
inactivate the insulin receptor substrate-1 (IRS-1),
and thus, converting it to a poor substrate for the
insulin receptor [18,24].

In this case study, we carried out a multiplexing-
based high throughput expression profiling of the in-
flammatory, metabolic and oxidative stress markers
in human lean, overweight and obese subjects with
and without T2D. A comprehensive statistical ap-
proach based on elastic net [25], hdi [26] and glinter-
net [27], was then undertaken to analyze the physical,
clinical and biochemical data sets with the perspec-
tive to identifying the molecular signature specific for
each group as well as the biological network of these
signatures within and between the groups.

Our network based analysis using the Closed-Form
approach [28] confirmed the close connection between
obesity and T2D. In addition, it pointed to disease-
responsive active modules and sub-clusters. Taken
together, this approach should be helpful in the iden-
tification of novel biomarkers for the onset and pro-
gression of obesity, T2D, and associated diseases.

Materials and Methods

Study population

The study was conducted on 117 adult male and fe-
male human subjects with and without diabetes con-
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sisting of lean (Body mass index (BMI) = 18.5 —
24.9 kg/m?; n=20), overweight (BMI = 25 —
29.9 kg/m?; n=35) and obese (BMI = 30— 40 kg/m?;
n=62). Informed written consent was obtained from
all subjects before their participation in the study,
which was approved by the Review Board of Das-
man Diabetes Institute and carried out in line with
the guideline ethical declaration of Helsinki. Morbid
obese (i.e. BMI > 40 kg/m?) and participants with
prior major illness were excluded from the study. The
physical characteristics of the participating subjects
are shown in Tables 1 and 2.

Anthropometric measurements, blood
biochemistry and laboratory investiga-
tions

Anthropometric measurements were performed on all
the participants. Whole-body composition was de-
termined by dual-energy radiographic absorptiom-
etry device (Lunar DPX, Lunar radiation, Madi-
son, WI). Venous peripheral blood was collected
from participants and used to prepare plasma and
serum using standard methods. Glucose (GLU)
and lipid profiles, including high-density lipoprotein
(HDL) and low-density lipoprotein (LDL), were mea-
sured on the Siemens Dimension RXL chemistry an-
alyzer (Diamond Diagnostics, Holliston, MA). Gly-
cated haemoglobin (HbAlc) was determined us-
ing the VariantTM device (BioRad, Hercules, CA).
Plasma levels of inflammatory and metabolic markers
were measured using bead-based multiplexing tech-
nology using commercially available kits (BioRad,
Hercules, CA). The panel of the inflammatory mark-
ers (##M500KCAF0Y) contains cytokines (IL-14,
IL-1ra, IL-4, 1L-5, IL-6, 1L-7, IL-8, 1L-9, IL-10, IL-12
(p70), 1L-13, IL-17, TNF-a and IFN-7v), chemokines
(RANTES, IP-10, MCP1, MIP-lar, MIP-18, Eo-
taxin) and growth factors (G-CSF and PDGF-BB,).
The panel of metabolic markers (#171A7001M) con-
tains 10 analytes consisting of (C-peptide, GIP, Ghre-
lin, Glucagon, GLP-1, Insulin, Leptin, PAI-1, Re-
sistin and Visfatin). Median fluorescence intensities
were collected on a Bioplex-200 system using Bio-
plex Manager software version 6 (BioRad, Hercules,

CA). Lipid peroxidation was assessed by measuring
plasma levels of malonaldehyde, using TBARs Assay
Kit (Cayman Chemical Company, Ann Arbor, MI).
Serum levels of ROS were determined using the OxiS-
electTM ROS Assay Kit (Cell Biolabs Inc, San Diego,
CA). Plasma/Serum levels of Paraoxonase 1 (PON1)
were determined by using ELISA Kit (#ABIN414651
Life Technologies, Grand Island, New York, USA).
All the above assays were carried out according to
the instructions of the manufacturers.

Missing value imputation

We identified that around 8% of the raw data are
missing. Instead of removing the missing values
we decided to approximate missing values using the
well-known technique Multivariate Imputation by
Chained Equations (MICE) implemented in R [29]
package mice (https://cran.r-project.org/web/
packages/mice/) [30].

Data Analysis

Baseline statistical analysis of two groups in each
dataset were calculated using R. Statistics for all
the variables in the study are reported as means
+ standard deviation (SD) unless otherwise stated.
The R implementation of the Anderson-Darling test
in the nortest package (https://cran.r-project.
org/web/packages/nortest/) [31] was used to test
for normality of all the variables. If a variable is
not normally distributed in both groups, the Mann-
Whitney test was used to determine significance of
the difference in means between the groups. For
a normally distributed variable in both groups, the
Student’s t-test was used to determine significance of
difference in means between groups. In this case, the
F-test was used to compare variance of the variable
in the groups. A p-value lower than 0.05 indicates a
statistically significant difference between the groups.

Regularization models

We utilize a linear regression model with n observa-
tions and p explanatory variables (features)

Y =00+ 6X1+ BXo+ ...+ 68,X,+e, (1)
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Lean (n =20) | Obese (n = 62) p-value
Age (year) 40.15 £+ 11.43 46.68 £ 12.11 | 3.24e-02
Gender (M/F) m=9, =11 m=36, {=26 | 3.13e-01
Diabetic 4 24 1.28e-01
PBF (%) 28.14 + 4.1 3794 £ 4.69 | 1.52e-12
SLM 44.23 £ 9.52 53.11 + 8.61 | 6.95e-04
TBW 34.05 £ 7.32 42.17 £ 6.71 | 1.56e-05
Waist(cm) 84.22 + 22.01 104.4 £ 15.14 | 5.56e-05
Hip (cm) 93.78 £ 22.08 | 113.27 £ 14.55 | 1.09e-03

Table 1. Physical characteristics of lean and obese subjects at baseline. Data are presented as mean +
SD. Here Percent body fat (PBF), Soft lean mass (SLM), Total body water (TBW).

Diabetic (n = 36) | Non-Diabetic (n = 81) p-value
Age (year) 52.08 £+ 9.48 41.3 + 11.68 | 3.56e-06
Gender (M/F) m=18, =18 m=48, =33 | 3.566-01
BMI 32.01 4+ 4.08 29.74 + 5.03 | 1.86e-02
Weight (kg) 87.33 £ 14.32 83.97 £+ 15.92 2.19e-01
Height (m) 1.66 £+ 0.08 1.68 £ 0.1 3.64e-01
PBF (%) 36.88 + 5.56 33.37 £ 5.97 | 3.31e-03
SLM 50.07 £+ 8.74 50.74 4+ 9.49 5.87e-01
TBW 39.73 £ 6.71 39.92 £+ 7.58 8.22e-01
Waist (cm) 100.89 4+ 14.52 96.95 £+ 18.6 2.63e-01
Hip (cm) 110.43 + 12.29 104.5 £ 17.98 | 4.09e-02

Table 2. Physical characteristics of diabetic and non-diabetic subjects at baseline. Data are presented as
mean + SD. Here Body mass index (BMI), Percent body fat (PBF), Soft lean mass (SLM), Total body

water (TBW).

where Y = (yi1,...,yn)" is the response, ¢ =
(1, -.s&n)t ~ N(0,021,) is the noise vector; X; rep-
resents the j*" predictor and 3 = (B, ooy Bp)! is the
vector of parameters of interest to be estimated; each
Bj, 3 = 1,...,p represents the association between
the variable X; (feature) and the response Y. The
greater the absolute value of 8, the stronger is the
effect of the corresponding feature.

Elastic Net

The LASSO coefficients, Bf , minimize the quantity

p
RSS + ) 18],

Jj=1

(2)

with RSS as the residual sum of squares and X as the
tuning parameter. The LASSO technique penalizes

hereby the regression coefficients using an L; norm.
The L; penalty has the effect of forcing some of the
coefficient to be exactly equal to zero when the tuning
parameter \ is sufficiently large. Hence, the LASSO
estimates the coefficients and performs variable selec-
tion at the same time [32].

The elastic net regularization regression method in-
troduced in [33] combines the L; and Lo penalties
and overcomes among others the following limitations
of the classical LASSO:

e In p > n cases, the LASSO selects maximum
n variables when converging, which is limiting
characteristic of a variable selection method.

e LASSO selects only one variable from a group of
variables that have high pairwise correlations
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The coefficients from the elastic net are formulated
as follows:

B:ngﬂinﬂy—XﬁP+)\2|ﬂ|2+)\1|ﬁ|1) (3)

We wused R package glmnet (https://cran.
r-project.org/web/packages/glmnet/) [34] to
calculate the B coefficients. We performed 10-fold
cross validation while training the elastic net model.

High-dimensional inference

In the case of p > n it is not possible to use the co-
variance test without specifying an estimate of the
error standard deviation i.e.X%?. Meinshausen et al.
introduced in [35] an approach where the data is split
into two groups LASSO regularization, in particular
elastic net 10-fold cross validation, is applied on one
group where-after the variables selected by LASSO
are used as predictors to obtain p-values from an or-
dinary least squared regression on the other group.
We used R package hdi (https://cran.r-project.
org/web/packages/hdi/) [36] to calculate the p-
values.

Glinternet

In order to study the interaction effects of features,
we applied Lim and Hastie’s approach glinternet
(https://cran.r-project.org/web/packages/
glinternet/) [37]. This method learns pairwise
interactions in a regression model that satisfies
hierarchy constraints. Further and to the best of our
knowledge, this is the only approach that allows a
mixture of categorical and continuous values which
is the case with our data.

We used R package glinternet to generate the
main and interaction coefficients. We performed
10-fold cross validation when training a glinternet
interaction model.

Network Based Analysis

We have applied several statistical methods to iden-
tify variables or variable interactions which help to
distinguish control from patient for diabetes and lean

from obese w.r.t. BMI as already introduced. Here,
we perform network based analysis to identify differ-
ential variables and their interaction for the same set
of problems.

Network Construction

We first construct networks for interactions between
the variables for the two groups in datasets Dopesity
and Dg;apetes. Here Dopesity comprises all the people
who are either obese or lean and Dg;gpetes consists of
all the people who are either diabetic or non-diabetic.
Each variable is considered as a node in the network
and let P represent the set of all the variables/nodes.
An edge between two nodes i and j is induced by
calculating the mutual information (MI) between
two variables. It is well known from information
theory that MI is a measure of mutual dependence
between two random variables. Higher values of
MI indicate that the variables are dependent while
values ~ 0 represent that the variables are mutually
independent i.e. change in one variable does not
effect the other. By performing this operation,
we obtain mutual information V(i,j) € P thereby
resulting in a full interaction graph between the
variables for a particular case.

To ensure the robustness of the generated networks
we apply a nonparametric bootstrap procedure [38].
This provides for each node a minimum value of MI
which is necessary for its edge to be included in the fi-
nal network. As a result of this procedure we remove
all non-significant edges from the network making it
sparse. We then convert these networks into topo-
logical overlap graphs [28,39] i.e. the edge weights
quantify the topological overlap (TO) between a pair
of nodes by taking into account the local neighbour-
hood structure around those nodes [40]. This results
in symmetric, undirected and weighted networks that
are used for differential subnetwork analysis as indi-
cated in [28]. Finally, we remove all self-loops from
the topological network along with removal of any
isolated node i.e. nodes with no connections. By
performing this operation we reduce the size of the
interaction networks as showcased in the results sec-
tion.
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Differential Network Analysis

We utilize the Closed-Form differential subnetwork
analysis technique proposed in [28] to identify statis-
tically significant subgraphs when performing paired
network comparison i.e. when comparing variable in-
teraction network (topological graphs) for lean with
obese case and control with patient case for dia-
betes. We briefly explain the Generalized Hamming
Distance used to estimate the distance between two
graphs. Given two topological networks A = (V, E4)
and B = (V, Eg) where V represents the set of nodes
ie. 1,...,N and E; represents the edges in the ‘"
network. The hamming distance between A and B
is given by ||A — BJ|2 which represents the Frobenius
norm of the difference between A and B graphs. The
Generalized Hamming Distance (GHD) is defined as:

GHD(A, B) — m ST (- V2 ()

,5,1#]

where a;; and b}; are mean centered edge-weights de-

fined as:
1
R Ty 2
1,4,i7]
1
fo= bjj — ——— b
1) J N(N _ 1) 1;;:6] J

Ruan et al. proposed the method differential Gen-
eralized Hamming Distance (dGHD) to obtain closed-
form p-values for the null hypothesis that A and B
are independent [39]. They efficiently calculate the
p-value and circumvent expensive permutation pro-
cesses by assuming asymptotic normality. This can
be represented as:

GHD(Aa B) — U

Or

(5)

~ N(0,1)

Here pi, is the asymptotic value of the mean GHD
and o is the asymptotic value of the standard devi-
ation of the GHD for permutations of A w.r.t. B. In
order to estimate the u, and o, values we define:

N N N N
SL=> Y dit=12& T,=> (> a;)
i=1 j=1,57#1 i=1 j=1,j#1%

N N N N
Sp= > bit=12& Ty=> (Y by
i=1 j=1,j#i i=1 j=1,j#i

Here aj; and bj; are the edge weights with the power
t. Furthermore, we require the following terms:

Ay =(SH2, B,=T,—(S?) & C, = A, +2(5?) — 4T,
Ay = (S}H)?, By =Ty, — (S?) & Cyp = Ay +2(S?) — 4T,

The notion of differential subnetworks is based on
the idea that when comparing two networks only
a subset of edges would present altered interaction.
The goal is to identify those set of nodes associated
with such a subset of edges. For this subset V* there
is no sufficient evidence to reject the null hypothe-
sis that the corresponding subnetworks A*(V*, E 4« )
and B*(V*, Ep«) are statistically independent. We
utilized the more advanced Closed-Form algorithm
[28], which is computationally cheaper and detects
fewer false positives w.r.t. the dGHD [39] technique,
for identifying the differential subnetworks.

Results

We removed physical characteristics namely height
and weight while performing the analysis for obesity.
Similarly, we removed clinical characteristics namely
blood glucose (GLU) and HbAlc when analysing di-
abetes. This is because these traits are often used
to measure obesity and diabetes respectively (hence
they act as confounding variables when performing
the analysis for obesity and diabetes).

Baseline Characteristics of Study Pop-
ulation

Physical characteristics of datasets Dopesity and
Dgiapetes are summarized in Table 1 and 2 respec-
tively. Age, percent body fat (PBF), soft lean mass
(SLM), total body weight (TBW), waist and hip size
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were found significantly higher (p-value: 3.24e-02,
5.51e-10, 1.52e-12, 6.95e-04, 1.56e-05, 5.56e-05 and
1.09¢-03 respectively) in the obese compared to lean
subjects as expected. Age, BMI, PBF, and hip size
were found significantly higher (p-value: 3.56e-06,
1.86e-02, 3.31e-03 and 4.09e-02 respectively) in the
diabetic subjects compared to non-diabetic subjects.

Clinical characteristics of datasets Dopesity and
Dgiapetes are summarized in Table 3 and 4 respec-
tively. Obese subjects have significantly higher levels
of triglycerides (TGL) compared to lean subjects
(p-value: 1.25e-02).

Metabolic profiles of datasets Dopesity and Dyigpetes
are summarized in Table 5 and 6 respectively. Lev-
els of insulin, leptin, Plasminogen activation inhibitor
(PAI-1), Interleukin 13 (IL-13), Interferon-gamma-
inducible protein-10 (IP-10), Reactive oxygen species
(ROS) and Thiobarbituric acid reactive substances
(TBARS) are found significantly higher in obese com-
pared to lean subjects (p-value: 4.02e-04, 4.08e-03,
4.52e-02, 1.68e-02, 7.64e-03, 5.69¢-03 and 1.04e-02 re-
spectively). Levels of MIP-1a and TBARS are found
significantly higher in diabetic subjects compared to
non-diabetic subjects (p-value: 3.86e-02 and 5.96e-04
respectively).

Regularisation models
BMI

We studied the effects of physical, clinical and
biochemical features w.r.t. to lean and obese cases
by applying elastic net, hdi and glinternet. We
distinguish hereby between lean and obese cases.
Throughout this section we will only list coefficients
that are non-zero and p-values below a significance
threshold of 0.05.

In Table 7, we list the coefficients and p-values
obtained for different features when by applying
elastic net and hdi. The features are sorted according
to their effect strength (3 absolute values). The
features with the highest elastic met coeflicients
include height, HDL, PBF, and TBW with |3| equal
to 0.75, 0.44, and 0.16 respectively. The multi-

sample splitting method implemented in hdi yielded
two features as highly significant to distinguish
between lean and obese cases. In particular, these
characteristics are PBF and TBW with corrected
p-values of 1.49¢-09 and 6.29e-06.

In Table 8 we summarized the single and pair-
wise coefficients obtained by applying the glinternet
approach. Interestingly, we observed several main
and pairwise non-zero coefficients. The main effects
comprised the expected physical characteristics PBF,
HDL and TBW with coefficients 0.75, -0.65, and
0.34. We also obtained a coefficient for the inflam-
matory marker RANTES, in particular with a co-
efficient |3] =9e-04. Next to the main effects, we
obtained 13 interesting pairwise effects that describe
the best model that distinguishes between lean and
obese cases. The non-zero pairwise coefficients repre-
sent pairs of markers of different types, such as phys-
ical, clinical, as well as metabolic, inflammatory, and
oxidative stress markers.

Diabetes

In this subsection, we report the effects of physical,
clinical and biochemical features on diabetes apply-
ing the same set of regularization methods. In Table
9, we listed the results obtained using elastic net and
hdi. Unlike the BMI case, elastic net provided fewer
features with non-zero coefficients. In particular,
we observed the highest coefficient for the oxidative
stress marker TBARS with |3| equal to 0.3. Further,
we obtained coefficients for the physical marker
age and PBF and the clinical marker TGL. The
multi-sample splitting method hd: did not provide
significant p-values to distinguish between diabetic
and control cases.

In Table 10 we listed the single and pairwise co-
efficients for the diabetes study obtained using glin-
ternet. Interestingly, we observed many main and
pairwise non-zero coefficients. The main effects in-
clude the oxidative stress marker TBARS, the clini-
cal marker TGL, the physical characteristic age, and
two inflammatory markers MIP-15 and RANTES.
Furthermore, we obtained 13 pairwise effects with
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Lean (n = 20) | Obese (n = 62) p-value
Chol (mmol/l) 196 £ 08 518 £ 1.06 | 4.760-01
HDL (mmol/l) 1.26 + 0.33 1.18 + 0.36 3.89e-01
LDL (mmol/1) 3.21 £ 0.76 3.23 + 1.33 9.12e-01
TGL (mmol/l) 1.08 £ 0.53 211 £ 3.03 | 1.250-02

Table 3. Clinical characteristics of lean and obese subjects at baseline. In our study we have not
considered the overweight case to have a clear distinction between lean and obese cases. Data are
presented as mean + SD. Here Cholesterol (Chol), High density lipoprotein (HDL), Low density

lipoprotein (LDP), and Triglycerides (TGL).

Diabetic (n = 36) | Non-Diabetic (n = 81) p-value
Chol (mmol/l) 5.05 £ 1.18 519 £ 0.01 | 3.770-01
DL (mmol/l) 127 £ 0.44 121 £ 038 | 4.9e-01
LDL (mmol/1) 3.05 £ 1.58 3.32 £ 0.9 | 3.54e-01
TGL (mmol/l) 2.48 £+ 3.87 1.36 + 0.82 | 9.22e-02

Table 4. Clinical characteristics of diabetic and non-diabetic subjects at baseline. Data are presented as
mean + SD. Here Cholesterol (Chol), High density lipoprotein (HDL), Low density lipoprotein (LDP), and

Triglycerides (TGL).

coefficients ranging from -5.03e-05 to 1.61e-02. The
pairwise effects include pairs from and within physi-
cal, clinical and all three biochemical feature classes,
in particular metabolic, inflammatory, and oxidative
stress markers.

Differential Network Analysis
BMI

In Figure 1 we summarise significant mutual in-
formation (MI) values of all variable pairs for the
dataset Dopesity as heat maps (see Methods). The
heat maps were generated using heatmap.2 function
in R package gplots (https://cran.r-project.org/
web/packages/gplots/) [41]. In the lean subjects,
as shown in Figure 1A, we observe two predominant
clusters where the paired variables have high mutual
dependence whereas in the obese case depicted in Fig-
ure 1B we see several clusters with relatively lower
mutual dependence between the variables within the
clusters. To highlight the subtle differences between
the lean and obese cases we utilised the Closed-Form
technique.

First, we show in Figure 2 the mutual dependance
networks for lean Gjeqn (Figure 2A) and obese Gopese
cases (Figure 2B). The Gjeqn network comprises
40 nodes with 716 edges whereas Gopese consists

of 49 node and 1272 edges. We used the Louvain
method [42] for the task of identifying communi-
ties [43-45] in all the networks that we built. We
identified five clusters in both networks using the
Louvain method.

In the case of Gieqrn there are two main giant con-
nected components corresponding to inflammatory
markers (ILx) and metabolic features respectively.
There is also presence of two small and compact com-
munities, one corresponding to clinical features like
TGL, Chol and LDL while the other corresponds to
cluster of physical features like Waist, PBF, TBW,
Gender and SLM. A mixed cluster (orange colored)
also exists in Gjeq, Whose size and density is more
in comparison to the mixed cluster in Gopese. Fur-
ther, it is apparent from Figure 2A and Figure 2B
that there is a strong mutual dependence among the
biochemical features resulting in bigger nodes which
is proportional to the degree of these variables in the
corresponding network.

We observe in Ggpese that there is one large
community composed primarily of inflammatory
markers like IL*, another large community made up
of mainly physical features like Waist, PBF, Gender,
TBW etc. There is another giant cluster in Gopese
consisting of metabolic markers like Insulin, Vistafin,
C-peptide, Ghrelin etc along with two small groups
where one corresponds to clinical traits like Chol
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[ Lean (n = 20) | Obese (n =62) | p-value
Metabolic markers
C-peptide (ng/ml) 2437.75 + 733.17 | 2864.74 £+ 1251.84 6.67e-02
GIP (pg/ml) 151.59 + 69.09 162.76 + 86.5 6.01e-01
Ghrelin (pg/ml) 151 + 82.69 145.39 + 108.66 8.33e-01
Glucagon (ng/ml) 673.85 £ 93.28 684.43 + 137.14 4.34e-01
GLP-1 (ng/ml) 2541.66 + 909.12 2551.85 + 1341.7 9.75e-01
Insulin (ng/ml) 2421.87 + 1035.68 4015.97 + 2864.78 4.02e-04
Leptin (ng/ml) 4955.66 + 3048.97 8167.55 £+ 4527.31 4.08e-03
PAI-1 (ng/ml) 3063.25 + 1590.61 | 3704.57 £+ 1388.07 | 4.52e-02
Resistin (ng/ml) 1208.4 + 515.89 968.31 + 462.72 5.33e-02
Visfatin (ng/ml) 9139.89 + 5148.53 9225.14 + 7737.6 9.63e-01
Inflammatory markers
IL-138 (pg/ml) 1.13 + 0.52 1.32 £ 0.88 2.49e-01
TL-1ra (pg/ml) 05.50 £ 41.84 91.21 £ 46.44 | 7.08¢-01
1L-4 (pg/ml) 2.17 £+ 1.03 1.95 £ 0.98 3.93e-01
1L-5 (pg/ml) 2.18 £ 0.78 241 £ 1.14 4.05e-01
I1L-6 (pg/ml) 5.13 £ 2.1 4.9 + 2.07 6.63e-01
IL-7 (pg/ml) 5.15 + 1.69 5.36 £ 2.12 6.93e-01
IL-8 (pg/ml) 5.68 + 1.37 6.15 + 3.65 4e-01
IL-9 (pg/ml) 13.9 £ 10.74 12.7 £ 9.6 6.39¢-01
1L-10 (pg/ml) 1.61 + 0.96 2.07 £+ 2.29 2.02e-01
1L-12 (p70) (pg/ml) 7.42 £ 5.08 9.52 £+ 5.79 1.52e-01
TL-13 (pg/ml) 2.48 * 1.12 3.71 £ 3.46 | 1.68e-02
IL-17 (pg/ml) 12.61 £ 12.08 11.3 + 10.73 6.48e-01
Eotaxin (pg/ml) 29.6 + 20.2 39.11 + 38.79 1.6e-01
G-CSF (pg/ml) 40.12 + 15.23 42.46 £ 14.09 5.27e-01
IFN-—7 (pg/ml) 15.16 £ 22.23 14.24 T 26.24 | 8.88e-01
IP-10 (pg/ml) 393.99 £ 236.34 592.28 £+ 378.7 | 7.64e-03
MCP-1 (pg/ml) 9.4 £ 2.52 10.32 £ 4.91 | 2.74e-01
MIP-1a (pg/ml) 8.66 £ 16.66 6.05 + 9.25 5.11e-01
PDGF-BB (pg/ml) 531 + 672.13 492.41 + 589.44 8.06e-01
MIP-13 (pg/ml) 22.36 + 6.6 27.07 + 27.16 2.13e-01
RANTES (pg/ml) 1298.49 £ 635.18 1596.9 + 751.28 1.14e-01
TNF-a (pg/ml) 25.19 + 9.89 26.91 + 11.79 5.57e-01
Oxidative stress markers

PON (U) 0.38 £+ 0.11 0.37 + 0.1 9.44e-01
ROS (M) 1426.07 + 251.89 1608.57 + 168.97 5.69e-03
TBARS (M) 1.29 £ 0.6 177 £ 0.74 | 1.04e-02

Table 5. Biochemical characteristics of lean and obese subjects at baseline. Data are presented as mean +
SD. Here Gastric inhibitory peptide (GIP), Glucagon like peptide-1 (GLP-1), Granulocyte colony
stimulating factor (G-CSF), Interleukin (IL), Interleukin-1 receptor agonist (IL-1ra), Interferon-gamme
(IFN-7), Interferon-gamma-inducible protein-10 (IP-10), Monocyte chemoattractant protein-1 (MCP-1),
Macrophage inflammatory protein-la (MIP-1«), Macrophage inflammatory protein-18 (MIP-15),
Platelet-derived growth factor-bb (PDGF-bb), Tumor necrosis factor-a (TNF-«), Paraoxonase-1 (PON-1),
Reactive oxygen species (ROS), Thiobarbituric Acid Reactive Substances (TBARS).

and LDL and the other is a mixed cluster.

Next, we applied the Closed-Form technique (see
Material and Methods: Network Based Analysis)
to generate the differential subnetworks of Giean
and Gopese as shown in Figure 3. We observe four
clusters in the differential subnetwork of Geqrn (see
Figure 3A) where one community primarily consists
of biochemical features, one community comprises

physical features and one cluster is made up of
clinical features like Chol and TGL. Majority of the
nodes present in the mixed cluster of Gje.n are part
of a community in the differential subnetwork of
Glean- However, the mutual dependence between
these features has been reduced to small sized nodes
as observed in Figure 3A.

In contrast the differential subnetwork of Gpese
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[ Diabetic (n = 36) [ Non-Diabetic (n =81) [ p-value
Metabolic markers
C-peptide (ng/ml) 2482.96 + 975.2 2761.7 £ 1182.23 2.18e-01
GIP (pg/ml) 160.72 + 79.25 150.51 + 87.52 5.5e-01
Ghrelin (pg/ml) 145.44 + 94.87 146.3 + 99.62 9.65e-01
Glucagon (ng/ml) 668.72 £+ 108.61 669.8 + 135.61 7.79e-01
GLP-1 (ng/ml) 2412.05 + 1018.62 2596.7 + 1297.95 4.51e-01
Insulin (ng/ml) 4136.91 + 3338.54 2990.7 £+ 1830.14 5.94e-02
Leptin (ng/ml) 7158.54 + 4457.82 6702.58 £+ 3893.55 5.77e-01
PAI-1 (ng/ml) 3576.96 + 1254.45 3290.12 + 1514.19 3.22e-01
Resistin (ng/ml) 1043.63 £ 463.53 1028.91 £ 456.37 8.73e-01
Visfatin (ng/ml) 8316.41 + 4961.89 9470.67 £ 7847.87 3.39e-01
Inflammatory markers
IL-138 (pg/ml) 1.2 £ 0.83 1.22 £ 0.68 8.95e-01
IL-1ra (pg/ml) 93.73 + 42.88 91.92 + 43.16 8.34e-01
TL-4 (pg/ml) 1.84 £ 0.83 2.07 £ 1.07 | 2.54e-01
IL-5 (pg/ml) 2.16 + 0.72 2.41 £ 1.12 1.57e-01
I1L-6 (pg/ml) 4.7 £ 1.58 4.91 £+ 2.09 5.95e-01
1L-7 (pg/ml) 4.91 £+ 1.85 5.31 £ 1.88 2.84e-01
IL-8 (pg/ml) 6.4 + 4.52 5.63 + 1.67 3.26e-01
1.9 (pg/ml) 12.21 £ 8.2 12.97 £ 10.21 | 6.94e-01
1L-10 (pg/ml) 1.54 £+ 1.09 1.92 + 2.05 1.92e-01
1L-12 (p70) (pg/ml) 7.88 + 5.12 9 + 5.16 2.83e-01
1L-13 (pg/ml) 3.15 £+ 1.82 3.5 + 3.15 4.53e-01
IL-17 (pg/ml) 8.77 £ 8.9 12.91 £+ 11.52 5.81e-02
Eotaxin (pg/ml) 31.6 £ 19.46 39.41 + 35.38 1.28e-01
G-CSF (pg/ml) 38.42 + 12.87 42.59 £ 14.11 1.2e-01
IFN-~ (pg/ml) 40.57 + 17.46 45.75 + 25.55 2.05e-01
IP-10 (pg/ml) 570.47 + 494.21 467.13 £+ 218.56 2.36e-01
MCP-1 (pg/ml) 10.16 £+ 4.86 9.84 £+ 3.66 7.24e-01
MIP-1a (pg/ml) 8.76 £ 11.55 152 + 9.45 | 3.86e-02
PDGF-BB (ng/ml) 464.06 + 568.28 526.34 + 641.18 6.17e-01
MIP-13 (pg/ml) 21.18 + 8.62 26.08 + 23.56 1.04e-01
RANTES (ng/ml) 1258.59 £ 593.56 1464.76 £ 744.95 1.46e-01
TNF-a (pg/ml) 26.43 + 10.83 26.85 + 11.99 8.57e-01
Oxidative stress markers

PON (U) 0.37 £ 0.1 0.36 £ 0.1 7.03e-01
ROS (M) 1542.61 £+ 189.22 1546.04 4+ 194.95 9.3e-01
TBARS (uM) 1.94 4+ 0.81 1.4 + 0.54 5.96e-04

Table 6. Biochemical characteristics of diabetic and non-diabetic subjects at baseline. Data are presented
as mean + SD. Here Gastric inhibitory peptide (GIP), Glucagon like peptide-1 (GLP-1), Granulocyte
colony stimulating factor (G-CSF), Interleukin (IL), Interleukin-1 receptor agonist (IL-1ra),
Interferon-gamme (IFN-v), Interferon-gamma-inducible protein-10 (IP-10), Monocyte chemoattractant
protein-1 (MCP-1), Macrophage inflammatory protein-la (MIP-1c), Macrophage inflammatory protein-143
(MIP-1p), Platelet-derived growth factor-bb (PDGF-bb), Tumor necrosis factor-a (TNF-«), Paraoxonase-1
(PON-1), Reactive oxygen species (ROS), Thiobarbituric Acid Reactive Substances (TBARS).

(see Figure 3B), though composed of more nodes,
is also divided into four communities by the Lou-
vain method. In this network we observe that there
exists one community made primarily from physi-
cal features and one community composed of mainly
biochemical features. Interestingly, we discover one
small cluster made up of Glucose (GLU), HbAlc, Di-
abetic and RANTES. This indicates that the mu-
tual dependence between these features is stronger

10

in Gopese in comparison to Gieqn, thereby resulting
in a separate community in the differential network
of Gopese. Several nodes from the mixed cluster of
Gopese form a community in the differential subnet-
work of Gopese. However, the mutual dependence be-
tween these characteristics has reduced resulting in
smaller size nodes as observed in Figure 3B.
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Fig 1. Mutual information heat map for the Dty data set. MI based heat map of variables
representing lean cases (A) and obese cases (B).
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Diabetes w.r.t. to diabetes by applying the same techniques.

In this subsection we report the difference in the ef-

fects of the physical, clinical and biochemical features
11
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elastic net coefficient () hdi significant p-value 15% feature | 279 feature | glinternet coefficient (,C:f)
HDL -0.75 TBARS 6.65e-01
PBF 0.44 1.496-09 TGL 1.266-01
TBW 0.16 6.29¢-06 Age 2.936-02
SLM 0.06 MIP-18 5.956-04
Age 0.02 RANTES ~4.360-05
Waist 0.01 HDL TNF-o 5.77¢-02
MIP-15 4.54e-03 TL-13 TBARS -8.58¢e-03
MIP-1a -3.79e-03 Age PBE 3.656-03
ROS 1.41e-03 G-CSF MIP-1a -1.21e-03
RANTES 5.78e-04 RANTES | PON -1.10e-03
Insulin 7.12e-05 Age ST.M 20.866-04
Table 7. Elastic net and hdi results for BMI study GIP MIP-1a -4.28e-04
Chol Resistin 4.24e-04
LDL Eotaxin 1.70e-04
15% feature | 2°9 feature | glinternet coefficient (3) Glucagon TNF-o —4.1fle—(]5
°TF 0% G-CSF ROS 1.23e-05
HDL 20.65 Insulin 1L-9 -5.79e-06
TBW 0.34 Glucagon PAI-1 -2.16e-07
RANTES 9¢-04 Table 10. Glinternet results for Diabetes study
Age PON 1.61e-02
L6 G-CSF 7.556-03
T4 MIP-1a -6.086-03
GLU Eotaxin -5.33e-03 In Figure 5 we represent the mutual dependance
SLM TBW -2.06¢-03 . . .
TEW MIP-13 503 networks for non-diabetic Geontror (Figure 5A)
HDL PAI-1 4.52e-04 and diabetic Ggiapetes (Figure 5B) subjects. The
TBW IL-1ra 0.34c-05 G network consists of 46 nodes with 1348 ed
PBF ROS 5.030-05 control ges
Age Glucagon 3.39e-05 whereas the Ggiapetes network is composed of 42
ig gi:f;i?“ i:gfg_g? nodes with 682 edges. The Geonror nNetwork is split
Tnsulin RANTES 1.876.07 into four communities including one corresponding

Table 8. Glinternet results for BMI study

elastic net coefficient (8) | hdi significant p-value
TBARS 0.3
Age 0.03
TGL 0.02
PBF 0.02

Table 9. FElastic net and hdi results for Diabetes
study

In Figure 4 we illustrate significant MI values of
all variable pairs for the dataset Dg;qpetes as heat
maps. In the non-diabetic subjects, we observe one
predominant clusters where the characteristics have
low mutual dependence (see Figure 4A) whereas in
the diabetic case shown in Figure 4B we see four
clusters with relatively higher mutual dependence be-
tween the variables within the communities. Next, we
applied the same procedure as in the previous sub-
section to highlight the intricate differences between
the non-diabetic and diabetic cases.

13

to physical, one clinical, one metabolic and one
inflammatory features. It is readily evident from
Figure 5A that the nodes have high degree indicating
strong mutual dependence.

In the Ggiapetes network (see Figure 5B) we detect
the presence of four communities where one cluster
comprises only of clinical features Chol, TGL, HDL
and LDL. The are two clusters corresponding to
biochemical variables where one is mainly composed
of inflammatory features and the second consists of
metabolic characteristics. The fourth community is
composed primarily from physical features like Age,
Weight, Waist, BMI, SLM, Height etc. Interestingly,
we noticed that the number of edges, i.e. the mutual
dependence between the nodes, is much smaller than
in the Geontror network.

We applied the Closed-Form method to gener-
ate the differential subnetworks for Geontror and
Gaiabetes illustrated in Figure 6. In the control case
we detect three coherent communities where one
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corresponds to biochemical, one to physical and one
to clinical features. There is another mixed cluster
consisting of several physical and metabolic features.
We observe from Figure 6A that the biochemical
features retain strong mutual dependence in the case
of non-diabetic subjects with a marker like Insulin
having a very high mutual dependence with other
biochemical traits.

However, in the differential subnetwork of G g;qpetes
we observe seven clusters where two clusters belong
to inflammatory markers, one big community is made
up of metabolic features, two small clusters corre-
spond to physical features and one small community
of clinical characteristics. There is also a presence
of mixed cluster in the differential subnetwork of
Gaiabetes- An interesting observation is that Insulin
is not present in the community of metabolic markers
indicating that in diabetic patients Insulin looses
its mutual dependence with other metabolic features.

Apparently, the differential subnetwork of Gg;qpetes
has far fewer edges in comparison to the subnetwork
of G eontror Which indicates that each individual char-
acteristic in the diabetic case is dependent on fewer
features than in the control.

Discussion

In this study, we successfully applied state-of-the-
art statistical and network analysis techniques on
Kuwaiti expression profile data of human subjects
with and without T2D. First, we inferred high-
dimensional models that provide strengths of phys-
ical, clinical and biochemical features w.r.t. to lean
and obese as well as diabetic and non-diabetic cases.
In particular, we used the regularisation methods
elastic net, hdi and glinternet.

We found that PBF and TBW are significantly asso-
ciate with BMI. This result confirms that waist cir-
cumference explains obesity-related risk [46]. Thus,
for a given PBF and TBW values, obese and normal-
weight persons have comparable health risks. How-
ever, the other markers such as SLM, HDL, MIP,
ROS and RANTES are interesting to investigate es-
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pecially the latter as it can be a promising therapeu-
tic target for the reduction of NAFLD and NASH
(NAFLD: excessive fat accumulation in the form of
triglycerides in the liver and has become the most
common cause of chronic liver disease in wealthy
countries) as was confirmed by [47].

On the other hand, when we used elastic net we
showed that Diabetes is associated with a significant
increase in thiobarbituric acid reactive substances
(TBARS) which are considered as an index of en-
dogenous lipid peroxidation as it is explained by [48].
When we used glinternet, TBARS was shown to be
a marker with the highest coefficient along with thir-
teen other interactions including those involving Eo-
taxin and other inflammatory markers. Some of these
markers have angiogenic properties, i.e., IL-13, IL-9,
while others also contribute to leukostasis and inter-
stitial inflammation, i.e., ROS and the chemokine
MIP as explained in [48]. Therefore, eotaxin and
co-varying inflammatory markers may be part of a
complex pathway resulting in glomerulosclerosis and
interstitial fibrosis for patients with T2D as seen in
advanced chronic kidney disease [49].

We successfully inferred high-dimensional models
that provide effect strengths of physical, clinical and
biochemical features w.r.t. lean and obese as well as
diabetic and non-diabetic cases. The algorithms work
very well as they do not only infer univariate effects of
physical, clinical, inflammatory and metabolic mark-
ers but also provide pairwise effects via interaction
between the variables.

Furthermore, from the mutual dependence networks
we observe that the mutual dependence between pair-
wise features dramatically changes with the pheno-
type cases. This is reflected in the case of obesity
where Gjeqn is much sparser (has fewer connections)
in comparison to Gopese, thereby indicating less de-
pendence of markers on each other. Similarly, in case
of diabetes, Ggjapetes 1S much sparser in comparison
to Geontrol- A significant observation is that Insulin
is not even present in Ggjgpetes indicating that for di-
abetic patients Insulin looses its mutual dependence
with other metabolic markers as observed in G .onirol-
Another interesting observation is that HbAlc, Glu-
cose (GLU), Diabetic and RANTES form a well-
segregated community in the differential sub-network
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of G pese whereas they are part of a mixed community
in case of differential sub-network of Gjcqs. This indi-
cates that the mutual dependence between these vari-
ables is much stronger in the differential sub-network
of Gopese in comparison to that of Giegn.

Conclusion

This case study has several strengths. We used clin-
ically relevant data using human samples. We also
used robust statistical tools to analyse our data and
established networks based on cross talk between dif-
ferent variables. Our result show that diabetes was
associated with a significant increase in thiobarbi-
turic acid reactive substances (TBARS) which are
considered as an index of endogenous lipid perox-
idation and two inflammatory markers MIP-1 and
RANTES. Furthermore, we obtained 13 pairwise ef-
fects from glinternet. The pairwise effects include
pairs from and within physical, clinical and biochem-
ical features, in particular metabolic, inflammatory,
and oxidative stress markers. This result confirms for
the first time that factors of oxidative stress such as
MIP-1 and RANTES participate in the pathogenesis
of many diseases such as diabetes and obesity that
afflict millions of human subjects. Our results show
that markers such as RANTES is interesting to inves-
tigate as it can be a promising therapeutic target for
the reduction of NAFLD and NASH (NAFLD: exces-
sive fat accumulation in the form of triglycerides in
the liver and has become the most common cause of
chronic liver disease in wealthy countries).

We would like to point out that the current dataset is
relatively small. Nevertheless, the applied techniques
provided fairly impressive results. In future, we are
looking forward to apply these techniques on larger
clinical datasets and team up with experimentalists
to verify our findings. Our aim is to encourage re-
searchers in the field to use these techniques for anal-
ysis and identification of potential bio-markers from
large scale diabetes or obesity data.
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Figure Legends

Fig 1. Mutual information heat map for
the Dgpesity data set. MI based heat map of vari-
ables representing lean cases (A) and obese cases (B).

Fig 2. Mutual dependence networks for
Glean and Gopese. Dependence network of charac-
teristics for lean cases. (A) and obese cases (B).

Fig 3. Differential subnetworks for Gieqn
and Gopese. MI based differential subnetworks of
features for lean cases (A) and obese cases (B).

Fig 4. Mutual information heat map for
the Dgyigpetes data set. MI based heat map of
variables representing non-diabetic cases (A) and
diabetic cases (B).

Fig 5. Mutual dependance networks for
Geontrot and  Ggiapetes- Dependence network of
characteristics for non-diabetic cases (A) and dia-
betic cases (B).

Fig 6. Differential subnetworks for G ,,tro0
and Ggigpetes. MI based differential subnetworks
of features for non-diabetic cases (A) and diabetic
cases (B).
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