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Abstract

Background

The spatial Principal Component Analysis (sPCA, Jombart 2008) is designed to investigate

non-random spatial distributions of genetic variation. Unfortunately, the associated tests 

used for assessing the existence of spatial patterns (global and local test; Jombart et al. 

2008) lack statistical power and may fail to reveal existing spatial patterns. Here, we 

present a non-parametric test for the significance of specific patterns recovered by sPCA. 

Results

We compared the performance of this new test to the original global and local tests using 

datasets simulated under classical population genetic models. Results show that our test 

outperforms the original global and local tests, exhibiting improved statistical power while 

retaining similar, and reliable type I errors. Moreover, by allowing to test various sets of 

axes, it can be used to guide the selection of retained sPCA components. 

Conclusions

As such, our test represents a valuable complement to the original analysis, and should 

prove useful for the investigation of spatial genetic patterns.
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INTRODUCTION

The principal component analysis (PCA; Pearson 1901; Hotelling 1933) is one of the most 

common multivariate approaches in population genetics (Jombart et al 2009). Although 

PCA is not explicitly accounting for spatial information, it has often been used for 

investigating spatial genetic patterns (Novembre and Stephens 2008). As a complement to

PCA, the spatial principal component analysis (sPCA; Jombart et al. 2008) has been 

introduced to explicitly include spatial information in the analysis of genetic variation, and 

gain more power for investigating spatial genetic structures.

sPCA finds synthetic variables, the principal components (PCs), which maximise both the 

genetic variance and the spatial autocorrelation as measured by Moran's I (Moran 1950). 

As such, PCs can reveal two types of patterns: 'global' structures, which correspond to 

positive autocorrelation typically observed in the presence of patches or clines, and 'local' 

structures, which correspond to negative autocorrelation, whereby neighboring individuals 

are more genetically distinct than expected at random (for a more detailed explanation on 

the meaning of global and local structures see Jombart et al.. 2008). The global and local 

tests have been developed for detecting the presence of global and local patterns, 

respectively (Jombart et al. 2008). Unfortunately, while these tests have robust type I error,

they also typically lack power, and can therefore fail to identify existing spatial genetic 

patterns (Jombart et al.. 2008). Moreover, they can only be used to diagnose the presence

or absence of spatial patterns, and are unable to test the significance of specific structures

revealed by sPCA axes.

In this paper, we introduce an alternative statistical test which addresses these issues. 

This approach relies on computing the cumulative sum of a defined set of sPCA 
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eigenvalues as a test statistic, and uses a Monte-Carlo procedure to generate null 

distributions of the test statistics and approximate p-values. After describing our approach, 

we compare its performances to the global and local tests using simulated datasets, 

investigating several standard spatial population genetics  models. Our approach is 

implemented as the function spca_randtest in the package adegenet (Jombart 2008; 

Jombart and Ahmed 2011) for the R software (R Core Team 2017).
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METHODS

Test statistic

As in most multivariate analyses of genetic markers, our approach analyses a table of 

centred allele frequencies (i.e. set to a mean frequency of zero), in which rows represent 

individuals or populations, and columns correspond to alleles of various loci (Jombart et al 

2008; Jombart et al 2009; Jombart et al 2010). We note X the resulting matrix, and n the 

number of individuals analysed. In addition, the sPCA introduces spatial data in the form of

a n by n matrix of spatial weights L, in which the ith row contains weights reflecting the 

spatial proximity of all individuals to individual i.  The PCs of sPCA are then found by the 

eigen-analysis of the symmetric matrix (Jombart et al. 2008):

1/(2n) XT(LT + L)X  (1)

We note λ the corresponding non-zero eigenvalues. We differentiate the r positive 

eigenvalues λ+, corresponding to global structures, and the 's' negative eigenvalues λ-, 

corresponding to local structures, so that λ = {λ+,λ-}. Without loss of generality, we 

assume both sets of eigenvalues are ordered by decreasing absolute value, so that λ1
+ > 

λ2
+ > … > λr

+ and |λ1
-| > |λ2

-| > … > |λs
-|. Simply put, each eigenvalue quantifies the 

magnitude of the spatial genetic patterns in the corresponding PC: larger absolute values 

indicate stronger global (respectively local) structures. We note V+ = {v1
+, …, vr

+} and V- = 

{v1
-, …, vs

-} the sets of corresponding PCs.The most natural choice of test statistic to 

assess whether a given PC contains significant structure would seem to be the 

corresponding eigenvalue. This would, however, not account for the dependence on 

previous PCs: vj
+ (respectively vj

-) can only be significant if all previous PCs {v1
+, …, vj-1

+} 

are also significant. To account for this, we define the test statistic for vj
+ as:

fi
+ = Σi = 1, …, j  λi

+ 

and as:
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 fi
- = Σi = 1, …, j  |λi

-|

for vj
-.

Permutation procedure

fi
+ and fi

- become larger in the presence of strong global or local structures in the first ith 

global / local PCs. Therefore, they can be used as test statistics against the null 

hypotheses of absence of global or local structures in these PCs. The expected 

distribution of fi
+ and fi

- in the absence of spatial structure is not known analytically. 

Fortunately, it can be approximated using a Monte-Carlo procedure, in which at each 

permutation individual genotypes are shuffled to be assigned to a different pair of 

coordinates than in the observed original dataset and fi
+ and fi

- are computed. Note that the

original values of the test statistic are also included in these distributions, as the initial 

spatial configuration is by definition a possible random outcome. The p-values are then 

computed as the relative frequencies of permuted statistics equal to or greater than the 

initial value of fi
+ or fi

-.

To guide the selection of global and local PCs to retain, the simulated values of each 

eigenvalue (from most positive to most negative), which make up the fi
+ and fi

- statistics, 

are also recorded during the permutation procedure. In this way, if global or local 

structures are detected to be significant, an observed p-value for each observed 

eigenvalue can be estimated by comparison with its simulated eigenvalue distribution. 

Note that the number of eigenvalues produced by an sPCA does not change between the 

observed and permutated datasets, so each observed eigenvalue can be compared with 

the distribution of the corresponding simulated one. This testing procedure can be used 

with increasing numbers of retained axes. Because each test is conditional on the previous
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tests, incremental Bonferroni correction is used to avoid the inflation of type I error, so that 

the significance level for the ith PC will be α / i, where α is the target type I error. Hence, the

correction implies that if the most positive (or negative) eigenvalue is significant in regards 

with the chosen p-value threshold, the second eigenvalue is tested for a p-value threshold 

that is the half of the previous and so on. The entire testing procedure is implemented in 

the function spca_randtest in the package adegenet (Jombart 2008; Jombart and Ahmed 

2011) for R (R Core Team 2017). A flow chart of the test procedure is shown in Figure 1.

Simulation study

To assess the performance of our test, we simulated genetic data under three migration 

models: island (IS) and stepping stone (SS), using the software GenomePop 2.7 (Carvajal-

Rodríguez 2008), and isolation by distance (IBD), using IBDSimV2.0 (Leblois 2009). We 

simulated the IS and SS models with 4 populations, each with 25 individuals, and a single 

population under IBD with 100 individuals. 200 unlinked biallelic diploid loci (or single 

nucleotide polymorphisms; SNPs) were simulated. Populations evolved under constant 

effective population size θ = 20, and interchanged migrants at three different symmetric 

and homogeneous rates (0.005, 0.01, and 0.1). We performed 100 independent runs for 

each of the three migration rates, for a total of 300 simulated dataset per migration model.

To quantify type I error rates for the spca_randtest, global and local tests, we extracted 

100 random coordinates from 10 square 2D grids, using the function spsample from the 

spdep package (Bivand et al. 2013). In order to evaluate the rate of false negatives for 

global patterns, we manually generated 10 sets of 100 pairs of coordinates simulating 

gradients and/or patches from 2D grids. An example of simulated global patterns is 

presented in Figure 2. To test for the rate of false negatives for local patterns, we perform 
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a principal component analysis on 10 random datasets simulated under the SS model with

0.005 migration rate. We used the coordinates of the individuals on the first principal 

component and set the second coordinate to zero for all individuals (1D). With the 

coordinates so produced, we used the function chooseCN in adegenet to obtain 10 

neighbouring graphs where the most genetically distinct individuals (falling in the upper 

quartile of the pairwise genetic distances) are considered as neighbors, while the others 

are non-neighbors.

We tested 100 simulations each for all the 30 sets of geographic coordinates (random, 

positive and negative), for each of the three migration rates (0.005, 0.01 and 0.1), for each 

of the three migration models (IS, SS, IBD; total of 9,000 tests per migration model). We 

repeated all tests using a subset of 40 SNPs per individual, for a total of 18,000 tests in the

absence of spatial structures, and  and 36,000 tests in the presence of global or local 

structures.
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RESULTS

Statistical power of the spca_randtest

We compared the performances of the spca_randtest with the global and local tests in 

three settings: in the absence of spatial structure, and in the presence of global, and local 

structures. The results obtained in the absence of spatial structure show that all tests have

reliable type I errors (Table 1 and 2). The spca_randtest exhibited consistently better 

performances for detecting  existing structures in the data than both global and local tests  

(Table 1 and 2). Although our simulated local spatial patterns turned out more difficult to 

detect than global patterns, the spca_randtest is twice to five times more effective than the

local test (Table 1 and 2). Generally, the underlying migration model, the migration rate 

and the number of loci affect the ability of all tests to detect non-random spatial patterns. 

Both spca_randtest and global and local tests have in fact a lower sensitivity in presence 

of island migratory schemes, while results for stepping stone and isolation by distance 

models are more satisfying (Table 1 and 2). Increasing migration rates lead to a higher 

rates of false negatives for all tests, which can be overcome using more loci (Table 1 and 

2).

Significant eigenvalues are assessed using a hierarchical Bonferroni correction which 

accounts for non-independence of eigenvalues and multiple testing (Figure 2). Strong 

patterns (e.g. IBD) tend to produce a higher number of significant components than weak 

patterns (e.g. island models with high migration rates), which are otherwise captured by 

fewer to no components.

Application to real data

We have run the sPCA to compare the new spca_randtest and previous tests to a real 
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dataset of human mitochondrial DNA (mtDNA). We used a dataset of 85 populations from 

Central-Western Africa that spans a big portion of the African continent (from Gabon to 

Senegal; Montano et al 2013). Previous analysis on these data detected a clear genetic 

structure from West to Central Africa with ongoing stepping stone migration movements. 

We therefore expected that this spatial distribution of genetic variation would be detected 

as significant. In the sPCA, populations were treated as units of the analysis, for which 

allele frequencies of mtDNA polymorphisms are calculated per population. The same 

approach was used in Montano et al 2013 to run a discriminant analysis of principal 

components (DAPC; Jombart et al 2010) and detect population genetic structure. The 

sPCA analysis is found non significant by global and local tests after 1e4 permutations (p-

value > 0.5), while the spca_randtest detects a significant global pattern already with 500 

permutations, and with 1e4 permutations the p-value for global patterns is 0.005. The 

second step of the test on single eigenvalues finds the three most positive components to 

be significant after Bonferroni correction (Table 3). Significant axes can thus be plotted 

against the spatial network to give a biological interpretation to the results (Figure 3).

10

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/151639doi: bioRxiv preprint 

https://doi.org/10.1101/151639
http://creativecommons.org/licenses/by-nc-nd/4.0/


DISCUSSION

We introduced a new statistical test associated to the sPCA to evaluate the statistical 

significance of global and local spatial patterns. Using simulated data, we show that this 

new approach outperforms previously implemented tests, having greater statistical power 

(lower type II errors) whilst retaining consistent type I errors. Our simulations also suggest 

that demographic settings and migratory models can substantially impact the ability to 

detect spatial patterns. Indeed, high migration rates, non-hierarchical migration models, 

such as island model, and low amount of loci can hamper or worsen the performance of 

the test, preventing the detection of actual spatial patterns. In lack of previous information 

on the demographic history and/or the movement ecology of the population under study, it 

is certainly useful to exploit all the available genetic information. In this regards, our 

simulations show how an increased number of loci does improve the ability of the test to 

provide meaningful results. 

The impact of specific factors such as the effective population size or the number of 

individuals sampled per population remain to be investigated. A more extensive simulation 

study, possibly comparing different non-model based methods such as sPCA, would clarify

the extent of the spatial information that can be obtained with such methods without 

comparing explicit evolutionary hypotheses. In fact, the sPCA and the associated 

spca_randtest cannot distinguish between explicit migration models. However, the 

possibility to detect which eigenvalues contain the spatial information provides the user 

with further information to interpret the biological meaning of the spatial structure, by 

focusing on few meaningful dimensions.

Our data application seems to confirm that the spca_randtest is more effective than global 
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or local tests. We chose indeed a previously published dataset of human populations 

which span a subcontinental area of Africa and had been originally detected to be a highly 

structured dataset with a geographic cline of population differentiation (Montano et al 

2013). On the basis of the original results, we would have expected a spatial global 

structure to be present in the data and thus detected with an sPCA. While the global test 

failed to provide statistical significance, the spca_randtest did obtain significant results and

pointed to the three first most positive components to be also significant after Bonferroni 

correction. In agreement with the original interpretation of the genetic structure within the 

samples, spatial component 1 (SP1) shows a clear differentiation of populations in the 

Gabon-Congo region, while SP2 detects differentiation of Central Nigerian and North 

Cameroonian populations, on one hand, and extreme Western populations of Senegal, on 

the other hand (Figure 3). The colored combination of the first and second most positive 

component (Figure 3) also correctly detects a more fragmented differentiation across 

Central forested areas (Cameroon, Gabon and Congo) compared to more homogeneous 

Central-Western populations, which was the main result of the original publication based 

on very different approaches (Montano et al 2013). We limited the analysis to these two 

component as the third did not add much information to the previous.

Our simulation approach coupled with a real data application well illustrates the 

informativeness of our new test to retrieve significant spatial patterns, being these global 

or local structures and highlights the usefulness of selecting a specific number of 

significant components to interpret the biological meaning of the results. 
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Legends

Figure 1. Flow chart illustrating the steps of the spca_randtest. The first step on the top 

panel assess the statistical significance of global either local patterns. If at least one of the 

two is significant, the second step of the test exploits the eigenvalue distribution recorded 

over the permutations to obtain an empirical p-value for each eigenvalue, starting from the 

most positive (or most negative). As the first eigenvalue is significant in comparison with a 

chosen threshold, the following is tested and compared to a more stringent threshold 

(Bonferroni correction) until a non-significant eigenvalue is found and the routine stops.

Figure 2. Graphical representation of island and stepping stone migration models (IS and 

SS) in the panel above. Black rows represent the presence and direction of migration rates

among populations (purple circles). The panel below represents two examples of 

simulated global patterns, where a set of 100 pairs of coordinates are picked from a set of 

1000 random pairs of coordinates built in 2D squares at different scales (in the example 

here reported the scales are 1:1e4 and 1:1e5, respectively). Every 25 pairs of coordinates 

are assigned to a different simulated population, distinguished by red, blue, black and 

yellow colors, in order to obtain spatially segregated populations. These simulated spatial 

distributions are used to calculate the matrix L of spatial connection (see Figure S1.

Figure 3. Plot of the first and second most positive observed eigenvalues of the mtDNA 

dataset here analysed. The background map represents the countries from where the 

populations included into the original study were sampled (from West to East: Senegal, 

Guinea-Bissau, Guinea, Sierra Leone, Liberia, Ivory Coast, Ghana, Togo, Benin, Nigeria, 

Cameroon, Equatorial Guinea, Gabon, Congo). sPC1 and sPC2 are represented 
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independently using a square size proportional to the value of each population along the 

first and second component, respectively. Whites squares show negative values and black

squares the positive values, with size being proportional to the absolute value of the 

coordinate. sPC1-sPC2 is a summarized representation of the values along the first and 

second component assumed by each population, using a color gradient.

Figure S1. Distributions of significant eigenvalues detected in the presence of global (blue 

bars) and local (green bars) spatial patterns after hierarchical Bonferroni correction, for 

100 significantly positive and 100 significantly negative patterns. Black bars correspond to 

eigenvalues which are significant without Bonferroni correction. Bars' height indicates the 

frequency of observing a significant eigenvalue in a certain position (from most positive to 

most negative) over the 100 tested patterns.
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Table 1. Significant results for global test (g test), local tests (ll test), and spca_randtest (r test +/-) for random, global and local patterns 

using 200 loci per individual. IS, SS, IBD indicate the migration models (see Methods); different migration rates are coded by number: 1 =

0.005, 2 = 0.01 and 3 = 0.1. Results show the proportion of significant tests over 1,000 replicates, based on 1,000 permutations with 

thresholds .05 and .01.

200 SNPs Random Patterns Global Patterns Local Patterns

Models Significance level g test r test (+) l test r test (-) g test r test (+) l test rt est (-) g test r test (+) l test r test (-)

IS-1 .05 0.054 0.059 0.041 0.047 0.947 0.985 0.029 0.001 0.047 0.071 0.061 0.284

.01 0.011 0.007 0.009 0.010 0.822 0.948 0.005 0.001 0.008 0.010 0.015 0.113

IS-2 .05 0.040 0.041 0.058 0.056 0.227 0.564 0.044 0.018 0.056 0.059 0.050 0.123

.01 0.007 0.009 0.009 0.013 0.067 0.302 0.005 0.002 0.011 0.007 0.012 0.026

IS-3 .05 0.051 0.040 0.053 0.041 0.055 0.049 0.045 0.047 0.049 0.047 0.044 0.059

.01 0.010 0.014 0.013 0.008 0.010 0.013 0.007 0.013 0.002 0.014 0.008 0.019

SS-1 .05 0.053 0.058 0.053 0.050 0.986 0.996 0.022 0.000 0.063 0.064 0.124 0.582

.01 0.007 0.011 0.010 0.010 0.960 0.988 0.002 0.000 0.017 0.010 0.041 0.398

SS-2 .05 0.044 0.058 0.058 0.063 0.798 0.909 0.047 0.004 0.034 0.044 0.059 0.316

.01 0.011 0.011 0.013 0.016 0.676 0.771 0.010 0.000 0.004 0.005 0.014 0.147

SS-3 .05 0.047 0.046 0.057 0.049 0.054 0.128 0.040 0.042 0.044 0.054 0.049 0.071

.01 0.014 0.007 0.011 0.013 0.014 0.036 0.006 0.010 0.003 0.009 0.006 0.009

IBD-1 .05 0.044 0.050 0.053 0.048 0.962 0.999 0.021 0.000 0.025 0.087 0.438 0.809

.01 0.008 0.012 0.009 0.010 0.926 0.997 0.003 0.000 0.009 0.023 0.192 0.694

IBD-2 .05 0.052 0.045 0.061 0.038 0.967 0.998 0.023 0.000 0.046 0.076 0.451 0.794

.01 0.009 0.008 0.011 0.009 0.932 0.997 0.004 0.000 0.009 0.018 0.208 0.672

IBD-3 .05 0.052 0.046 0.053 0.050 0.977 0.999 0.015 0.000 0.050 0.083 0.441 0.824
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.01 0.013 0.009 0.011 0.012 0.939 0.999 0.005 0.000 0.009 0.023 0.225 0.684

*p-values are in italic when non significant and in bold when the fraction of true positive is above 20% 319
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Table 2. Results for the same simulations reported in Table 1 using a subset of 40 loci per individual. 

40 SNPs Random Patterns Global Patterns Local Patterns

Models Significance level g test r test (+) l test r test (-) g test r test (+) l test r test (-) g test r test (+) l test r test (-)

IS-1 .05 0.052 0.061 0.046 0.050 0.591 0.807 0.033 0.004 0.036 0.000 0.055 0.077

.01 0.016 0.013 0.010 0.007 0.393 0.592 0.005 0.000 0.004 0.000 0.015 0.022

IS-2 .05 0.053 0.047 0.038 0.042 0.103 0.226 0.046 0.020 0.073 0.000 0.057 0.038

.01 0.011 0.009 0.006 0.006 0.022 0.072 0.011 0.005 0.012 0.000 0.010 0.006

IS-3 .05 0.047 0.050 0.050 0.045 0.048 0.060 0.044 0.042 0.036 0.000 0.053 0.026

.01 0.009 0.011 0.008 0.007 0.009 0.011 0.011 0.011 0.002 0.000 0.013 0.001

SS-1 .05 0.052 0.054 0.039 0.049 0.898 0.949 0.017 0.000 0.050 0.001 0.067 0.169

.01 0.009 0.012 0.005 0.011 0.826 0.865 0.006 0.000 0.007 0.000 0.021 0.052

SS-2 .05 0.046 0.045 0.050 0.046 0.528 0.588 0.044 0.009 0.052 0.000 0.048 0.081

.01 0.013 0.010 0.010 0.015 0.377 0.370 0.016 0.000 0.005 0.000 0.011 0.014

SS-3 .05 0.068 0.040 0.050 0.048 0.066 0.055 0.053 0.033 0.026 0.000 0.047 0.023

.01 0.014 0.005 0.013 0.012 0.012 0.009 0.005 0.006 0.006 0.000 0.008 0.000

IBD-1 .05 0.049 0.053 0.052 0.057 0.822 0.883 0.027 0.002 0.034 0.055 0.124 0.480

.01 0.005 0.008 0.013 0.013 0.755 0.742 0.004 0.000 0.005 0.008 0.032 0.278

IBD-2 .05 0.043 0.054 0.060 0.049 0.835 0.880 0.028 0.001 0.043 0.051 0.111 0.458

.01 0.011 0.007 0.015 0.009 0.755 0.732 0.005 0.000 0.008 0.015 0.026 0.259

IBD-3 .05 0.043 0.042 0.051 0.050 0.844 0.899 0.026 0.002 0.048 0.058 0.115 0.465

.01 0.012 0.013 0.012 0.010 0.763 0.756 0.007 0.000 0.009 0.010 0.023 0.263

*p-values are in italic when non significant and in bold when the fraction of true positive is above 20% 
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Table 3. Results of the spca_randtest with 1e4 permutations on the human mtDNA dataset (Montano et al, 2013). The simulated 

distribution of the fi
+ and fi

- statistics are compared to the fi
+ and fi

- statistics observed for the original dataset. A significant global pattern 

(or significant fi
+ observed statistics) is found with the spca_randtest (p-value < 0.01). Thus, each eigenvalue is compared with its 

simulated distribution and assigned to be significant if its observed p-value is lower than the corrected Bonferroni p-value, with starting 

threshold of 0.05. Significant observed p-values as compared with Bonferroni corrected p-values are highlighted in bold.

Spatial patterns Eigenvalue  Observed p-value Bonferroni p-value 

Global pattern 0.0058 3.4e-2 0.0105 0.05

Local pattern 0.8826 8.5e-3 0.0137 0.025

4.1e3 0.0136 0.016

1.6e-3 0.506 0.
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Figure 1.327
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Figure 2329
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Figure 3332

333

334

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 18, 2017. ; https://doi.org/10.1101/151639doi: bioRxiv preprint 

https://doi.org/10.1101/151639
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S1.335
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