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Abstract	44 

	45 

Current	morphometric	methods	that	comprehensively	measure	shape	cannot	compare	the	46 

disparate	leaf	shapes	found	in	seed	plants	and	are	sensitive	to	processing	artifacts.	We	explore	47 

the	use	of	persistent	homology,	a	topological	method	applied	across	the	scales	of	a	function,	to	48 

overcome	these	limitations.	The	described	method	isolates	subsets	of	shape	features	and	49 

measures	the	spatial	relationship	of	neighboring	pixel	densities	in	a	shape.	We	apply	the	50 

method	to	the	analysis	of	182,707	leaves,	both	published	and	unpublished,	representing	141	51 

plant	families	collected	from	75	sites	throughout	the	world.	By	measuring	leaves	from	52 

throughout	the	seed	plants	using	persistent	homology,	a	defined	morphospace	comparing	all	53 

leaves	is	demarcated.	Clear	differences	in	shape	between	major	phylogenetic	groups	are	54 

detected	and	estimates	of	leaf	shape	diversity	within	plant	families	are	made.	This	approach	55 

does	not	only	predict	plant	family,	but	also	the	collection	site,	confirming	phylogenetically	56 

invariant	morphological	features	that	characterize	leaves	from	specific	locations.	The	57 

application	of	a	persistent	homology	method	to	measure	leaf	shape	allows	for	a	unified	58 

morphometric	framework	to	measure	plant	form,	including	shape	and	branching	architectures.	59 

	60 

Introduction	61 

	62 

As	generally	flattened	structures,	leaves	provide	a	unique	opportunity	to	quantify	morphology	63 

as	a	two-dimensional	shape.	Local	features	(such	as	serrations	and	lobes)	and	general	shape	64 

attributes	(like	length-to-width	ratio)	can	be	measured,	but	numerous	methods	also	exist	to	65 

measure	leaf	shape	more	globally	and	comprehensively.	A	popular	method	to	quantify	leaf	66 

shape	is	to	place	(𝑥, 𝑦)	coordinates,	known	as	landmarks,	on	homologous	features	that	are	67 

related	by	descent	from	a	common	ancestor	on	every	sample	(Bookstein,	1997).	The	set	of	68 

landmarks	from	each	leaf	can	be	superimposed	by	translation,	rotation,	and	scaling	using	a	69 

Generalized	Procrustes	Analysis	(Gower,	1975).	Once	superimposed,	the	Procrustes-adjusted	70 

coordinates	of	each	shape	can	be	used	directly	for	statistical	analyses.	Landmark	analysis	excels	71 
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in	its	interpretability,	because	each	landmark	is	an	identifiable	feature	with	biological	meaning	72 

imparted	by	the	shared	homology	between	samples.	Because	landmarks	are	homologous	73 

features,	their	use	often	reveals	genetic	and	developmental	patterns	in	shape	variation	74 

(Chitwood	et	al.,	2016a).	75 

	76 

Not	all	leaves	have	obvious	homologous	features	that	can	be	used	as	landmarks.	Further,	when	77 

comparing	leaves	with	disparate	morphologies	(e.g.,	simple	vs.	compound	leaves),	there	may	78 

not	be	identifiable	homologous	points.	Nearly	all	leaves	have	homologous	landmarks	at	the	tip	79 

and	base,	but	if	there	are	no	other	identifiable	landmarks,	an	equal	number	of	equidistant	80 

points	on	each	sample	between	the	landmarks	can	be	placed	(Langlade	et	al.,	2005).	The	denser	81 

and	more	numerous	such	pseudo-landmarks	are,	the	closer	they	come	to	approximating	the	82 

contour	itself.		83 

	84 

Another	method,	the	use	of	Elliptical	Fourier	Descriptors	(EFDs),	measures	shape	as	a	85 

continuous	closed	contour,	and	can	also	be	used	when	homologous	features	are	absent.	EFD	86 

analysis	begins	with	a	lossless	data	compression	method	called	chain-code,	in	which	the	87 

direction	to	move	from	one	pixel	to	the	next	is	recorded	as	a	chain	of	numbers	(where	each	link	88 

in	the	chain	𝑎	is	an	integer	between	0	and	7	specifying	the	pixel	direction	 p
'
𝑎)	so	that	from	89 

this	chain	of	numbers	the	closed	contour	can	be	faithfully	reproduced	(Freeman,	1974).	The	90 

chain	code	is	decomposed	by	a	Fourier	analysis	into	a	harmonic	series	that	is	used	to	quantify	91 

an	approximate	reconstruction	of	the	shape	(Kuhl	and	Giardina,	1982).	92 

	93 

Both	pseudo-landmarks	and	EFDs	measure	leaf	shapes	for	which	homologous	features	that	can	94 

be	used	as	landmarks	are	lacking	(Bensmihen	et	al.,	2008;	Chitwood	and	Otoni,	2017).	Still,	95 

when	comparing	disparate	leaf	shapes,	unless	major	sources	of	shape	variance	in	the	data	(such	96 

as	the	number	of	lobes	or	leaflets)	are	present	in	every	sample,	individual	pseudo-landmarks	or	97 

harmonic	coefficients	will	not	correspond	between	samples	in	a	comparable	way	useful	for	98 

analysis.	Recently,	a	computer	vision	method	coupled	with	machine	learning	was	used	to	99 
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classify	leaves,	with	diverse	vascular	patterns	and	leaf	shapes,	into	plant	families	and	orders	100 

(Wilf	et	al.,	2016).	This	method	uses	a	visual	descriptor	to	train	a	classifier.	Since	cleared	leaves	101 

are	used,	this	method	relies	on	both	internal	features	like	branch	points	in	the	vasculature	as	102 

well	as	features	on	the	leaf	margin,	instead	of	just	leaf	shape	alone	as	in	traditional	103 

morphometric	approaches.	Nonetheless,	the	method	overcomes	a	central	problem	in	the	104 

morphometric	analysis	of	leaves:	comparing	leaves	with	very	different	morphologies.	105 

	106 

To	develop	a	morphometric	method	that	1)	comprehensively	measures	shape	features	in	107 

leaves,	both	locally	and	globally,	2)	can	compare	disparate	leaves	shapes,	3)	is	robust	against	108 

noise	commonly	found	in	leaf	shape	data	(e.g.,	internal	holes	because	of	overlapping	leaflets	or	109 

small	defects	introduced	during	imaging	and	thresholding),	and	4)	is	potentially	compatible	110 

with	other	plant	phenotyping	needs	(e.g.,	measuring	the	branching	architectures	of	roots	and	111 

trees,	the	spatial	distributions	of	plants	in	ecosystems,	or	the	texture	of	different	pollen	types;	112 

Mander	et	al.,	2013;	2017;	Li	et	al.,	2017b)	we	used	a	persistent	homology	approach.	Persistent	113 

homology	is	a	topological	data	analysis	method.	Topology	is	the	field	of	mathematics	concerned	114 

with	properties	of	space	preserved	under	deformations	(e.g.,	bending)	but	not	tearing	or	re-115 

attaching.	Persistent	homology	measures	topological	features	across	the	scales	of	a	function	116 

(Edelsbrunner	and	Harer,	2008;	Weinberger,	2011;	Li	et	al.,	2017b).	The	compatibility	of	117 

persistent	homology	with	numerous	functions	makes	it	a	versatile	method	that	can	be	tailored	118 

for	diverse	uses	(Li	et	al.,	2017a).		119 

	120 

Here,	we	present	a	morphometric	technique	based	on	topology,	using	a	persistent	homology	121 

framework,	to	measure	the	outlines	of	leaves	and	classify	them	by	plant	family	and	region	in	122 

which	they	were	collected.	We	analyze	182,707	leaves	(freely	available	to	download;	Chitwood,	123 

2017a),	from	both	published	studies	and	shapes	analyzed	for	the	first	time,	from	141	plant	124 

families	and	75	sites	throughout	the	world.	We	first	compare	the	diverse	shapes	represented	in	125 

a	common	morphospace	using	persistent	homology,	which	captures	traditional	shape	126 

descriptors	in	a	non-linear	fashion.	Major	phylogenetic	groups	of	plants	occupy	distinct	regions	127 
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of	the	morphospace	and	we	estimate	plant	families	that	have	the	most	and	least	diverse	leaf	128 

shapes.	Using	persistent	homology,	we	then	use	a	linear	discriminant	analysis	to	classify	leaves	129 

by	plant	family	and	collection	site.	Persistent	homology	predicts	both	family	and	collection	site	130 

at	a	rate	above	chance,	and	predicts	leaf	family	at	2.7	times	and	collection	site	at	1.5	times	the	131 

rate	of	traditional	shape	descriptors.	Persistent	homology	is	a	topological	method	that	can	132 

measure	and	compare	diverse	leaf	shapes	from	across	seed	plants	and	outperforms	traditional	133 

shape	descriptors	in	classifying	plant	families	and	geographic	locations.	134 

	135 

Results	136 

	137 

Dataset	and	a	morphospace	defined	using	traditional	shape	descriptors	138 

	139 

To	broadly	analyze	seed	plant	leaf	shape	diversity	collected	from	sites	throughout	the	world,	140 

we	used	both	published	and	unpublished	data.	In	total,	182,707	leaves	were	analyzed	(Table	1).	141 

Many	of	these	datasets	address	specific	genetic	and	developmental	questions,	focusing	on	142 

genetic	variability	within	a	group	or	closely	related	species.	Leaves	were	analyzed	from	the	143 

following	publications,	pre-prints,	and	authors	focusing	on	specific	groups	of	plants:	144 

Alstroemeria	(2,392	leaves;	Chitwood	et	al.,	2012a),	apple	(9,619	leaves;	Migicovsky	et	al.,	145 

2017),	Arabidopsis	(5,101	leaves;	AB,	RA,	CB,	ER,	BZ),	Brassica	(1,832	leaves;	HA,	SG,	JCP),	146 

Capsicum	(3,277	leaves;	TH,	AVD),	Coleus	(34,607	leaves;	VC,	MF,	ML),	cotton	(2,885	leaves;	147 

Andres	et	al.,	2017),	grapevine	and	wild	relatives	(20,121	leaves;	Chitwood	et	al.,	2014;	2016a;	148 

2016b;	VC,	MF,	LK,	JL,	AM),	Hedera	(common	ivy,	865	leaves;	Martinez	et	al.,	2016),	Passiflora	149 

(3,301	leaves;	Chitwood	and	Otoni,	2017),	Poaceae	(866	leaves;	LC,	TG,	PK),	wild	and	cultivated	150 

potato	(1,840	leaves;	DF,	SJ),	tomato	and	wild	relatives	(82,034	leaves;	Chitwood	et	al.,	2012b;	151 

2012c;	2013),	and	Viburnum	(2,422	leaves;	Schmerler	et	al.,	2012;	MD,	EE,	SS,	ES).	We	also	152 

analyzed	two	datasets	that	sample	broadly	across	seed	plants	and	from	sites	throughout	the	153 

world.	The	Leafsnap	dataset,	with	5,733	leaves,	represents	mostly	tree	species	of	the	154 

Northeastern	United	States,	but	other	groups	of	plants	as	well	(Kumar	et	al.,	2012).	The	Climate	155 
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dataset,	with	5,812	leaves	total,	analyzes	the	relationship	between	leaf	shape	and	present	156 

climates	as	indicators	of	paleoclimate	(Huff	et	al.,	2003;	Royer	et	al.,	2005;	Peppe	et	al.,	2011).	157 

	158 

We	analyzed	all	leaves	using	the	traditional	shape	descriptors	circularity,	aspect	ratio,	and	159 

solidity	(Figure	1).	These	shape	descriptors	are	simple	in	the	sense	that	they	each	measure	a	160 

very	specific	aspect	of	shape,	but	they	are	powerful	in	that	they	can	be	applied	to	any	shape,	161 

which	is	not	necessarily	true	of	other	methods	that	measure	shape	more	comprehensively	162 

(such	as	landmarks,	pseudo-landmarks,	and	Elliptical	Fourier	Descriptors).	Circularity	is	a	ratio	163 

of	area	to	perimeter	(true	perimeter,	excluding	holes	in	the	middle	of	the	object)	measured	as	164 

4𝜋 ∗ ( *+,*
-,+./,0,+1

)	and	is	sensitive	to	undulations	(like	serrations,	lobes,	and	leaflets)	along	the	165 

leaf	perimeter,	but	is	also	influenced	by	elongated	shapes	(like	grass	leaves)	when	comparing	166 

leaves	with	such	different	shapes,	as	in	this	analysis.	Aspect	ratio	is	measured	as	(𝑚𝑎𝑗𝑜𝑟	𝑎𝑥𝑖𝑠)/167 

(𝑚𝑖𝑛𝑜𝑟	𝑎𝑥𝑖𝑠)	of	a	fitted	ellipse,	and	it	is	a	robust	metric	of	overall	length-to-width	ratio	of	a	168 

leaf.	Solidity	is	measured	as	 *+,*
;<=>,?	@ABB

	where	the	convex	hull	bounds	the	leaf	shape	as	a	169 

polygon.	Leaves	with	a	large	discrepancy	between	area	and	convex	hull	(such	as	compound	170 

leaves	with	leaflets,	leaves	with	deep	lobes,	or	leaves	with	a	distinct	petiole)	can	be	171 

distinguished	from	leaves	lacking	such	features	using	solidity.	172 

	173 

Differences	between	groups	were	visualized	as	scatterplots	and	density	diagrams	(Figure	1),	174 

using	transformed	values	of	aspect	ratio	(1/(𝑎𝑠𝑝𝑒𝑐𝑡	𝑟𝑎𝑡𝑖𝑜))	and	solidity	(𝑠𝑜𝑙𝑖𝑑𝑖𝑡𝑦J)	to	create	175 

more	even	distributions	that	allow	the	separation	between	groups	to	be	better	visualized.	The	176 

long	leaves	of	grasses	(Poaceae,	lavender)	are	perhaps	the	most	distinct	group	of	leaf	shapes.	177 

The	Brassicaceae	(light	green)	are	bimodal	in	their	distribution,	reflecting	entire	vs.	highly	lobed	178 

and	compound	leaves,	as	well	as	differences	in	petiole	length.	Passiflora	(dark	orange),	179 

Solanaceae	(purple),	and	Viburnum	(brown)	exhibit	broad,	continuous	distributions,	which	like	180 

the	Brassicaceae	reflect	the	diversity	of	leaf	shapes	in	these	groups.	Alstroemeria	(light	blue),	181 

apple	(light	orange),	Coleus	(pink),	cotton	(dark	green),	grapevine	(red),	and	common	ivy	(dark	182 

blue)	all	have	more	localized	distributions	in	the	morphospace,	indicating	that	shape	variation	is	183 
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expressed	within	a	smaller	range,	relative	to	other	groups,	as	measured	using	traditional	shape	184 

descriptors.	185 

	186 

Persistent	homology	and	non-linear	relationships	with	traditional	shape	descriptors	187 

	188 

Although	traditional	shape	descriptors	can	describe	important	shape	features	across	diverse	189 

leaves,	they	do	not	measure	shape	comprehensively	like	landmarks,	pseudo-landmarks,	and	190 

Elliptical	Fourier	Descriptors.	Comprehensive	morphometric	methods,	however,	cannot	be	191 

applied	across	diverse	shapes,	only	between	leaves	with	similar	shapes,	as	in	natural	variation	192 

studies.	We	crafted	a	persistent	homology	method	to	quantify	the	features	of	leaves,	193 

conceptualizing	shape	as	a	two-dimensional	point	cloud	of	an	outline	defined	by	pixels	(Li	et	al.,	194 

2017a;	Migicovsky	et	al.,	2017).	The	method	begins	by	calculating	a	Gaussian	density	estimator,	195 

assigning	each	pixel	a	value	that	indicates	the	density	of	neighboring	pixels	(Figure	2).	In	leaves,	196 

high	density	pixels	with	lots	of	neighbors	tend	to	reside	in	the	sinuses	of	serrations	or	lobes	or	197 

at	points	of	intersection,	such	as	the	attachment	points	of	leaflets	to	the	rachis	of	a	compound	198 

leaf.	Using	a	Gaussian	density	estimator,	rather	than	focusing	on	continuity	of	a	closed	contour	199 

(as	in	pseudo-landmarks	and	Elliptical	Fourier	Descriptors),	minimizes	the	impact	of	internal	or	200 

non-continuous	features,	such	as	holes	or	occlusions	made	by	the	overlap	of	leaflets	and	lobes	201 

(see	the	bottom	palmately-shaped	leaf	in	Figure	2).	Sixteen	annuli	emanating	from	the	centroid	202 

of	the	shape	(Figure	2A)	serve	to	partition	the	leaf	into	subsets	of	features,	increasing	the	203 

ability	to	distinguish	between	shapes.	An	annulus	kernel	for	each	ring	(Figure	2C)	is	multiplied	204 

by	the	density	estimator	(Figure	2B)	to	isolate	density	features	that	intersect	with	the	annulus	205 

(Figure	2D-E).	The	resulting	density	function	from	each	annulus	is	the	function	across	which	206 

topological	space	is	measured.	As	shown	in	Figure	2F,	beginning	with	the	highest	density	level,	207 

the	number	of	connected	features	with	densities	above	that	level	is	recorded.	Counting	the	208 

number	of	connected	components	minus	the	number	of	holes	(which	is	a	topological	feature,	209 

known	as	the	Euler	characteristic)	continues	across	the	function,	proceeding	to	lower	density	210 

levels.	The	value	of	the	curve	(y	axis	in	Figure	2F)	at	each	density	level	(x	axis	in	Figure	2F)	211 
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records	the	topological	structure	across	the	values	of	the	function,	the	crux	of	persistent	212 

homology.	A	curve	is	recorded	for	each	annulus,	so	that	using	our	method,	the	shape	of	a	single	213 

leaf	is	represented	by	16	curves.	214 

	215 

To	analyze	the	persistent	homology	output,	we	discretize	each	Euler	characteristic	curve	into	216 

500	values	(Figure	2F)	and	then	concatenate	these	values	over	the	16	annuli,	representing	each	217 

leaf	shape	as	8,000	values.	A	Principal	Component	Analysis	(PCA)	performed	using	the	8,000	218 

values	creates	a	leaf	morphospace	defined	by	persistent	homology	(Figure	3).	To	interpret	this	219 

morphospace,	we	colored	data	using	traditional	shape	descriptor	values.	Although	clear	220 

patterns	among	aspect	ratio	(Figure	3A),	circularity	(Figure	3B),	and	solidity	(Figure	3C)	with	221 

persistent	homology	data	are	evident,	the	relationships	are	non-linear	compared	to	the	222 

orthogonal	PC	axes.	Aspect	ratio,	circularity,	and	solidity	are	similarly	correlated	with	PC1	(rho	223 

values	of	-0.72,	0.70,	and	0.61,	respectively)	demonstrating	that	persistent	homology	PCs	can	224 

capture	distinct	attributes	of	shape	simultaneously	(Figure	3D).	The	correlations	between	225 

traditional	shape	descriptors	and	persistent	homology	PCs	rapidly	diminish	among	high	order	226 

PCs	(Figure	3D).	The	non-linear	relationship	between	traditional	shape	descriptors	and	227 

persistent	homology	PCs	indicates	that	persistent	homology	captures	differing	combinations	of	228 

traditional	shape	descriptors	in	different	ways	among	the	represented	leaf	shapes.	Such	non-229 

linear	relationships	are	influenced	by	the	different	groups	represented	in	the	dataset	(Figure	230 

3E).	If	the	Leafsnap	and	Climate	datasets	are	superimposed	as	black	points	on	top	of	a	density	231 

diagram	representing	different	groups	(Figure	3F),	then	the	overall	shape	of	the	persistent	232 

homology	space	defined	by	specific	groups	is	recapitulated.	As	the	Leafsnap	and	Climate	233 

datasets	together	represent	141	plant	families	and	75	sites	throughout	the	world,	the	data	234 

suggest	that	the	overall	shape	and	density	of	the	persistent	homology	morphospace	is	partially	235 

saturated.	This	does	not	mean	that	there	is	no	other	significant	leaf	shape	variation	to	be	236 

explored,	only	that	some	archetypal	leaf	shapes	are	well	represented	in	our	dataset.	The	237 

boundaries	of	the	persistent	homology	morphospace	allow	for	speculation.	Likely	the	238 

morphospace	is	1)	bimodal,	defined	by	elongated	leaf	shapes	found	in	some	Poaceae	and	239 
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Gymnosperms	(specifically	Pinophyta	in	the	Leafsnap	and	Climate	datasets)	compared	to	other	240 

leaf	shapes	and	2)	is	defined	by	variation	spanning	entire	to	deeply	lobed	(or	even	compound)	241 

leaf	shapes,	as	represented	by	Passiflora,	Solanaceae,	and	Vibrunum	across	PC1.	Of	course,	242 

other	leaf	shape	variation	exists	(and	is	even	visually	apparent	in	the	plots	of	PC2	vs.	PC1)	and	243 

other	PCs	in	this	dataset	remain	to	be	explored.		The	dataset	does	not	come	near	to	sampling	244 

all	existing	leaf	shapes.	245 

	246 

Differences	in	leaf	shape	between	phylogenetic	groups	and	the	most	diverse	plant	families	247 

	248 

We	were	interested	in	detecting	difference	in	leaf	shape	between	phylogenetic	groups	and	249 

performed	a	Principal	Component	Analysis	(PCA)	for	just	the	Leafsnap	and	Climate	datasets	250 

(Table	1),	which	together	represent	141	plant	families,	but	without	the	over-representation	251 

from	specific	taxonomic	groups	presented	earlier.	Visualizing	gymnosperms,	magnoliids,	rosids	252 

I,	rosids	II,	asterids	I,	and	asterids	II	across	PCs	1-10	(representing	73%	of	shape	variance)	clear	253 

differences	in	persistent	homology	shape	space	can	be	detected	(Figure	4).	Differences	in	shape	254 

are	most	easily	detected	for	the	earliest	diverging	lineages.	For	example,	gymnosperms	occupy	255 

a	distinct	region	of	morphospace	defined	by	PCs	1-6	(Figure	4A-C)	compared	to	angiosperms.	256 

Subtler	differences	between	recently	diverging	groups	can	also	be	seen.	Asterids	II,	for	257 

example,	are	excluded	from	some	regions	of	morphospace	occupied	by	rosids	I/II	and	asterids	I	258 

for	PCs	1-4	(Figure	4A-B).	259 

	260 

Differences	in	occupied	morphospace	between	phylogenetic	groups	prompted	us	to	ask:	are	261 

plant	families	diverse	across	all	PCs	or	just	some,	and	what	are	the	most	and	least	262 

morphologically	diverse	families?	To	answer	the	first	question,	we	calculated	variance	across	263 

PCs	1-179	(representing	>95%	of	all	shape	variance)	for	each	plant	family	and	then	ranked	264 

families	from	most	to	least	variable	for	each	PC	(Figure	5A).	Visualizing	the	ranked	variability	of	265 

families	across	PCs	(the	most	variable	ranked	families	for	a	PC	depicted	as	yellow,	the	least	266 

variable	black,	Figure	5A),	it	is	apparent	that	the	most	diverse	tend	be	the	most	diverse	across	267 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2017. ; https://doi.org/10.1101/151712doi: bioRxiv preprint 

https://doi.org/10.1101/151712
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

PCs.	Increased	variability	in	persistent	homology	PCs,	though,	might	simply	be	due	to	more	268 

leaves	in	some	families	compared	to	others.	Indeed,	the	most	diverse	plant	families	are	also	the	269 

most	represented	in	our	dataset,	as	seen	when	families	are	arranged	by	abundance	(Figures	5A,	270 

see	bar	graph	of	counts	on	the	right	side).	Because	highly	variable	families	tend	to	be	variable	271 

across	PCs,	we	took	the	median	rank	of	variance	across	PCs	as	a	measure	of	overall	family	leaf	272 

shape	diversity.	The	relationship	between	–median	rank	variance	and	log10(count)	is	linear	273 

(Figure	S1).	Using	linear	regression,	we	took	the	residuals	from	the	model	as	an	estimate	of	274 

plant	family	leaf	shape	diversity,	corrected	for	differences	in	sample	size	(Figure	5B).	A	wilcoxon	275 

signed	rank	test	on	residuals	indicates	that	asterids	I	are	marginally	significant	(p	=	0.08)	for	276 

lacking	diversity	(two	sided,	mu	=	0)	but	other	groups	(gymnosperms,	p	=	0.25;	magnoliids,	p	=	277 

0.20;	rosids	I,	p	=	0.97;	rosids	II,	p	=	0.63;	asterids	II,	p	=	0.63)	show	no	detectable	biases	in	278 

diversity.	The	overall	results	indicate	that,	for	the	current	dataset,	leaf	shape	diversity	within	279 

major	phylogenetic	plant	groups	is	equivalent,	but	specific	families	have	higher	estimated	leaf	280 

shape	diversity	than	others.	281 

	282 

Persistent	homology	predicts	plant	family	and	region	and	outperforms	traditional	shape	283 

descriptors	284 

	285 

The	separation	of	different	groups	in	the	traditional	shape	descriptor	(Figure	1)	and	persistent	286 

homology	(Figures	3-4)	morphospaces	suggests	the	ability	to	predict	the	phylogenetic	identity	287 

of	a	leaf	based	on	its	shape.	Previous	computer	vision	approaches	coupled	with	machine	288 

learning	have	successfully	predicted	plant	family	and	order	using	vein	patterning	and	margin	289 

features	(Wilf	et	al.,	2016).	Can	the	same	be	done	using	a	persistent	homology	analysis	of	the	290 

outline	alone?	Using	the	Leafsnap	and	Climate	datasets	(Table	1)	that	together	represent	141	291 

plant	families,	we	used	a	Linear	Discriminant	Analysis	(LDA)	on	PCs	1-179,	representing	>95%	of	292 

the	persistent	homology	morphospace	variation,	to	create	a	classifier	scheme.	Leaves	were	293 

then	reassigned	to	the	linear	discriminant	space	using	a	cross-validated	“leave	one	out”	294 

approach	(Venables	and	Ripley,	2002)	and	the	results	visualized	as	a	confusion	matrix	(Figure	295 
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6),	plotting	the	actual	family	identity	of	leaves	as	a	function	of	the	proportion	of	their	predicted	296 

family	identity.	Using	persistent	homology,	there	was	a	27.3%	correct	plant	family	assignment	297 

rate	of	leaves.	Using	a	bootstrapping	approach	permuting	plant	family	identity	against	leaf	298 

shape	information,	a	27.3%	correct	reclassification	rate	or	higher	was	never	achieved	in	1,000	299 

bootstrapped	simulations,	indicating	that	assignment	is	above	chance.	This	outperforms	300 

traditional	shape	descriptor	prediction	(at	a	rate	of	10.2%)	by	2.7	times	(Table	2),	and	including	301 

both	persistent	homology	and	traditional	shape	descriptor	data	only	marginally	increases	the	302 

prediction	rate	(to	29.1%)	over	that	of	persistent	homology	alone	(27.3%),	indicating	that	303 

persistent	homology	largely	captures	the	same	shape	features	as	traditional	descriptors,	but	304 

provides	additional	information	as	well.	305 

	306 

Previous	studies	analyzing	correlations	between	leaf	shape	with	present	and	ancient	climates	307 

debated	the	presence	of	“phylogenetic	invariant”	features	that	vary	by	climate,	not	308 

phylogenetic	context.	The	Climate	dataset	includes	leaves	from	75	sites	throughout	the	world	309 

(Table	1).	Like	the	phylogenetic	prediction	above,	we	sought	to	determine	the	degree	that	310 

geographic	location	(regardless	of	plant	family)	can	be	predicted	from	shape	alone.	An	LDA	311 

performed	on	PCs	1-191,	representing	>95%	of	the	persistent	homology	morphospace	variation	312 

for	the	Climate	dataset,	can	predict	the	site	where	a	leaf	was	collected	(Figure	7)	at	a	rate	of	313 

14.5%	(Table	2).	Although	much	lower	than	the	overall	prediction	rate	by	plant	family	(27.3%),	314 

a	rate	of	14.5%	or	higher	was	never	achieved	in	1,000	bootstrapped	simulations,	indicating	that	315 

assignment	is	above	chance.	Persistent	homology	outperforms	traditional	shape	descriptors	(at	316 

a	rate	of	9.5%)	by	1.5	times	(Table	2),	and	including	both	persistent	homology	and	traditional	317 

shape	descriptor	data	only	marginally	increases	the	prediction	rate	(to	16.2%)	over	that	of	318 

persistent	homology	alone	(14.5%).		319 

	320 

Although	the	overall	prediction	rates	of	27.3%	for	plant	family	and	14.5%	for	site	collected	are	321 

relatively	low	(Table	2),	it	is	important	to	remember	that	they	are	above	the	level	of	chance	322 

(determined	by	bootstrapping,	1,000	simulations)	and	that	the	rates	are	not	evenly	distributed	323 
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across	factor	levels.	Plant	family	prediction	rates	vary	from	0-100%,	and	site	collected	324 

prediction	rates	vary	from	0-40%	(Figure	8).	The	variability	in	rates	is	not	overly	influenced	by	325 

sampling	depth	or	variation	within	a	group.	For	example,	prediction	rate	of	plant	family	and	326 

abundance	are	correlated	at	rho	=	0.37,	and	the	correlation	with	median	rank	PC	variance	is	rho	327 

=	-0.24.	Although	comprehensive,	our	dataset	does	not	begin	to	encompass	the	total	shape	328 

variation	present	in	a	plant	family	or	region	and	there	are	undoubtedly	collection	biases	in	the	329 

data	influencing	prediction.	Other	factors	than	diversity	within	a	group	or	the	degree	to	which	it	330 

is	sampled,	though,	likely	influence	prediction	rate	too.	331 

	332 

Discussion	333 

	334 

We	have	presented	a	new	morphometric	method	using	persistent	homology,	a	topological	335 

approach,	that	can	comprehensively	measure	leaf	shape.	Other	methods	measure	leaf	shape	336 

comprehensively,	including	traditional	landmarks,	pseudo-landmarks,	and	Elliptical	Fourier	337 

Descriptors	(EFDs).	However,	no	method	comparatively	analyzes	the	diverse	shapes	of	leaves	in	338 

seed	plants	(simple	leaves,	deeply	lobed	leaves,	compound	leaves	of	different	shapes,	leaves	339 

with	differing	numbers	of	leaflets	or	lobes,	or	large	variation	in	petiole	length	and	shape),	only	340 

naturally	varying	leaves	among	related	plant	species.	Other	morphometric	methods	that	only	341 

analyze	the	external	contour	of	shapes	are	sensitive	to	artifacts,	such	as	internal	holes	made	by	342 

the	overlap	of	leaflets	or	lobes,	or	small	errors	during	thresholding	and	isolation.	Finally,	343 

although	appropriate	for	plant	organs	that	can	be	represented	by	discrete	shapes—like	leaves,	344 

petals,	seeds,	or	other	lateral	organs—current	morphometric	techniques	fail	to	capture	other	345 

attributes	of	plant	architecture,	like	the	branching	patterns	of	roots,	shoots,	and	inflorescences.	346 

A	framework	that	can	not	only	measure	shape,	but	other	features	that	are	important	to	the	347 

plant	form,	is	currently	lacking.	348 

	349 

By	converting	shapes	into	a	topological	space,	as	defined	by	a	function	that	isolates	subsets	of	350 

the	shape	and	describes	it	in	terms	of	neighboring	pixel	density	(Figure	2),	the	described	351 
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persistent	homology	approach	can	compare	disparate	leaf	shapes	across	seed	plants,	allowing	352 

for	the	approximation	of	the	overall	leaf	morphospace	(Figure	3).	By	estimating	pixel	density,	353 

the	method	accommodates	internal	features	(such	as	holes	caused	by	leaflet	overlap)	or	small	354 

processing	artifacts,	that	do	not	unduly	influence	the	output	compared	to	the	absence	of	such	355 

imperfections.	The	ability	to	compare	shapes	broadly	and	be	robust	against	processing	artifacts	356 

will	enable	large	scale	data	analyses	in	the	future,	such	as	the	analysis	of	digitized	herbarium	357 

vouchers,	ecological	studies,	or	genetic	and	developmental	insights	into	complex	morphologies,	358 

for	which	current	morphometric	approaches	are	not	designed.	We	detected	clear	differences	in	359 

leaf	shape	between	major	phylogenetic	groups	(Figure	4)	and	estimated	leaf	shape	diversity	360 

across	plant	families	(Figure	5),	demonstrating	that	a	persistent	homology	approach	is	relevant	361 

for	large-scale	morphometric	studies	across	plant	evolution.	The	ability	to	comprehensively	362 

measure	shapes	permits	alternative	statistical	approaches,	moving	beyond	descriptive	statistics	363 

used	with	traditional	shape	descriptors	(Figure	1)	and	allowing	for	classifier	and	prediction	364 

approaches	(Figures	6-8;	Table	2).	Theoretically,	a	unifying	morphometric	framework	that	can	365 

accommodate	not	only	shapes	but	the	branching	architectures	of	plants,	is	lacking.	As	we	have	366 

previously	described,	persistent	homology	functions	are	ideal	to	apply	to	branching	plant	367 

structures	as	topological	spaces	(Li	et	al.,	2017b).	The	morphometric	approach	described	here	368 

applied	to	leaf	shapes	is	compatible	with	similar	persistent	homology	methods,	creating	a	369 

shared	framework	in	which	the	plant	form	can	be	measured	(Li	et	al.,	2017a).	370 

	371 

Materials	and	Methods	372 

	373 

Leaf	shapes		374 

	375 

The	182,707	leaf	outlines	from	141	plant	families	from	75	sites	throughout	the	world	used	in	376 

this	manuscript	are	available	to	download	(Chitwood,	2017a).	This	file	directory	includes	x,y	377 

coordinates	that	form	the	outlines	of	the	leaves.	Separate	folders	contain	text	files	with	x,y	378 

coordinates	for	the	leaves	from	each	of	the	indicated	groups	in	Table	1.	Within	each	folder,	379 
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original	x,y	coordinates	and	scaled	coordinates	are	provided.	This	dataset	contains	leaves	from	380 

both	published	and	unpublished	sources	(see	text	for	details;	Andres	et	al.,	2017;	Chitwood	et	381 

al.,	2012a;	2012b;	2012c;	2013;	2014;	2016a;	2016b;	Chitwood	and	Otoni,	2017;	Huff	et	al.,	382 

2003;	Kumar	et	al.,	2012;	Li	et	al.,	2017a;	Martinez	et	al.,	2016;	Migicovsky	et	al.,	2017;	Peppe	383 

et	al.,	2011;	Royer	et	al.,	2005;	Schmerler	et	al.,	2012;	Arabidopsis	BA,	RA,	CB,	ER,	BZ;	Brassica	384 

HA,	SG,	JCP;	Capsicum	TH,	AVD;	Coleus	VC,	MF,	ML;	grapevine	and	wild	relatives	VC,	MF,	LK,	JL,	385 

AM;	Poaceae	LC,	TG,	PK;	wild	and	cultivated	potato	DF,	SJ;	Viburnum	MD,	EE,	SS,	ES).	386 

	387 

Persistent	homology	388 

	389 

The	MATLAB	code	necessary	to	recapitulate	the	persistent	homology	analysis	in	this	manuscript	390 

can	be	found	in	the	following	GitHub	repository	(Li,	2017):	391 

https://github.com/maoli0923/Persistent-Homology-All-Leaf	392 

	393 

Persistent	homology	is	a	flexible	method	to	quantify	branching	structures	(Edelsbrunner	and	394 

Harer,	2008;	Weinberger,	2011;	Li	et	al.,	2017b),	point	clouds	(Ghrist,	2008),	two-dimensional	395 

and	three-dimensional	shapes	(Gamble	and	Heo,	2010),	and	textures	(Mander	et	al.,	2013;	396 

2017).	Each	of	these	different	phenotypes	can	be	described	by	a	multidimensional	vector	(e.g.	397 

Euler	characteristic	curve),	integrating	how	homology	(e.g.	path-connected	components)	398 

persists	across	the	scales	of	a	tailored	mathematical	function.	399 

	400 

Leaf	contours	are	represented	as	two-dimensional	point	clouds	extracted	from	binary	images	401 

(Figure	2A).	We	use	a	Gaussian	density	estimator,	which	can	be	directly	derived	from	the	point	402 

cloud	and	is	also	robust	to	noise,	to	estimate	the	neighborhood	density	of	each	pixel.	Denser	403 

point	regions,	such	as	serrations,	lobes,	or	the	attachment	points	of	leaflets,	have	higher	404 

function	values	(Figure	2B).	Formally,	the	Gaussian	density	estimator	is	defined	as		405 

,	where		𝑦K,⋯ , 𝑦=	are	the	data	points	and	ℎ	is	a	bandwidth	406 
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parameter.	Because	a	set	of	local	and	regional	topologies	may	often	be	more	effective	to	407 

represent	shapes,	we	use	a	local	persistent	homology	technique	to	subset	the	density	estimator	408 

into	16	concentric	annuli	centered	around	the	centroid	of	the	leaf	(Figures	2A,	D).	To	achieve	409 

this,	we	multiply	this	function	by	a	“bump”	function	K	which	highlights	an	annulus,	defined	as	410 

,	where	y	is	the	center	of	the	annulus,	𝑡𝜎	determines	its	radius,	and	the	411 

parameter	𝜎	is	its	width	(Figure	2C).	Each	local	function	emphasizes	the	density	function	falling	412 

in	the	annulus.	Given	a	threshold	and	a	local	function,	the	points	whose	function	values	are	413 

greater	than	this	threshold	form	a	subset	(superlevel	set).	Changing	this	threshold	value	from	414 

the	maximum	function	value	to	its	minimum	value,	we	can	get	an	expanding	sequence	of	415 

subsets,	or	a	superlevel	set	filtration.	Figure	2E	shows	the	shapes	above	a	plane,	an	example	of	416 

a	superlevel	set	filtration.	For	each	subset,	we	calculate	the	Euler	characteristic,	which	equals	417 

the	number	of	connected	components	minus	the	number	of	holes.	Thus,	for	a	sequence	of	418 

subsets,	we	get	a	sequence	of	numbers	(a	multidimensional	vector).	All	16	annuli	derive	16	419 

multidimensional	vectors	which	are	concatenated	into	an	overall	vector	used	for	analysis.	420 

Principal	Component	Analysis	(PCA)	was	performed	in	MATLAB	on	the	vectors	and	PC	scores	421 

and	percent	variance	explained	by	each	PC	used	in	subsequent	analyses.	422 

	423 

Statistical	analysis	and	visualization	424 

	425 

The	R	code	(R	Core	Team,	2017)	and	data	necessary	to	recapitulate	the	statistical	analyses	and	426 

figures	in	this	manuscript	can	be	found	as	a	zipped	folder	directory	on	figshare	(Chitwood,	427 

2017b):	https://figshare.com/articles/LeafMorphospace/4985561/1	428 

	429 

Unless	otherwise	specified,	all	graphs	were	visualized	using	ggplot2	(Wickham,	2016).	430 

Scatterplots	were	visualized	using	the	geom_point()	function,	density	plots	were	visualized	with	431 

the	geom_density2d()	function,	heatmaps	were	visualized	using	the	geom_tile()	function,	and	432 

colors	were	selected	from	ColorBrewer	(Harrower	and	Brewer,	2003)	and	viridis	(Garnier,	433 
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2017).	Other	visualization	functions	used	and	specific	parameters	that	can	be	found	in	the	code	434 

used	to	generate	the	figures	(Chitwood,	2017b).	435 

	436 

Variance	was	calculated	for	each	plant	family	for	each	principal	component	using	var()	and	437 

families	ranked	for	each	principal	component	using	rank()	(Figure	5).	Linear	regression	was	438 

performed	using	lm()	and	residuals	retrieved	to	estimate	leaf	shape	diversity	for	each	plant	439 

family	(Figure	S1).	The	Wilcoxon	signed	rank	test	was	performed	using	wilcox.test()	to	test	for	440 

higher	or	lower	than	expected	phylogenetic	diversity	using	a	two-sided	test	with	mu	=	0.	Linear	441 

Discriminant	Analysis	(LDA)	was	performed	using	the	lda()	function	in	the	package	MASS	442 

(Venables	and	Ripley,	2002).	LDA	was	performed	using	the	number	of	principal	components	443 

that	contributed	at	least	95%	of	all	variance	in	each	analysis	(PCs	1-179	for	phylogenetic	444 

prediction	and	PCs	1-191	for	site	prediction).	The	Leafsnap	and	Climate	datasets	were	used	for	445 

phylogenetic	prediction	(Figure	6)	whereas	just	the	Climate	dataset	was	used	for	site	prediction	446 

(Figure	7).	Prediction	using	the	discriminant	space	was	performed	using	CV	=	TRUE	for	a	“leave	447 

one	out”	cross-validated	jack-knifed	approach	and	the	priors	set	equal	across	factor	levels.	Both	448 

the	phylogenetic	and	site	LDA	prediction	rates	were	bootstrapped	over	1,000	simulations.	A	for	449 

loop	was	used,	permuting	family	or	site	identity	against	leaf	identity,	performing	an	LDA	on	the	450 

permuted	data,	and	recording	the	correct	prediction	rate	for	each	permuted	simulation.	For	451 

both	the	phylogenetic	and	site	predictions,	a	permuted	correct	prediction	rate	(out	of	1,000	452 

simulations)	higher	than	the	actual	correct	prediction	rate	was	never	detected.	453 
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	592 

Figure	Legends:	593 

	594 

Figure	1:	Traditional	shape	descriptors	delimit	leaves	from	different	taxonomic	groups.		A)	595 

Circularity	vs.	1/Aspect	Ratio,	B)	Solidity8	vs.	1/Aspect	Ratio,	and	C)	Circularity	vs.	Solidity8.	Left:	596 

Scatter	plots	of	182,707	leaves	analyzed,	from	141	plant	families	from	75	sites	throughout	the	597 

world.	Right:	For	select	taxonomic	groups,	density	plots	showing	ability	of	traditional	shape	598 

descriptors	to	delimit	different	leaf	shapes	and	distributions	of	different	groups.	Solidity	and	599 

Aspect	Ratio	values	have	been	transformed	to	yield	more	even	distributions.	Taxonomic	groups	600 

are	indicated	by	color	and	silhouettes	of	representative	leaves	close	to	the	overall	mean	of	601 

descriptor	values	provided.	602 

	603 

Figure	2:	Persistent	homology	and	leaf	shape.	A)	Contours	of	a	simple	leaf	(top),	compound	604 

pinnate	leaf	(middle),	and	compound	palmate	leaf	with	a	hole	and	overlap	in	leaflets	(bottom).	605 

16	annuli	used	to	isolate	pixel	density	are	shown,	with	annulus	10	used	in	subsequent	panels	606 

indicated	in	green.	B)	Colormap	of	a	Gaussian	density	estimator	that	is	robust	to	noise.	Red	607 

indicates	a	larger	density	of	neighboring	pixels	and	blue	less	density.	C)	An	annulus	kernel	is	608 

used	to	localize	and	smoothen	data.	D)	Multiplication	of	the	annulus	kernel	with	the	density	609 

estimator	isolates	density	features	of	the	leaf	contour.	E)	Side	view	of	the	annulus	kernel-610 

isolated	density	features	of	the	leaf.	The	high	peaks	in	red	indicate	higher	pixel	density.	F)	A	611 

plane	traverses	the	density	function	from	the	highest	to	lowest	densities	(x	axis).	As	the	plane	612 

traverses	the	function,	the	topological	space	is	recorded	as	the	number	of	connected	613 

components	above	the	plane	at	any	given	point,	the	Euler	characteristic	(y	axis).	Three	pink	614 

dotted	lines	correspond	to	the	plane	at	three	points	along	the	density	function,	which	are	615 

visualized	below	the	graphs.	Together,	similar	curves	from	the	16	annuli	comprise	the	616 

persistent	homology	description	of	leaf	shape.	617 

	618 

Figure	3:	Principal	Component	Analysis	(PCA)	of	persistent	homology	results.	Principal	619 
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Component	2	(PC2)	vs.	PC1	based	on	persistent	homology	results	for	182,707	leaves	colored	by	620 

A)	1/Aspect	Ratio,	B)	Circularity,	and	C)	Solidity8.	Aspect	Ratio	and	Solidity	values	have	been	621 

transformed	to	yield	more	even	distributions.	Note	non-linear	relationships	between	traditional	622 

shape	descriptors	and	persistent	homology	PCs.	D)	Correlations	between	aspect	ratio,	623 

circularity,	and	solidity	and	PCs	1-69	(representing	90%	of	variation).	Positive	and	negative	624 

Spearman’s	rho	values	are	indicated	as	blue	and	yellow,	respectively.	E)	Density	plots	show	625 

distributions	of	selected	taxonomic	groups	in	persistent	homology	PCA	and	F)	Climate	and	626 

Leafsnap	datasets,	representing	141	plant	families	from	75	sites	throughout	the	world,	are	627 

superimposed	as	black	dots.	Taxonomic	groups	are	indicated	by	color	and	silhouettes	of	628 

representative	leaves	close	to	the	overall	mean	of	descriptor	values	provided.	629 

	630 

Figure	4:	Differences	in	leaf	shape	between	phylogenetic	groups.	Gymnosperm,	magnoliid,	631 

rosid	I,	rosid	II,	asterid	I,	and	asterid	II	leaves	(left	to	right)	are	each	plotted	in	blue	against	all	632 

samples	(gray)	for	A)	PC2	vs.	PC1,	B)	PC4	vs.	PC3,	C)	PC6	vs.	PC5,	D)	PC8	vs.	PC9,	and	E)	PC10	vs.	633 

PC9.	Percent	variance	explained	by	each	PC	is	indicated.		634 

	635 

Figure	5:	Highly	variable	plant	families	are	variable	across	Principal	Components	(PCs)	and	636 

estimates	of	leaf	shape	diversity	by	family.	A)	Variance	was	measured	for	each	plant	family	637 

and	then	ranked	from	most	variable	(yellow)	to	least	variable	(black)	for	each	PC.	Plant	families	638 

are	ordered	by	abundance,	as	seen	in	the	bar	graph	(right)	indicating	count	number	in	the	639 

dataset.	The	most	abundant	plant	families	in	the	dataset	tend	to	be	the	most	variable.	B)	Linear	640 

regression	was	used	to	model	the	-median	variance	ranking	for	each	plant	family	as	a	function	641 

of	log10(count).	The	residuals	are	estimates	of	plant	family	leaf	shape	diversity,	as	corrected	for	642 

representation	in	the	dataset.	Higher	residual	values	indicate	higher	estimated	leaf	shape	643 

diversity.	Gymnosperms,	orange;	magnoliids,	yellow;	rosids	I,	light	blue;	rosids	II,	dark	blue;	644 

asterids	I,	light	green;	asterids	II,	dark	green;	other	groups,	gray.	645 

	646 

Figure	6:	Predicting	plant	family	using	persistent	homology.	Using	persistent	homology	data	647 
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from	the	Climate	and	Leafsnap	datasets,	a	Linear	Discriminant	Analysis	(LDA)	was	used	as	a	648 

classifier	to	predict	plant	family,	cross-validated	using	a	jackknifed	“leave	one	out”	approach.	649 

The	vertical	axis	indicates	actual	plant	family	and	the	horizontal	axis	predicted	plant	family.	650 

Color	indicates	proportion	of	leaves	from	each	actual	plant	family	assigned	to	each	predicted	651 

family,	such	that	proportions	across	the	horizontal	axis	sum	to	1.	Black	indicates	no	assignment.	652 

A	phylogeny	indicating	key	taxonomic	groups	is	provided.	653 

	654 

Figure	7:	Predicting	collection	site	using	persistent	homology.	Using	persistent	homology	data	655 

from	the	Climate	dataset,	a	Linear	Discriminant	Analysis	(LDA)	was	used	as	a	classifier	to	predict	656 

collection	site,	cross-validated	using	a	jackknifed	“leave	one	out”	approach.	The	vertical	axis	657 

indicates	actual	collection	site	and	the	horizontal	axis	predicted	collection	site.	Color	indicates	658 

proportion	of	leaves	from	each	actual	collection	site	assigned	to	each	predicted	collection	site,	659 

such	that	proportions	across	the	horizontal	axis	sum	to	1.	Black	indicates	no	assignment.	Sites	660 

are	grouped	into	nine	different	regions	that	are	indicated	by	color	on	a	map.	661 

	662 

Figure	8:	Prediction	rates	using	persistent	homology	data	across	plant	families	and	collection	663 

sites.	A)	Proportion	of	leaves	from	each	family	correctly	assigned.	Red	line	indicates	overall	664 

correct	prediction	rate	of	plant	family	of	27.3%.	Phylogeny	and	major	taxonomic	groups	are	665 

indicated.	B)	Proportion	of	leaves	from	each	collection	site	correctly	assigned.	Red	line	indicates	666 

overall	correct	prediction	rate	of	collection	site	of	14.5%.	Collection	sites	are	grouped	by	region,	667 

indicated	by	color.	668 

	669 

Supplemental	figure	legend:	670 

	671 

Supplemental	Figure	1:	Linear	relationship	between	median	ranked	variability	and	count.	672 

Linear	regression	was	used	to	model	-median	rank	variability	(higher	values	indicated	more	673 

variability	within	a	plant	family)	as	of	function	of	the	abundance	of	each	plant	family	in	the	674 

dataset,	as	measured	by	log10(leaf	count).	The	model	(shown	in	blue)	was	used	to	estimate	675 
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overall	leaf	shape	variance	in	plant	family,	as	corrected	for	sampling	depth,	by	using	the	676 

residuals	from	the	model	as	an	indication	of	diversity.	677 

	678 
Table	1:	Leaf	counts	of	datasets.	679 

 680 
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	701 
Table	2:	Overall	prediction	rates	of	plant	family	and	collection	site	using	different	702 
morphometric	methods	703 
 704 

Prediction	 Datasets	 Method	 Correct	

Plant	family	 Climate,	Leafsnap	 Persistent	homology	 27.3%	
Plant	family	 Climate,	Leafsnap	 Traditional	descriptors	 10.2%	
Plant	family	 Climate,	Leafsnap	 Both	methods	 29.1%	
Site	 Climate	 Persistent	homology	 14.5%	
Site	 Climate	 Traditional	descriptors	 9.5%	
Site	 Climate	 Both	methods	 16.2%	

 705 

Leaf	type	 Count	
Alstroemeria	 2,392	
Apple	 9,619	
Arabidopsis	 5,101	
Brassica	 1,832	
Capsicum	 3,277	
Climate	 5,812	
Coleus	 34,607	
Cotton	 2,885	
Grapevine	 20,121	
Hedera	 865	
Leafsnap	 5,733	
Passiflora	 3,301	
Poaceae	 866	
Potato	 1,840	
Tomato	 82,034	
Viburnum	 2,422	
Total	 182,707	
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