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Abstract

Circadian rhythmicity, the 24-hour cycle responsive to light and dark, is contributed to
by periodic oscillations in gene transcription. This phenomenon has broad ramifications
in physiologic function. Recent work has disclosed more cycles in gene transcription and
to the uncovering of these we apply a novel signal processing methodology known as the
pencil method. Methods: In order to assess periodicity of gene expression over time, we
analyzed a database derived from livers of mice entrained to a 12 hour light/12 hour
dark cycle. We also analyzed artificially generated signals to identify differences
between the pencil decomposition and other similar methods. Results: The pencil
decomposition revealed hitherto unsuspected oscillations in gene transcription with 12
periodicity. The pencil method was robust in detecting the 24 hour circadian cycle that
was known to exist as well as confirming the existence of shorter period oscillations. A
key consequence of this approach is that orthogonality of the different oscillatory
components can be demonstrated, This indicates a biological independence of these
oscillations, which has been subsequently confirmed empirically by knocking out the
gene responsible for the 24 hour clock. Conclusion: system identification techniques can
be applied to biological systems and can uncover important characteristics that may
elude visual inspection of the data. Significance: The pencil method provides new
insights on the essence of gene expression and discloses a wide variety of oscillations in
addition to the well-studied circadian pattern. This insight opens the door to the study
of novel mechanisms by which oscillatory gene expression signals exert their regulatory
effect on cells to influence human diseases.

Keywords: circadian rhythm, system identification, pencil decomposition, gene
oscillations, twelve-hour rhythm.
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Introduction 1

Transcription can be considered as a signal transduced from DNA sequences influencing 2

the function of a cell. Here we propose the analysis of transcription using various signal 3

processing approaches. This provides additional insight into cell regulation and 4

expression. 5

Gene transcription is the process by which the genetic code residing in DNA is 6

transferred to RNA in the nucleus as a predecessor to make proteins. The latter process 7

is called translation and occurs in the cytoplasm as depicted in the figure below. 8

Circadian rhythm, the 24 hour cycle of gene transcription, is a manifestation of an auto 9

transcription-translation loop. 10

Fig 1. The “Central Dogma” of genetics: DNA makes RNA makes
protein [1] Chapter 2.3, [11].

In addition to the circadian oscillation driven by light and dark, other so-called 11

ultradian rhythms have clear biologic import. Blood pressure, some circulating 12

hormones, and physiological functions all appear to have 12 hour periodicity. 13

Accordingly, we sought to uncover novel 12 hour oscillations in gene expression. In 14

many cases, the 12 hour gene oscillation is superimposed on the 24 hour cycle thus 15

hiding it in conventional analysis. Additionally, experiments designed to elucidate the 16

24 hour circadian often do not have the granularity required to reveal an interval of less 17

than 24 hours. 18

To reveal periodicities in gene expression shorter than the 24 hour circadian cycle, 19

we applied digital signal processing methodology to this biologic phenomenon. Although 20

this approach is, to our knowledge, less commonly used in the biological field, it is 21

justified because the transcription of DNA to RNA is indeed a signal, packed with 22

information for making the enormous repertoire of proteins. 23

To extract the fundamental oscillations (amplitude and period) present in the data, 24

we utilized publicly available time-series microarray datasets on circadian gene 25

expression of mice liver (under constant darkness) [5] and analyzed over 18,000 genes 26

spanning a variety of cellular process ranging from core clock control, metabolism, cell 27

cycle to the unfolded protein responses (UPR) – a measure of cell stress. In addition 28

one set of measurements of RER (respiratory exchange ratio) from wild-type mice 29

(generated by us) was also performed. We constructed linear, discrete-time, 30

time-invariant models, of low order, driven by initial conditions, which approximately fit 31

the data and thus reveal the fundamental oscillations present in each data set. In 32

addition to the 24 hour (circadian) cycle known to be present, other fundamental 33

oscillations have been revealed using our approach. 34

Methods 35

We searched for 12 hour oscillations in several biological systems. We chose these 36

systems because they represent not only gene transcription but also phenotype, that is 37

the way in which these biological systems are expressed in the whole organism. The 38

reasoning was that if the 12 hour oscillation in transcription was biologically significant, 39

it would be represented in some measurable metabolic function. 40

Initially, we analyzed a set of transcription data [5] that was collected in mouse liver 41

obtained from animals in constant darkness after being entrained in a 12 hour light/12 42

hour dark environment. Mice were sacrificed at 1 hour intervals for 48 hours thus 43

providing enough data points to analyze the signal. The dataset thus obtained contains 44

RNA values for all coding genes. The RNA data were generated using the microarray 45
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method prevalent at the time the experiment was performed. In addition RER 46

(respiratory exchange ratio) measurements in mice were also considered. 47

The novelty in our analysis consists in using the so-called matrix-pencil method [4]. 48

This is a data-driven system identification method. It constructs dynamical systems 49

based on time-series data and finds the dominant oscillations present in the ultradian 50

rhythms. Our purpose here is to compare this method with other established strategies 51

for spectral estimation, including both parametric spectrum estimation methods like 52

MUSIC (MUltiple Signal Classification) and ESPRIT (Estimation of Signal Parameters 53

via Rotational Invariance Techniques) Prony’s (Least squares) as well as classical 54

nonparametric models like wavelet transforms and statistical methods like RAIN. These 55

methods are finally compared with each other using both artificial and measured data. 56

Matrix pencil method 57

The data. We consider finite records of data resulting as described above. Generically 58

they are denoted by yi, i = 1, . . . , N . 59

Basic model: sum of exponentials. We seek to approximate the data by means of 60

linear combinations of exponentials plus noise. Thus we seek r pairs of complex 61

numbers αi, βi, i = 1, 2 , . . . , r, such that 62

y(t) = y∗(t) + n(t), where y∗(t) =

r∑
i=1

αi e
βit, (1)

is the noiseless part of the signal and n(t) is the noise. The requirement is: y(m) ≈ ym, 63

m = 1, 2, . . . , N . Existing approaches to address this problem are MUSIC, ESPRIT, 64

Prony’s (least squares) method, wavelet transform and statistical methods described 65

later. 66

Second model: descriptor representation. The equivalent descriptor model uses 67

an associated internal variable x(t) ∈ Rk of the system. The resulting equations are: 68

Ex(t+ 1) = Ax(t), y(t) = Cx(t) + n(t), x ∈ Rk, t = 0, 1, 2, . . . . (2)

with initial condition x(0) = x0 ∈ Rk, where E, A ∈ Rk×k, C ∈ R1×k. 69

Third model: AR (Auto Regressive) representation. The above model can also 70

be expressed as an AR model driven by an initial condition. As above we let 71

y(t) = y∗(t) + n(t), (where y∗(t) is the noiseless term and n(t) the noise). It follows 72

that (2) can be rewritten as: 73

y∗(n+ k) + γk−1y
∗(n+ k − 1) + · · ·+ γ1y

∗(n+ 1) + γ0y
∗(n) = 0, (3)

with initial conditions y∗(`), ` = 0, 1, . . . , k − 1. 74

Goal. As already stated our goal is, using these models and reduced versions thereof, to 75

discover the fundamental oscillations inherent in the gene data. 76

Processing of the data. The data y1, y2, . . . , yN , is used to form the Hankel
matrix:

H =



y1 y2 y3 · · · yk−1 yk yk+1

y2 y3 y4 · · · yk yk+1 yk+2

y3 y4 y5 · · · yk+1 yk+2 yk+3

...
...

...
. . .

...
...

...

yk−1 yk−2 yk−3 · · · y2k−3 y2k−2 y2k−1

yk yk+1 yk+2 · · · y2k−2 y2k−1 y2k


∈ Rk×(k+1),
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where for simplicity it is assumed that N = 2k. Then using MATLAB notation for 77

simplicity, we define the quadruple (E,A,B,C) : 78

E = H(1 : k, 1 : k), A = H(1 : k, 2 : (k + 1)), B = H(1 : k, 1), C = H(1, 1 : k). (4)

This quadruple constitutes the raw model of the data. This model is linear, 79

time-invariant and discrete-time with a non-zero initial condition: 80

Ex(n+ 1) = Ax(n), y(n) = Cx(n), Ex(0) = B, n = 0, 1, 2, . . . . (5)

Reduced models and fundamental oscillations. The dominant part of the raw 81

model is determined using a model reduction approach [2], [?], [4]. The procedure is 82

as follows. Compute the singular value decompositions (SVDs): 83

[u1, s1,v1] = svd

([
E

A

])
, [u2, s2,v2] = svd ([E, A]) .

Choose the dimension r of the reduced system (e.g r = 3, r = 5, r = 7 etc.). Then 84

X = u2(1 :k,1:r), Y = v1(1 :k,1:r),

are used to project the raw system to the dominant system of order r:

Er = XTEY ∈ Rr×r,Ar = XTAY ∈ Rr×r,Cr = CY ∈ R1×r,xr = XTx0 ∈ Rr×1.

The associated reduced model of size r is: 85

Erxr(n+ 1) = Arxr(n), yr(n) = Crxr(n), Erxr(0) = Br.

Assuming (as is mostly the case) that Er is invertible, the approximated data can be 86

expressed as: 87

ŷn = Cr[E
−1
r Ar]

n−1 [E−1r Br

]
.

Next, we compute the partial fraction expansion of the associated transfer function: 88

Hr(z) = Cr(zEr −Ar)
−1Br. This involves the eigenvalue decomposition (EVD) of the 89

matrix pencil (Ar,Er), or equivalently of E−1r Ar; let 90

E−1r Ar = VrΛrV
−1
r ,

where the columns of Vr = [v1, . . . ,vr] are the eigenvectors, Λr = diag[λ1, . . . , λr] are 91

the eigenvalues of the reduced system (poles of Hr(z)), and [v̂T
1 ; . . . ; v̂T

r ] are the rows of 92

V−1r . The approximate data can be expressed as: 93

ŷn =
r∑
i=1

[Cvi] [v̂T
i B] λn−1i =

r∑
i=1

Pi λ
n−1
i = αi e

σin ej(ωin+θi),

where Pi = [CvTi ] [v̂iB], is the complex amplitude of the ith, oscillation; expressing this 94

in polar form Pi = αie
jθi , αi is the real amplitude and θi the phase. Finally, if we 95

express the eigenvalues as λi = eσi+jωi , σi is the decay (growth) rate, and ωi the 96

frequency, of the ith oscillation. 97
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MUSIC method 98

The MUSIC algorithm is a parametric spectral estimation method based on eigenvalue 99

analysis of a correlation matrix. It uses the orthogonality of the signal subspace and the 100

noise subspace to estimate the frequency of each oscillation. It assumes that a set of 101

data can be modeled as Y = Γa + n, where Y = [y1 y2 . . . yN ]T ∈ <N , is a set of gene 102

transcription data, Γ = [e(ω1) e(ω2) . . . e(ωK)] is the transpose of a Vandermonde 103

matrix, K is the number of dominant frequencies, and e(ωi) = [1 ejωi . . . ej(K−1)ωi ]T , 104

a = [a1 a2 . . . aK ]T contains the amplitudes of the dominant K frequencies, 105

n ∼ N (0, σ2
nI), is assumed to be white noise. The autocorrelation matrix is 106

Ryy =
1

M

M∑
i=1

yyH = ΓΛ2Γ
H

+ σ2
nI

where Λ = diag(λi) and M is the number of columns in the Hankel matrix. We can see 107

that the rank of the matrix ΓΛ2Γ
H

equals K where the nonzero eigenvalues are 108

{λm}Km=1. Then the sorted eigenvalues of the autocorrelation matrix Rxx can be 109

expressed as 110

λn = λ̃n + σ2
n, n ≤ K, and σ2

n, K < n ≤ N.
It follows that the noise subspace contains the eigenvectors of the autocorrelation 111

matrix Rxx corresponding to the N −K smallest eigenvalues. Then 112

RxxG = G diag [λK+1, . . . , λN ] = ΓΛ2Γ
H

G + σ2
nG

so ΓHG = 0, and the frequency values {λ̃k}Kk=1 are the only solutions of 113

e(ω)HGGHe(ω) = 0. The MUSIC algorithm seeks the peaks of the function 114

1/
[
e(ω)HGGHe(ω)

]
, where ω ∈ [0, 2π]. The Root MUSIC algorithm seeks the roots of 115

pH(z−1)GGHp(z) that is the Z-transform of e(ω)HGGHe(ω) where z = ejω ∈ C. 116

The MUSIC algorithm can only provide the frequency information of the signal. To 117

obtain the amplitude of each oscillation, we need to apply least squares fitting, where 118

the amplitudes of dominant oscillations satisfy a = (ΓHΓ)−1ΓHx. It should be 119

mentioned that in contrast with the pencil method, MUSIC cannot provide the decay 120

(growth) rate of the oscillations. 121

ESPRIT method 122

The ESPRIT algorithm is another parametric spectral estimation algorithm which 123

analyzes the subspace of the correlation matrix. The algorithm estimates the poles 124

relying on rotational transformations. As in MUSIC: Γi,j = zi−1j , j = 1, . . . , K, i = 1, 125

. . . , N , where zj are the poles. We can construct Γ1 = Γ(1 : N − 1, :), and 126

Γ2 = Γ(2 : N, :). The relationship between these two quantities is Γ2 = Γ1Φ, where 127

Φ = diag [z1, z2, . . . , zK ] ,, is the phase shift matrix that represents a rotation. Now 128

using the signal matrix S we construct 129

S1 = S(1 : N − 1, :), S2 = S(2 : N, :).

Note that the relationship between S1 and S2 is S2 = S1Ψ. Because Γ and S have the 130

same column space (see the reference), we have that Γ = ST, where T is an invertible 131

subspace rotation matrix. So we have Ψ = T−1ΦT. Therefore the poles are the 132

eigenvalues of Ψ. Finally use least squares (LS) to obtain Ψ = (SH1 S1)−1SH1 S2. The 133

eigenvalues of Ψ, are the poles zi = ejωi+σi . Thus ESPRIT can estimate both the 134

frequency and the decay (growth) rate of the oscillations. However, as with MUSIC, we 135

need to use LS to obtain the amplitude of each oscillation. For details on the MUSIC 136

and ESPRIT methods see [6], [7]. 137
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Wavelet transform 138

Wavelet transforms can be divided into two categories, the continuous (CWT) and the 139

discrete (DWT) versions. CWT is more suitable for analyzing biologic rhythms because 140

of the associated two-dimensional heat map. 141

In CWT a time signal x(t) is convolved with a wavelet function. This leads to a 142

time-frequency representation which provides spectrum information in a local time 143

window. This transform can be expressed as Wψ(t, s) =
∫∞
−∞

1
sψ
∗(u−ts )x(u)du, where s 144

is the frequency scale, ψ∗(t) is the wavelet function. Since the signal data is obtained by 145

sampling, we can approximately rewrite the equation as 146

Wψ(t, s) =
∑∞
n=−∞ ψ∗(n−ts )x(n). Since the limits of integration are −∞ to ∞, the 147

finite signals y produce errors, and edge effects become obvious, especially in 148

low-frequencies. 149

In practice, there are many wavelet functions that can be chosen, both real-valued 150

and complex-valued. Real-valued wavelets are useful for treating peaks and 151

discontinuities of signals while complex-valued wavelets yield the information of 152

amplitude and phase simultaneously. For details on this approach, see e.g. [10]. 153

Statistical methods 154

In this section three methods to detect biological rythms will be briefly discussed. These 155

are ARSER, JTK CYCLE, RAIN. Those methods focus on the (one) most dominant 156

oscillation in the data, especial JTK CYCLE and RAIN. Those methods are all 157

statistical tests that calculate the p-value to determine whether a certain rhythm exists 158

in the data. For details on these methods we refer to the original references [8, 9, 12]. 159

ARSER 160

ARSER uses the autoregressive (AR) model to obtain the period of oscillation. It then 161

uses linear (harmonic) regression to determine the amplitude and the phase of the 162

oscillation. Finally applying the F-test to pre-processed data concludes whether an 163

oscillation exists. 164

Pre-processing the Data. Because the data may not be stable, ARSER applies linear 165

detrending to the raw data. It then uses linear regression to fit the data. Subsequently 166

it uses a fourth-order Savizky-Golay algorithm to smooth the data (this is a low-pass 167

filter to remove pseudo-peaks in the spectrum). 168

Finding the Period. ARSER uses autoregressive model to get the period of the 169

oscillation. Given a pre-processed data {yt}Nt=1 with period interval ∆. 170

yt =
n∑
i=1

αiyt−i + εt,

where εt is white noise, αi are AR coefficients, n is the order of model (we choose 171

n =length-of-data/∆). To calculate the coefficients, ARSER uses the Yule-Walker 172

method, maximum likelihood estimation and the Burg algorithm. Finally the spectrum 173

is: 174

s(ω) = σ2
ε

/ ∣∣∣∣1 +
n∑
k=1

αk exp−iωk
∣∣∣∣2,

where σ2
ε is the variance of white noise. 175

Harmonic Regression. The pre-processed data is: 176

yt = µ+
m∑
i=1

{βi1 cos(2πt/Ti) + βi2 sin(2πt/Ti)}+ εt,
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where βi1 and βi2 are the amplitudes calculated by linear regression. 177

F -test. This test compares the approximation data {ŷt} and pre-processed data {yt}. 178

The null and the alternative hypotheses are respectively 179

H0 : A1 = A2 = · · · = Ar, H1 : Ai, 6= 0, for at least one value of i,

where Ai are the amplitudes which are calculated using linear regression, r is the 180

number of coefficients obtained by linear regression. We can calculate the F coefficient 181

by: 182

F =

∑N
i=1(ŷi − ¯̂y)2/(r − 1)∑N
i=1(ŷi − yi)2/(N − r)

.

Then we can calculate the p value using the F -distribution p = P (F, r − 1, N − r), 183

where P (·) is the probability distribution. 184

JTK CYCLE and RAIN 185

JTK CYCLE and RAIN use statistical method to detect the trends in data. The former 186

can find the increasing or decreasing trends while RAIN combines those together. 187

A periodic waveform should start from the trough and increase to the peak following 188

a decreasing part to a new trough. Because our data is sampled from the waveform, we 189

can regard every time sampled data point as a variable. Thus we can get n variables 190

{Fi}ni=1 for the waveform that T = n∆ (T is the period of the waveform, ∆ is the time 191

interval of sampling point). We assume the variances of those variables are the same. 192

And they have the same mean value only when the data only have noise without 193

periodic oscillation. So the null and the alternative hypotheses are 194

H0 : F1 = F2 = · · · = Fn, H1 : F1 < F2 < · · · < Fn or F1 > F2 > · · · > Fn.

The alternative hypotheses for RAIN is 195

H1 : F1 < F2 < · · · < Fe > Fe+1 > · · · > Fn > F1.

Calculating the statistical coefficient of trend. Every variable Fi, corresponds to a 196

sampled dataset {Xij}mi
j=1, where mi is the number of sampled data point of the ith 197

variable (
∑n
c=1mc = N). Let 198

qik,jl = 1, if Xik ≤ Xjl, and 0 otherwise, and Uij =

mi∑
k=1

mj∑
l=1

qik,jl ,

which is the Mann–Whitney U -statistic for comparison of two variables. For 199

JTK CYCLE, the statistical coefficient of trend is 200

s =
n−1∑
i=1

n∑
j=i+1

Uij .

For RAIN, the statistical coefficient of trend is 201

s =
e−1∑
i=1

e∑
j=i+1

Uij +
n−1∑
i=e

n∑
j=i+1

Uji +
n∑

i=e+1

Ui1

Calculating the p-value. This is: p(s) =
f(s)∑smax

i=0 f(i)
. In order to calculate the p-value, 202

we need to specify the distribution f(i) of the statistical coefficient s when the null 203
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Table 1. Parameters used for the simulation

i A σ θ T

1 1 0.005 0 ∞
2 1 0.004 π

2 − 6 24.8

3 0.3 −0.002 π
2 11.8

4 0.1 0.005 π
2 + 1 7.5

hypotheses H0 is true. Furthermore the distribution f(i) is computed, using a 204

generating function G(z) =
∑smax

i=0 zif(i). For JTK CYCLE and RAIN we have 205

respectively: 206

G(z) =

∏N
u=1(1− zu)∏n

d=1

∏md

v=1(1− zv)
,

G(z) =

∏N1e

u1=1(1− zu1)∏e
d=1

∏md

v=1(1− zv)
·
∏Nen

u2=1(1− zu2)∏n
d=e

∏md

v=1(1− zv)
·

∏N(e+1)n+m1

u3=1 (1− zu3)∏m1

v=1(1− zv) ·
∏N(e+1)n

v=1 (1− zv)

Thus G(z) for JTK CYCLE and RAIN are both polynomials. We can get the 207

distribution f(i) by calculating the coefficients of G(z). 208

Experimental Results: artificial data 209

In this section we test the performance of different methods using artificially generated 210

signals. For the continuous wavelet transform, we chose the complex morlet wavelet 211

because it allows changes to the resolution in frequency and time domain. For 212

simulation data, we assume the data has the form 213

y(n) =

n∑
i=1

fi(n) + n(n),

where n is white noise with zero mean and variance σ2 and fi is the ith oscillation, 214

where: 215

fi(n) = Aie
−σin cos

(
2π

Ti
n+ θi

)
,

where Ai is the amplitude, σi is the decay (growth) rate, θi is the phase and Ti is the 216

period. At first we assume that the samples are collected in unit time intervals. The 217

parameters are defined in Table 1; the first oscillation is almost constant with small 218

decay; the other three oscillations have a period of approximately 24- 12- and 8-hours. 219

The experiment has the following parts. First, the sensitivity to noise is investigated. 220

Here, the variance of noise is changed and the performance of different methods is 221

examined. Second, the impact of the length of the data is investigated. Finally, the 222

frequency of data collection (can be referred to as sampling rate) is examined. Recall 223

that the Nyquist sampling theorem provides the lower bound for the sampling frequency 224

in order to prevent aliasing. This can be used to determine appropriate sampling 225

frequencies for continuous-time signals. 226

Sensitivity to noise 227

To test the sensitivity of the various methods to noise, we set the standard deviation of 228

n to σ = [0, 0.03, 0.1, 0.3]. 229
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Fig 2. This figure shows fit curves of different methods and simulation data (length 50)
with σ as stated. The red points are simulation data, blue, green and magenta are the
curves of the pencil, ESPRIT and MUSIC methods respectively. This figure shows that
the pencil and ESPRIT methods yield a perfect fit in all situations. The MUSIC
algorithm gives a good fit only for small noise. Next we also display the poles obtained
by using each method.

Table 2
σ = 0.01

orig. poles Pencil ESPRIT MUSIC

0.990 0.990 0.990 1.000

0.958± 0.248i 0.958± 0.248i 0.958± 0.248i 0.970± 0.239i

0.870± 0.502i 0.870± 0.512i 0.870± 0.512i 0.867± 0.497i

0.662± 0.735i 0.662± 0.735i 0.662± 0.735i 0.693± 0.721i

σ = 0.03

orig. poles Pencil ESPRIT MUSIC

0.990 0.990 0.990 1.000

0.958± 0.248i 0.958± 0.248i 0.958± 0.248i 0.970± 0.239i

0.870± 0.502i 0.870± 0.512i 0.871± 0.512i 0.861± 0.507i

0.662± 0.735i 0.660± 0.737i 0.659± 0.736i 0.712± 0.701i

σ = 0.1

orig. poles Pencil ESPRIT MUSIC

0.990 0.989 0.989 1.000

0.958± 0.248i 0.960± 0.248i 0.960± 0.249i 0.974± 0.225i

0.870± 0.502i 0.867± 0.511i 0.867± 0.512i 0.834± 0.551i

0.662± 0.735i 0.669− 0.772i 0.662± 0.751i −0.974± 0.2235i

σ = 0.3

orig. poles Pencil ESPRIT MUSIC

0.990 0.987 0.988 1.000

0.958± 0.248i 0.965± 0.236i 0.964± 0.239i 0.975± 0.221i

0.870± 0.502i 0.863± 0.511i 0.862± 0.513i 0.880± 0.474i

0.662± 0.735i 0.007± 1.021i −0.001± 1.012i −0.034± 0.999i

Fig 3

In Fig 3 the heat map of the wavelet transform is shown. Thus the yellow region is 230

such that we cannot distinguish two oscillations with close periods. We can recognize 231

12h and 8h oscillations when the noise is weak. However when the noise is strong 232

(σ = 0.3), only the strongest oscillation can be determined. The edge effect is obvious 233

and there are ghost lines e.g. around 15h, that may lead to false estimation. 234

From these considerations, we conclude that the pencil and ESPRIT methods are 235

robust to noise. This is not the case for MUSIC and CWT. 236

Impact of data length 237

Fig 4. The plot shows fit curves of different methods and simulation data (noise
standard deviation 0.05) with duration L = [30, 50, 100, 200]. The time interval for data
collection is 1. Red points indicate simulation data, blue, green and magenta are the fit
curves of pencil, ESPRIT and MUSIC algorithms, respectively.

Fig 5. The plot shows poles of oscillations estimated with different methods (noise
standard deviation 0.05) with duration L = [30, 50, 100, 200]. The time interval for data
collection is 1. Black ∗ indicates the original poles of the simulation data, blue, green
and magenta are the estimated poles using the pencil, ESPRIT and MUSIC algorithm,
respectively. For more accuracy, the poles are also listed in the Table 3.

Rate of data collection (sampling frequency) 238

To investigate the impact of sampling of the underlying continuous-time signal, we 239

generate artificial data with L = 50. Then we apply all methods to the original dataset, 240

the half-data set (time collection interval I = 2) and third-data set (that is 1, 4, 7, 10 · · · 241

with time interval I = 3). 242
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Table 3
L = 30

orig. poles Pencil ESPRIT MUSIC

0.995 0.896 −1.043 1.000

0.964± 0.249i 0.778± 0.661i 0.305± 0.000i 0.977± 0.213i

0.863± 0.505i 0.447± 0.000i 0.772− 0.653i 0.806± 0.591i

0.665± 0.739i 1.093− 0.329i 1.085± 0.324i 0.456± 0.889i

L = 50

orig. poles Pencil ESPRIT MUSIC

0.995 0.995 0.995 1.000

0.964± 0.249i 0.964± 0.250i 0.964± 0.250i 0.970± 0.239i

0.863± 0.505i 0.864± 0.511i 0.863± 0.510i 0.824± 0.566i

0.665± 0.739i 0.655± 0.727i 0.652± 0.731i −0.336± 0.941i

L = 100

orig. poles Pencil ESPRIT MUSIC

0.995 0.994 0.994 1.000

0.964± 0.249i 0.964± 0.249i 0.964± 0.249i 0.969± 0.246i

0.863± 0.505i 0.863± 0.508i 0.863± 0.508i 0.857± 0.514i

0.665± 0.739i 0.661± 0.734i 0.659± 0.733i 0.648± 0.761i

L = 200

orig. poles Pencil ESPRIT MUSIC

0.995 0.995 0.995 1.000

0.964± 0.249i 0.964± 0.249i 0.964± 0.249i 0.972± 0.234i

0.863± 0.505i 0.863± 0.508i 0.863± 0.508i 0.857± 0.514i

0.665± 0.739i 0.663± 0.737i 0.663± 0.737i −0.336± 0.941i

Fig 6. The plot shows heat maps (Y-axis is frequency domain, X-axis is time domain)
of simulation data (noise standard deviation 0.05) with duration L = [30, 50, 100, 200].

Fig 7. The plot shows data fit for the various methods.

Conclusion. From the above considerations it follows that decreasing the sampling 243

frequency does not affect the estimation significantly. This means that the data rate 244

collection (sampling frequency) is not an important factor. In contrast, the data length 245

is a crucial factor for all methods. 246

Experimental Results: the pencil method applied to gene data 247

In this section we analyze a small part of the measured data in order to validate some of 248

the aspects of the pencil method compared to the other methods. 249

Fig 8. Batch consisting of 171 measurements every 40min

Fig 9. Batch consisting of RER for restrictively fed mice (218 meas. every
40min)

We analyze the relationship among the decomposed oscillations, by calculating the angle 250

among these oscillations for 10 different genes. We set r = 9, i.e. the gene signals 251

contain four oscillations fi, i = 1, . . . , 4. The approximant is thus 252

ŷ = f0 + f1 + f2 + f3 + f4. 253

From Table 6 and 7, we can see that the angle between oscillations is around 90◦ in 254

most situations. So oscillations are nearly orthogonal with each other (fi⊥fj , i 6= j), in 255

other words they are mathematically independent of each other. 256

Fig 10. Batch consisting of various measurements using mice — 38 min
intervals

Variation of data collection rate 257

We compare the oscillations using all data (AD), the first half of data (FHD), the second 258

half of data (SHD), odd-position data (OD), even-position data (ED). This is done for a 259

particular set measurements, but the results are indicative of what happens in general. 260
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Table 4. Relative approximation error

3-fit 5-fit 7-fit 9-fit

Gene 1 0.1973 0.1276 0.1122 0.1299

Gene 2 0.2217 0.2028 0.1669 0.1375

Gene 3 0.2801 0.3940 0.2038 0.2112

Gene 4 0.2654 0.2525 −− 0.2026

Gene 5 0.4296 0.3780 0.1970 −−
Gene 6 0.2493 0.2563 0.1918 0.1929

Gene 7 0.1971 0.1525 0.1475 0.1547

Gene 8 0.1914 0.1681 0.1402 0.1619

Gene 9 0.1832 0.1913 0.1403 0.1357

Gene 10 0.2016 0.2013 0.1874 0.2089

Gene 11 0.2637 0.2623 −− 0.2083

Gene 12 0.2174 0.1681 0.2116 0.1484

Gene 13 0.3420 0.2154 −− 0.2270

Gene 14 0.3140 0.2671 0.2452 0.2034

Gene 15 0.4058 0.3374 0.3052 0.2281

Table 5. Angle between approximant and error

3-fit 5-fit 7-fit 9-fit

Gene 1 88.72 88.65 88.66 90.46

Gene 2 88.00 89.84 87.27 86.17

Gene 3 91.92 −− 92.25 91.54

Gene 4 89.82 94.18 −− 92.30

Gene 5 84.35 86.36 89.74 −−
Gene 6 86.94 91.78 88.39 88.78

Gene 7 89.71 88.23 88.33 90.17

Gene 8 87.45 88.19 87.02 89.11

Gene 9 86.36 92.63 86.64 86.68

Gene 10 86.78 87.81 86.42 89.90

Gene 11 92.80 91.36 180 90.92

Gene 12 91.20 90.18 94.12 90.59

Gene 13 87.25 88.50 180 91.57

Gene 14 90.36 94.35 93.30 91.35

Gene 15 88.15 84.41 91.66 90.31

Discussion and comments 261

1. Orthogonality. Let the original vector of measurements for one data set be 262

denoted by y ∈ RN ; let also fi, i = 0, 1, 2, 3, 4, denote the vectors of the DC-component 263

and of the first four fundamental oscillations obtained by means of the pencil reduction 264

method described above. Then the corresponding approximant is 265

ŷ = f0 + f1 + f2 + f3 + f4. It follows that: 266
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Table 6. Angle between Error vector and approximants.

Gene r = 3 r = 5 r = 7 r = 9

Bmal 89.4040 89.0189 88.7227 89.4645

Clock 97.5846 95.6007 – 154.5354

per1 87.3120 87.0905 – 122.6093

per2 84.0943 84.3410 84.2252 97.1281

cry1 83.6787 85.7345 83.9466 –

cry2 88.0607 85.8548 85.7156 87.9577

rorc 88.2740 87.0592 90.5345 –

rora 92.5359 – 90.2449 90.3424

rev-erba 93.4881 92.5612 91.1162 91.4786

reb-rebb 89.2219 89.2972 89.0471 90.6819

Table 7. Angle between Oscillations.

Gene f1 vs f2 f1 vs f3 f1 vsf4 f2 vsf3 f2 vsf4 f3vsf4

Bmal 90.9499 91.8664 87.7962 85.2451 91.2452 91.7038

Clock 89.4592 87.9364 – 106.0165 – –

per1 85.4061 93.9105 87.4712 74.9960 90.2287 101.0929

per2 91.6425 94.1211 89.7681 88.9246 90.6757 90.4533

cry1 83.3704 87.0513 – 89.2173 – –

cry2 84.0615 91.3131 90.0791 90.9828 86.2981 88.1623

rorc 88.6977 94.5739 87.0044 99.9135 85.2751 93.1401

rora 91.3788 89.7184 89.8657 92.8563 88.6223 90.5763

rev-erba 94.9717 83.6197 88.9055 98.3908 90.8681 91.7753

reb-rebb 88.4669 89.5753 90.7263 90.9262 88.9671 92.8038

Table 8. Estimated periods using different part of the data. It follows that
the estimation of periods of oscillations are consistent using AD, FHD,
SHD.

AD/h FHD/h SHD/h OD/h ED/h

1 24.37 23.01 24.36 24.37 24.37

2 12.34 12.41 12.46 11.90 12.58

3 8.12 8.42 7.45 8.25 8.13

N The fundamental oscillations are orthogonal

among themselves: fi ⊥ fj , i 6= j.

N The approximant (composed of these oscillations)

is orthogonal to the error (noise): ŷ ⊥ ε = y − ŷ
-

6

a�
�
�
�
�
�
��>

ŷ

ε = y − ŷ

x

267

2. Interpretation of orthogonality. Orthogonality means that once an oscillation 268

(e.g. the circadian or the 12h rythm) has been determined, further computations will 269
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Table 9
ESPRIT

3− fit 5− fit 7− fit 9− fit

0.993 0.993 0.993 0.993

0.939± 0.273i 0.944± 0.272i 0.943± 0.274i 0.944± 0.274i

0.859± 0.509i 0.866± 0.505i 0.866± 0.505i

0.370± 0.892i 0.374± 0.899i

−0.832± 0.213i

LS (Prony’s method)

3− fit 5− fit 7− fit 9− fit

0.967 0.970 0.972 0.994

0.363 0.435± 0.319i 0.339± 0.354i 0.863± 0.384i

−0.486± 0.366i −0.517± 0.380i 0.319± 0.863i

0.363 −0.475± 0.745i

−0.806± 0.299i

Pencil method

3-fit 5-fit 7-fit 9-fit 24-fit (all data)

0.9933 0.9932 0.9931 0.9930 0.9915

0.9436± 0.2734i 0.9449± 0.2730i 0.9446± 0.2742i 0.9447± 0.2747i 0.9489± 0.2843i

0.8609± 0.5132i 0.8659± 0.5086i 0.8672± 0.5068i 0.8729± 0.4812i

0.3831± 0.9159i 0.3902± 0.9121i 0.3214± 1.1528i

−0.9780± 0.3415i −0.9368± 0.3683i

Fig 11

not affect this oscillation. In other words the fundamental oscillations are 270

independent of each other. 271

3. Manifestation of orthogonality. It turns out that as we determine higher-order 272

approximants, i.e. as we add oscillations to the model, the existing ones remain mostly 273

unchanged. Considering the case of the para probe1 gene, we apply the ESPRIT, LS 274

(Prony’s) and pencil methods. The statistical methods (e.g. ARSER) are not used 275

because being non-parametric they do not allow the choice of the order of fit. ESPRIT 276

and LS are not reliable for large orders of fit, therefore the results for the 24-fit model is 277

not shown. 278

4. Connection with the Fourier transform. The pencil method provides an 279

almost orthogonal decomposition of a discrete-time signal. The question arises therefore 280

as to whether the same or improved results can be obtained using the Fourier transform 281

and in particular the DFT. Applying the DFT to a length N sequence we obtain a 282

decomposition in terms of the N given frequencies or periods, which are (in 283

decreasing order) 48, 24, 16, 12, 48
5 , 8, 48

7 , 6, 16
3 , . . . ,

48
47 . Therefore unless the 284

frequencies of the underlying oscillations are exactly among the ones above, the results 285

of the DFT are not useful. 286

5. The least squares (Prony’s) method. This method is not appropriate for cases 287

where the poles are on or close to the unit circle (pure or almost pure oscillations). Fig 288

11 depicts this fact in the case of the RER data. The conclusion is that while the matrix 289

pencil method (red dots) gives oscillatory poles, this is by far not the case with the LS 290

(prony’s) method (green dots). 291

6. Comparison of different Methods. 292
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Table 10

Method Parameter Estimation Estimation Performance Detection of

orthogonality

Period Decay Rate Amplitude Phase Accuracy Robustness

DFT Yes No Yes Yes Low Yes No

Wavelet Yes Yes Yes No Low No No

MUSIC Yes No No No High No No

ESPRIT Yes Yes No No High Yes No

Prony (LS) Yes Yes No No No No No

Pencil Yes Yes Yes Yes High Yes Yes

Final result 293

The dataset consists of 18484 genes; transcription is analyzed using the pencil 294

method [4], the ESPRIT method, Prony’s method and the three statistical methods. 295

The distribution of the poles follow; recall that the poles of ideal oscillations have 296

magnitude equal to 1. 297

Fig 12. Pencil 12h: 2354 genes

Fig 13. ESPRIT 12h: 2345 genes

Fig 14. Prony (LS) 12h: 265 genes

Using the three statistical methods we get (see Table 11): Furthermore the DFT and

Table 11

ARSER JTK RAIN

q = 0.01 305 28 305

q = 0.05 519 74 681

298

Wavelet methods are also not competitive. 299

The above distributions show that the Pencil method has uncovered real oscillations, 300

since the mean of the magnitude of all poles is 1.0058 and the standard deviation is 301

0.0010. The ESPRIT method follows in terms of discovering oscillations, while the 302

Prony or LS (Least Squares) method and the three statistical methods give weak results. 303

As explained above the main drawback of the ESPRIT method concerns the fact that it 304

has nothing to say about the orthogonality of the oscillations, which proves to be a 305

key outcome of the pencil method. 306

Concluding remarks and outlook 307

Summarizing: the matrix pencil method allows the consistent determination of the 308

dominant reduced-order models, which reveals the fundamental oscillations present in 309

the data. The essence of the matrix pencil method is that it provides a 310
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continuous-time tool for treating a discrete-time (sampled-data) problem. Instead, 311

the DFT for instance, is only a discrete-time tool for treating a discrete-time problem, 312

hence its failure. 313

A key consequence of this approach is the orthogonality of the different oscillatory 314

components, in particular the 24h and the 12h ones. This points to an independence of 315

these oscillations. This fact has been subsequently confirmed in the laboratory 316

experiments reported in [13]. 317
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