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ABSTRACT 
 
Background. ​Repositioning approved drugs for the treatment of new indications is a promising 

avenue to reduce the burden of drug development. Most currently available computational 

methods based on molecular evidence can only utilize gene expression for repositioning despite 

a growing interest in the epigenome in human disease. We recently described a novel 

repositioning method, ksRepo, that enables investigators to move beyond microarray-based 

gene expression and utilize a variety of other sources of molecular evidence, such as DNA 

methylation differences. 

Methods. ​We downloaded differential DNA methylation data from two publicly available acute 

myeloid leukemia (AML) datasets, a cancer with known, extensive epigenomic perturbations. 

We consolidated CpGs-level to non-directional gene-level differential methylation using Brown’s 

correction to Fisher’s method. We then used ksRepo, which ignores directionality in disease- 

and gene-drug associations, to mine the resulting prioritized gene lists and and the Comparative 

Toxicogenomics Database (CTD) for predicted repositioning candidates. 

Results. ​We successfully recovered four compounds that were significant (FDR < 0.05) in two 

AML datasets: cytarabine, alitretinoin, panobinostat, and progesterone. Cytarabine is the most 

commonly used frontline therapy for AML and alitretinoin, panobinostat, and progesterone have 

all been investigated for the treatment of AML. 

Conclusions. ​Combining a method for consolidating CpG methylation to the gene level with 

ksRepo provides a pipeline for deriving drug repositioning hypotheses from differential DNA 

methylation. We claim that our platform can be extended to other diseases with epigenetic 

perturbations and to other epigenomic modalities, such as ChIP-seq. 
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INTRODUCTION 

The process of nominating new indications for previously approved drugs, known as drug 

repositioning, has become increasing attractive to industry and academia due to the substantial 

decrease in risk of unforeseen adverse events associated with compounds with known safety 

profiles ​[1–3]​. A large number of computational approaches have been developed over the past 

10 years that leverage molecular evidence to identify repositioning candidates, such as using 

differential gene expression ​[4–7]​. Unfortunately, these methodologies are hindered by their 

need for specific data types, assay platforms, and data formats, preventing investigators from 

utilizing newer profiling technologies and expanding beyond gene expression. In particular, 

epigenomics is a key modality that has yet to be broadly utilized, in large part due to the lack of 

clear directionality at the gene level associated with differential DNA methylation and histone 

modifications; for instance, intra-exon DNA methylation can lead to upregulation or 

downregulation of gene expression depending on a variety of factors, including histone 

modifications ​[8,9]​. 

Despite this complexity, epigenomic studies have been proposed as a promising data 

source for driving personalized medicine ​[10,11]​, but to our knowledge no methods have been 

published that allow the direct translation of epigenomic findings to drug repositioning. To 

address this unmet need, we developed a novel pipeline for identifying candidate repositioning 

candidates from epigenomic data, and in particular from DNA methylation data. We pair a 

widely used method to condense CpG-level DNA methylation to gene-level information with our 

previously described repositioning tool, ksRepo ​[12]​. We demonstrate the utility of our method in 

AML using two independent genome-wide methylation datasets (see Figure 1). AML is the ideal 

case-study for our methodology, as recent work has shown that the AML epigenome evolves 

independently of mutational burden, and, furthermore, patients with AML respond well to DNA 
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demethylating agents (also known as “epigenetic drugs”) ​[13–16]​. Using our pipeline, we 

recover significance for the most commonly used AML medication, cytarabine, as well as three 

other candidates with ongoing preclinical research in the AML space. 

 

METHODS 

GEO Dataset Processing 

The datasets used in this study are GSE58477 and GSE63409, both of which are Illumina 

Infinium HumanMethylation450 chip-based (hereafter 450K) studies of AML ​[17,18]​. GSE58477 

contained data from a total of 62 patients with cytogenically normal AML and 10 CD34+ normal 

bone marrow aspirate samples ​[17]​. GSE63409 contained data from a total of 15 AML patients 

of varying FAB subtype classifications (M0: 1, M1: 2, M2: 2, M5: 5, Not Determined: 5) and five 

sorted, normal bone marrow aspirate samples ​[18]​. Both GEO datasets were accessed through 

the NCBI GEO portal and analyzed using the GEO2R tool ​[19]​. GEO2R uses the limma 

package in R ​[20]​, an analytic method originally designed for gene expression, which has been 

used to detect differential methylation ​[21,22]​. As input for GEO2R, we classified each sample 

within a GEO series as either normal CD34+ bone marrow aspirate or leukemic blast (as 

indicated by either lack of engraftment only or by a combination of CD34- and lack of 

engraftment for GSE58477 and GSE63409 respectively). After classification we were left with 

62:10 and 11:5 case:control ratios for GSE58477 and GSE63409 respectively. 

Gene-level differential methylation using Fisher’s Method 

To perform methylation-based repositioning, ksRepo requires a list of genes ranked according 

to their differential methylation. We therefore condensed the GEO2R output from CpG-level to 

gene-level differential methylation. Consolidating CpG-level significance values to gene-level 

values requires three steps: (1) identifying CpGs that are annotated to a given gene (obtained 
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from the manufacturer’s website), (2) weighted combining of p-values from CpGs annotated to 

that gene, and (3) adjusting the resulting, combined p-value to take into account the high degree 

of correlation between CpGs within a single gene. We performed the weighted combination of 

p-values, and adjusted them using the ​EmpircalBrownsMethod​ package in R ​[23,24]​. 

EmpiricalBrownsMethod​ first combines CpG-level p-values into an omnibus statistic using 

Fisher’s Method and then calculates an empirical p-value using the correlation structure of the 

CpGs in each GEO dataset ​[25]​. Using this methodology, we condensed 407,090 individual 

CpGs into a list of 21,231 genes ranked by their degree of differential methylation (see Figure 

1). Some CpGs lacked differential methylation estimates due to poor probe quality; for these 

CpGs, significance was set as the patient-level median significance for the other CpGs 

annotated to the same gene. For purposes of differential methylation calculations, all p-values 

were adjusted using the False Discovery Rate method ​[26]​. After estimating gene-level 

significance, differentially methylated genes were taken to be those with FDR significance below 

0.05. These differentially expressed genes were subjected to pathway enrichment analysis 

using the PANTHER classification system (PANTHER pathways were used, see ​[27]​). In short, 

PANTHER contains manually curated pathway annotations for human genes, as well as built-in 

analytical tools for reporting statistical enrichment using fisher’s exact test and gene-set 

enrichment; PANTHER was chosen due to the frequency of updates to its pathway annotations. 

In addition, PANTHER reports all enriched pathways using a strict family-wise error rate 

correction (to account for spurious findings or type 1 error), with significance deemed as 

Bonferroni-corrected p-value below 0.05 ​[28]​. 

ksRepo repositioning and replication 

To determine whether differential methylation-based repositioning is robust, we analyzed each 

dataset separately using ksRepo (package available for download at 
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https://github.com/adam-sam-brown/ksRepo ​, and described in ​[12]​). ksRepo uses a modified 

Kolmogorov-Smirnov (KS) statistic that does not require directionality of effect, and calculates 

significance using resampling of compound-gene interaction lists. As our database of 

compound-gene interactions, we used the ksRepo Comparative Toxicogenomics Database 

(CTD) dataset, which is built into the ksRepo package. The CTD provides a curated resource 

that links small chemical entities to genes (e.g., gene or protein expression influences) from the 

scientific literature numerous model organisms and humans ​[29]​. ksRepo contains a subset of 

the CTD containing human-derived interactions between 1,268 unique drugs and 18,041 unique 

human genes. Drugs in the ksRepo subset were chosen based on case-insensitive matches 

between CTD names and names/synonyms for FDA approved drugs downloaded from 

DrugBank ​[30]​. We combined the ranked gene list from above with the CTD using ksRepo. 

ksRepo’s output provides both the resampled and false discovery rate (FDR) adjusted p-value 

[26]​. On the study-level, significant compounds were those for which the FDR was less than 

0.05. Replicated hits were considered to be those compounds with significance in both 

methylation studies. 

 

RESULTS AND DISCUSSION 

Development of a pipeline for epigenome-based repositioning 

In this study, we built on our previously developed tool, ksRepo, a drug repositioning 

methodology that enables investigators to use directionally agnostic, prioritized gene lists to 

nominate compounds as repositioning candidates. Removing the requirement for directionality 

of effect or association (e.g. up- or down-regulation of a gene) allows investigators to use 

complex molecular data, including DNA methylation. In a DNA methylation experiment, a single 

gene can have several CpG hyper- and hypomethylation events, which would yield both 
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negative and positive associations of DNA methylation with disease. Therefore, it is a challenge 

to summarize the overall “effect” direction of a gene with both negative and positive 

associations. As input for ksRepo, we consolidated over 400,000 CpGs to gene-level 

significance using Fisher’s omnibus statistic and corrected for the high degree of inter-CpG 

correlation using Brown’s Method (see Figure 1) ​[25]​. Although we describe here a specific 

use-case of our pipeline for DNA methylation, our methodology can be adapted to other 

epigenomic signals, such as genome-wide ChIP-seq data from a variety of histone marks and 

other factors. 

Epigenome-based repositioning using publicly available AML DNA methylation data 

To assess the promise of our method, we used two, publicly available 450K DNA methylation 

datasets from GEO, both in AML ​[17,18]​. Both studies noted clear patterns of hypo- and 

hypermethylation, with complex alterations in methylation taking place within genes, and 

especially within Wnt signaling genes and homeobox domain containing genes (HOX genes). 

Using our gene-level differential methylation consolidation technique, we found that GSE58477 

and GSE63409 had 820 and 442 differentially expressed genes respectively (FDR < 0.05). 

Mirroring the results of the two GEO studies, we found that Wnt signaling genes, were 

significantly enriched in our method’s differentially methylated genes (PANTHER Wnt signaling 

pathway, Bonferroni-corrected p < 2x10 ​-11​ and p < 3x10 ​-20​ for GSE58477 and GSE63409 

respectively, see Supplementary Files 1 and 2). This suggests that, although we lose some 

resolution by combining CpGs by gene, we do capture major trends in the AML methylation 

landscape. 

Having verified that gene-level consolidation provides similar results to CpG-level 

differential methylation, we applied ksRepo independently to each GEO dataset. 1,075 drugs 

had at least one overlapping gene with those annotated in 450K chips and were tested using 
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ksRepo. We identified nine compounds with predicted FDR significance in only one of the 

datasets, and four that were significant in both. The four compounds significant in both datasets 

are presented in ​Table 1 ​(results for all drugs are presented in Supplementary Table 1). 

We posited that the most clear demonstration of utility for our method would be to 

correctly predict significance for the most commonly used AML therapy, cytarabine, which has 

remained the frontline therapy for over 30 years, and which is broadly effective against all 

subtypes of AML ​[31,32]​. Indeed, our method did correctly identify cytarabine as highly 

significant in both datasets examined; however, our method did not identify either daunorubicin 

or idarubicin, two anthracycline chemotherapeutics that are commonly co-prescribed with 

cytarabine ​[31,33]​. 

In addition to cytarabine, ksRepo nominated three novel compounds for use in AML: 

alitretinoin, panobinostat, and progesterone. Both alitretinoin, a geometric isomer of tretinoin 

currently used in the treatment of Acute Promyelocytic Leukemia (a subclass of AML) ​[34]​,​ ​and 

panobinostat, a histone deacetylase inhibitor commonly used in multiple myeloma ​[35]​, have 

been investigated for use in AML ​[36–39]​. Lastly, while progesterone itself has not, to our 

knowledge, been suggested for AML treatment, a synthetic progestin, medroxyprogesterone 

acetate, has recently been suggested as a possible drug repositioning candidate for AML ​[40]​.  

While our pipeline for epigenome-driven repositioning provided promising results for 

AML, it does have key limitations. First, as described above, removing the requirement for 

directionality (e.g. up- or down-regulation) provides substantial generality and allows for the use 

of CpG methylation data. However, such generalization does allow for the possibility that 

ksRepo candidates may have disease-exacerbating effects on their target genes; it is important, 

therefore, to perform ​in vitro​ and ​in vivo​ experiments to confirm which candidates are beneficial. 

Another possible drawback of non-directional repositioning is the possibility of missing 
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promising candidates; however, as previous studies using directional repositioning techniques 

failed to capture significance for cytarabine, and predicted fewer plausible repositioning 

candidates than ksRepo ​[41–43]​. A second limitation is the requirement that methylation or 

other epigenomic marks are annotated to a specific gene or genes; however, in the future, as 

our understanding of extragenic enhancers and other epigenomic features improves, this 

limitation should diminish. Further investigation into and annotation of other epigenetic 

modifications will also help to broaden the available inputs for our method. Lastly, we 

acknowledge that the CTD may contain a relatively small proportion of the true compound-gene 

interaction space, and future versions of ksRepo will incorporate other data sources to broaden 

the available databases included in the ksRepo package. 

 

CONCLUSIONS 

In this study, we describe a pipeline for nominating drug repositioning candidates on the basis of 

differential methylation data. We combined a strategy for condensing CpG-level differential 

methylation to gene-level significance with our previously described drug repositioning tool, 

ksRepo. Unlike previously described methods of gene expression-based repositioning, which 

require up- or down-regulated gene or probe-level signals, our method is capable of leveraging 

complex gene-level differential methylation structure, for which there is often not a single 

directional effect. We applied our pipeline to discover repositioning candidates in AML, a 

disease with substantial epigenomic perturbations. We predicted significance for cytarabine, the 

most commonly prescribed AML medication, and identified three additional candidates with 

ongoing investigations for use in AML. Our method can be directly applied to other diseases 

with clear epigenetic perturbations and can be extended beyond DNA methylation to a variety of 

other epigenomic and molecular signals with complex or absent directionality. 
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FIGURE LEGENDS 
 
Fig 1. Overview of the general pipeline design and exploratory AML analyses. ​Our general, 
DNA methylation-driven repositioning pipeline consists of (1) GEO2R differential methylation 
analysis, (2) consolidation of CpG-level significance to gene-level significance using Brown’s 
Method, and (3) ksRepo computational drug repositioning analysis. For this study, we used two 
publicly available GEO (GSE58477 and GSE63409) datasets and identified four replicated 
repositioning candidates. 
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