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ABSTRACT: t-Darpp is a protein encoded by the PPP1R1B gene and is expressed in breast, 

colon, esophageal, gastric, and prostate cancers, as well as in normal adult brain striatal cells. 

Overexpression of t-Darpp in cultured cells leads to increased protein kinase A activity and 

increased phosphorylation of AKT (protein kinase B). In HER2+ breast cancer cells t-Darpp 

confers resistance to the chemotherapeutic agent trastuzumab. To shed light on t-Darpp function, 

we studied its secondary structure, oligomerization status, metal-binding properties, and 

phosphorylation by cyclin dependent kinases 1 and 5. t-Darpp exhibits 12% alpha helix, 29% beta 

strand, 24% beta turn and 35% random coil structures. t-Darpp binds to calcium, but not to other 

metals commonly found in biological systems. The T39 site, critical for t-Darpp activation of the 

AKT signaling pathway, is a substrate for phosphorylation by cyclin-dependent kinase 1 (CDK1) 

and cyclin-dependent kinase 5 (CDK5). Gel filtration chromatography, sedimentation equilibrium 

analysis, blue native gel electrophoresis, and glutaraldehyde-mediated crosslinking experiments 

demonstrate that the majority of t-Darpp exists as a monomer, but forms low levels (< 3%) of 

hetero-oligomers with its longer isoform Darpp-32.  t-Darpp has a large Stokes radius of 4.4 nm 

relative to its mass of 19 kDa, indicating that it has an elongated structure. 
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INTRODUCTION 

     t-Darpp (truncated isoform of Dopamine- and cAMP-Regulated Phosphoprotein) is expressed 

in adult brain striatal cells and in many types of cancers including those of breast, colon, 

esophageal, gastric and prostrate origin [1-5]. Upon overexpression of t-Darpp in cultured cells 

protein kinase A (PKA) becomes active and the AKT cell survival pathway is strengthened [1, 6-

8]. Much work has been focused on t-Darpp’s role in cancers. In breast cancer, t-Darpp was 

observed to be overexpressed in some breast cancers [1]. One type of breast cancer, 

characterized by high levels of human epidermal growth factor receptor (HER2/neu/ERBB2), is 

sensitive to an antibody drug called trastuzumab (Herceptin). Overexpression of t-Darpp in 

HER2+ breast cancer cells causes these cells to become resistant to the anti-proliferative effects 

of trastuzumab [1, 2, 6, 8].  

     An isoform of t-Darpp, named Darpp-32, has an additional 36 amino acids on its N-terminus 

and is translated from a transcript produced from an alternative promoter that codes for an 

upstream transcription start site [9]. Darpp-32 is expressed in the brain, specifically in regions 

enriched in dopaminoceptive neurons [10, 11]. Depending on its phosphorylation state, Darpp-32 

inhibits protein phosphatase 1 (PP-1) and PKA [12, 13]. In some studies this longer isoform has 

been shown to inhibit cell growth and reverse t-Darpp’s ability to confer trastuzumab resistance 

and PKA activation [8]. However, other studies have shown that Darpp-32 is capable of 

increasing cell growth [14] and confers trastuzumab resistance [2]. In this study, we report the 

first description of the structure properties of t-Darpp. t-Darpp is an elongated monomer that 

binds to calcium and is a substrate for phosphorylation by CDK1 and CDK5. 
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RESULTS 

Oligomerization analysis. To assess the oligomerization properties of t-Darpp, recombinant 

human t-Darpp protein was analyzed by blue native gel electrophoresis. In this procedure, 

proteins were not treated with denaturing and reducing agents. Figure 1A shows that the majority 

of t-Darpp (calculated mass 19.4 kDa based on sequence) runs slightly smaller than the 20 kDa 

marker, as expected. The staining pattern of the gel shows very small amounts of t-Darpp with 

mass >20 kDa; one form runs between 20 kDa and 66 kDa and several forms run between ~80 

kDa and 150 kDa. Bovine serum albumin (BSA) was used as a comparison. BSA is a 66.5 kDa 

protein with little propensity to form oligomers. As expected, we find that the majority of BSA 

runs close to the 66 kDa protein standard (Figure 1A). Also observed are two higher mass forms 

of BSA — one at ~130 kDa and one at higher mass, produced by infrequently formed dimers and 

trimers, respectively [15].  

     It has been reported that t-Darpp has some positive growth effects, likely by activating the 

PKA and/or the AKT pathways [1, 8]. One study has shown that its longer isoform, Darpp-32, 

has some growth inhibitory effects [8]. To explore the possibility that t-Darpp may inhibit 

Darpp-32 activity through direct protein-protein interaction they were tested for hetero-

oligomeric complex formation. An equimolar mixture of recombinant t-Darpp and recombinant 

Darpp-32 was treated with glutaraldehyde, a primary amine crosslinking agent, and analyzed by 

SDS-PAGE (Figure 1B).  

     Without glutaraldehyde, Darpp-32 has an apparent mass of 36 kDa on SDS-PAGE and t-

Darpp has an apparent mass of 30 kDa. These are significantly higher than their actual masses 

and are likely to be due to the high frequency of acidic residues in these proteins. Glutaraldehyde 

treatment of recombinant Darpp-32 produced a low level of high-mass species of approximately 
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72 kDa. Glutaradehyde treatment of the Darpp-32/t-Darpp mixture produced a low level of two 

high-mass species -- one approximately 72 kDa and the other approximately 68 kDa.  

Glutaraldehyde treatment of t-Darpp alone did not produce detectable levels of high-mass 

species. Thus, the 68 kDa species appears to be specific to the Darpp-32/t-Darpp combination 

and its size is consistent with such a hetero-dimer composition. Quantification of band intensities 

indicates that only about 3% of the Darpp-32 can form a cross-linked homo-oligomer or a 

hetero-oligomer with t-Darpp. No detection of t-Darpp homo-oligomers was observed, largely in 

agreement with blue native gel analysis. 

     Although cross-linking showed little dimerization, Figure 1B shows that glutaraldehyde 

treatment of Darpp-32 alone produced a significant level of a protein species with an apparent 

mass (34 kDa) lower than the untreated Darpp-32 (36 kDa). Similarly, treatment of t-Darpp with 

the cross-linker produced a significant level of a species with an apparent mass (27 kDa) lower 

than the untreated t-Darpp (30 kDa).  The presence of these apparent lower mass proteins 

suggests that both t-Darpp and Darpp32 form intramolecular cross-links with glutaraldehyde, 

likely through their lysine residues. Such intramolecular crosslinks indicate intramolecular 

folding of the proteins that places two lysine residues or an N-terminus and a lysine residue near 

each other. Other studies have shown that glutaraldehyde can form intramolecular crosslinks in 

proteins that leads to altered mobility on SDS-PAGE [16]. 

     t-Darpp oligomerization was analyzed by sedimentation equilibrium [17]. In sedimentation 

equilibrium, t-Darpp is centrifuged in an analytical ultracentrifuge at a sufficient velocity to 

move the protein toward the outside of the rotor, yet not high enough to form a pellet. A protein 

concentration gradient across the centrifuge cell is created by the centrifugal force. At the same 

time, diffusion acts to oppose the centrifugal force. A concentration equilibrium is reached that 
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can be measured by spectrophotometric absorbance. The concentration distribution detected as a 

function of distance within the rotor depends only on molecular mass, and is independent of the 

shape of t-Darpp. Figure 1C shows absorption measurements as a function of distance within the 

rotor. The data were fitted to a curve that indicates that 96% of the t-Darpp population has a 

mass of 16 kDa and that the remainder has a mass of 360 kDa. The data largely confirm that the 

majority of t-Darpp is monomeric and is in agreement with our blue native gel electrophoresis 

and glutaraldehyde crosslinking studies. 

Shape analysis. Gel filtration chromatography was used to determine the shape of t-Darpp. Two 

gel filtration columns were used. The Sephadex-50 column effectively separates proteins that are 

less than 30 kDa. Although recombinant t-Darpp has a calculated mass of 19.6 kDa per 

monomer, the protein eluted with a mass greater than the column molecular weight cutoff of 30 

kDa, assuming a globular shape of the protein (data not shown). This indicates that t-Darpp has 

an elongated shape.  

     To explore this further, a Superose 6 gel filtration column (separation range 5500 kDa) was 

used to measure the Stokes radius of t-Darpp.  The gel filtration chromatograph in Figure 2 

shows that t-Darpp eluted between gamma globulin (158 kDa, Stokes radius 5.1 nm) and chicken 

ovalbumin (44 kDa, Stokes radius 2.8 nm). From these and other mass standards the Stokes 

radius of t-Darpp was determined to be 4.4 nm. The ratio of the Stokes radius of a protein to the 

calculated radius of a spherical protein with the same mass can be used to classify the shape of 

the protein [18].  For t-Darpp, this ratio is 2.4 (Calculation 1S), indicating that t-Darpp is an 

elongated protein.  
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Kinases that phosphorylate t-Darpp. A residue critical to t-Darpp activity is T39 (the analogous 

site within the longer isoform Darpp-32 is T75) because a mutation at this site renders t-Darpp 

incapable of both, activating the AKT pathway and conferring trastuzumab resistance [1, 2]. 

CDK1 and CDK5 phosphorylate Darpp-32 at T75 [19]. Figure 3 shows that in in vitro kinase 

reactions, T39 within t-Darpp can be phosphorylated by CDK1 and CDK5. Furthermore, 

phosphorylation is inhibited by the addition of kinase-specific inhibitors (RO-3306 for CDK1 

and Roscovatine for CDK5).  Notably, there is a subpopulation of the recombinant t-Darpp that 

is phosphorylated during its expression in E. coli, an observation confirmed by mass-

spectrometry (data not shown).  

Secondary structure analysis. To measure the secondary structure content of t-Darpp, CD 

spectroscopy was performed (Figure S1). The CD spectrum was used to determine the 

percentages of different secondary conformations. Table 1 shows that t-Darpp contains 12% 

alpha helix, 29% beta strand, 24% beta turn and 35% random coil at ambient temperature. To 

assess whether the protein structure is sensitive to mild heat, the temperature of the t-Darpp 

solution was increased from ambient to 50°C for 5 min and allowed to cool slowly back to the 

ambient temperature. Re-measurement of the heat-treated t-Darpp indicated that the protein 

secondary structure was not significantly altered: 12% alpha helix, 31% beta strand, 24% beta 

turn, and 34% random coil.   

     For a comparison, CD analysis was performed on recombinant Darpp-32, which contains an 

additional 36 residues on the N-terminus (Figure S2). Darpp-32 contains 18% alpha helix, 23% 

beta strand, 30% beta turn, and 29% random coil (see Table 1). The data indicates that the N-

terminal 36 amino acids of Darpp-32 significantly alter the secondary structure composition of 

the protein by increasing the alpha helical content by 6%, increasing the beta turn content by 6%, 
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decreasing the random coil by 6%, and decreasing the beta strand character by 6%. Unlike t-

Darpp, upon brief heat treatment of Darpp-32 there was a significant change in the secondary 

structure. After heating, Darpp-32 structure was remarkably similar to t-Darpp: 12% alpha helix, 

32% beta strand, 26% turn and 29% random coil. The data suggest that the N-terminal region of 

Darpp-32 is heat labile but the remainder of the protein is not.   

Metal binding analysis. t-Darpp has a calculated isoelectric point of 4.2 and has an acidic 

segment that stretches from residues 83 to 100 (see Figure 4B). Given these properties, it was 

investigated whether t-Darpp associates with positively charged metals commonly found in 

biological systems. Inductively coupled plasma-mass spectrometry (ICP-MS) of recombinant t-

Darpp was used to survey a range of metals including Al, Co, Cr, Cu, Fe, Mg, Mg, Ni, Ti, V, and 

Zn. The detection limit was one metal atom per 10 t-Darpp monomers. Interestingly, none of 

these metals was detected by ICP-MS.  ICP-MS gave a large background of calcium signal. 

Therefore, graphite furnace atomic adsorption spectroscopy was used to measure the Ca content 

in t-Darpp. Recombinant t-Darpp was found to contain a significant level of calcium, with an 

average calcium-to-t-Darpp monomer stoichiometry of 0.57 ± 0.33 (Table 2). To test for 

alterations in the t-Darpp secondary structure upon metal binding, calcium phosphate and 

magnesium sulfate were separately spiked into t-Darpp and Darpp-32.  CD spectrum analysis 

(Figures S3, S4) showed no significant change in the secondary structures. Prior incubation with 

calcium or the calcium chelator EGTA had no effect on t-Darpp mobility on blue native gels 

(data not shown).  

     Given that t-Darpp appears to bind to calcium, a motif-searching tool from the GenomeNet 

suite (National Bioscience Database Center of the Japan Science and Technology Agency) was 

used to determine potential motifs in t-Darpp (Figure 4). As expected, the output of the motif 
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tool search showed that the highest scoring hit is Darpp-32 (data not shown). The second highest 

scoring hit is the consensus sequence of bone sialoprotein II (BSP-II) (iE-value = 0.061), a 

calcium binding protein located in bone and teeth. The region of t-Darpp that aligns with BSP-II 

is residues 38-131, which contains several Glu and Asp residues, some of which may be key in 

binding to calcium. 
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DISCUSSION 

     t-Darpp protein is found in normal adult brain striatal cells and in some cancers. t-Darpp 

activates PKA and increases phosphorylation of AKT. To the best of our knowledge, this is the 

first in vitro study of the t-Darpp protein structure properties. Our results revealed that t-Darpp is 

monomeric, elongated (Stokes radius 4.4 nm), and binds to calcium ion. t-Darpp has a critical 

site of phosphorylation at T39 that is required for activation of the AKT pathway and 

trastuzumab resistance [1, 2]. Our study shows that t-Darpp is phosphorylated by CDK1 and 

CDK5 at this site. t-Darpp has 12% alpha helix, 29% beta strand, 24% beta turn and 35% random 

coil character at 25°C and the secondary structure does not appreciably change upon brief mild 

heat treatment. 

     Through sedimentation equilibrium analysis, blue native gel electrophoresis, and 

glutaraldehyde crosslinking we conclude that t-Darpp exists primarily as a monomer and does 

not form hetero-oligomers with Darpp-32, its longer isoform. Phosphorylation at T39 in t-Darpp 

is required for its activation of AKT, its effect on  trastuzumab resistance, and its stimulation of 

PKA activity.[1, 7]  On the other hand, Darpp-32 is a PKA inhibitor and PP-1 inhibitor, 

depending on its phosphorylation state [13, 19].  An antagonistic relationship between t-Darpp 

and Darpp-32 has been reported with regard to both PKA activity and chemoresistance [8]. One 

possibility to account for these effects is that t-Darpp might alter the Darpp-32 structure, which 

could promote Darpp-32’s PP-1 inhibitory activity and lead to increased phospho-AKT and/or 

inhibit Darpp-32’s PKA inhibitory activity and lead to enhanced PKA activity (and possibly 

promote AKT phosphorylation). The lack of the propensity of t-Darpp to form appreciable levels 

of hetero-oligomers with Darpp-32 or form homo-oligomers suggests that t-Darpp does not 
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directly alter Darpp-32’s effects on PP-1 or PKA, although it remains possible that in vivo 

oligomer formation could occur and have an antagonistic effect on Darpp-32 function.  

     The recombinant form of t-Darpp was purified from E. coli. Through graphite furnace-atomic 

adsorption spectroscopy, we show that t-Darpp co-purifies with calcium with a stoichiometry of 

approximately 0.6 calcium atoms per t-Darpp monomer. The stoichiometry varied somewhat 

from one t-Darpp preparation to another (Table 2). Calcium-binding properties of proteins can be 

regulated by phosphorylation [20]. Recombinant t-Darpp prepared from E. coli lysates is sub-

stoichiometrically phosphorylated as assessed by mass spectrometry (data not shown).  It is 

possible that calcium binding to t-Darpp may depend on its phosphorylation state and that the 

stoichiometry of calcium to t-Darpp varies depending on the level of t-Darpp phosphorylation in 

each preparation. Motif analysis of the t-Darpp sequence indicates that its acidic region is similar 

to the calcium-binding motif of bone sialoprotein II, a mineral nucleating protein produced by 

osteoblasts and deposited in connective tissue (see Figure 4) [21]. The region of shared similarity 

between t-Darpp and the bone sialoprotein II consensus sequence includes a large polyglutamic 

acid segment critical for bone sialoprotein II to bind to calcium [22] and hydroxyapatite 

(Ca10(PO4)6(OH)2) [23, 24]. Other biological metals, including copper, iron, magnesium, 

manganese, and zinc were not detected in our t-Darpp preparations demonstrating that it is likely 

that t-Darpp specifically binds to calcium and no other metal.  

     t-Darpp secondary structure consists of 12% alpha helix, 29% beta strand, 24% beta turn and 

35% random coil character at 25°C. After brief heating to 50°C and return to 25°C, the structure 

does not significantly change. Darpp-32, on the other hand, consists of 18% alpha helix, 23% 

beta strand, 30% beta turn, and 29% random coil. Brief heat treatment of Darpp-32 and return to 

25°C results in a structure similar to t-Darpp: 12% alpha helix, 32% beta strand, 26% beta turn 
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and 29% random coil. NMR structure analysis of Darpp-32 segment 1118 indicates that this 

protein has an alpha helix within amino acid residues 22-29 [25]. This alpha helix is transient 

because it exists only 36% of the time [25] and it is likely to be the region that is heat-labile in 

our study. This region, required for PP-1 inhibitory activity, is not present in t-Darpp, which is 

consistent with the absence of a heat-labile structure in t-Darpp. 

     Our data indicates that t-Darpp is an elongated monomeric protein that is phosphorylated by 

CDK1 and CDK5. t-Darpp binds to calcium but to no other biological metal. We speculate that 

calcium binds to the polyglutamic acid region of t-Darpp and that phosphorylation controls its 

binding to calcium, which may alter its structure. Structure changes may also allow t-Darpp to 

bind to biological molecules to increase PKA activity and as well as lead to AKT 

phosphorylation, either through direct interaction with PKA or indirect interaction with one or 

more regulatory protein(s). t-Darpp does not appreciably form hetero-oligomers with Darpp-32, 

its longer isoform, so it appears that direct interaction of the two proteins does not account for 

the antagonistic effects of the two isoforms previously reported. Finding in vivo binding partners 

will shed more light on t-Darpp’s biological activities and give insight into how this protein 

mediates resistance to trastuzumab. 
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EXPERIMENTAL PROCEDURES 

t-Darpp and Darpp-32 subcloning and purification. t-Darpp cDNA (UniProt Accession ID 

Q9UD71-2) was amplified from t-Darpp/pcDNA3.0/Neo plasmid [8] with primers that include 

sequences that code for an NcoI restriction site in the upstream primer and an XhoI restriction 

site in the downstream primer. The downstream primer also included a sequence that codes for a 

six-His tag at the C-terminus. After treatment with NcoI and XhoI, the cDNA was cloned into 

NcoI and XhoI sites of the multiple cloning site in the pET-28a plasmid (Novagen). After T4 

ligase treatment the plasmid was transformed into competent E. coli JM109 cells. DNA 

sequencing verified that the t-Darpp cDNA shared 100% identity with the wild-type sequence, 

with the addition of six histidine residues at the C-terminus.  

    Darpp-32 cDNA (UniProt Accession ID Q9UD71-1) was amplified from Darpp-32/pET-49 

plasmid with primers that included sequences that code for a thrombin cleavage site and a six-

His tag at the C-terminus. The 5’ end primer contained an NcoI restriction site and the 3’ end 

primer contained an XhoI restriction site. Amplified Darpp-32 cDNA was cloned into the pET-

28a plasmid. After T4 ligase treatment the plasmid was transformed into competent JM109 cells. 

The sequence added to the C-terminus of Darpp-32 is AAAELALVPRGSLEHHHHHH. 

     t-Darpp and Darpp-32 expression plasmids were isolated from the JM109 cells and 

transformed into E. coli BL21 DE3 cells. Cells were incubated in Miller's broth with constant 

shaking at 37°C until they reached an optical density of 0.6 and treated with 0.5 mM isopropyl β-

D-1-thiogalactopyranoside (IPTG) for 16 h at 22°C. Cells were collected by centrifugation at 

4000  g for 20 min at 4°C and supernatant was removed. Cells were frozen at 80°C and lysed 

at a pellet-to-lysis buffer ratio of 1.7 g to 10 mL. Lysis buffer was 50 mM NaH2PO4, 500 mM 

NaCl, 5 mM sodium citrate, and 20 mM imidazole (pH 8.0) or 50 mM HEPES, 500 mM NaCl, 
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and 20 mM imidazole (pH 8.0). Added to the lysis buffer was 6.2 µg/mL RNAse A, 0.5% (v/v) 

Triton X-100, 1 cOmplete™ ULTRA Mini, EDTA-free, EASY pack tablet (Roche), and 1 mM 

phenylmethylsulfonylfluoride (PMSF). Pelleted cells were resuspended in lysis buffer by 

vortexing and sonicating with a sonicator (550 Sonic Dismembrator, Fisher Scientific) with six 

sets of 10 s pulse/10 s cool-down cycles (cool-down temperature was 0°C) at power setting "5." 

Lysate was centrifuged twice at 10,000  g, 4°C for 20 min and supernatant was collected 

(soluble lysate) after each centrifugation. The soluble lysate was filtered through a 0.22 micron 

filter. 

     A 1.5  10 cm column containing Ni-NTA resin (Thermo Scientific, 88220) with a bed 

volume of 0.5 mL was equilibrated with 10 column volumes of water followed by 10 column 

volumes of wash buffer (20 mM imidazole in buffer A containing 50 mM NaH2PO4, 500 mM 

NaCl, 5 mM sodium citrate, 20 mM imidazole, 1 mM PMSF, pH 8.0 or 50 mM HEPES, 500 

mM NaCl, 20 mM imidazole, 1 mM PMSF, pH 8.0). Soluble lysate was applied to the column at 

a flow rate of approximately 1 mL/min. After loading, the column was washed with 10 column 

volumes of 30 mM imidazole in buffer A.  t-Darpp and Darpp-32 were eluted with 40200 mM 

imidazole in buffer A.  SDS-PAGE analysis indicated that there was no need for further 

purification for Darpp-32.  

     To further purify t-Darpp, fractions containing t-Darpp were pooled and mixed 1:1 with 

buffer B (20 mM L-histidine, 1 mM PMSF, pH 5.5) and loaded onto a 1.5  10 cm column 

packed with Q-Sepharose (Fastflow, Pharmacia, 17-0510-01) containing a bed volume of 0.5 

mL. The column was washed with 0.2 M NaCl in buffer B and t-Darpp was eluted with 0.4 M 

NaCl in buffer B.  t-Darpp and Darpp-32 were concentrated with an Amicon Ultra 2-mL 

centrifugal filter (EMD Millipore; 10 MW cutoff) and buffer was exchanged to 50 mM HEPES, 
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150 mM NaCl, 1 mM EDTA, 5% glycerol, 1 mM DTT (pH 7.0) and stored at 20°C. Relative 

protein band densities in SDS-PAGE gels were measured with ImageJ software (Version 1.51a) 

[26]. 

Blue native gel electrophoresis. Blue native gel electrophoresis was performed as described [27]. 

Briefly, purified t-Darpp was mixed with an equal volume of native gel loading buffer (50 mM 

Bis-Tris/HCl, pH 7.0, 15% (v/v) glycerol) and electrophoresed using a cathode buffer (15 mM 

Bis-Tris/HCl, pH 7.0, 50 mM Tricine, 0.002% (w/v) Coomassie Blue) and an anode buffer (50 

mM Bis-Tris/HCl, pH 7.0). To avoid overheating, the gel was run at 100 V at 4˚C.  Samples 

were analyzed on discontinuous gel consisting of 5% stacking gel and 8% resolving gel prepared 

using a 3x-Gel Buffer (150 mM Bis-Tris/HCl, pH 7.0).  Native molecular weight markers 

(Invitrogen™ Novex™ NativeMark™, Thermo Fisher Scientific) and protein samples were 

detected by accumulation of Coomassie blue dye within the proteins during electrophoresis. 

CD analysis. CD analysis was performed at room temperature on a JASCO J-815 CD 

spectrometer (JASCO Inc., Tokyo, Japan) in a 1-mm path quartz cell. Spectra were collected 

between 260 and 190 nm at 0.1 nm intervals. The bandwidth was 1 nm and the scan rate was 100 

nm/min. Samples were dissolved in 50 mM sodium phosphate, pH 7.4. Temperature was 

controlled via a Fisher Scientific ISOTEMP 102 water bath (Thermo Fisher Scientific, Waltham, 

USA). Eight scans were collected per sample and averaged. Protein samples were diluted so that 

High Tension (HT) voltage traces were less than 500 V.  Final concentration of t-Darpp and 

Darpp-32 was 0.12 mg/mL. Data were formatted and analyzed by CDPro software 

(http://sites.bmb.colostate.edu/sreeram/CDPro/) [28]. Experimental data nearly matched 

reconstructed data created by the CDSSTR and CONTIN/LL programs. Percentages of proteins 

classified as alpha helix, beta strand, beta turn and random coil were calculated by averaging the 
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outputs from these two software programs. For metal spiking experiments, calcium was added 

into the protein solution in the form of Ca(H2PO4)2 and magnesium was added as MgSO4.  

Glutaraldehyde crosslinking. Glutaraldehyde (Fisher Scientific) was added to a final 

concentration 0.1% (v/v) and 1% (v/v) to protein solutions and incubated 30 min at 25°C. 

Samples were quenched by the addition of sample buffer  (0.125 M Tris, pH 6.8, 20% (v/v) 

glycerol, 0.02% (w/v) bromphenol blue, 20% (w/v) sodium docecyl sulfate, 1.4 M 2-

mercaptoethanol, pH 6.8) and separated on a 10% cross-linked polyacrylamide gel [29].  

In vitro kinase assay. Roscovitine (sc-24002) and RO-3306 (sc-358700) were purchased from 

Santa Cruz Biotechnology (Dallas, TX). Recombinant t-Darpp was used as a substrate for CDK1 

and CDK5 phosphorylation. CDK1 (C22-18G) and CDK5 (C33-10G-05) were purchased from 

Signal Chem Pharmaceuticals (Richmond BC, Canada). CDK1 or CDK5 was diluted to a final 

concentration of 5 μg/mL in kinase dilution buffer (K23-09, Signal Chem Pharmaceuticals). The 

reactions were pre-incubated with t-Darpp for 10 min at 30°C. The kinase reaction was initiated 

by the addition of 200 μM ATP (final concentration) and continued at 30°C over a period of 60 

min. Reactions were quenched by the addition of sample buffer and boiled for 5 min. RO-3306 

or roscovitine at 10 µM was used to inhibit CDK1 or CDK5 activity, respectively. These 

inhibitors were added directly to the kinase reaction during the preincubation period. Samples 

were analyzed by Western analysis as described below. 

Western blot analysis. Proteins were separated by 10% SDS-polyacrylamide gel electrophoresis 

and transferred onto a nitrocellulose membrane. Blocking as well as incubation with primary and 

secondary antibodies were performed in 5% (w/v) non-fat dry milk. Primary antibody against 

phospho-Darpp-32/t-Darpp (T39) (#2301) was from Cell Signaling. H62 (sc-11365), an antibody 

that recognizes both Darpp-32 and t-Darpp, was from Santa Cruz Biotechnology. Horseradish 
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peroxidase-conjugated anti-rabbit IgG secondary antibody was purchased from Cell Signaling. 

Chemiluminscence was produced using the Amersham Plus kit and captured on X-ray film. 

Gel filtration analysis. A G-50 Sephadex column (2  15 cm) was used initially to estimate the 

Stokes radius of t-Darpp. Standards used were bovine aprotinin (6.5 kDa and 1.48 nm Stokes 

radius), bovine cytochrome c (12.4 kDa and 1.6 nm Stokes radius), and bovine carbonic 

anhydrase (29 kDa and 2.1 nm Stokes radius) [30, 31]. The column was run at a flow rate of 1 

mL/min in 150 mM HEPES (pH 7.0) containing 1 mM dithiothreitol (DTT). A second column 

was used to measure the Stokes radius. Superose 6 column (Pharmacia Biotech 6 HR 10/30) was 

equilibrated with 50 mM HEPES (pH 7.0), 150 mM NaCl, 1 mM EDTA, 1 mM dithiothreitol, 

and 5% glycerol at a flow rate of 0.3 mL/ min. In addition to the standards listed above, the 

following standards were used: thyroglobulin (670 kDa and 8.6 nm Stokes radius), bovine 

gamma globulin (158 kDa and 5.1 nm Stokes radius), chicken ovalbumin (44 kDa and 2.8 nm 

Stokes radius), and horse myoglobin (17 kDa and 1.9 nm Stokes radius). A 50 µL sample of t-

Darpp (4 mg/mL) was applied to the column. Classification of t-Darpp as a highly elongated 

protein was based on calculated mass and experimentally derived Stokes radius using the method 

of Erikson [18]. 

Graphite furnaceatomic adsorption spectrometry. Calcium analyses were performed on an 

atomic absorption spectrophotometer with a graphite furnace (GFAA-7000, Shimatzu). An 

autosampler (ASC-7000, Shimatzu) was used for ensuring good precision. An absorption 

detection wavelength of 422.7 nm was used and signal was corrected by the BGC-D2 mode. A 

seven-stage furnace treatment program was used (Table S1). For each sample, a minimum of 

four injections were performed to achieve a relative standard deviation of 5%. A calibration 

curve was used for the determination of calcium concentration in the diluted protein solution. 
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Standard calcium solutions were prepared by diluting from a single standard calcium solution 

(1000 ppm in 2% HNO3, Perkin Elmer) with 0.1 % metal-free HNO3 (GFS Chemicals Inc.; 

Powell, OH) to desired concentrations. Trace metal-free vials were used for sample dilutions. 

The protein sample solutions were also diluted with 0.1% HNO3 prepared from trace metal grade 

concentrated HNO3 (67-70%, Fisher Scientific) and deionized water of 18.2 MΩ·cm (Milli-Q 

system, Millipore).     

Inductively coupled plasma-mass spectrometry (ICP-MS). All samples for ICP-MS analysis were 

acidified with Optima grade nitric acid and analyzed at IIRMES, California State University 

Long Beach. Triplicate blank samples were prepared in the same manner as all samples for 

analysis and the average concentration of the various metals in the blanks was subtracted from 

all samples. 

Sedimentation equilibrium analysis. Sedimentation equilibrium runs were conducted on a 

Beckman Optima XL-A analytical ultracentrifuge. Protein sedimentation was monitored at 280 

nm at 4°C. t-Darpp at 0.58 μg/μL in phosphate buffered saline was centrifuged in a 12-mm path 

length six-sector cell. Sedimentation equilibrium profile was measured at 9,000 rpm. Data were 

fitted to a single exponential curve using Beckman global analysis software to determine the 

weighted average of protein masses. 
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TABLES 

Table 1. Circular dichroism analysis of t-Darpp and Darpp-32 

         t-Darpp  

         (25°C) 

          t-Darpp  

       (50°C, 5 min) 

     Darpp-32 

        (25°C) 

           Darpp-32  

        (50°C, 5 min) 

alpha helix (%) 12 11 18 12 

beta strand (%) 29 31 23 32 

beta turn (%) 24 24 30 26 

random coil (%) 35 34 29 29 

 

Table 2. Graphite furnace atomic adsorption spectroscopy analysis 

Trial number Preparation Ca/t-Darppa 

1 1 0.24 

2 1 1.00 

3 2 0.40 

4 2 0.64 

aMolar ratio   
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FIGURE LEGENDS 

Figure 1. Oligomer analysis of t-Darpp and Darpp-32. A, Blue native gel analysis of t-Darpp. 

First lane, molecular weight markers (in kDa). Second lane, t-Darpp. Asterisks indicate higher 

mass forms of t-Darpp. Third lane, BSA (20 μg) and fourth lane, BSA (50 μg). The abbreviations 

“dim.” and “tri.” refer to dimer and trimer respectively. B, Glutaraldehyde treatment of t-Darpp, 

Darpp-32, and a mixture of t-Darpp and Darpp- 32. Lanes 1-3, no treatment with glutaraldehyde; 

lanes 4-6, treatment with 0.1% glutaraldehyde; lanes 7-9, treatment with 1% glutaraldehyde. 

Asterisk denotes Darpp-32 homo-dimers; # denotes t- Darpp/Darpp-32 heterodimer; + denotes 

intramolecular crosslink in Darpp-32; > denotes intramolecular crosslink in t-Darpp. C, 

Sedimentation equilibrium of t-Darpp. Absorbance at 280 nm vs. radius (cm) plotted and line 

generated with a function that shows 96% monomer and 4% oligomer. 

Figure 2. Gel filtration chromatography of t-Darpp. Elution profile of recombinant t-Darpp on 

Superose 6 column. Elution positions of protein standards indicated as a, 158 kDa (Stokes radius 

5.1 nm); b, 44 kDa (Stokes radius 2.8 nm); c, 29 kDa (Stokes radius 2.1 nm); d, 17 kD (Stokes 

radius 1.9 nm); e, 12 kDa (Stokes radius 1.6 nm). 

Figure 3. CDK1 and CDK5 phosphorylate t-Darpp in vitro. In vitro kinase assay performed 

using recombinant t-Darpp (tDp) and CDK1 (A) or CDK5 (B). Reactions were performed over a 

period of 1 h with aliquots taken at 0, 5, 15, 30 and 60 min. Inhibitors, RO-3306 and roscovitine 

were used as controls to inhibit CDK1 and CDK5, respectively. The T39-phosphospecific 

antibody was used to show phosphorylation at T39 of t-Darpp. H62 was used as a loading 

control antibody to show the relative level of recombinant t-Darpp in each lane. 
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Figure 4. Alignment of t-Darpp with bone sialoprotein II consensus sequence. A. Sequence 

alignment; B. Entire t-Darpp sequence with residues that align with the bone sialoprotein II 

consensus sequence presented in underlined font. 
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FIGURES 

Figure 1. Oligomer analysis of t-Darpp and Darpp-32. 
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Figure 2. Gel filtration chromatography of t-Darpp. 
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Figure 3. CDK1 and CDK5 phosphorylate t-Darpp in vitro. 
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Figure 4. Alignment of t-Darpp with bone sialoprotein II consensus sequence. 
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