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1 Introduction  
The recent surge in popularity of single-particle cryo-EM as a tool for molecular 
structure determination alongside advances in software that have reduced the 
computational infrastructure needed to process single-particle datasets (Kimanius 
et al, 2016) have created the need for a more streamlined suite of tools to locally 
facilitate initial data treatment and make processing more attainable at the 
workstation level.  

Current technical limitations inherent to the process of structure 
determination via single-particle cryo-EM require collecting very large data sets – 
often several thousands of images. This task is facilitated by automated imaging 
software, however downstream preprocessing steps such as quality assessment and 
masking of individual images are still performed manually by the researcher and 
can become quite cumbersome. EMHP focuses on streamlining this preprocessing 
stage – specifically image assessment, masking, and pick filtering in preparation 
for single-particle analysis.  

The need for hole masking in images stems from the fundamentals of cryo-
EM sample preparation and data processing. Samples are traditionally prepared for 
imaging by flash freezing a few microliters of solution on copper mesh grids coated 
in holey carbon. The hole patterns suspend particles in a thin meniscus of vitreous 
ice, ideal for high resolution imaging, and are often used by automated collection 
software to assist in exposure targeting. (Suloway et al, 2005) While images are 
ideally taken entirely over these holes of thin ice, it is still often necessary to collect 
around the edges of the holes due to low particle densities, preferential particle 
distribution, or contrast transfer function (CTF) estimation limitations. For these 
reasons, many images in a cryo-EM dataset contain sections of thick carbon support 
present in one or more quadrants of the image. 

While automated particle selection algorithms allow for rapid selection of 
single particle projections from within larger images, these algorithms can have 
difficulty discriminating between particles on carbon and particles in ice, resulting 
in the inclusion of many false positives into the initial particle stack which can 
increase computation times and have adverse effects on downstream processing.  
Here we present a fast and accurate algorithm for detecting carbon supports in cryo-
EM images, along with a small suite of tools for image assessment and pick filtering 
that allow users to preprocess their data rapidly and with minimal overhead while 
providing results in a format readable or easily converted to be readable by common 
single-particle cryo-EM processing packages. (Kimanius et al, 2016, Tang et al, 
2007) Our algorithm shows improved performance over existing hole-finding 
algorithms and can be easily executed in a minimal or non-HPC environment 
making it more accessible to users. 
 
2 Software Package Overview 
The software included in the EMHP package is coded using Python 2.7 and relies 
on packages that are freely available. EMHP uses the .mrc file parser methods 
implemented in pyami via Appion, (Lander et al, 2009) which are included in the 
code repository for convenience. The package includes a Tkinter-based GUI image 
assessor, an implementation of the automatic hole masker and particle filter, a 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2017. ; https://doi.org/10.1101/154211doi: bioRxiv preprint 

https://doi.org/10.1101/154211
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tkinter-based GUI for manual hole masking, and a script that applies already 
computed masks to images. 
 
2.1 Algorithm Description 
We based our hole-finding algorithm on two main assumptions: that carbon holes 
are milled consistently to specifications and that edge of the holes have more 
detectable textural features than the vitreous ice and particles within. First, the 
image is decimated 10X, Gaussian filtered, and normalized via contrast stretching. 
(Fig. 1A) Next, a standard Sobel filter is applied, which detects the many small 
edges along the rim of the carbon hole. (Fig. 1B) A series of smoothing filters and 
thresholding operations are performed to amplify areas of concentrated signal 
produced during Sobel filtering, while diminishing sparse signal from particles or 
features in ice and on carbon. The first round of smoothing is performed on the 
image (Fig. 1C), and all pixels below the first threshold parameter are set to zero. 
(Fig. 1D) This image is then subjected to another round of smoothing and binarized 
using the second threshold value. (Fig 1E) We found that the first round smoothing 
and thresholding tends to eliminate signal from within the ice while the second 
round eliminates signal from within the carbon support. Finally, the image is 
decimated another 10X and a circle with dimensions set by the pixel size of the 
image and diameter of the hole is fit to the binary image with the assumption that 
the largest match will be along the carbon edge. The fitting is performed 
exhaustively Θ(n2), but is sped up considerably by the decimation steps. The 
coordinates of the best fit circle are then extrapolated back to the original image 

Fig. 1.  EMHP automasking example. The image after (A) Gaussian filter and contrast 
stretching, (B) after applying a Sobel filter, (C) after one round of edge amplification by 
radial summing, (D) after applying a user-defined threshold and (E) after another round of 
edge amplification and binary thresholding. (F) The final image after circle fitting, masking, 
and pick filtering. Green single particle picks are included, while red picks are excluded due 
to the mask or edge proximity. 
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and the mask is shifted toward or away from the edge of the hole based on user 
input. This final binary mask is used to filter out particle picks that lie on top of the 
carbon support (Fig. 1F). We have also included an option to filter picks that are 
within a user defined distance from the edge of the image, usually set to the desired 
box size used during single particle processing. Users can adjust several filter and 
threshold parameters to tune performance for their data set, and we have found that 
the most impactful parameter is the intensity cutoff used in the second thresholding 
step, which controls the width and shape of the final binary edge used for circle 
fitting.  Descriptions of all parameters and examples of their effects can be found 
in supplementary materials.  
 
2.2 Test Dataset and Methods 
For a concrete evaluation of the algorithm’s effectiveness, we conducted two 
performance tests on a set of 100 images chosen at random from a previously 
published dataset covering a defocus range of -1.4 to -3.6µm (Lee et al, 2016). We 
compare performance of the most commonly used automasker, em_hole_finder, 
currently incorporated into the Appion web-based software suite (Lander et al, 
2009) with the EMHP automasking algorithm. To do this, masks were carefully 
constructed manually and a set of particle picks generated with DoG Picker (Voss 
et al, 2009) were assigned to either ice or carbon. Next, both algorithms were used 
to classify the same set of picks and the sensitivity (true positive rate), specificity 
(true negative rate), and average runtime per image were calculated for each (Table 
1). These 100 test images have been included in the code repository for testing and 
benchmarking. 

To further justify the utility of masking we performed a single round of 2D-
classification using GPU-accelerated RELION-2.0 on the full particle stack from 
the test dataset, this same stack filtered using manually produced masks, and a stack 
that is the same size as the masked stack made from a random subset of particles. 
Around 40% of the particle picks were filtered out during masking, and it is 
therefore not surprising that 2D-classification ran 1.8X faster, however the masked 
data set still ran 1.1X faster than the unmasked dataset of equivalent size, 
illustrating that the inclusion of false positives does slow down 2D-classification. 
Additionally, 36% of the particles selected after 2D-classification from the 
unmasked data set were false positive picks on carbon, implying that 2D-
classification alone cannot completely sort out picks on carbon.  
 
3 Conclusions 
The EMHP automasking algorithm shows improved sensitivity com-pared to 
em_hole_finder. This highlights the main shortcoming of em_hole_finder, the 
tendency to over-mask thereby excluding a sub-stantial number of true positives 
from the initial particle stack. The two algorithms performed equivalently in terms 
of specificity. 

We would like to note that over the course of testing and extensive in-house 
use, we found that the EMHP algorithm has trouble with edge detection in two 
specific situations: when carbon edges are poorly manufactured (overly jagged or 
un-circular), or when particle density at the very edge of the carbon holes is 
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excessively high. In comparison, we observe that em_hole_finder does not have 
additional issues with poorly manufactured edges, but tends to over-mask when 
presented with dense patches of particles along the edges. To get around these 
performance limitations, the EMHP suite also includes tools for sorting images 
before masking and applying manually placed circular masks. 

Rapid advances in single-particle cryo-EM data processing software and 
hardware capabilities are bringing state-of-the-art structure deter-mination 
capabilities to the desktop. EMHP provides a simple python package for single-
particle cryo-EM image preprocessing that is ac-cessible to users of all experience 
levels while requiring minimal com-putational overhead. 
 
Table 1. Benchmark comparisons using em_hole_finder and EMHP. EMHP per-image calculation 
times reported as a range with the mini-mum bound representing the program run in multithreaded 
(16x) mode. This mode is not available in em_hole_finder at time of submission. 

Algorithm Sensitivity Specificity Time / Image (sec) 

 EMHP 0.983 0.965 .44-3.17 
 em_hole_finder 0.785 0.990 1.34 
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