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Abstract 
We introduce a new method to detect introgressed loci by combining two widely used statistics: 
d​xy​ (​the average pairwise nucleotide diversity between population x and y​) and the four-taxon 
Patterson’s ​D​ statistic. The result is a statistic that takes into account genetic distance across 
possible topologies named the ​Bd​f​ ​and is designed to detect and at the same time to quantify 
introgression. We also relate this new method to the recently published ​f​d  ​estimate and 
incorporate all statistics into the powerful genomics R-package PopGenome. The updated 
PopGenome version is freely available on CRAN. The supplement material contains a wide 
range of simulation studies and a detailed manual how to perform the statistics within the 
PopGenome framework. 
 

Introduction 
Hybridization between species is an important evolutionary force. Although it has been well 
known to occur in plants, it has only recently been recognized as regularly occurring among 
animals (Mallet 2005). Generally thought to decrease differences between two species by 
sharing alleles across genomes, hybridization can paradoxically act as a ready source of 
variation for adaptation (Gilbert 2003, Hedrick 2013), aiding in evolutionary rescue (Stelkens​ et 
al.​ 2014), promoting range expansion (Pfennig ​et al.​ 2016), potentially leading to species 
divergence (Mallet 2007, Abbott ​et al.​ 2013) and ultimately fuelling adaptive radiation 
(Seehausen 2004, Meier ​et al.​ 2017). The advent of whole genome sequencing has prompted 
the development of a number of  methods to detect hybridization across the genome (recently 
summarized in Payseur and Rieseberg 2016).  
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One class of methods involves inspecting single nucleotide polymorphism (SNP) patterns across 
a number of taxa to detect a signal of hybridization between taxa.  Here we focus on this class of 
tests involving four taxa (Kulathinal ​et al.​ 2009).  The most widely used of these, Patterson’s ​D​, 
was first introduced by Green ​et al.​ (2010) and further developed by Durand et al. (2011). 
Patterson’s ​D​ compares allele patterns of taxa with the Newick tree (((​P1​,​P2 ​),​P3 ​),​O​), to detect 
introgression between archaic taxon 3 and in-group taxa 1 or 2 (or vice-versa).  In brief, 
assuming the outgroup ​O​ is fixed for allele A, derived alleles (B) in taxon 3, when shared with 
either taxon 2 or taxon 1, act as a marker of introgression leading  to the following patterns: 
ABBA or BABA respectively.  An excess of either pattern, ABBA or BABA represents a 
difference from the expected ​ 50:50​ ratio based on incomplete lineage sorting and thus 
represents a signal that can be used to detect introgression.  
 
Since its introduction, Patterson’s ​D​ has been used for a wide range of studies to estimate the 
amount of hybrid ancestry by summing the ABBA​ ​or BABA​ ​pattern excess on a whole genome 
scale (Green et al. 2010; Racimo et al. 2015). In the past 7 years it has been widely applied to a 
variety of problems from those for which it was originally developed, understanding Neanderthal 
and human introgression (Green ​et al.​ 2010, Durand ​et al. ​2011) to introgression of adaptations 
in butterfly mimicry (Dasmahapatra ​et al.​ 2012), introgression in plants (Eaton and Ree 2013) to 
a large variety of organisms more recently (e.g. Zinenkno et al. 2016). 
 
Currently, Patterson’s ​D​ is frequently used in sliding window scans of different regions of the 
genome (Fontaine ​et al.​ 2015; Kronforst ​et al.​ 2013; Zhang ​ et al.​ 2016).  However, intensive 
evaluations of the four-taxon ABBA-BABA​ ​statistics (Martin ​et al.​ 2015) showed that this 
approach can lead to many false positives in regions of low divergence and of low 
recombination.  One of the main reasons is the presence of mainly one of the two alternative 
topologies as a consequence of a lack of independence of the positions (Pease et al. 2015), 
resembling an introgression event, which is exacerbated when analyzing smaller gene-regions. 
To circumvent this issue, several strategies have been developed.  On one side, more 
sophisticated non-parametric methods have been used to reduce the number of false positives 
(e.g., Patterson et al. 2012).  On the other side, new statistics have been developed to better 
estimate the proportion introgression. Martin et al. (2015) recently proposed the ​ f​d  ​estimate 
which is based on the ​f ​estimates​ ​originally developed by Green et al. (2010) which measure the 
proportion of unidirectional introgression from P3 to ​ ​P2. The ​f ​estimates are generally designed 
to relate the observed introgression to the maximal possible introgression retrieved from the 
present while Patterson’s​ D​ (and ​ ​methods proposed here) approaches to the ratio of 
introgression vs. non-introgression. More specifically, the ​f​d ​ assumes that maximal introgression 
will lead to equally distributed derived allele frequencies in the donor and the recipient population 
and therefore propose to take the higher derived allele frequency at each variant site 
independently. This strategy aims to model a mixed population maximally affected by 
bidirectional introgression. However, this method has two major shortcomings: First, it is 
designed to measure the introgressed material into one potential population only.  Second, the 
accuracy of measuring the fraction of introgression strongly depends on the time of gene-flow. 
Recently, a distance based method named ​RNDmin​ was introduced (Rosenzweig 2016) to 
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detect introgression on a whole genome scale. However, this method requires phased 
genotypes and is designed to detect but not to quantify introgression.  
 
Here we combine the approaches (​D​, ​f ​d​, and distance) ​to ​ ​present a statistic the ​basic distance 
fraction​ (​Bd ​f​) to estimate the proportion of introgression on a four-taxon tree which strictly ranges 
from -1 to 1, has symmetric solutions, and is less sensitive towards the time of gene-flow than ​f​d 

and can be applied to small genomic regions. While the ​ ​Patterson’s​ D ​statistic is ‘tree-free’ 
(Patterson et al. 2012) the ​Bd​f​ should only be applied to data where the species tree is known in 
order to detect and at the same time to quantify introgression. 

New Approaches  
 
To derive ​Bd​f  ​we took a two-fold approach.  First, we reformulated the statistics (Patterson’s​ D​, 
and ​f​d​) in terms of genetic distances based on the hypothesis that past or recent hybridization 
will leave a signature of reduced genetic distances (​d​xy​) between taxa (Kronforst et al. 2013, 
Smith and Kronforst 2013). 
 
First, following convention, the ancestral allele is ​A ​and the derived allele ​B. ​The derived allele 
frequencies of the four taxa are ​p​1k​ … p ​4k​ at variant site ​k​.  Second, the average pairwise 
nucleotide diversity between population ​x​ and ​y ​at variant site ​k​ is ​d ​xyk​ (see supplementary 
information, section S1.2).  Each genetic distance can be expressed as a sum of patterns in 
terms of ancestral and derived alleles (e.g. ​d​12k​ = BAXA + ABXA, see supplementary information, 
section S1.2) allowing the terms ABBA and BABA to be rewritten in terms of genetic distances, 
for instance:  
 
BBA [(BBAA ABBA)  (BBAA BABA) (BABA ABBA)]/2A =  +  −  +  +  +   

 
which can be expressed as a function of allele frequencies and distances  
 
BBA p d p  p ]A = [ 2k ×  13k −  1k × d23k +  3k × d12k × 1 )/2( − p4k  

 
(for all equations see supplementary information, section S1.2).  
 
With ABBA and BABA as distances in hand, we can reformulate any statistic based on these 
counts.  For instance this leads to the following distance based Patterson’s​ D​ equation for a 
region containing ​L​ variant positions: 
 

(p   p ) /  (p  )      (1) D =  ∑
L

k=1
2k × d13k −  1k × d23k ∑

L

k=1
3k × d12k   
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where  is the average pairwise nucleotide diversity between population ​x​ and ​y ​at variantdxyk  
position ​k​; and the derived allele frequency in population ​x​. In the context of distancespxk  

may be seen ​as the contribution of the variation contained between the lineages 1 to 3p2k × d13k  
 to population 2.d )( 13k   

 
Visualized by equation (1) the Patterson’s​ D​ denominator (ABBA + BABA)​ ​simplifies to an 
expression of​ ​the derived allele frequency of the archaic population P3 times the average 
pairwise nucleotide diversity (​d​xy​) between population P1 and P2.  This interpretation highlights 
the original difficulty that Patterson’s ​D ​has handling regions of low diversity since the 
denominator will be systematically reduced in these areas due to the ​d​12k​ variable; increasing the 
overall ​D​ value. This effect intensifies when at the same time the divergence to the donor 
population P3 is high. Martin et al.​ ​(2015) proposed ​f​d​ which corrects for this by considering the 
higher derived allele frequency (P2 or P3) at each given variant position; systematically 
increasing the denominator. 
 
We can apply the same distance logic to rewrite the ​f​d​ statistic  (see supplementary information, 
section S1.4) leading to: 
 

 (p   p ) /  p       (2) f d = ∑
L

k=1
2k × d13k −  1k × d23k ∑

L

k=1
pDk × d1Dk −  1k × πD   

 
where in the denominator, is the average nucleotide diversity within population ​P​D​, which isπ D  
the population with the higher derived allele frequency in population P2 or P3 for each variant 
site ​k​. The distance based formulations of the ​f ​estimates can be found in the supplemental 
material (section S1.4).  
  
These distance based interpretations suggests there exists a family of distance estimators of the 
proportion of introgression of varying complexity.  Here we propose a very simple version, we 
call ​Bd​f​, that makes direct use of the distance based numerator of the Patterson’s​ D​ statistic and 
relates the differences of distances to the total distance considered (fig. 1) by incorporating the 
BBAA species tree pattern into the denominator (supplementary information, section S1.5). The 
species tree pattern BBAA is the main source causing increased divergence between ​ ​(P1,P2) 
and P3 in the absence of introgression. As a consequence within our ​Bd​f​ model, the divergence 
to P3 on the four-taxon tree will be explicitly included. The ​Bd​f​ ​statistic we propose here has the 
following form: 
 

d (p   p )  /  (p  p )      (3) B f =  ∑
L

k=1
2k × d13k −  1k × d23k ∑

L

k=1
2k × d13k +  1k × d23k   
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Fig. 1. A graphical interpretation of the ​Bd ​f​ model​. Here ​ ​f​ i ​s the fraction of introgression from 
P3 to P2; reducing the distance between P2 and P3 and at the same time increasing the derived 
allele frequency in P2. ​Bd​f​ approximates the measure ​ f ​by relating the differences of the 
connected path lengths (red, orange) and (blue, green) to the overall sum of connected path 
lengths. Note, when only sites are considered where the outgroup is mono-allelic the distance to 
the outgroup (​d​1O​ and ​d​2O​) simplifies to the derived allele frequencies ​p​x​ in population P1 and P2 
(blue and red subtree). 
 
 
In distance terms, ​Bd​f​ may be interpreted as the difference of the distances from P1 ​ ​and P2 to 
the archaic population P3 ​ ​which is​ ​caused by introgression. In section S2 of the supplementary 
information we also show mathematically that the ​Bd​f​ statistic belongs to the family of estimates 
which approaches to measure the real fraction of introgression. 
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Bd​f​ a Bayesian Model Selection Approach 
 
The transformation of the denominator back into the basic Patterson’s​ D ​statistic form​ ​suggests 
adding the given species tree BBAA pattern to the ABBA and ​ ​BABA class respectively; which 
can be reasonably assumed to be the most likely pattern in the absence of introgression for a 
given species tree (((P1,P2),P3),O). With these patterns in hand it becomes possible to 
distinguish between signals of introgression and non-introgression. Thus, we can transform the 
Bd​f  ​motivation into a simple binomial model and use a Bayesian approach to compare models of 
introgression: 
 
We are interested in comparing two models: 

: Taxon 3 & 2 are sharing alleles due to introgression ( ).M 1 3↔P2P  
: Taxon 3 & 1 are sharing alleles due to introgression ( ).M 2 3↔P1P  

 
Both models can be explained by a binomial likelihood: 
r( D|M )  θ   θP 1 = θ1

ABBA+BBAA
2
BBAA = θ1

p × d2 13
2
p p (1−p )1 2 3

 
 

r( D|M )  θ   θP 2 = θ1
BABA+BBAA

2
BBAA = θ1

p × d1 23
2
p p (1−p )1 2 3

 
 

 
where  is the data potentially influenced by introgression.D  
 
According to the ​Bd​f​ design ​theta includes information about the fraction of the data which isθ)(  
explained by ABBA​ ​and ​ ​BABA relative to the species tree pattern BBAA.​ ​The BBAA pattern 
counts are used as an approximation to take the non-introgression signals into account. The 
model assumption is that the data ​D​ can be approximately explained by the BBAA species tree 
pattern plus the corresponding introgression pattern (ABBA or BABA). That is a sufficient 
assumption as we are interested in the relation of three different type of trees in the subspace of 
possible trees. The species tree (((P1,P2),P3),O) and the two introgression or ​ILS​ trees 
((P1,(P2,P3)),O)​ ​and ​ ​((P2,(P1,P3)),O)​. ​ It has been shown (Patterson et al.  2012, Durand et al. 
2011) that instead of pattern counts, frequencies can be used as unbiased estimators and thus 
the pattern counts ABBA, BABA and BBAA can be simply replaced by the corresponding allele 
frequencies.  
 
We use the conjugate Beta distribution as a prior: 
 
r(M ) eta(n, )P 1 = B n  
r(M ) eta(n, ) P 2 = B n  
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where  is the average population size of P1, P2 and P3 included as a weighting factor to avoidn  
unnecessary high uncertainty when only a few variant sites are available in a given region.  
 
In order to form the posterior we propose the ​following update scheme; successive for each 
variant site k: 
 

α1 = ∑
L

k
p2k × d13k × n  

α2 = ∑
L

k
p1k × d23k × n  

 p (1 )ß = ∑
L

k
p1k 2k − p3k × n  

 
As a consequence the posterior distribution of each model  and  is​:M 1 M 2  
 
r(M |D)  Beta(n ,  )     P 1 =  + α1 n + ß   
r(M |D)  Beta(n ,  )    P 2 =  + α2 n + ß  

 
The corresponding marginal log-likelihood can be calculated via the ​gamma​ function: 
 

(D|M ) og  [ Γ( n ) (n ) ] /  Γ( n )  L 1 = l + α1 × Γ + ß + α1 + n + ß  
(D|M ) og  [ Γ( n ) (n ) ] /  Γ( n )  L 2 = l + α2 × Γ + ß + α2 + n + ß  

 
To compare the models via Bayes factors we propose the following transformation: 
 

 dB bf =                                                             for Bd1 f = 0  
 dB bf =  xp(L(D|M ) / L(D|M )) xp(1)     for Bd1 + e 1 2 − e f > 0  
 dB bf =  xp(L(D|M ) / L(D|M )) xp(1)     for Bd1 + e 2 1 − e f < 0  

 
allowing researchers to judge the relative merit of the two competing models. 
 

Simulation study 
 
To evaluate the performance of the ​Bd​f​ we used a simulation set-up following Martin et al. 
(2015). The Hudson’s ms program (Hudson 2002) was used to generate the topologies with 
different levels of introgression and the ​seq-gen​ program (Rambaut and Grass 1997) to 
generate the sequence alignments upon which to compare the performance of the three main 
statistics discussed in this paper, Patterson’s ​D​ (​D​), ​f ​d ​and ​Bd​f​ while varying the distance to 
ancestral populations, time of gene flow, recombination, ancestral population sizes and the 
effect of low variability. These simulations had the following settings in common: for each 
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fraction of introgression [0, 0.1, … ,0.9, 1], we simulated 100 loci using 5kb windows to calculate 
three statistics: adjusted ​R​2​ ‘goodness of fit’, The euclidian distance (sum of squared distances) 
of the mean values to the real fraction of introgression, also called the ‘sum of squares due to 
lack of fit’ (​SSLF​) and the ‘pure sum of squares error’ (SSPE).  The accuracy of the statistics is 
shown in fig. 2 and in the supplementary material (tables S3.1-S3.4) for a wide range of 
simulation parameters.  
 

Results and Discussion 
Simulations under a variety of background histories show that ​Bd​f​ is the most accurate 
approximation of the real fraction of introgression, including under the different coalescent 
events simulated for both directions of introgression (fig. 2).  Following behind ​Bd​f​ is ​f ​d​, which is 
more affected by changes in coalescent times.  In this comparison, Patterson’s ​D​ consistently 
overestimates the fraction of introgression (fig. 2).  This known effect (Martin et al. 2015) is 
greatest when the coalescent times differ between ingroup taxa (P1,P2) and archaic taxon P3. 
This effect is also slightly impacted by the direction of introgression (fig. 2).  
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Fig. 2. Accuracy of statistics to measure the fraction of introgression. ​The comparison of 
simulated data with a known fraction of introgression using ms versus the statistics (y-axis).  We 
simulated 100 loci for every fraction of introgression [0, 0.1, … 0.9, 1] and plotted the distribution 
of the corresponding statistic outcomes. A window size of 5kb and a recombination rate of 
r​=0.01 was used. The background histories (coalescent events) are ​A:​ ​P12=1N​e​, P123=2N​e​, 
P1234=3N​e​ generations ago. ​B: ​P12=1N​e​, P123=2N​e​, P1234=3N​e​ generations ago.​ C: ​P12=1N​e​, 
P123=1N​e​, P1234=3N​e​ generations ago. ​D: ​P12=1N​e​, P123=1N​e​, P1234=3N​e​ generations ago. 
Introgression directions are ​P3→P2 ​ (A,C) and ​P2→P3 ​ (B,D). Colors: ​f​d​ (grey), ​Bd ​f​ (orange) 
Patterson’s​ D​ (light blue) and the real fraction of introgression (black boxes). The boxplots 
shown here are created with the R-package ​ggplot2 ​(version 2.2.1). 
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We performed further simulations varying the distance to ancestral populations, time of gene 
flow, recombination, ancestral population sizes and the effect of low variability.  We found that 
Bd​fraction​ ​outperforms or is essentially equivalent to the ​ f​d​ ​estimate to measure the real fraction of 
introgression for most of the studied ranges of simulation cases (supplementary information, 
tables S3.1-S3.4). 
 
Notably ​Bd​f​ is rarely affected by the time of gene-flow (table 1). This is due to the fact that, unlike 
f​d​, ​Bd ​f​ does not relate the introgression to its maximum calculated from the present. When gene 
flow occurs in the distant past the denominator of the ​f​d​ ​estimates​ ​increases leading to an 
underestimation of the fraction of introgression. Notably, the direction of gene-flow has an effect 
that synergizes with the time that it occurred with introgression between P2 ​→​P3 in the distant 
past showing lower values of the statistics overall.  
 
Overall, ​Bd​f​ ​has slightly higher variances compared to ​ f​d​ ​while the mean values are often the 
least biased as shown by the sum of squares due to lack of fit, yet it provides the best (or nearly 
equivalent) estimates to ​f​d​ as judged by the goodness of fit in almost all cases.  
 
 

Direction of 
gene-flow 

Time of 
Gene-flow 

D f​d Bd​f  

P3→P2 0.1 0.3905 
1.407465 
0.4838746 

0.7978 
0.0928434 
0.1930699 

0.8115 
0.0048354 
0.2361434 

¹ 
² 
³ 

P3→P2 0.3 0.3918 
1.146151 
0.6805372 

0.7681 
0.4038538 
0.1529574 

0.787 
0.0255170 
0.2659381 

¹ 
² 
³ 

P3→P2 0.5 0.3805 
1.027749 
0.7240085 

0.7291 
0.7815143 
0.1250093 

0.7525 
0.0782484 
0.2924232 

¹ 
² 
³ 

P3→P2 0.7 0.4084 
0.7600799 
0.785031 

0.7308 
1.144712 
0.0895343 

0.762 
0.1341295 
0.2750616 

¹ 
² 
³ 

      

P2→P3 0.1 0.3952 
0.6901206 
0.4838746 

0.7778 
0.5375956 
0.1930699 

0.7691 
0.3026357 
0.1894856 

¹ 
² 
³ 

P2→P3 0.3 0.3702 
0.4257417 
0.8134292 

0.6938 
1.246362 
0.1077545 

0.7003 
0.5154848 
0.2378773 

¹ 
² 
³ 
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P2→P3 0.5 0.3069 
0.2797494 
0.9632419 

0.5779 
2.030634 
0.0690975 

0.5936 
0.9802573 
0.2355684 

¹ 
² 
³ 

P2→P3 0.7 0.1639 
0.4375968 
1.350988 

0.4283 
2.732302 
0.0431646 

0.4617 
1.708893 
0.1957117 

¹ 
² 
³ 

Table 1. Effect of the time of gene-flow.​ For each direction of introgression we varied the time 
of gene-flow (0.1, 0.3, 0.5, 0.7 N​e​) and calculated for each statistic (​D, f​d​ ​and ​ Bd​f​) ¹ the adjusted 
R​2​ ‘goodness of fit’. ² SSLF ‘sum of squares due to lack of fit’ divided by the sample size n=100. ³ 
SSPE ‘pure sum of squares error’. Scaled recombination rate is N​e​r=50 (r=0.01). The 
background history is: P12=1N​e​, P123=2N​e​ and P1234=3N​e​ generations ago. The calls to ms 
are: 
P3→P2: ms 32 1 -I 4 8 8 8 8 -ej 1 2 1 -ej 2 3 1 -ej 3 4 1 -es ​Gene-flow ​ 2 ​Fraction ​-ej ​Gene-flow 
5 3 -r 50 5000  
P2→P3: ms 32 1 -I 4 8 8 8 8 -ej 1 2 1 -ej 2 3 1 -ej 3 4 1 -es ​Gene-flow ​ 3 ​Fraction ​-ej ​Gene-flow 
5 2 -r 50 5000  
 
 
To further test ​Bd ​f​, we evaluated the performance to detect introgression by simulating 10.000 
neutral loci and 1.000 locus subject to introgression, interpreting the results using ROC analysis 
that evaluates the area under the curve (AUC) a measure that summarizes model performance, 
the ability to distinguish introgression from the neutral case, calculated with the R-package 
pROC ​(Robin et al. 2011). For this simulation scenario ​Bd​f​ and the ​f​d​ estimate show nearly the 
same utility (higher is better) for the fraction of introgression and distance to ancestral population 
(supplementary information, section S4); but both, in agreement with Martin et al. (2015), greatly 
outperform the Patterson’s ​D​ statistic especially for smaller genomic regions. We also included 
the recently published ​RNDmin​ method (Rosenzweig ​ ​et al. 2016) in this latter analysis, this 
alternative only gives good results when the signal of introgression is very strong 
(supplementary information, section S4).  
 
To ensure good performance also on real data we calculated ​Bd​f​ for 50kb consecutive windows 
on the 3L arm of malaria vectors in the ​ Anopheles gambiae​ species complex​ ​(fig. 3A)​ ​confirming 
the recently detected region of introgression (Fontaine et al. 2015). Figure 3C shows that some 
extreme negative ​Bd​f​  values are caused by the the lack of information in the window 
considered; reducing the Bayes factor compared to the corresponding ​Bd​f​ value. Notably,  the 
Bd​bf  ​values just show weak evidence (​Bd​bf ​< 3) of introgression for the majority of windows. The 
maximum value for the ​Anopheles gambiae ​3L arm is ​Bd​bf​ = 7.15 (at genomic 
region:21.850.000-21.900.000 bp). 
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Fig. 3. ​Anopheles gambiae ​3La inversion. ​Confirming ​ ​introgression ​ ​on the 3L arm of the 
malaria vector ​Anopheles gambiae​ (Fontaine ​et al. ​2015, fig. 4). We used the R-package 
PopGenome to scan the chromosome with 50kb consecutive windows and plotted ​A: ​the ​ ​Bd​f 
values along the chromosome ​B: ​Bd​f​  vs Patterson’s ​D ​. ​Bd ​f​ eliminates some extreme false 
positive ​D ​values and suggest slightly lower signals of introgression on the whole scale. ​C: ​A 
bivariate plot ​Bd​f​ vs ​Bd ​bf​ for the same region, clearly showing the effects of included uncertainty 
introduced by the binomial Bayesian model as seen from some extreme negative ​Bd​f​ values 
having a reduced Bayes factor.  
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Strengths and Weaknesses of Approach 
 
The distance based approach has the following strengths: First, the distance approach points to 
a family of statistics that can directly identify changes in genetic distances due to introgression. 
Second, distance measured by ​d​xy​ allows direct comparisons of quantities that are easily 
interpreted.  Third, a simple member of this family based on these distances, ​Bd​f​, accurately 
predicts the fraction of introgression over a wide-range of simulation parameters.  Furthermore, 
the ​Bd​f​ statistic is symmetric (like Patterson’s ​D​) which makes it easy to interpret.  However, ​Bd​f 
also outperforms Patterson’s ​D ​in all cases (the latter shows a strong positive bias) and ​Bd​f​ also 
outperforms or is equivalent to ​f​d​ in nearly all cases by showing both higher goodness of fit, a 
lower sum of squares due to lack of fit than ​f​d​. Furthermore, unlike ​f​d​,​ Bd ​f​ does not vary strongly 
with the time of gene-flow.  
 
There are several areas where further improvements could be made.  Although the distance 
based derivation of all three statistics is sound, and ​Bd​f​ is empirically supported by simulation, 
further mathematical analysis for this general class of distance estimators is desired. Like other 
statistics under consideration in this paper, ​Bd​f​ depends on resolved species tree fitting 
particular scenario therefore not directly applicable to other situations. 
 
Overall, the distance based interpretation of introgression statistics suggests a general 
framework for estimation of the fraction of introgression on a known tree and can be extended 
using ​Bayes factors​ to aid in outlier identification and potentially model selection.  The distance 
based framework introduced here could lead to other further improvements by measuring how 
genetic distance changes between different taxa as a function of hybridization across different 
parts of the genome. 

Conclusion 
 
In the last 8 years there has been an explosion of SNP based population genomic methods to 
detect introgression. The Patterson’s ​D ​method, based on patterns of alleles in a four-taxon 
comparison, has been widely applied to a variety of problems that differ from those for which it 
was originally developed.  This statistic can be used to assess whether or not introgression is 
occurring at the whole genome scale, however, Patterson’s ​D​ is not best applied to smaller 
genomic regions or ​gene-scans ​across entire regions.  Here we present both a simplified 
distance based interpretation for Patterson’s ​D​ and Martin ​et al.​’s ​f​d​ ​and a new distance based 
statistic ​Bd ​f​ ​that avoids the pitfalls of Patterson’s​ D​ when applied to small genomic regions and is 
more accurate and less prone to vary with variation in the time of gene flow than ​f​d​.​  We provide 
all of these statistics, ​Bd​f​ ​, f ​d​, ​RNDmin​, and the original Patterson’s​ D ​in the powerful genomics 
R-package ​PopGenome​ and thus can easily be applied to individual loci, sets of loci and 
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whole-genome sequencing data as well as subsites such as coding regions, genes and 
synonymous and non-synonymous sites. 
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Supplementary Material 

1 Material and Methods: Estimates of Introgression  

1.1 Patterson’s D statistic 
 
Following (Durand et al. 2011) Patterson’s​ D ​(​D​) is defined as: 

(P , .P , ) (k) (k)) / ( (k) (k))               D 1 P 2 3 O = (∑
 

 
CABBA − CBABA ∑

 

 
CABBA + CBABA  

 
Where the ABBA-BABA counts, at variant site ​k​, are as follows:  

(k) 1 )p p (1 )                   CABBA = ( − p1k 2k 3k − p4k  
(k) (1 )p (1 )                   CABBA = p1k − p2k 3k − p4k  

 
Where for each taxon (P1, P2, P3 & P4): 

 derived allele f requency of  Pp1k =  1  
 p2k derived allele f requency of  P=  2  
 p3k derived allele f requency of  P=  3  
 p4k derived allele f requency of  O =   

1.2 Patterson’s D statistic as a function of pairwise distances 
 
Here we derive the Patterson’s ​D​ statistic as a function of pairwise genetic distance between 
taxon ​x ​and taxon ​y​ (​d ​xy​). 
 
Following (Wakeley 1996) the genetic distance ​d​xy​ is defined as 
 

 dxyk = 1
n nx y

∑
nx

i=1
∑
ny

j=1
πij  

 
at a given variant site ​k. 
 
where 

the number of individuals in population x nx =  
the number of individuals in population y ny =  

  
Then at site ​k  

(1 or 0)  is the boolean value indicating that the individual ​i​ of population ​x​ and the individualπij =   
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 j ​ of population ​y​ contain the same variant (0) or not (1). 
 
The genetic distances ​d​xy​ in terms of derived allele frequencies (​p​) are as follows: 

1d12k = [p1k × ( − p ) (1 ) ] 2k +  − p1k × p2k   
1d13k = [p1k × ( − p ) (1 ) ]3k +  − p1k × p3k   
1d23k = [p2k × ( − p ) (1 ) ]3k +  − p2k × p3k   

 
Following (Patterson ​et al.​ 2012, Durand ​et al.​ 2011) instead of pattern counts allele frequencies 
can be used as an unbiased estimator. According to that we define A as the ancestral allele 
frequency (​1-p​) and B as the derived allele frequency (​p​) allowing the terms 
 
d12k = AXA ABXAB +   
d13k = XAA AXBAB +   
d23k = BAA XABAX +   
 
at site ​k. ​Here ​X​ is ​A+B = 1 ​ and the position of the letter indicates the population order.  
 
The terms ​ABBA ​and BABA can be expressed in terms of distances.  
 
If: 
 
BBA [(BBAA ABBA)  (BBAA BABA) (BABA ABBA)]/2A =  +  −  +  +  +   
ABA [(BBAA BABA)  (BBAA ABBA) (BABA ABBA)]/2B =  +  −  +  +  +   

 
they can be expressed as: 
 
BBA p d p  p ]A = [ 2k ×  13k −  1k × d23k +  3k × d12k × 1 )/2( − p4k  
ABA p d p  p ]B = [ 1k ×  23k −  2k × d13k +  3k × d12k × 1 )/2( − p4k  

 
Thus, the Patterson’s ​D​ can be written as: 
 

(p  p ) / (p )D = ∑
L

k=1
2k × d13k −  1k × d23k ∑

L

k=1
 3k × d12k   

 

1.3  Martin’s f​d​ estimator 
 
Similar to Patterson’s ​D, ​Martin ​et al. ​(2015) derive the ​f​d​ estimator as follows. 
 

(P , .P , ) (k) (k)               S1 1 P 2 3 O = ∑
 

 
CABBA − CBABA  
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(P , .P , ) (k) (k)        S2 1 PD D O = ∑
 

 
CAmax{p ,p }max{p ,p }A2k 3k 2k 3k

− CB(1−max{p ,p })max{p ,p }A2k 3k 2k 3k
 

 
(P , .P , ) (P , .P , ) / S (P , .P , ) f d 1 P 2 3 O = S1 1 P 2 3 O 2 1 PD D O  

 
Where  is the maximum derived allele frequency of P3 and P2 at a given variant position k.PD  
 

1.4 Martin’s ​f​d​ estimator as a function of pairwise distances: 
 
Following the same logic as ​D ​we start with the definition of ​f​hom ​(Green 2010).  
 

,f hom = S(P ,P , P ,O)1 3 3

S(P ,P , P ,O)1 2 3  

where  .(P , , , ) ABBA ABA   pS 1 P 2 P 3 O =  ∑
L

k
 k − B k =  ∑

L

k=1
p2k × d13k −  1k × d23k  

 
Substituting by P 2 ,P 3  

(P , , , )  pS 1 P 3 P 3 O = ∑
L

k=1
p3k × d13k −  1k × d33k  

(P , , , )  p .S 1 P 3 P 3 O = ∑
L

k=1
p3k × d13k −  1k × π3   

where  is the average pairwise nucleotide diversity within population .π3 P 3  
 

may be interpreted as the contribution of population 3 to the variation containedp3k × d13k  
between the lineages 1 to 3 (subtracting the contribution of population 1 contained in population 
3). Here it is assumed that introgression goes from to  P 3 .P 2  
 
Following Martin ​et al.​ (2015) is defined as , where is the population (2 orf d f d = S(P ,P , P ,O)1 2 3

S(P ,P , P ,O)1 D D
PD  

3) with the highest frequency at each variant position. Here the denominator is  
 

(P , , , )  pS 1 PD PD O =  ∑
L

k=1
pDk × d1Dk −  1k × dDDk  

(P , , , )  p .S 1 PD PD O = ∑
L

k=1
pDk × d1Dk −  1k × πD   

Leading to the statistic: 
 

/  pf d =  ∑
L

k=1
p2k × d13k −  1k × d23k  p∑

L

k=1
pDk × d1Dk −  1k × πD  

 
The difference of ​f​d  ​statistic versus ​f​hom ​is that there is no assumption in the former about the 
direction of introgression. 
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1.5 The ​Bd​f ​estimator 
 
In distance terms we may interpret the ABBA and BABA patterns as ​polarized shared distances 
based on the derived allele frequencies on a ​ 4-taxon tree​. ABBA for example can be interpreted 
as the polarized shared distance between the (P2,P3) clade and P1, where BABA is the 
polarized shared distance ​between (P1,P3) and P2. Thus, ABBA is a signal of shared increased 
distance to P1 and BABA is a signal of shared increased distance to P2. However, in order to 
relate those distances to the distances which are not a signal of introgression; the BBAA pattern 
must to be taken into account; the third way in which two populations can share the derived 
alleles. According to the interpretations given above the BBAA species tree pattern can be seen 
as the ​polarized shared distances ​of (P1,P2) to P3. We propose to include this pattern to each 
introgression class (​class 1​: P1 is sharing with P3 and ​class 2​: P2 is sharing with P3) in order to 
relate the distances to the total distances given within the ​shared distance system​ discussed 
here. 
 
For  (P3 and P2 sharing); this simply is ABBA+BBAA.3↔P2P  
For  (P3 and P1 sharing); this simply is BABA+BBAA.3↔P1P  
  
A decreased BBAA ​polarized shared distance​ and an increased ​polarized shared distance 
ABBA is a signal of  introgression. When at the same time the BABA signal reduces we3↔P2P  
have a maximal support for the ABBA signal. 
  
Thus, the denominator of the ​Bd​f​ ​ ​can be written as: 
 

ABBA BAA) (BABA BAA) (p  p )  ( + B +  + B =  ∑
L

k=1
2k × d13k +  1k × d23k  

 
For a given region including ​L​ variant sites. 
 

2 A Brief Analysis of the ​Bd​f 
 
It has been shown (Green 2010) that the ​ f​hom  ​(supplementary section 1.4) approaches to the real 
fraction of introgression because the denominator provides an limit of the maximal possible 
introgression by assuming that maximal introgression is leading to complete homozygosity 
between ​P2​ and ​ P3​. However, Martin ​et al. ​(2015) stated that this estimate can produce ​f​hom 
values greater than one when e.g the derived allele frequency in population P2 is higher than in 
P3. Thus, the authors suggest the ​f​d​ as an alternative.  Given these concerns about​  f​hom​ we can 
assume that the ​ f​hom  ​denominator is just a lower limit of the real maximal possible introgression. 
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Here we show that the denominator of ​Bd​f​  ​belongs to the family of measuring the maximal 
possible introgression and thus the ​Bd​f  ​statistic approaches the real fraction of introgression. 
 
The denominator of the ​f​hom​ estimate is: 
 

(P , , , ) 1 )p p  p (1 )p  S 1 P 3 P 3 O = ( − p1 3 3 −  1 − p3 3   
 
We set , which can be seen as a correction factor which comes into play onlycorr (1 )p = p1 − p3 3  
and only if the archaic population P3 is heterozygous. In case of introgression between ​P3​ and 
P2​, is the asymptotically more increasing function of the 1 )p p  ( − p1 3 3 (P , , , )S 1 P 3 P 3 O
denominator.  
 
When we are able to show that under complete lineage sharing between ​P2​ and ​P3 ​( )p2 = p3  
the following equation holds: 
 

(P , , , ) denom(BD ) orrS 1 P 3 P 3 O =  f raction − α * c   
 
Where ​alpha​ is a scaling factor >1. 
 
We than would have a validation that the denominator of ​Bd​f ​ ​belongs to the family of statistics 
estimating the fraction of introgression: 
 
First resolving the left side: 
 
1 )p p  p (1 )p  p (1 )p  (1 )p p  2p p (1 ) orr( − p1 3 3 −  1 − p3 3 =  1 − p2 3 +  − p1 2 3 +  1 2 − p3 − α * c  
⇔ 

[(1 )p (1 )]     p (1 )p  (1 )p p  2p p (1 ) orrp3 − p1 3 − p1 − p3 =  1 − p2 3 +  − p1 2 3 +  1 2 − p3 − α * c  
⇔ 

[p p p p ]     p (1 )p  (1 )p p  2p p (1 ) orrp3 3 − p1 3 −  1 + p1 3 =  1 − p2 3 +  − p1 2 3 +  1 2 − p3 − α * c  
⇔ 

[p ]     p (1 )p  (1 )p p  2p p (1 ) orrp3 3 − p1 =  1 − p2 3 +  − p1 2 3 +  1 2 − p3 − α * c  
⇔ 

 p      (1 )p  (1 )p p  2p p (1 ) orrp3
2 − p1 3 = p1 − p2 3 +  − p1 2 3 +  1 2 − p3 − α * c  

 
Now resolving the right side: 
 

 p      p p p p  p p p  2p p p p p  orrp3
2 − p1 3 =  1 3 − p1 2 3 + p2 3 − p1 2 3 +  1 2 − 2 1 2 3 − α * c  

⇔ 
 p      p p p p p p p  orr p3

2 − p1 3 = p1 3 + p2 3 + 2 1 2 − 4 1 2 3 − α * c  
 
Now substituting  (complete lineage sharing between P3 and P2).p2 = p3  
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 p      p p p p p  orr p3
2 − p1 3 = p1 3 + p3

2 + 2 1 3 − 4 1 3
2 − α * c  

⇔ 
 p      p p p  orr p3

2 − p1 3 = 3p1 3 + p3
2 − 4 1 3

2 − α * c  
⇔ 

     p p p  orr 0 = 4p1 3 − 4 1 3
2 − α * c  

⇔ 
     p p ] orr 0 = 4[p1 3 − p1 3

2 − α * c  
⇔ 

     p (1 ) α p (1 )0 = 4p1 3 − p3 −  * p1 3 − p3  
⇔ α = 4  

 0 = 0   
 
This shows that the correction factor used for the ​f​hom​ is just scaled by a factor ​alpha​ for the Bd ​f 
denominator and thus the Bd ​f​ statistic approaches to measure the real fraction of introgression. 
  

3 Simulation Results: On the Accuracy to Measure the Real Fraction of 
Introgression  

 
Distance of ancestral population: ​Starting with the following topology (((P1,P2),P3),P4) we 
simulate varying depths to common ancestors of P1 & P2, and at the root (P1234), where 
recombination rate is fixed with ​N​e​r ​=50 (​r​=0.01) for each direction of gene flow (see 
supplementary table 1 below). 
 

Direction of 
gene-flow 

Distance to 
ancestral 
population  
 
(P12-P123-
P1234) 

D f​d Bd​f  

P3→P2 0.3-1-3 0.4388 
0.7060372  
0.5175175  

0.7662  
0.2892631  
0.166674 

0.7739 
0.1883595 
0.2209828 

¹ 
² 
³ 

P3→P2 0.5-1-3 0.4916  
0.4894583  
0.5618507  

0.7622  
0.32828  
0.1675572  

0.7837 
0.1277751 
0.2180397 

¹ 
² 
³ 

P3→P2 0.7-1-3 0.5158 
0.2927739 
0.6544165 

0.7675 
0.366725 
0.1694591 

0.7698 
0.0733439 
0.2486593 

¹ 
² 
³ 

P3→P2 1-1-3 0.5846 0.7733 0.7014 ¹ 
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0.1177175 
0.6033176 

0.4002708 
0.1667211 

0.0379529 
0.3540125 

² 
³ 

P3→P2 0.5-2-3 0.3314 
1.622079 
0.602628 

0.7901 
0.0814349 
0.2004631 

0.8064 
0.0797936 
0.2252406 

¹ 
² 
³ 

P3→P2 0.5-3-3 0.2704 
1.973632 
0.612887 

0.8048 
0.0298935 
0.2086517 

0.8077 
0.0884342 
0.2254532 

¹ 
² 
³ 

P3→P2 1-2-3 0.3905 
1.407465 
0.4838746 

0.7978 
0.0928434 
0.1930699 

0.8115 
0.0048354 
0.2361434 

¹ 
² 
³ 

P3→P2 1-3-3 0.3267 
1.702683 
0.6095603 

0.8142 
0.0342730 
0.2039458 

0.8212 
0.0268799 
0.2297386 

¹ 
² 
³ 

P3→P2 2-2-3 0.5858 
0.4688205 
0.4950339 

0.8115 
0.1919717 
0.1760974 

0.7254 
0.1339255 
0.3274011 

¹ 
² 
³ 

      

P2→P3 0.3-1-3 0.1593 
0.8881787 
0.7641099 

0.4724 
1.837565 
0.1412364 

0.432 
2.205826 
0.1071995 

¹ 
² 
³ 

P2→P3 0.5-1-3 0.366 
0.2165403 
0.7531743 

0.6895 
1.080729 
0.1313857 

0.6465 
1.044189 
0.166181 

¹ 
² 
³ 

P2→P3 0.7-1-3 0.4925 
0.1415166 
0.631658 

0.7283 
0.6810742 
0.1551363 

0.7001 
0.3466498 
0.2417637 

¹ 
² 
³ 

P2→P3 1-1-3 0.5745 
0.1211462 
0.5876195 

0.7569 
0.4168669 
0.1742366 

0.704 
0.0472772 
0.333956 

¹ 
² 
³ 

P2→P3 0.5-2-3 0.2525 
0.3320516 
0.8885661 

0.6755 
1.225495 
0.1285244 

0.6183 
1.460954 
0.1333156 

¹ 
² 
³ 

P2→P3 0.5-3-3 0.2361 
0.37603 
0.9413875 

0.6709 
1.321473 
0.1249192 

0.5852 
1.690323 
0.1160202 

¹ 
² 
³ 
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P2→P3 1-2-3 0.3952 
0.6901206 
0.4838746 

0.7778 
0.5375956 
0.1930699 

0.7691 
0.3026357 
0.1894856 

¹ 
² 
³ 

P2→P3 1-3-3 0.3767 
0.8946288 
0.6853883 

0.7589 
0.6210276 
0.1569502 

0.7226 
0.6119493 
0.192384 

¹ 
² 
³ 

P2→P3 2-2-3 0.5628 
0.4821917 
0.5399023 

0.802 
0.1947744 
0.1839213 

0.7188 
0.1419037 
0.3309354 

¹ 
² 
³ 

Supplementary Table 1 ​: ​Distance of ancestral population: ​For each direction of gene flow and 
distance to ancestral populations (see above) we calculated for each statistic (​D​, ​f ​d​ and Bd ​f​) ¹ the 
adjusted R​2​ ‘goodness of fit’. ² ​SSLF​ ‘sum of squares due to lack of fit’ divided by the sample 
size n=100. ³ SSPE ‘pure sum of squares error’. The time of gene-flow was a constant at 0.1 ​N​e​, 
the scaled recombination rate is ​N​e​r​=50 (​r​=0.01), and the calls to ms are as follows:  
P3→P2: ms 32 1 -I 4 8 8 8 8 -ej P12 2 1 -ej P123 3 1 -ej P1234 4 1 -es 0.1 2 Fraction -ej 0.1 5 3 
-r 50 5000 
P2→P3: ms 32 1 -I 4 8 8 8 8 -ej P12 2 1 -ej P123 3 1 -ej P1234 4 1 -es 0.1 3 Fraction -ej 0.1 5 2 
-r 50 5000 
 
 
Recombination:​ To test the impact of recombination on these statistics we varied the 
recombination rates from (​r​ = 0 - .08). With increasing recombination rates the accuracy to 
measure the real fraction of introgression increases for ​f​d​ and ​Bd​f​ while the Patterson’s ​D​ is 
rarely affected by varying this parameter.  
 

Direction of 
gene-flow 

Recombination 
rate  

D f​d Bd​f  

P3→P2 0/5000  0.3307 
0.7697069 
1.488486 

0.6335 
0.1065987 
0.4484599 

0.6062 
0.0139072 
0.6535393 

¹ 
² 
³ 

P3→P2 50/5000  0.3905 
1.407465 
0.4838746 

0.7978 
0.0928434 
0.1930699 

0.8115 
0.0048354 
0.2361434 

¹ 
² 
³ 

P3→P2 100/5000  0.4072 
1.490496 
0.3725337 

0.8676 
0.1114164 
0.1155275 

0.8758 
0.0080236 
0.1467002 

¹ 
² 
³ 

P3→P2 200/5000  0.4046 
1.511661 
0.3639124 

0.8986 
0.1163041 
0.0864206 

0.902 
0.0121368 
0.1096251 

¹ 
² 
³ 
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P3→P2 300/5000  0.4069 
1.564095 
0.3190911 

0.9249 
0.1209162 
0.0624568 

0.9257 
0.0150437 
0.0819618 

¹ 
² 
³ 

P3→P2 400/5000  0.4041 
1.577837 
0.3185764 

0.9383 
0.1222677 
0.0509774 

0.936 
0.0169133 
0.0691337 

¹ 
² 
³ 

Supplementary Table 2 ​: ​Recombination:​ For recombination rates varying from (0 to .08) we 
calculated for each statistic (​D​, ​f ​d​ and Bd ​f​) ¹ the adjusted R​2​ ‘goodness of fit’. ² ​SSLF​ ‘sum of 
squares due to lack of fit’ divided by the sample size n=100 . ³ SSPE ‘pure sum of squares error’. 
The time of gene-flow was a constant at 0.1 ​N​e​, background history is P12=1 ​N​e​, P123=2 ​N​e​ and 
P1234=3 ​N​e​, and the calls to ms are as follows:  
P3→P2: ms 32 1 -I 4 8 8 8 8 -ej 1 2 1 -ej 2 3 1 -ej 3 4 1 -es 0.1 2 ​Fraction​ -ej 0.1 5 3 -r ​Ne*r 
5000 ​only one direction of gene-flow shown. 
 
 
Ancestral population sizes:​  We varied ancestral population sizes at the nodes P12 and P123 
and simulated the impact on the (​D​, ​f ​d​ and ​Bd​f​) statistics (see supplementary table 3 below). 
 

Direction of 
gene-flow 

Ancestral 
population size 
 
P12-P123 

D f​d Bd​f  

P3→P2 1-2 0.4133 
1.147567 
0.6070287 

0.8275 
0.0668421 
0.1808706 

0.8342 
0.0304105 
0.2064996 

¹ 
² 
³ 

P3→P2 1-10 0.4606 
1.047664 
0.4794316 

0.8031 
0.0084466 
0.2410548 

0.8062 
0.100913 
0.2165126 

¹ 
² 
³ 

P3→P2 2-10 0.5955 
0.5244162 
0.4275634 

0.795 
0.0094751 
0.2554508 

0.8022 
0.0473944 
0.2420035 

¹ 
² 
³ 

P3→P2 2-1 0.4857 
0.9736148 
0.474269 

0.8177 
0.1291925 
0.1743487 

0.8237 
0.0036228 
0.2196956 

¹ 
² 
³ 

P3→P2 10-1 0.579 
0.61373 
0.4147273 

0.8 
0.1866553 
0.1840674 

0.7677 
0.0649301 
0.2693273 

¹ 
² 
³ 

P3→P2 10-2 0.6208 
0.406646 
0.4288073 

0.7957 
0.1198737 
0.2109028 

0.7778 
0.0146505 
0.2804412 

¹ 
² 
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³ 

Supplementary Table 3 ​: ​Ancestral population sizes:​ For different ancestral population sizes 
(multiples of 1, 2 and 10 ​N​e​) at nodes P12 and P123 we calculated for each statistic (​D​, ​f ​d​ and 
Bd​f​) and present ¹ the adjusted R​2​ ‘goodness of fit’. ² ​SSLF​ ‘sum of squares due to lack of fit’ 
divided by the sample size n=100. ³ SSPE ‘pure sum of squares error’. The time of gene-flow is 
0.1 ​N​e​, scaled recombination rate is ​N​e​r​=50 (​r​=0.01), and background history is: P12=1 ​N​e​, 
P123=2 ​N​e​ and P1234=3 ​N​e​, and the calls to ​ms ​are: 
P3→P2: ms 32 1 -I 4 8 8 8 8 -ej 1 2 1 -en 1.01 1 ​P12​ -ej 2 3 1 -en 2.01 1​ P123​ -ej 3 4 1 -es 0.1 2 
Fraction​ -ej 0.1 5 3 -r 50 5000 
 
 
The effect of low variability:​ We varied the nucleotide diversity θ to test the effect of low 
variability on the statistics ​D​, ​f ​d​ and ​Bd​f​.  
 

Direction of 
gene-flow 

Variability  
theta (θ) 

D f​d Bd​f  

P3→P2 3/5000  0.396 
1.308409 
0.5742832 

0.8153 
0.1108171 
0.1771698 

0.8197 
0.0129878 
0.2252038 

¹ 
² 
³ 

P3→P2 5/5000  0.4015 
1.323871 
0.5361765 

0.8083 
0.121785 
0.1832012 

0.8205 
0.0191775 
0.2206314 

¹ 
² 
³ 

P3→P2 25/5000  0.4035 
1.201857 
0.6192605 

0.7991 
0.1310123 
0.1922683 

0.8102 
0.0228752 
0.2379141 

¹ 
² 
³ 

P3→P2 50/5000  0.4092 
1.357399 
0.4953229 

0.8068 
0.1009227 
0.1866151 

0.8217 
0.006412517 
0.2276914 

¹ 
² 
³ 

Supplementary Table 4 ​ ​The effect of low variability:​ For unidirectional gene-flow P3→P2, we 
varied θ from 3/5000 - 50/5000 and calculated for each statistic (​D​, ​f ​d​ and Bd ​f​) and present ¹ the 
adjusted R​2​ ‘goodness of fit’. ² ​SSLF​ ‘sum of squares due to lack of fit’ divided by the sample 
size n=100. ³ SSPE ‘pure sum of squares error’. The time of gene-flow was a constant at 0.1 ​N​e​, 
the scaled recombination rate is ​N​e​* ​r​=50 (​r​=0.01) and background history is P12=1 ​N​e​, P123=2 ​N​e 
and P1234=3 ​N​e​. The calls to ​ms ​are:  
P3→P2: ms 32 1 -I 4 8 8 8 8 -ej 1 2 1 -ej 2 3 1 -ej 3 4 1 -es 0.1 2 ​Fraction​ -ej 0.1 5 3 -r 50 5000 
-t ​variability 
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4 Simulation Results: Detecting Introgression from Whole Genome Data 
 
To test the performance of the various statistics (​D, f​d​, RNDmin, Bd​f​) to distinguish neutral 
models from models with varying levels of introgression or varying distances to ancestral 
populations, we performed two simulations on 1kb windows.  For each statistic of interest we 
present the area under the curve (AUC) values. All simulations start with 10.000 loci under the 
neutral scenario (​f=0​) and 1.000 locus with subject to introgression. The Recombination rate is 
fixed at ​r=0.01​. 
 
Fraction of introgression:​  To test the impact of varying the fraction of introgression we simulated 
the fraction of introgression for the ‘alternative model’ from  ​f​=0.1 to ​f ​=1 and compared this to the 
neutral scenario where the fraction of introgression is zero (​f=0​). See below (supplementary 
table 5).  
 

Direction of 
gene-flow 

Fraction of 
introgression 

D  f​d  RNDmin Bd​f 

P3→P2 0.1 0.6252 0.7128 0.5579 0.7065 

P3→P2 0.2 0.6846 0.8426 0.6043 0.833 

P3→P2 0.3 0.7163 0.9221 0.6479 0.9139 

P3→P2 0.4 0.7293 0.9541 0.7196 0.9478 

P3→P2 0.5 0.738 0.981 0.7588 0.9753 

P3→P2 0.6 0.7466 0.9922 0.8246 0.989 

P3→P2 0.7 0.7585 0.9979 0.851 0.9961 

P3→P2 0.8 0.7607 0.9988 0.9216 0.998 

P3→P2 0.9 0.7748 1 0.9659 0.9996 

P3→P2 1 0.7871 1  1 0.9998 

Supplementary Table 5:  ​Fraction of introgression:​ The effect of varying fractions of 
introgression on the model utility in the ROC analysis as indicated for values of AUC. The 
background history (coalescent times) is: ​P12=1N​e​, ​P123=2N​e​ and ​P1234=3N​e​ generations ago. 
The calls to ​ms ​are:  
Neutral model: ms 32 1 -I 4 8 8 8 8 -ej 1 2 1 -ej 2 3 1 -ej 3 4 1 -r 10 1000 
Alternative model: P3→P2: ms 32 1 -I 4 8 8 8 8 -ej 1 2 1 -ej 2 3 1 -ej 3 4 1 -es ​0.1​ 2 ​Fraction ​-ej 
0.1​ 5 3 -r 10 1000  
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Distance of ancestral population: 
Finally, by varying the distance to ancestral populations we tested the impact of a low amount of 
introgression on the various statistics. 
 

Direction of 
gene-flow 

Distance to 
ancestral 
population ( 
P12-P123-P12
34) 

D  f​d  RNDmin Bd​f 

P3→P2 0.3-1-3 0.6366 0.686 0.5308 0.6782 

P3→P2 1-1-3 0.5884 0.6077 0.5107 0.5969 

P3→P2 0.5-2-3 0.6314 0.7292 0.5489 0.7272 

P3→P2 0.5-3-3 0.6454 0.7493 0.5498 0.7488 

P3→P2 1-2-3 0.6252 0.7128 0.5482 0.7065 

P3→P2 1-3-3 0.6465 0.7604 0.569 0.7575 

P3→P2 2-2-3 0.6016 0.6406 0.5312 0.622 

P3→P2 1.5-2-3 0.6065 0.668 0.5526 0.6573 

      

P2→P3 0.3-1-3 0.5221 0.5515 0.8464 0.5464 

P2→P3 1-1-3 0.541 0.6126 0.9361 0.6157 

P2→P3 0.5-2-3 0.5652 0.6197 0.8717 0.5998 

P2→P3 0.5-3-3 0.5842 0.6195 0.9653 0.5888 

P2→P3 1-2-3 0.5919 0.6615 0.5595 0.6538 

P2→P3 1-3-3 0.6202 0.6799 0.731 0.6566 

P2→P3 2-2-3 0.562 0.6588 0.9821 0.6677 

Supplementary Table 6:  ​Distance of ancestral population:​ 10.000 loci under the neutral 
scenario (​f​=0). Fraction of introgression for the ‘alternative model’ simulations is ​f​=0.1 (1.000 
locus). Recombination rate is r=0.01. Time of gene-flow is 0.1 ​N​e​.  
Neutral model: 
ms 32 1 -I 4 8 8 8 8 -ej ​P12 ​2 1 -ej ​P123 ​3 1 -ej​ P1234​ 4 1 -r 10 1000 
Alternative model: 
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P3→P2: ms 32 1 -I 4 8 8 8 8 -ej ​P12​ 2 1 -ej ​P123 ​3 1 -ej​ P1234​ 4 1 -es 0.1 2 ​0.9​ -ej 0.1 5 3 -r 10 
1000 
P2→P3: ms 32 1 -I 4 8 8 8 8 -ej ​P12​ 2 1 -ej ​P123 ​3 1 -ej​ P1234​ 4 1 -es 0.1 3 ​0.9​ -ej 0.1 5 2 -r 10 
1000 
 

5 PopGenome Usage 
 
# Install the PopGenome package from CRAN within R 

install.packages(“PopGenome”) 

 

# Load the package 

library(PopGenome) 

 

# Read the data (Fontaine et. al, 2015) 

genome <- readVCF("AGC_refHC_bialSNP_AC2_2DPGQ.3L_V2.CHRcode2.DRYAD.vcf.gz", 

10000,"4",1,45000000, include.unknown=TRUE) 

 

# Define the populations 

 

Aquad <- c("SRS408143", "SRS408145", "SRS408151", "SRS408155", "SRS408966", 

"SRS408969", "SRS408972", "SRS408973", "SRS408983", "SRS420578") 

 

Amela <- c("SRS408142", "SRS408185", "SRS408994") 

 

Ameru <- c("SRS408186", "SRS408187", "SRS408967", "SRS408974", "SRS408992", 

"SRS410266","SRS410284", "SRS410286", "SRS410290", "SRS420577") 

 

# Define the outgroup 

Chris <- c("CHRISTYI") 

 

# Set the populations 

genome <- set.populations(genome, list(Aquad,Amela,Ameru),diploid=TRUE) 

 

# Set the outgroup  

genome  <- set.outgroup(genome, Chris, diploid=TRUE) 

 

# Transform the data into 50kb consecutive windows 

slide <- sliding.window.transform(genome,50000,50000,type=2) 

 

# Perform the Bdf 

slide <- introgression.stats(slide, do.BDF=TRUE) 
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head(slide@BDF) 

head(slide@BDF_bayes) 

 

BDF <- slide@BDF 

BDF_bayes <- slide@BDF_bayes 

 

# Perform the D and ​f ​d 
slide <- introgression.stats(slide, do.D=TRUE) 

 

head(slide@D) 

head(slide@f) 

 

D <- slide@D 

f <- slide@f 

 

# Get the genomic positions 

genome.pos <- sapply(slide@region.names, function(x){ 

split <- strsplit(x," ")[[1]][c(1,3)] 

val <- mean(as.numeric(split)) 

return(val) 

}) 

 

# Plot the results (Bd-fraction) 

plot(genome.pos, BDF, pch=19, ylab="Bd-fraction", xlab="genomic position", 

main="3La inversion") 

 

# Plot the results (Bd-fraction bayes factor) 

plot(genome.pos, BDF_bayes, pch=19, ylab="Bd-fraction (Bayes factor)", 

xlab="genomic position", main="3La inversion") 
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