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Massively parallel single-cell RNA sequencing can precisely resolve cellular diversity in a 

high-throughput manner at low cost, but unbiased isolation of intact single cells from 
complex tissues, such as adult mammalian brains, is challenging. Here, we integrate 

sucrose-gradient assisted nuclear purification with droplet microfluidics to develop a 
highly scalable single-nucleus RNA-Seq approach (sNucDrop-Seq), which is free of 

enzymatic dissociation and nucleus sorting. By profiling ~11,000 nuclei isolated from adult 

mouse cerebral cortex, we demonstrate that sNucDrop-Seq not only accurately reveals 
neuronal and non-neuronal subtype composition with high sensitivity, but also enables 

analysis of long non-coding RNAs and transient states such as neuronal activity-dependent 
transcription at single-cell resolution in vivo.  

 

A fundamental challenge in deciphering cellular composition and cells’ functional states in 

complex mammalian tissues manifests in the extraordinary diversity of cell morphology, size and 

local microenvironment. While current high-throughput single-cell RNA-Seq approaches have 

proved to be powerful tools for interrogating cell types, dynamic states and functional processes 

in vivo 1, these methods require the preparation of intact, single-cell suspensions from freshly 

isolated tissues, which is only practical for easily-dissociated embryonic and young postnatal 

tissues. This requirement poses an even greater challenge for cells with complex morphology 

such as mature neurons. Harsh enzymatic treatment not only favors recovery of easily 

dissociated cell types, but also introduces aberrant transcriptional changes during the dissociation 

process 2. In addition, skeletal and cardiac muscle cells are frequently multinucleated and are 

large in size. For instance, each adult mouse skeletal muscle cell contains hundreds of nuclei and 

is ~5,000 μm in length and 10-50 μm in width 3. Thus, existing high-throughput single-cell 

capture and library preparation methods, including isolation of cells by fluorescence activated 

cell sorting (FACS) into multi-well plates, sub-nanoliter wells, or droplet microfluidic 

encapsulation, are not optimized to accommodate these unusually large cells. Isolating individual 

nuclei for transcriptome analysis is a promising strategy, as single-nucleus RNA-Seq methods 

avoid strong biases against cells of complex morphology and large size 2, 4-6, and can be 

potentially standardized to accommodate the study of various tissues. However, current single-

nucleus RNA-Seq methods rely on fluorescence-activated nuclei sorting (FANS) 4, 5 or Fluidigm 
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C1 6 to capture nuclei, and thus cannot easily be scaled up to generate a comprehensive atlas of 

cell types in a given tissue, much less a whole organism.  

 

An ideal solution to increase the throughput of single-nucleus RNA-Seq is to integrate nucleus 

purification with massively parallel single-cell RNA-Seq methods such as Drop-Seq 7, InDrop 8, 

or equivalent commercial platforms (e.g. 10x Genomics 9). However, single-nucleus RNA-Seq is 

currently not supported on these droplet microfluidics platforms. Inhibitory effects due to 

cellular debris contamination and/or inefficient lysis of nuclear membranes might contribute to 

this failure. Historically, nuclei of high purity can be isolated from solid tissues or from cell lines 

with fragile nuclei by centrifugation through a dense sucrose cushion to protect nucleus integrity 

and strip away cytoplasmic contaminants. The sucrose gradient ultracentrifugation approach has 

been adapted to isolate neuronal nuclei for profiling histone modifications 10, nuclear RNA 11, 

and DNA methylation 11, 12 at genome-scale. To test whether this nuclei purification method 

supports single-nucleus RNA-Seq analysis, we isolated nuclei from cultured cells, as well as 

freshly isolated or frozen adult mouse brain tissues through douncing homogenization followed 

by sucrose gradient ultracentrifugation (Fig. 1a and Supplementary Fig. 1). After quality 

assessment and nuclei counting, we performed emulsion droplet barcoding of the nuclei and 

library preparation with both Drop-Seq and 10x Genomics platforms. While the10x Genomics 

single-cell 3’ solution workflow supports cDNA amplification only from whole cells (possibly 

due to inefficient lysis of nuclear membrane), the Drop-Seq platform yielded high quality cDNA 

and sequencing libraries from both whole cells and nuclei (freshly isolated or frozen samples) 

(Supplementary Fig. 2). These results suggest that nucleus purification and nuclear membrane 

lysis are critical factors for efficient library preparation in single-nucleus RNA-Seq.  

 

We next validated the specificity of sucrose gradient-assisted single-nucleus Drop-Seq 

(sNucDrop-Seq) with species-mixing experiments, using nuclei isolated from in vitro cultured 

mouse and human cells. This analysis indicates that the rate of co-encapsulation of multiple 

nuclei per droplet (~2.6%) is comparable to standard Drop-Seq (Supplementary Fig. 3a).  To 

assess the sensitivity of sNucDrop-Seq, we performed shallow sequencing of cultured mouse 

3T3 cells at either single-cell  (with Drop-Seq: detecting on average 3,325 genes with ~25,000 

reads per cell for 1,160 cells with >800 genes detected) or single-nucleus (with sNucDrop-Seq: 
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detecting on average 2,665 genes with ~23,000 reads per nucleus for 1,984 nuclei with >800 

genes detected) resolution (Fig. 1b). With standard Drop-Seq microfluidics devices and flow 

parameters, the throughput of sNucDrop-Seq (1.9%, 1,829 / 95,000 barcoded beads) is 

comparable to that of Drop-Seq (1.5%, 1,160 / 77,000 barcoded beads). Comparative analysis of 

Drop-Seq and sNucDrop-Seq reveals that mitochondria-derived RNAs (e.g. mt-Nd1, mt-Nd2) 

and nucleus-enriched long-noncoding RNAs (e.g. Malat1) were enriched in cytoplasmic and 

nuclear compartments, respectively (Supplementary Fig. 3b). Thus, integrating sucrose gradient 

centrifugation-based nuclei purification with the current Drop-Seq microfluidics device and 

workflow may support massively parallel single-nucleus RNA-Seq. 

 

To demonstrate the utility of sNucDrop-Seq in studying complex adult tissues, we analyzed 

nuclei isolated from adult mouse cerebral cortex. The average expression profiles of single nuclei 

from two biologically independent replicates were well correlated (r=0.993; Supplementary 

Fig. 3c). Out of reads uniquely mapped to the genome (78.0% of all reads), 76.3% of reads were 

aligned to the expected strand of genic regions (25.3% exonic and 51.0% intronic), and the 

remaining 23.7% to intergenic regions or to the opposite strand of annotated genic regions. The 

relatively high proportion of intronic reads is similar to previous single-nucleus RNA-Seq study 

of human cortex (~48.7%) 5, reflecting the enrichment of nascent, pre-processed transcripts in the 

nucleus. Because most exonic (91.4%) and intronic (86.0%) reads were mapped to the expected 

strand of annotated transcripts, we retained both exonic and intronic reads for downstream 

analyses. After quality filtering, we retained 10,996 nuclei (~20,000 uniquely mapped reads per 

nucleus) from 13 animals, detecting, on average, 4,273 transcripts (unique molecular identifiers 

[UMIs]), and 1,831 genes per nucleus (Fig. 1b). After correcting for batch effects, we identified 

highly variable genes, and determined significant principal components (PC) with these variable 

genes. We then performed graph-based clustering and visualized distinct groups of cells using 

non-linear dimensionality reduction with spectral t-distributed stochastic neighbor embedding 

(tSNE) (Methods).  This initial analysis segregated nuclei into 19 distinct clusters (Fig. 1c). 

Each cluster contains nuclei from multiple animals, indicating the transcriptional identities of 

these cell-type-specific clusters are reproducible across biological replicates (Supplementary 

Fig. S4a).  

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 28, 2017. ; https://doi.org/10.1101/154476doi: bioRxiv preprint 

https://doi.org/10.1101/154476


       5 

On the basis of known markers for major cell types, we identified 10 excitatory neuronal clusters 

(Ex 1-10; Slc17a7+), four inhibitory neuronal clusters (Inh 1-4; Gad1+), and five non-neuronal 

clusters (astrocytes [Astro; Gja1+], oligodendrocyte precursor cells [OPC; Pdgfra+], 

oligodendrocytes [oligo; Mog+], microglia [MG; Ctss+], and endothelial cells [EC; Flt1+]) (Fig. 
1c-d and Supplementary Fig. 4b). We readily uncovered all major subtypes of GABAergic 

inhibitory neurons expressing known canonical markers: Sst (somatostatin; cluster Inh1), Pvalb 

(parvalbumin; cluster Inh2), Vip (vasoactive intestinal peptide; cluster Inh3) and Ndnf (neuron-

derived neurotrophic factor; cluster Inh4) (Supplementary Fig. 5a). For glutamatergic 

excitatory neurons, hierarchical clustering grouped the ten clusters into two major groups (Fig. 
1e), largely corresponding to their cortical layer positions, from superficial (cluster Ex1-5: L2/3 

and L4) to deep (cluster Ex6-10: L5a/b and L6a/b) layers (Fig. 1d and Supplementary Fig. 5). 

Consistent with previous studies 5, 13, 14, we readily annotated anatomical location of each 

excitatory neuronal cluster post-hoc by its expression of known layer-specific marker genes 

(Supplementary Fig. 6a-b). In addition to protein-coding marker genes, we have also identified 

a list of long non-coding RNAs that are specifically expressed in distinct cell clusters (Fig. 1e 
and Supplementary Fig. 5b). For instance, 1700016P03Rik is specifically detected in cluster 

Ex5, and this non-coding transcript acts mainly as a primary transcript encoding two neuronal 

activity-regulated microRNAs (Mir212 and Mir132) 15, 16 (Supplementary Fig. 7), which is 

consistent with the enrichment of other activity-dependent genes (Fos, Arc, Npas4) in this 

excitatory neuronal cluster (Supplementary Fig. 6a), and raises the possibility that Ex5 is 

enriched of activated neurons (see below). The identification of both protein-coding and non-

coding transcripts as cell-type-specific markers highlights the potential of sNucDrop-Seq in 

exploring the emerging role of non-coding RNAs at single-cell resolution in vivo. 

 

Cortical interneurons are highly diverse in terms of morphology, connectivity and physiological 

properties 17. To further annotate these inhibitory neuronal subtypes, we performed sub- 

clustering on the 876 inhibitory neuronal nuclei in our dataset, identifying eight sub-clusters 

(cluster A-H in Fig. 2a). Unlike previous single-cell RNA-Seq analysis that employed pre-

enrichment of cortical inhibitory neurons from transgenic mouse lines 18, sNucDrop-Seq samples 

the nuclei in proportion to cells’ abundance in their native environment, which provides a more 

accurate description of the cellular composition at the transcriptomic level.  This analysis 
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identified Pvalb-expressing subtypes (cluster D and E; n=359/876 nuclei, 41.0%) and Sst-

expressing subtypes (cluster F, G, H; n=304/876 nuclei, 34.7%) as two major groups of cortical 

interneurons (Fig. 2b-d), in accordance with previous observations derived from in situ 

hybridization (ISH)- or immunostaining-based methods that Pvalb- and Sst-positive groups 

account for ~40% and ~30% of interneurons, respectively, in the neocortex 19. Beyond the major 

interneuron subtypes, we identified one Ndnf-expressing subtype (cluster A; n=84/876 nuclei), 

one Vip-expressing subtype (cluster B; n=74/876 nuclei), and one synuclein gamma (Sncg)-

expressing subtype (cluster C; n=55/876 nuclei) (Fig. 2b-d and Supplementary Fig. 8a). On the 

basis of combinatorial expression of known marker genes associated with specific cortical layer 

and developmental origin, interneuron subtypes identified by sNucDrop-Seq parallel those 

identified from previous studies of mouse or human cortex 5, 18, revealing inhibitory neuronal 

heterogeneity in both cortical layer distribution (Supplementary Fig. 8a-b) and the 

developmental origin from subcortical regions of the medial or caudal ganglionic eminences 

(MGE or CGE) (Fig. 2e). Therefore, sNucDrop-Seq is able to resolve cellular heterogeneity and 

quantify cell-type composition at transcriptomic level with high sensitivity, including rare 

interneuron subtypes.  

 

For glutamatergic neurons, unsupervised graph-based sub-clustering of two groups of excitatory 

neurons (upper layers versus lower layers) identified a total of 18 subtypes (Upper Ex 1-11 and 

Lower Ex 1-7; Fig. 3a). We associated each excitatory neuronal sub-cluster with a distinct 

combination of known markers indicative of their superficial-to-deep layer distribution 

(Supplementary Fig. 9a), capturing finer distinctions between closely related subtypes in each 

cortical layer, which is in high concordance with subtypes previously identified in human 5 and 

mouse 14, 18 cortices (Fig. 3b and Supplementary Fig. 9b). Beyond excitatory neuronal subtypes 

defined by cortical layer-specific markers, our analysis also resolved heterogeneity in neuronal 

activation states. In response to an activity-inducing experience, cortical excitatory neurons 

express a complex program of activity-dependent genes 20. Both upper-Ex3 (n=209; 3.1% of 

6,770 nuclei in upper layer sub-clusters) and lower-Ex5 (n=213; 8.1% of 2,642 nuclei in lower 

layer sub-clusters) neurons are specifically associated with high-level expression of activity-

dependent genes (Fig. 3b and Supplementary Fig. 9c), including immediately early genes 

(IEGs) such as Fos, Arc, and Egr1 as well as other activity-regulated transcription factors (e.g. 
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Npas4), genes encoding proteins that function at synapses (e.g. Homer1), and non-coding RNAs 

(e.g. 1700016P03Rik that encodes Mir132). We determined the genes specifically enriched in 

upper-Ex3 (n=160 genes, as compared to other upper-Ex sub-clusters) or lower-Ex5 (n=134 

genes, as compared to other lower-Ex sub-clusters) neurons (Fig. 3c).  Transcriptional signatures 

identified in these two sub-populations are enriched for genes involved in the MAPK signaling 

pathway (e.g. Dusp1; adjusted P=2.67x10-2 for upper-Ex3 sub-cluster), as previously reported in 

low-throughput single-nucleus RNA-Seq analysis of Fos-positive nuclei isolated from the 

hippocampus of adult mice exposed to a novel environment 2.  Together, these results 

demonstrate the utility of sNucDrop-Seq in the identification of transient transcriptional states, 

such as neuronal activation.   

 

In conclusion, sNucDrop-Seq is a robust approach for massively parallel analysis of nuclear 

RNAs at single-cell resolution. Because intact nuclei isolation can potentially be accomplished 

by mechanical douncing and sucrose gradient ultracentrifugation in almost any primary tissue, 

including frozen archived human tissues, sNucDrop-Seq and similar approaches pave the way to 

systematically identify cell-types, reveal subtype composition, and dissect transient functional 

states such as activity-dependent transcription in complex mammalian tissues. 
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Figure Legends 

Figure 1. sNucDrop-Seq: a massively parallel single-nucleus RNA-Seq method.  

(a) Overview of sNucDrop-Seq. Step 1, dounce homogenization in lysis buffer is used to disrupt 

cellular membranes; Step2, nuclei are purified from cellular debris through sucrose gradient 

ultracentrifugation; Step3, quality and yield of nuclei is determined by hemocytometer count; 

Step4, nuclei and barcoded beads are co-encapsulated by an emulsion-droplet microfluidic 

device. Red arrows indicate representative nuclei before or after sucrose gradient 

centrifugation.  

(b) Violin plots illustrating number of transcripts (UMIs) detected by sNucDrop-Seq of nuclei 

isolated from mouse 3T3 cells (~23,000 reads per nucleus) and adult mouse cortex (~20,000 

reads per nucleus) or by Drop-Seq of whole cells from 3T3 cells (~25,000 reads per cell). 

Center line: median; circle: mean; limits: first and third quartile; whiskers, ±1.5 IQR. 

Indicated on top are the number of cells or nuclei (>= 800 genes detected), mean number of 

UMIs per cells/nuclei, and mean number of genes per cells/nuclei.  

(c) Two-dimensional spectral t-stochastic neighborhood embedding (tSNE) plot of 11,283 nuclei 

isolated from adult mouse cortex, colored per density clustering and annotated according to 

known cell types. Ex, excitatory neurons; Inh, inhibitory neurons; Astro, astrocytes; OPC, 

oligodendrocyte precursor cells; Oligo, oligodendrocytes; MG, microglia; EC, endothelial 

cells.  

(d) Marker gene expression shown by re-coloring the tSNE plot. Shown is the same plot as Fig. 

1c but with nuclei colored by the expression level of known cell type (e.g. Ex, Inh, Astro, 

Oligo, EC)- or cortical layer (L2/3/4/5/6)-specific marker genes.  

(e) Dendrogram illustrating relatedness of cell clusters, followed by (from left to right) cluster 

identification (ID), cell number per major cell type, UMIs per cluster (mean ± s.e.m.), 

number of genes detected per cluster (mean ± s.e.m.), heatmap showing protein-coding 

marker genes, and heatmap showing long non-coding RNA markers. 

 

Figure 2. sNucDrop-Seq reveals inhibitory neuronal subtypes and composition.  

(a) Spectral tSNE plot of 876 inhibitory neurons, colored according to the results of sub-

clustering (thumbnail: Fig. 1c).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 28, 2017. ; https://doi.org/10.1101/154476doi: bioRxiv preprint 

https://doi.org/10.1101/154476


       11 

(b) Marker gene expression shown by re-coloring tSNE plot. Shown is the same plot as Fig. 2a 

but with nuclei colored by the expression level of known inhibitory neuronal subtype-specific 

marker genes.  

(c) Violin plots showing select marker gene expression for inhibitory neuronal subtypes. Five 

mutually exclusive subtype-specific marker genes are highlighted in red.  

(d) Summary of inhibitory neuronal subtypes identified by sNucDrop-Seq. GABAergic subtypes 

are grouped according to five major classes. Also shown are number of nuclei per subtype 

and representative marker genes for each subtype.  

(e) Heatmap showing select marker genes that distinguish inhibitory neurons originated from 

either CGE or MGE.  

 

Figure 3. Excitatory neuronal subtypes resolve heterogeneity in cortical layer distribution 
and state of neuronal activity.  

(a) Spectral tSNE plots of 6,770 upper and 2,642 lower layer excitatory neurons, colored 

according the results of sub-clustering (thumbnails: Fig. 1c).  

(b) Heatmap for layer-specific markers and neuronal activity-regulated genes showing cortical 

layer identity (L2/3/, L4, L5a/b, L6a/b), excitatory subtypes, and activity-induced gene 

expression.  

(c) Differential expression between activated and inactivated excitatory neurons within upper 

(left) or lower (right) layer sub-clusters. Significant genes (red or blue), genes with p-values 

less than 0.001 and absolute natural log fold changes greater than 0.25. Violin plots showing 

select marker gene expression. #, denotes that the expression of Bdnf is not significantly 

different between active and inactive lower layer excitatory neurons. *, denotes that Epha6 

and Lingo2 were expressed at significantly higher level in inactive lower layer excitatory 

neurons compared to active counterparts.  
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Material and Methods 
 
Cell cultures and animals 

Mouse NIH3T3 cells were purchased from ATCC (cat# CRL-1658) and were grown in 

Dulbecco’s Modified Eagle’s Medium (DMEM) (Life Technologies, cat# 11965084) 

supplemented with 10% fetal bovine serum (FBS) (Life Technologies, cat# 26140079) and 2 

mM L-glutamine (Life Technologies, cat# 25030081) at 37°C in 5% CO2. The culture was 

passaged every 2-3 days using 0.05% Trypsin (Life Technologies, cat# 25300054). Human 

embryonic stem cells (H7) have been procured from WiCell (Madison, WI) and maintained at 

37°C in 5% CO2 on growth factor-reduced Matrigel matrix (Corning, cat# 354230) coated six-

well tissue culture plates. The six-well plates were coated with diluted (1:30) Matrigel matrix in 

DMEM/F12 (Life Technologies, cat# 11320033). H7 cells (between passage 40 and 70) were 

maintained in TeSR-E8 medium (Stem Cell Technologies, cat# 05940) and passaged every 5-6 

days as small aggregates using an enzymatic digestion-free method (0.5 mM ETDA in D-PBS 

without CaCl2 and MgCl2).  

Animal experiments were conducted in accordance with the ethical guidelines of the US 

National Institutes of Health and with the approval of the Institutional Animal Care and Use 

Committee of the University of Pennsylvania. All of the experiments described were performed 

using mice of C57BL/6 background.  

 

sNucDrop-Seq 
Isolation and purification of nuclei 

Mouse brains (postnatal 6 weeks) were rapidly resected on ice. Frozen cortices were flash 

frozen in liquid nitrogen for 2 minutes and subsequently kept at -80°C for 2 hours before nuclear 

isolation. 14 mL of sucrose cushion (1.8 M sucrose (CAS# 57-50-1, RNase & DNase free, ultra 

pure grade), 10 mM Tris-HCl pH 8.0 (Invitrogen, cat# 15568-025), 3 mM MgAc2 (CAS# 16674-

78-5), protease inhibitor cocktail (Roche, cat# 11873580001)) was added to the bottom of 

centrifuge tubes (Beckman Coulter, cat# 326823). Using a glass homogenizer (Wheaton, cat# 

357544), a freshly isolated or frozen mouse cortex sample was subjected to dounce 

homogenization (21 times with loose pestle followed by 7 times with tight pestle) in 12 mL of 

homogenization buffer (0.32M sucrose, 5 mM CaCl2 (CAS# 10043-52-4), 3mM MgAc2, 10 mM 
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Tris-HCl pH 8.0, 0.1% Triton X-100 (CAS# 9002-93-1), 0.1 mM EDTA (Invitrogen, cat# 

15575-020), protease inhibitor cocktail). For in vitro cultured cells, cell pellets (~5 million cells) 

were resuspended in homogenization buffer and dounced for 30 times with a loose pestle. 

Homogenates (~12 mL) were layered onto the sucrose cushion in the centrifuge tubes, and 10 

mL of homogenization buffer was added atop of the homogenates. The tubes were then 

centrifuged in a Beckman Coulter L7-65 Ultracentrifuge at 25,000 rpm at 4°C for 2.5 hours 

using a Beckman Coulter SW28 swinging bucket rotor (Beckman Coulter, cat# 342207). The 

supernatant was carefully removed via aspiration. 1 mL of chilled DPBS with protease and 

RNase inhibitor (Lucigen, cat# 30281-2) was added to resuspend the nuclear pellet, and nuclei 

were subsequently transferred to a 1.5-mL tube. Nuclei were pelleted at 5,000 rpm for 10 min at 

4°C, and then resuspended in 0.01% BSA (Sigma-Aldrich, cat# A8806-5G) in DPBS 

(Invitrogen, cat# 14190136). After resuspension, nuclei were filtered through a 40-μm cell 

strainer (Fisher Scientific, cat# 002087711), visually inspected for morphology and quality 

assurance, and counted using a Fuchs-Rosenthal counting chamber before droplet microfluidic 

encapsulation. For mouse cortices, we obtain 3.45 ± 2.00 x106 nuclei, per round of isolation 

(based on 11 measurements). The nuclear isolation efficiency for in vitro cultured cells is ~84% 

(number of nuclei/number of input cells x 100). 

 

Library preparation and sequencing 

The nuclear suspension was diluted to a concentration of 100 nuclei/μL in DPBS containing 

0.01% BSA. Approximately 1.25 mL of this single-nucleus suspension was loaded for each 

sNucDrop-Seq run.  The single-nucleus suspension was then co-encapsulated with barcoded 

beads (ChemGenes, cat# MACOSKO-2011) using an Aquapel-coated PDMS microfluidic 

device (uFluidix), connected to syringe pumps (KD Scientific) via polyethylene tubing with an 

inner diameter of 0.38 mm (Scientific Commodities, cat# BB31695-PE/2). Barcoded beads were 

resuspended in lysis buffer (200 mM Tris-HCl pH8.0, 20 mM EDTA, 6% Ficoll PM-400 (GE 

Healthcare/Fisher Scientific, 45-001-745), 0.2% Sarkosyl (Sigma-Aldrich, cat# L7414-50mL), 

and 50 mM DTT (Fermentas, cat# R0862; freshly made on the day of run)) at a concentration of 

120 beads/μL. The flow rates for cells and beads were set to 4,000 μL/hour, while QX200 

droplet generation oil (Bio-rad, cat# 186-4006) was run at 15,000 μL/hour. A typical run lasts 

~20 min. Droplet breakage with Perfluoro-1-octanol (Sigma-Aldrich, cat# 370533-25G), reverse 
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transcription and exonuclease I treatment were performed, as previously described, with minor 

modifications 7.  Specifically, up to 120,000 beads, 200 μL of reverse transcription (RT) mix (1x 

Maxima RT buffer, 4% Ficoll PM-400, 1 mM dNTPs (Clontech, cat# 639125), 1 U/μL RNase 

inhibitor (Lucigen, cat# 30281-2), 2.5 μM Template Switch Oligo (TSO; 

AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG ) 7, and 10 U/ μL Maxima H Minus 

Reverse Transcriptase (Life Technologies, cat# EP0753)) were added. The RT reaction was 

incubated at room temperature for 30 minutes, followed by incubation at 42°C for 150 minutes. 

To determine an optimal number of PCR cycles for amplification of cDNA, an aliquot of 6,000 

beads (corresponding to ~100 nuclei) was amplified by PCR in a volume of 50 μL (25 μL of 2x 

KAPA HiFi hotstart readymix (KAPA biosystems, cat# KK2602), 0.4 μL of 100 μM TSO-PCR 

primer (AAGCAGTGGTATCAACGCAGAGT) 7, 24.6 μL of nuclease-free water) with the 

following thermal cycling parameter (95°C for 3 min; 4 cycles of 98°C for 20 sec, 65°C for 45 

sec, 72°C for 3 min; 9 cycles of 98°C for 20 sec, 67°C for 45 sec, 72°C for 3 min; 72°C for 5 

min, hold at 4°C). After two rounds of purification with 0.6x SPRISelect beads (Beckman 

Coulter, cat# B23318), amplified cDNA was eluted with 10 μL of water. 10% of amplified 

cDNA was used to perform real-time PCR analysis (1 μL of purified cDNA, 0.2 μL of 25 μM 

TSO-PCR primer, 5 μL of 2x KAPA FAST qPCR readymix, and 3.8 μL of water) to determine 

the additional number of PCR cycles needed for optimal cDNA amplification (Applied 

Biosystems QuantStudio 7 Flex). We then prepared PCR reactions per total number of barcoded 

beads collected for each sNucDrop-Seq run, adding 6,000 beads per PCR tube, and ran the 

aforementioned program to enrich the cDNA for 4 + 10 to 12 cycles. We then tagmented cDNA 

using the Nextera XT DNA sample preparation kit (Illumina, cat# FC-131-1096), starting with 

600 pg of cDNA pooled in equal amounts, from all PCR reactions for a given run. Following 

cDNA tagmentation, we further amplified the library with 12 enrichment cycles using the 

Illumina Nextera XT i7 primers along with the P5-TSO hybrid primer 

(AATGATACGGCGACCACCGAGATCTACACGCCTGTCCGCGGAAGCAGTGGTATCAA

CGCAGAGT*A*C) 7. After quality control analysis using a Bioanalyzer (Agilent), libraries 

were sequenced on an Illumina NextSeq 500 instrument using the 75-cycle High Output v2 Kit 

(Illumina cat# FC-404-2005). We loaded the library at 1.9 pM and provided Custom Read1 

Primer (GCCTGTCCGCGGAAGCAGTGGTATCAACGCAG AGTAC) at 0.3 μM in position 7 

of the reagent cartridge. The sequencing configuration was 20 bp (Read1), 8 bp (Index1), and 50 
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or 60 bp (Read2). In total, 13 mouse cortex samples were analyzed with sNucDrop-Seq in four 

sequencing runs. 

 
Single-cell RNA-Seq library preparation using Drop-Seq and 10x Genomics platforms 

Drop-Seq was performed as previously described, with default settings7. The cell suspension 

was diluted to 100 cells/μL with DPBS containing 0.01% BSA and 1 mL cell suspension was 

loaded for each Drop-seq run. After cell capture, reverse transcription, exonuclease treatment, 

cDNA amplification and tagmentation, libraries were diluted to 1.9 pmol, and equal amounts of 

distinctively indexed libraries were mixed and subjected to 75 cycles of paired-end sequencing 

on Illumina NextSeq 500 sequencer. 10x Genomics single-cell 3’ libraries were constructed, as 

previously described 9, with recommended settings using Chromium single cell 3’ v2 reagent 

kits.  

 
Data analysis of sNucDrop-Seq 

Preprocessing of sNucDrop-Seq data 

Paired-end sequencing reads of Single-nucleus RNA-seq were processed using publicly 

available the Drop-Seq Tools v1.12 software 7 with some modifications. Briefly, each mRNA 

read (read2) was tagged with the cell barcode (bases 1 to 12 of read 1) and unique molecular 

identifier (UMI, bases 13 to 20 of read 1), trimmed of sequencing adaptors and poly-A 

sequences, and aligned using STAR v 2.5.2a to the mouse (mm10, Gencode release vM13) or a 

concatenation of the mouse and human (for the species-mixing experiment) reference genome 

assembly. Because a substantial proportion (~50%) of reads derived from nuclear transcriptomes 

of mouse cortices were mapped to the intronic regions, the intronic reads were retained for 

downstream analysis. A custom Perl script was implemented in the Drop-Seq Tools pipeline to 

retrieve both exonic and intronic reads mapped to predicted strands of annotated genes. Uniquely 

mapped reads were grouped by cell barcodes. Cell barcodes were corrected for possible bead 

synthesis errors, using the DetectBeadSynthesisErrors program from the Drop-Seq Tools v1.12 

software. To generate digital expression matrix, a list of UMIs in each gene (as rows), within 

each cell (as columns), was assembled, and UMIs within ED = 1 were merged together. The total 

number of unique UMI sequences was counted, and this number was reported as the number of 

transcripts of that gene for a given cell.  
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Cell clustering and marker gene identification 
Raw digital expression matrices were combined and loaded into the R package Seurat. For 

normalization, UMI counts for all nuclei were scaled by library size (total UMI counts), 

multiplied by 10,000 and transformed to log space. Only genes found to be expressing in >10 

cells were retained. Nuclei with a relatively high percentage of UMIs mapped to mitochondrial 

genes (>=0.1) were discarded. Moreover, nuclei with fewer than 800 or more than 6,000 detected 

genes were omitted, resulting in 11,471 nuclei that pass filter.  

Before clustering, batch effects from multiple animals were regressed out using the function 

RegressOut in R package Seurat. The highly variable genes were identified using the function 

MeanVarPlot with the parameters: x.low.cutoff = 0.0125, x.high.cutoff = 3 and y.cutoff = 0.8, 

resulting in an output of 2,178 highly variable genes. The expression level of highly variable 

genes in the nuclei was scaled and centered along each gene, and was conducted to principal 

component analysis. We then used two methods to assess the number of PCs to be utilized in 

downstream analysis: 1) The cumulative standard deviations accounted for by each PC were 

plotted using the function PCElbowPlot in Seurat to identify the ‘knee’ point at a PC number 

after which successive PCs explain diminishing degrees of variance, and 2) the significance for 

each gene’s association with each PC was accessed by the function JackStraw in Seurat. Based 

on these two methods, we selected first 20 PCs for two-dimensional t-distributed stochastic 

neighbor embedding (tSNE), implemented by the Seurat software with the default parameters. 

Based on the tSNE map, twenty-one clusters were identified using the function FindCluster in 

Seurat with the resolution parameter set to 1.0. Clusters that co-express both non-neuronal and 

neuron markers, representing cell doublets, were removed. As a result, we were able to assign 

11,283 nuclei (98.4% of our data) into 19 cell type clusters. 

To identify the marker genes, differential expression analysis was performed by the function 

FindAllMarkers in Seurat with likelihood-ratio test. Differentially expressed genes that were 

expressed at least in 30% cells within the cluster and with a fold change more than 0.25 (log 

scale) were considered to be marker genes. In total, 2,399 protein-coding genes and 127 long 

non-coding RNAs were identified for 19 clusters. For the marker genes, average gene expression 

for each cluster was determined, and Euclidean distances between all pairs was calculated. This 

dataset was used as input for complete linkage hierarchical clustering and dendrogram assembly.  
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To generate a heatmap of marker genes across clusters, the average expression level of marker 

genes within each cluster were calculated. For each cluster, the average expression was centered 

and scaled by each gene. Next, the heatmap.2 function in the R gplots package was used to 

generate the heatmap, and the parameter “dendrogram” was set to "column" to show the cluster 

dendrogram.   

 

Sub-clustering 

Excitatory neuronal nuclei from upper layers (cluster Ex1, Ex2, Ex3, Ex4, and Ex5) and deep 

layers (cluster Ex6, Ex7, Ex8, Ex9, and Ex10) were first combined, then sub-clustered using the 

same strategy described above, respectively. To correct for potential over-clustering, we merged 

the clusters showing high similarity. Briefly, pairwise comparison was conducted to identify the 

differentially expressed genes using the function FindAllMarkers in Seurat, with likelihood-ratio 

test. We merged the clusters showing <5 genes with an average expression difference greater 

than 2-fold between clusters. Specifically, we identified 2,218 highly variable genes associated 

with 12 PCs in 6,770 upper layer nuclei, which were further assigned into 11 sub-clusters, while 

2,642 lower layer nuclei, containing 1,969 highly variable genes along with 9 PCs, were sub-

clustered into 7 groups. After filtering out 138 unassigned nuclei, we grouped 9,412 nuclei (98.6 

% of excitatory nuclei) into 17 layer-specific sub-clusters. For a comparison between active and 

inactive neurons, differentially expressed genes were identified using a likelihood ratio test with 

the p-value threshold set to 0.001.  

For inhibitory neurons, nuclei from clusters Inh1, Inh2, Inh3 and Inh4 were combined and 

loaded into Seurat for sub-clustering. We identified 2,337 highly variable genes in 1,025 nuclei 

that were subjected to PCA analysis. First 10 PCs were selected for tSNE analysis and sub-

clustering. After filtering out 149 unassigned nuclei, we identified 8 clusters, made up of 876 

nuclei.  

 

GO enrichment analysis 
To identify functional categories associated with genes enriched in activated neurons, the GO 

annotations were downloaded from the Ensembl Biomart database and KEGG annotations were 

retrieved by KEGG API. An enrichment analysis was performed via a hypergeometric test. The 

p-value was calculated using the following formula: 
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P = 1−  
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where N is the total number of genes, n is the total number of marker genes, M is the number of 

genes annotated to a certain GO term or KEGG pathway, and i is the number of marker genes 

annotated to a certain GO term or KEGG pathway. The p-value was corrected by function 

p.adjust with a false discovery rate (FDR) correction in R. GO terms or KEGG pathways with a 

FDR below 0.05 were considered enriched. All statistical calculations were performed in R. 
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Supplementary Figure 1 | Quality control of nuclei isolation. 

(a) After sucrose gradient centrifugation and filtering through cell mesh, mouse (top, 

NIH3T3) and human (bottom, embryonic stem cells (ESCs)) nuclei were visualized 

by phase-contrast microscopy (10x). 

(b) After dounce homogenization, mouse cortical nuclei were visualized by phase-

contrast microscopy (10x) before (top) or after (bottom) sucrose gradient 

centrifugation. Red arrows indicate nuclei before or after sucrose gradient 
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centrifugation. The inlet indicates fluorescent image of purified nuclei stained with 

DNA intercalating dye Hoechst 33342 (10 ng/µL). Scale bar, 50 µm. 
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Supplementary Figure 2 | Testing different microfluidics platforms and library 
preparation workflows for single-nucleus RNA-Seq.  

Bioanalzyer electropherogram of amplified cDNA (left) and final sequencing library 

(right) shown for samples prepared from whole-cell or nuclei by different platforms 

(10x Genomics platform or Drop-Seq/sNucDrop-Seq). FU, fluorescence units.   
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Supplementary Figure 3 | Specificity and performance of sNucDrop-Seq.  

(a) Multi-species nuclei-mixing experiment measures sNucDrop-Seq specificity, by 

sequencing a mix of human (ESCs) and mouse (NIH3T3) nuclei. Scatter plot shows 

the number of transcripts (UMIs) associated with annotated human (y-axis) or mouse 

(x-axis) transcripts for each nucleus (dot). Nuclei with >80% human transcripts are 

labeled as human (red), and nuclei with >80% mouse transcripts are labeled as mouse 

(blue). Nuclei with a relatively high percentage of both human and mouse transcripts 

are labeled as mixed (purple). Of the 790 nuclei that passed quality filter (>800 

UMIs), 21 (2.66%) had a mixed phenotype.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 28, 2017. ; https://doi.org/10.1101/154476doi: bioRxiv preprint 

https://doi.org/10.1101/154476


(b) Scatter plot comparing the average expression levels detected in single NIH3T3 

nuclei (y-axis, by sNucDrop-Seq) and cells (x-axis, by Drop-Seq).  Red dots mark 

representative genes preferentially enriched in either nuclei or cytoplasm (cell). For 

comparison, digital expression matrices of cell and nuclei were first combined, and 

UMI counts were then scaled by library size (total UMI counts per cell or nuclei), 

multiplied by 10,000 and natural log transformed. Only cells or nuclei that 

expressed >800 genes were retained for analysis. For each gene, the average 

normalized expression level were calculated as log (normalized UMI counts + 1). 

(c) Scatter plot showing the high correlation of average expression levels [log 

(normalized UMI counts + 1)] between two biological replicates of sNucDrop-Seq 

analysis of mouse cortex.   

(d) Median number of genes detected per nucleus at different raw reads per nucleus. Data 

from two independent experiments were included, mean±s.e.m.  
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Supplementary Figure 4 | Cluster composition and neuronal marker gene 

expression.  

(a) The tSNE plot (the same plot as in Fig. 1c) with all nuclei colored according to animal 

identity. Clusters corresponding to excitatory (red dashed line) and inhibitory (blue 

dashed line) neurons are grouped together.  

(b) Violin plot illustrating the expression of pan-neuronal (Snap25), excitatory neuronal 

(Slc17a7, Satb2) and inhibitory neuronal (Gad1, Gad2) markers for excitatory (red, 

Ex1-10) and inhibitory (blue, Inh 1-4) neuronal clusters. 
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Supplementary Figure 5 | Protein-coding and noncoding marker gene expression for 

neuronal and non-neuronal cell clusters.  

Violin plots illustrating select protein-coding (a) and non-coding (b) marker gene 

expression for excitatory neuronal (Ex1-10), inhibitory neuronal (Inh 1-4) and non-

neuronal (Astro, OPC, Oligo, MG, EC) cell clusters.  
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Supplementary Figure 6 | Cortical layer identity and activity-dependent 
transcriptional states of excitatory neurons.  

 (a) Heatmap showing layer-specific markers (L2/3/, L4, L5a/b, L6a/b) and neuronal 

activity-regulated gene expression in excitatory neuronal clusters (Ex 1-10 identified 

Fig. 1c).   
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(b) RNA in situ hybridization (ISH) showing layer-specific expression of selected 

markers in the mouse adult cortex (postnatal day 56, Allen Brain Atlas).  

 

 

 

 

 

 

 

 

 

 
Supplementary Figure 7 | Distribution of exonic and intronic reads mapped to an 

activity-regulated non-coding transcript.  

Genome browser view (build: mm10) of exonic and intronic reads (from sNucDrop-

Seq of mouse cortex) mapped to 1700016P03Rik (highlighted in red), a neuronal 

activity-induced non-coding transcript that encodes two microRNAs (Mir212 and 

Mir132).    
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Supplementary Figure 8 | Marker gene expression for inhibitory neuronal subtypes.  
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Heatmap illustrating select mouse (a) and human (b) marker gene expression for 

cortical inhibitory neuronal sub-populations (cluster A-H) identified in Fig. 2a. The 

mouse marker gene list is derived from Tasic et al. (2016) 1. The human marker gene 

list is derived from Lake et al. (2016) 2. Five mutually exclusive subtype-specific 

marker genes are highlighted in red. CGE, caudal ganglionic eminences; MGE, 

medial ganglionic eminences. 
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Supplementary Figure 9 | Cortical layer- and neuronal activity-dependent marker 

gene expression for excitatory neuronal subtypes.  

(a) Summary of excitatory neuronal subtypes identified by sNucDrop-Seq. Glutamatergic 

neuronal subtypes are grouped according to cortical layer distribution. Also shown 

are number of nuclei per subtype and representative marker genes for each subtype.   

(b) Heatmap showing select human marker gene expression for cortical excitatory 

neuronal sub-populations identified in Fig. 3a. The human marker gene list is derived 

from Lake et al. (2016) 2. 

(c) Spectral tSNE plots (the same plots in Fig. 3a) highlighting activated excitatory 

neurons in upper (top, upper-Ex3) and lower (bottom, lower-Ex5) layer sub-clusters. 
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