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Abstract

Prediction of antigens likely to be recognized by the immune system is a fundamental challenge for

development of immune therapy approaches. We explore the utility of deep learning for in silico prediction

of peptide binding affinity to major histocompatibiliy complex Type I molecules (pMHC-I binding). This

process is a critical step in the immune system’s response to cancer cells, which may present highly specific

neoantigen peptides bound to MHC proteins at the cell surface. With the advent of high-throughput

sequencing and the recognition that somatic mutations in the exome can produce neoantigens, fast in

silico prediction of these affinities has become increasingly relevant to precision cancer immunotherapy.

We have developed five machine learning methods and use a benchmark from the Immune Epitope

Database of experimental pMHC-I binding affinities to compare them to existing machine learning

approaches. All methods were used to score, rank, and classify pMHC-I pairs. The best six methods,

which include three of our own, were identified and found to make highly correlated predictions, even

for individual pMHC-I pairs. The most effective deep learning methods were a gated recurrent unit and

a long short-term memory neural network, enhanced by transfer learning. These methods can handle

peptides of any length without the need for artificial lengthening or shortening and were substantially

faster than the most widely-used standard neural networks.
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Major findings. The best in silico predictors of peptide major histocompatibility complex binding

must be identified for application in precision cancer immunotherapy. We design and test a variety of

machine learning methods for this purpose. We identify six best-in-class methods, three of our own design.

Surprisingly, the best deep and standard machine learning methods make highly correlated predictions.

Several standard methods run significantly slower and may have less utility as high-throughput sequence

analysis for precision immunotherapy becomes more common. Performance of all methods varies by

MHC allele, and most of this variance can be explained by data-driven, rather than biological properties.

Increasing the quantity of publicly available experimental data has the potential to improve all machine

learning methods applied to this problem, and in particular deep learning methods.

Quick Guide to Equations and Assumptions

In silico prediction methods used in cancer research must be rigorously evaluated. The machine learning

methods assessed here predict a continuous numeric response value (IC50) for each pMHC-I pair. The

methods are considered to be supervised, because they learn to predict the response value from training

examples, whose IC50 is assumed to be known. They are expected to make correct predictions on a

set of independent, held-out test examples. Misleading and overly optimistic evaluations of supervised

machine learning methods are common, in particular when there is an overlap of training and test data,

or when training and testing is done on a small set of examples that do not reflect the true diversity

of the problem space. The benchmark set used in this work [1] completely separates training and test

examples and covers 50 MHC Class I alleles. Performance on this benchmark is a good indicator of the

effectiveness of a prediction method. Each predicted response value can be related to an experimental

pMHC-I IC50 measurement through the equation y = max(0, 1 − log50KIC50). The equation is used to

reduce the possible range of predicted values from between 0 and 50,000nM to between zero and one, a

range of values that is more mathematically tractable for neural network optimization algorithms. The

assumption is that the largest IC50 value that can be observed is 50,000nM.

There are many ways to evaluate the predictive performance of the output response values. We selected

three metrics, one of which measures the correlation between the response values of each predictor and

experimental measurements (Kendall-Tau correlation), two which assess each predictor as a classifier

of binding vs. non-binding pMHC-I pairs, using an IC50 threshold of 500nM to separate binders and
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non-binders (AUC, F1 score).

To compute Kendall-Tau correlation, the response values of a predictor are ranked and compared to a

ranked list of experimentally measured pMHC-I IC50 values from the Immune Epitope Database. The

Kendall-Tau correlation is then:

τ =
nc − nd

(n0 − n1)(n0 − n2)
(1)

where nc is the number of concordant pairs (a prediction and observation are concordant if the pMHC-I

pair has the same rank in both lists), nd is the number of discordant pairs. n0, n1, and n2 are used to

handle rank ties.

The F1 and AUC scores are also computed by comparing the response values of a predictor with an

ordered list of experimentally measured pMHC-I IC50 values. In the case of the F1 score, both lists (the

list of predictions and the list of observations) are dichotomized by labeling binders and non-binders.

The dichotomization assumes any IC50 ≤ 500nM is a binder and a non-binder otherwise. The two lists

are then compared and precision is calcluated as the number of items in the list where the prediction of

binder agrees with the observation, divided by the number of observed binders. Recall is calaculated as

the number of items where the prediction of binder agrees with the observation, divided by the number

of items in the list. For AUC, the list of predicted output values is compared to a dichotomized list of

observations, and the true positive rate and false positive rate at every threshold on the list is computed.

All metrics are described in detail in (Materials and Methods).

Introduction

Peptide binding to Major Histocompatibility Complex (MHC) proteins and formation of a stable binary

complex (pMHC) is a key step in the activation of CD8+ (MHC Class I) and CD4+ (MHC Class II) T-cells.

MHC Class I proteins bind peptides of 8-11 amino acid residues. The presentation of pMHCs on the

surface of antigen-presenting cells and recognition by T-cell receptors is fundamental to the mammalian

adaptive immune system. Recent advances in cancer immunotherapy have highlighted the need for

improved understanding of which peptides will bind to MHC proteins and generate an immune response

[2], [3], [4], [5], [6]. Because experimental characterization of pMHC binding is costly and time-consuming,

computational researchers have been working for decades on in silico tools to predict pMHC affinities

[7]. Approaches have included sequence-based profiles [8] [9], structure-based predictions [10], generative
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probabilistic models [11], and machine learning [12] [13] [14].

Neural network supervised machine learning methods are the most widely-used technique and have been

shown to outperform other methods in multiple studies [15] [1] [16]. However, many researchers remain

dissatisfied with the available in silico pMHC binding predictors for neoantigen discovery, particularly in

a clinical setting [17] [18]. We explored whether the most recent generation of neural network algorithms

and architectures, known as deep learning, could effectively improve pMHC binding predictions.

Neural networks were originally modeled on the human brain. They consist of connected units,

organized into layers. Theoretically, given enough layers and units, they can act as universal function

approximators [19]. However, as the number of units increases, they become prone to overfitting (reviewed

in [20]). Deep learning research has introduced innovative network architectures and regularization

techniques, allowing for training of very deep and wide networks to approximate complex functions, with

reduced risk of overfitting. Given sufficient training data, deep architectures outperform other methods in

many domains [21]. They are now widely used in robotics, self-driving vehicles, sentiment classification,

machine translation, and user-based recommendation systems [22] [23] [24] [25] [26].

In this work, we assessed the performance of major deep learning architectures: convolutional neural

networks (CNNs) [27] and recurrent neural networks, particularly gated recurrent units (GRUs) [28],

and long short-term memory units (LSTMs) [29]. The deep learning methods were compared to several

standard machine learning methods: fully-connected one-layer networks (NetMHC [30], NetMHCpan

[31], and our own MHCnuggets-FC), a two-layer embedding network (MHCflurry) [32], and a Bayesian

least-squares method (SMMPMBEC) [15]. We evaluated the methods on a carefully designed and

previously published benchmark set of immuno-fluorescent binding experiments for diverse pMHC-I allele

pairs, described hereafter as the Kim benchmark set [1], derived from the IEDB database [33]. The Kim

benchmark set was cleaned for redundancy, using a protocol designed by [32]. In our hands, the best deep

learning methods had similar prediction performance to the best standard machine learning methods.

Furthermore, the performance of these methods was very similar both on the aggregate set of all alleles,

and when alleles were evaluated individually. Predictions for individual pMHC-I pairs by the best methods

were highly correlated (≥ 0.9). Convolutional neural networks, a popular deep learning technique, had

poorer performance and do not appear to be well suited for pMHC-I binding prediction (Results). Of

the best-performing six methods, three methods developed by us (MHCnuggets-FC, MHCnuggets-LSTM,

MHCnuggets-GRU) had the fastest runtimes. In contrast to standard neural networks, which require that
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all inputs be of the same length, the deep learning networks MHCnuggets-LSTM and MHCnuggets-GRU

can handle peptides of any length. They do not require the artifical lengthening and shortening heuristics

(padding and cutting) that are used by MHCnuggets-FC, MHCflurry, NetMHC, and NetMHCpan.

MHC proteins are highly polymorphic, and there are thousands of MHC Class I alleles, each with

a different peptide binding surface. While there are tens of thousands of experimentally characterized

binding affinities in the Kim benchmark set, they are distributed unevenly across the alleles. For the

most common alleles, particularly those associated with European ancestry, there are as many as 9000

characterized peptides, while for others there may be as few as 100. When we stratified prediction

performance by individual alleles, performance was seen to vary widely by allele, but not by the in silico

method.

We explored whether the allele-specific differences in in silico binding prediction were data-driven or

due to biological properties of the different alleles. Most of the variance in prediction performance could

be explained by differences training or test set size, class imbalance, or sequence diversity of peptides in

the training set. Because the differences appeared to be primarily data-driven, we designed a training

protocol in which information from alleles with the richest training data was shared with other alleles, a

form of transfer learning [34]. We clustered the MHC Class I alleles based on the utility of the transferred

information between them, yielding improvements in prediction performance for most alleles (Materials

and Methods, Results).

Deep learning was originally designed for computational problems where a large amount of training

data is available. As data size increases, deep learning performance can increase dramatically, as has been

shown in the field of image proccessing, where deep learning methods quickly advanced to be the best in

class by a wide margin [35]. It is likely that deep learning methods will benefit the most from increases in

experimental training data and will become increasingly relevant to the field of immunology.

Software for the MHCnuggets neural networks described in this work is available at https://github.

com/KarchinLab/mhcnuggets.
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Results

Overview of approach

We developed a new machine learning approach to predict peptide binding to MHC Class I proteins, using

deep recurrent neural networks. Our approach differs from previous machine learning methods designed

for the same task, which augment their training data artificially or train separate networks for each

peptide length. The artificial augmentation used by previous methods includes in silico shortening and

lengthening of each peptide and generation of non-binding peptides, both of which introduce noise. The

recurrent neural networks use only experimentally verified peptide-MHC binding pairs as training data

and naturally handle peptides of different lengths. We trained networks for individual MHC alleles and

developed a protocol to share information between networks. We hypothesized that this approach could

achieve state-of-the art prediction performance at significantly faster speeds. Additionally, we reasoned

that these methods could be adapted to improve standard neural networks and to develop a standard

network with similar performance and faster runtime.

The best deep and standard machine learning methods have similar prediction

performance in aggregate testing of all MHC Class I alleles

We tested several deep learning methods: convolutional neural networks (CNNs) [27], and recurrent neural

networks, in particular long short-term memory networks (LSTMs) [29] and gated recurrent units (GRUs)

[28]. In total we tested five architectures, four designed by us. We also tested two types of standard

machine learning methods: fully connected one- or two-layer networks and a Bayesian matrix method.

Five standard methods in total were tested, one designed by us. The best performing deep methods

(MHCnuggets-LSTM, MHCnuggets-GRU) and the best standard methods (MHCnuggets-FC, MHCflurry,

NetMHC, NetMHCpan) had similar prediction performance. Deep convolutional neural networks (CNNs)

had the weakest performance (Table 1).

To the best of our ability, all training and testing of methods was done with the Kim benchmark

set. However, for NetMHC and NetMHCpan, open source training software was not available, and we

used their self-reproted results on the Kim benchmark set. These methods have been previously reported

to augment their training sets with additional proprietary data, beyond what is in the Kim benchmark

training set [1, 32], so their self-reported performance estimates may be overly optimistic.
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Prediction performance was assessed with three metrics (Materials and Methods). Dichotomous

classification of peptides as binders or non-binders was measured with area under the ROC curve (AUC)

and F1 scores, with IC50 of 500nM used as the separating threshold [36]. Continuous prediction of IC50

measurements was assessed with the Kendall-Tau correlation coefficient.

The predictions of the best deep and standard machine learning methods are

highly correlated

We identified six best-in-class methods (Table 1) and for each method, ranked the predicted IC50 binding

affinities for all pMHC-I partners in the Kim benchmark set. The ranked predictions were strikingly

correlated (Spearman-Rho rank correlation ≥ 0.9 for all method pairings) (Figure 2). Given that the six

methods use different machine learning algorithms, training protocols, and network architectures, the

high rank correlation on the level of individual predictions was surprising.

For individual MHC Class I alleles in silico prediction performance varies

Next, we compared how the six best performing methods from Table 1 handled each of the MHC Class I

alleles. Performance was assessed with the Kendall-Tau correlation. (Figure 3). For a few of these alleles,

one of the methods slightly outperformed the others. For example, MHCnuggets-LSTM has slightly higher

Kendall-Tau correlations for HLA-A*26:02 and HLA-B*15:09 than other methods. However, in general

the alleles could be clustered into two groups, a group of alleles in which all the methods performed well

and a group in which none of the methods performed well (dendogram on left hand side of Figure 3).

This result is consistent with the high Spearman rank correlation among the methods with respect to

predictions of pMHC-I affinities (Figure 2), and their similar performance on the Kim test benchmark set

(Table 1).

The best six methods index the columns of the heatmap in Figure 3, and the 50 MHC Class I alleles

in the Kim test set index the rows. Each cell represents the performance of a method on an allele’s test

set, measured by Kendall-Tau correlation. For example, the top right cell shows the Kendall-Tau for

MHCnuggets-LSTM and H-2-Kb. Figure S1 shows heatmaps for F1 score and AUC.
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AUC F1 K-Tau
Deep Networks
MHCnuggets-GRU 0.931 0.810 0.589
MHCnuggets-LSTM 0.931 0.806 0.587
MHCnuggets-Spanny-CNN 0.918 0.795 0.563
HLA-CNN 0.874 0.750 0.480
MHCnuggets-Chunky-CNN 0.845 0.640 0.447
Standard one- and two-layer networks
NetMHCpan 0.933 0.803 0.584
MHCflurry 0.933 0.785 0.587
NetMHC 0.932 0.808 0.588
MHCnuggets-FC 0.931 0.814 0.581
Bayesian model
SMMPMBEC 0.921 0.791 0.578
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Figure 1: Methods with best performance for predicting pMHC-I binding. Table shows
performance of ten evaluated machine learning methods. Best performing methods highlighted in gray.
Evaluation was done on the Kim benchmark set (50 MHC Class I alleles). Figure shows AUC, F1, and
Kendall-Tau performance evaluation on for the gated recurrent unit MHCnuggets-GRU. A. Area under
the receiver operating characteristic curve (AUC) shows the true positive rate as a function of
the false positive rate over a series of IC50 thresholds (color bar). The maximum AUC is 1.0 and random
prediction is 0.5. B. F1 score. Densities of predicted IC50 scores for binding (blue) and non-binding
(green) peptides. Red dotted line shows the threshold of 500nM used to compute the F1 score. The
maximum F1 score of 1.0 would completely separate the blue and green densities. F1 scores range from
0.0 to 1.0 C. Kendall-Tau correlation coefficient compares two ranked lists based on number of
concordant and discordant pairs and handles ties. Y-axis shows the true rank of peptides by IC50 and
X-axis shows the predicted rank of peptides by IC50.
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Figure 2: Rank ordering of peptide binding affinity (pMHC-I IC50) predictions is highly
correlated for the six best in silico methods. Spearman’s rank order correlations are shown for
each pair of methods.

Allele-specific differences in in silico prediction performance are largely data-

driven

We considered whether properties of the training and test data in the Kim benchmark set could explain the

variation in prediction performance for different MHC Class I alleles. For each of the performance metrics,

we used ANOVA comparison of nested linear regression models to assess the variance in performance

explained by: the number of training examples (peptides with measured binding affinities) for each allele,

the class imbalance in binder and non-binder peptides in the training examples, the binder/non-binder

class imbalance in the test set, the sequence diversity of the peptides in the training examples (measured

by network modularity) (Materials and Methods), the in silico method used (only the best six methods

were considered), and the number of examples in the test set. Choice of in silico method and test set

size did not explain any additional variance in performance, once the most informative covariates were

considered. For performance measured by Kendall-Tau correlation, 70.4% of the variation across alleles

was explained by test set class imbalance (65.5%, p=5e-11), training set size (4.1%, p=5e-11), and sequence

diversity of all peptides in the training set (0.5%, p=0.01). For performance measured by F1 score, 56.4%
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Standard machine learning methods Deep learning methods

Figure 3: In silico prediction performance of the six best methods varies considerably by
individual MHC Class I allele but does not vary much by prediction method. In the hierar-
chically clustered heat map, the methods index the columns and alleles index the rows. Heat map coloring
indicates high (red) vs. low (blue) Kendall-Tau correlations. The high variability by allele is seen by
looking up or down any column. The low variability by method is seen by looking across any row. The
alleles cluster into two groups, one in which all of the methods perform well and one in which none of the
methods perform well (upper and lower clades of dendogram on left-hand-side).
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of the variation across was alleles was explained by training set class imbalance (35.3%, p=1e-34), training

set size (9.8%, p=4e-14), test set class imbalance (3.8%, p=7e-07), binder diversity (3.9%, p=2e-07), all

diversity (3.6%, p=1.62e-07). For performance measured by AUC, only 25% of the variation was explained

by test set class imbalance (12%, p=1e-11) and training set size (12.7%, p=2e-13), but we believe that

this is because the AUC is the least stringent of the three metrics. Our results suggest that properties

of the training and test data explain a large proportion of the variance among performance of in silico

methods across different MHC Class I alleles, and that biochemical properties of allele-specific pMHC-I

complexes are not the main contributor.

Transfer learning improves prediction performance

Transfer learning is a technique commonly used in deep learning, in which information is transfered

between distinct but related problem domains [34]. We designed a new transfer learning protocol for

neural networks trained on individual MHC alleles (Figure 4), and applied it to the best performing

networks (MHCnuggets-GRU, MHCnuggets-LSTM, MHCnuggets-FC). The protocol was compared to

standard random initialization of network weights with the Glorot uniform distribution [37]. Transfer

learning improved prediction performance for most of the alleles, and for several alleles which had the

worst in silico prediction performance across all tested methods, the improvement was substantial (e.g.,

HLA-B*08:02, HLA-B*08:03, HLA-A*25:01, HLA-B*15:17) (Figure 5). The relationships between alleles

defined by utility for transfer learning had overlap to standard MHC nomenclature and to MHC allele

organization into supertypes [38] [39]. The performance differences measured by Kendall-Tau correlation

and AUC are in Figure S2.

Runtime of the best deep and standard machine learning methods varies sub-

stantially

We computed the runtime to score all the peptides in the Kim benchmark set (163,898) for a single

MHC Class I allele, for the six best perfoming methods. Computations were repeated five times and

averaged. The fastest method was MHCnuggets-FC (7.32s±0.05) and the slowest method was NetMHCpan

(282.58s±18.64). The best-performing deep learning MHCnuggets methods were relatively fast (22.76s±0.5

for MHCnuggets-GRU, 23.91s±0.37 for MHCnuggets-LSTM). Timing was done on a single compute node

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/154757doi: bioRxiv preprint 

https://doi.org/10.1101/154757


12

H-2-DB

H-2-KB

H-2-KD

A0101

A0201

A0202

A0203
A0206

A0301

A2402

A2601

A2902

A3001

A3002

A3101

A3201

A3301

A6801

A6802

B0702

B0801

B1501

B1503B1801

B2705

B3501

B3901

B4002

B4402

B4501

B5101

B5301

B5401 B5801

Mamu-A01

Mamu-A02

A1101

A2301

A2501

A2602

A2603

A8001

A6901

B0803

B0802

B1509

B1517

B4001

B4403

B5701

Figure 4: Transfer learning directed graph. The graph shows transfer of information between MHC
Class I alleles in our network training protocol. Nodes represent MHC class I allele-specific neural networks
and directed edges show how trained network weights are transfered from one network to another. The
first network trained is for HLA-A*02:01 binding peptides, and the trained weights are used to initalize
the networks for all other alleles, yielding 50 additional allele-specific networks. These networks are tested
for their prediction performance on the training data for each of the 50 alleles. The network weights for
the best performing networks are transferred to the corresponding alleles. This three-step protocol is
shown in Figure S2.
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Figure 5: Transfer learning improves overall performance for deep learning networks. The
difference in F1 score between deep learning MHCnuggets-GRU networks trained with and without the
transfer learning protocol (Figure 4). The 50 MHC class I alleles in the Kim benchmark set are shown
and the bar height and color represent the net change in F1 score after transfer learning was applied. The
F1 score improved for most alleles, and substantial decrease in score was seen for only two alleles.
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Method Kim benchmark runtime [s] Hypothetical cohort runtime [min]
MHCnuggets-FC 7.32±0.05 9.12
MHCnuggets-GRU 22.76±0.50 28.38
MHCnuggets-LSTM 23.91±0.37 29.81
MHCflurry 49.12±1.33 61.24
NetMHC 80.89±10.3 100.85
NetMHCpan 282.58±18.64 352.29

Table 1: Runtime analysis of six best performing methods (fastest to slowest). For each method,
the average runtime for predicting pMHC-I affinity of all peptides (163,898) in the Kim benchmark for a
single HLA allele is shown. Estimates of the runtime for each predictor on the somatic missense mutations
in a cancer cohort of 495 patients and 4128 candidate neoantigen peptides per patient are shown.

containing 2 Intel Xeon E5-2680v3 (Haswell) processors running at 2.5GHz, with 12 cores and 128 GB

RAM.

The runtime differences are substantial if we estimate the time to run each predictor on a cohort

of cancer patients, based on their somatic missense mutations. For example, the head and neck cancer

(HNSC) cohort from TCGA has 495 samples (as of June 15, 2017), with six potential MHC Class I alleles

per patient (3 loci, possibly all heterozygous). If we consider all possible 8-11 length windows around each

somatic missense mutation, the average candidate peptides per patient is 4128. For MHCnuggets-FC, the

run would take approximately 9 minutes, for MHCnuggets-GRU and MHC-nuggets-LSTM approximately

30 minutes, and for NetMHCpan approximately 6 hours. Complete timing results are shown in Table S1.

Discussion

Recent advances in precision cancer immunotherapy have highlighted the need for improved in silico

methods to predict peptide-MHC (pMHC) binding affinities. A patient’s repertoire of somatic mutations

may yield processed peptides, which are presented to T-cell receptors by MHC proteins to trigger an

immune response. Therefore, high-throughput in silico prediction of which somatic mutations are most

likely to generate immunogenic peptides has increasing clinical utility. These mutations may serve as

biomarkers to identify patients most likely to respond to checkpoint blockade and may also have utility

for engineered vaccines, designed to stimulate immune response and destroy cancer cells. [17] [18]. As

new in silico methods are developed, it is critical that they are carefully assessed to determine whether

new algorithms, such as deep learning networks, provide advantages over established ones. In this work,

we focused on the Kim benchmark set [1], which contains a sizeable and heterogeneous population of
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experimentally characterized peptides and pMHC-I affinities, cleanly separated into training and test data.

By comparing ten methods with the Kim benchmark, we avoided bias that could be introduced by smaller

or less diverse benchmark sets. Of the ten methods tested, we found that six were best-in-class with respect

to prediction performance. Three of the methods, which were designed by us, also had signficantly faster

run-times, which may be important to users who are interested in scalable, high-throughput neoantigen

prediction pipelines.

Because MHC alleles are highly polymorphic, particularly at the peptide binding site, each allele has

its own repertoire of binding peptides. Experimental tests of pMHC-I binding have not been uniformly

applied to all alleles, with certain alleles such as HLA-A*02:01 represented with 12,357 experiments in

the Immune Epitope Database (IEDB) [33] and 9,565 in the Kim benchmark. Other alleles such as

HLA-B*08:03 have very few experimentally validated pMHC-I affinities (470 in IEDB, 217 in the Kim

benchmark). Furthermore, the class imbalance between experimentally tested binders and non-binders

ranges from 0.041 in HLA-B*08:02 (19 binders, 468 non-binders) to 0.86 Mamu-A*02 (1003 binders, 1261

non-binders). In silico predictors work better for some MHC class I alleles than others. It has been

hypothesized that there is a biological/chemical/structural explanation, so that an immune response might

be generated from weaker affinity peptide binding for some alleles, but only stronger affinity for others.

If this is true, 500nM may not be a good separator of binding and non-binding peptides for all alleles,

and allele-specific affinity thresholds should be considered [40]. While we cannot rule out the relevance

of biologically-driven factors, we found that the most of the variance in prediction performance across

the different alleles could be explained by several data-driven factors. We designed a linear regression in

which the response variable was a performance metric (Kendall-Tau correlation, F1, or AUC) as calculated

for the best six methods, and the covariates were values that differed across the 50 alleles in the Kim

benchmark. Choice of in silico method was also considered as a covariate. For Kendall-Tau correlation,

test set class imbalance, training set size, and sequence diversity of training set peptides explained 70.4%

of the variation. For F1 score and AUC, covariates explained 56.4% of the variation and 25% of the

variation, respectively. Choice of in silico method did not explain any additional variance in performance

for any of the metrics, once the most informative covariates were considered. Our results suggest that

properties of the training and test data explain a large proportion of the variance among performance of

in silico methods across different MHC Class I alleles, and that biochemical properties of allele-specific

pMHC-I complexes are not the main contributor.
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When we applied the machine learning technique of transfer learning to MHCnuggets-GRU, MHCnuggets-

LSTM, and MHCnuggets-FC, we observed a substantial increase in performance, in particular the F1

score and Kendall Tau coefficient. Our transfer learning approach leveraged a network of related MHC

Class I alleles. Base networks were trained on alleles with a larger number of training examples, and

trained weights were transferred to initialize the network of a related allele. Our results indicate that

transfer learning is a useful technique for pMHC-I binding prediction, in particular for alleles with few

training examples. The relationships between alleles that we found empirically were in agreement with

previously described MHC supertypes, but also included cases where more distant relationships provided

useful transferable information from one allele’s training data to another.

Of the deep learning methods we investigated, CNNs were the least successful. We attribute this result

to the importance of positional information in the pMHC-I binding process. It is well known that specific

residues are required at anchor positions [41] The filter sizes typically used in CNNs were designed for

problems in which position invariance is critical, such as identifying an object regardless of its position or

angle within an image. In contrast, the presence of a leucine amino acid residue has different meaning

at a pMHC-I anchor position than elsewhere, thus position invariance is detrimental. We were able to

improve CNN performance by increasing filter size, but they were still unable to match the performance

of the GRU, LSTM, or standard neural networks.

Our work highlights the critical role of experimental training data for further development of in

silico pMHC binding predictors. Even the best methods identified by our benchmarking efforts have

sharply decreased performance for those MHC-I alleles having a small and/or highly imbalanced number

of experimental measurements, and most of the variance in predictive performance could be explained

by these data-driven factors. We encourage anyone who is measuring pMHC binding affinities through

immuno-fluorescent assays or other technologies to deposit their results in public databases such as IEDB.

Materials and Methods

Dataset

The Immune Epitope Database (IEDB) [33] provides a comprehensive public set of experimentally

characterized peptides and pMHC binding affinities. Database entries were curated from published

literature, and the majority of affinities were calculated based on immunofluorescent assays. These

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/154757doi: bioRxiv preprint 

https://doi.org/10.1101/154757


17

affinities are represented as an IC50 value, the half-maximal inhibitory concentration in nano-molar (nM)

units of peptide to MHC molecules. A total of approximately 250,000 examples from immunofluorescent

assays was available as of May 2017, spanning multiple mammalian and avian species, and 740 MHC

alleles, of which 459 are MHC Class I.

For purposes of benchmarking in silico pMHC Class I binding predictors, Kim et al. generated

a new dataset from IEDB, partitioned into training and test sets [1]. The dataset was further pro-

cessed by a shell script [32] and available at https://github.com/hammerlab/mhcflurry/tree/master/

downloads-generation/data_kim2014, that removed any peptide in the test set with identical length

and ≥ 80% sequence identity to a peptide in the training set. The resulting benchmark is referred to in

this work as the Kim benchmark. It contains 106 unique MHC alleles and 137,654 IC50 measurements,

published prior to 2009 (training set) and 53 unique MHC alleles with 27,680 IC50 measurements, published

from 2009-2013 (test set). All peptides in the Kim benchmark set consist of 8-11 amino acid residues.

In silico methods

MHCnuggets

Recurrent neural networks

MHCnuggets-GRU is a gated recurrent unit (GRU) [28] with a fully connected layer of 64 hidden

units, regularized with a dropout and recurrent dropout [42] probability of 0.2, trained for 200 epochs.

MHCnuggets-LSTM is a long short-term memory network [29] with a fully connected layer of 64 hidden

units, regularized with a dropout and recurrent dropout probability of 0.2, trained for 100 epochs. Both

accept variable length inputs.

Convolutional neural networks

MHCnuggets-Chunky-CNN and MHCnuggets-Spanny-CNN are 1D convolutional neural networks [27].

The Chunky-CNN fits network weights to sliding windows (kernels) across each peptide, which cover two

or three amino acid residues. The Spanny-CNN has an additional kernel that covers the entire peptide.

Both networks have a single fully connected layer, with 64 hidden units. These networks require fixed

length inputs.
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MHCnuggets-FC

MHCnuggets-FC is a fully-connected single-layer network with 64 hidden units, regularized with a dropout

probability of 0.8, trained for 250 epochs. This network requires fixed length inputs, but we designed a

simplified cutting and padding procedure to minimize noise and computation time.

For all MHCnuggets architectures, a separate network was trained for each MHC allele in the Kim

benchmark set. Additional technical details are provided in Supplementary Materials and Methods.

Transfer learning

We designed a transfer learning protocol that leverages relationships between MHC alleles, whose peptide

binding surfaces may have common biochemical properties. We reasoned that if such a similarity existed,

the final learned weights for one MHC allele’s network could contain useful information for other alleles.

In the transfer learning protocol, the final weights from one network are used as the initial weights for

training subsequent networks. To identify potential similarities, we applied an empirical, bottom-up

approach (Figure S3). First, we extracted the network weights from the MHC allele with the largest

number of training examples (HLA-A*02:01). The trained weights from this network were used to intialize

and train networks for the remaining 50 alleles. For some alleles, HLA-A*02:01 was not expected to have

the most transferable information, so we applied all of the trained networks to score the training examples

for all alleles. In many cases, there was an allele whose network had better predictive performance than

HLA-A*02:01 at this step. For these alleles, we extracted the trained weights from the best performing

network and used them to initialize a new round of network training. Figure 4 shows the final transfer

learning protocol, with nodes representing the networks for each allele and edges represent the direction

and transfer of weights from one network to another. We used AUC to measure network performance (all

three performance metrics were highly correlated) and required that to be utilized for transfer learning, a

source network had a larger number of training examples than its target and a perfomance AUC ≥ 0.9.

To avoid overfitting, no examples from the Kim benchmark test set were used.

NetMHC/NetMHCpan

NetMHC [30] is a single-layer fully connected neural network that encodes nine amino acid residue peptides

with a 378-length input vector, which incorporates both a smoothed one-hot encoding (0.9 and 0.05
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replace 1 and 0) and a BLOSUM-62 encoding of each amino acid. To accommodate peptides that are

shorter or longer than nine residues, contiguous padding or cutting operations are applied at every possible

position. When padded or cut versions of the same peptide receive different predicted binding affinities,

the strongest affinity is selected. Separate networks are trained for each MHC allele.

NetMHCpan [31] is also a single-layer fully connected neural network that encodes both peptide and

polymorphic residues of the relevant MHC allele. It uses the same smoothed one-hot plus BLOSUM-62

encoding and padding/cutting protocol as NetMHC. A single network is trained for all MHC alleles.

NetMHC and NetMHCpan are currently the most widely used in silico pMHC-I binding tools.

Both methods use artificially generated non-binding peptides, by applying the NetChop algorithm [43]

to the entire human proteome.

MHCflurry

MHCflurry [32] is a neural network, which jointly discovers informative amino-acid residue encodings and

predicts pMHC-I binding affinities. Each amino acid residue type is assigned an integer, and peptides are

encoded as 9-length vectors of integers. An initial embedding layer maps input peptides to a 32-dimensional

space, which then feeds into a fully connected layer. Padding and cutting of peptides that are shorter or

longer than 9 residues is done identically to the protocol of NetMHC/NetMHCpan. The final predicted

binding affinity is the geometric mean of all padded and cut versions of the same peptide. MHCflurry

augments its training data with peptides randomly generated in silico from a uniform distribution.

SMMPMBEC

SMMPMBEC [15] is a Bayesian framework for regularized least-squares regression. Peptides to be used

for training are represented with one-hot encoding and stacked to form a single NxL matrix, where N is

the number of peptides and L is the peptides’ length x 20. A scoring matrix is trained to minimize the

error between N experimental binding affinities and the matrix product of the peptide matrix and the

scoring matrix. The optimization is constrained by a pre-trained 20x20 pairwise substitution matrix for

the amino acids, based on the covariance of their contributions to pMHC-I binding free energy in different

contexts. A scoring matrix is computed for each MHC allele and each peptide length. To predict the

pMHC-I binding affinity for a peptide of interest, its one-hot representation is multiplied by the scoring

matrix.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/154757doi: bioRxiv preprint 

https://doi.org/10.1101/154757


20

HLA-CNN

HLA-CNN [13] is a deep learning convolutional neural network, consisting of an embedding layer, two 1D

convolutional layers, and a fully connected layer. The input to the embedding layer is an Lx15 matrix,

which is initialized with a learned peptide representation based on the natural language processing (NLP)

skip-gram model [44]. Skip-gram is an unsupervised technique to discover word embeddings. Sentences are

encoded as vectors of integers and projected into a lower dimensional space. HLA-CNN treats peptides as

sentences and amino acid residues as words. The initial embedding is learned from the set of all peptides

across all MHC alleles in the training set. The convolutional layers consist of 32 filters, with kernel size of

7, stride=1, and are initialized with Glorot normal distribution [37]. A network is trained for each MHC

allele and each peptide length.

Comparison metrics

All in silico pMHC-I binding predictors assessed in this work are fundamentally regression methods,

which produce a continuous-valued prediction, expected to be related to the true experimental IC50

measurement. Continuous-valued predictions can be thresholded at relevant biological IC50s to produce

dichotomous class predictions (binder or non-binder). We used an IC50 threshold of 500nM, where a

value ≤ 500nM implied a binder and > 500nM implied a non-binder [36]. We applied the Kendall-Tau

correlation coefficient for continuous-valued predictions (Equation 2)

τ =
nc − nd

(n0 − n1)(n0 − n2)
(2)

where nc is the number of concordant pairs, nd is the number of discordant pairs, and n0, n1, and n2 are

given by Equations 3, 4, 5.

n0 = n(n− 1)/2 (3)

n1 =
∑
i

ti(ti − 1)/2 (4)

n2 =
∑
j

uj(uj − 1)/2 (5)
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where n is the total number of experimental and predicted binding affinity pairs, ti is the number of tied

values in the ith group of tied experimental affinities, and uj is the number of tied values in the jth group

of tied predicted affinities.

The Kendall-Tau coefficient provides assessment of whether continous predictions and experimental

measurements have a monotonic relationship and is robust to non-linearity.

We used area under the ROC curve (AUC) and F1 (Equation 6) metrics to assess dichotomous class

predictions. AUC assesses the dichotomous classification between binders and non-binders at any threshold

of a predictor’s continuous output. At each threshold, the true positive rate (precision) and false positive

rate (number of non-binders predicted as binder
number of true non-binders ) is computed and a curve is plotted (Figure 1A). The final metric

is the area under this curve.

F1 =
2 ∗ (precision ∗ recall)

(precision+ recall)
(6)

where precision = number of correctly predicted binders
total true binders and recall = number of correctly predicted binders

total peptides scored . Binders

are defined as peptides with IC50 ≤ 500nM.

A good AUC does not guarantee that the separation occurs at a biologically relevant threshold. In

particular, if the output does not have a good inverse mapping to experimental measurements, the

best separation may occur at an uninformative threshold. The F1 score ensures that a dichotomous

classification occurs at a selected threshold, and the threshold can be selected to be biologically relevant.

It provides a balanced summary of the precision and recall of a dichotomous classification.

Variability in prediction performance

For each of the 50 MHC Class I alleles in the Kim benchmark test set, we calculated the following

covariates: the number of training examples n, the training example class imbalance nb

nnb
where nb is the

number of training examples ≤ 500nM and nnb is the number > 500nM (in practice we use abs(ln( nb

nnb
))

to handle cases where nb > nnb), the test example class imbalance, the network modularity of binding

peptides in the training set, and the network modularity of all peptides in the training set. The ANOVA

R package was utilized to measure the variance explained by each covariate, using nested linear regression

models and with either F1 score, Kendall-Tau score, or AUC as the response variable. covariates were

added to each model with a greedy maximization of variance algorithm, in which the covariate that
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increased the variance the most at each iteration was added to the model, if it had a p-value < 0.05.

Network modularity of peptide sequence analysis

We constructed a network for each of the 50 MHC Class I alleles in the Kim benchmark test set. The

nodes of these networks were the peptide sequences found in the training set of each allele. Two nodes

were connected by an edge if the sequence identity between the peptides was > 0 (i.e., they shared at

least one identical amino acid residue at the same position). Edges were weighted by sequence identity

(normalized by peptide length). Peptides were trivially aligned by cutting and padding them to length nine,

as described in (MHCnuggets). Community detection was performed with the fast unfolding algorithm

[45], as implemented by the community_multilevel function in igraph. Once nodes were assigned to

communities, the weighted modularity of the community assignment was calculated as:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj) (7)

where Aij is the weight of the edge between i and j, ki =
∑

j Aij is the sum of the weights of the

edges associated with vertex i, ci is the community to which vertex i is assigned, δ is an indicator function

such that δ(u, v) = 1 if u = v and is 0 otherwise, and m = 1
2

∑
ij Aij .
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A

B

Figure S1: In silico prediction performance of the six best methods varies considerably by
individual MHC Class I allele but does not vary much by prediction method. A. F1 scores B.
AUC. In the hierarchically clustered heat map, the methods index the columns and alleles index the rows.
Heat map coloring indicates high (red) vs. low (blue) F1 scores or AUC. The high variability by allele is
seen by looking up or down any column. The low variability by method is seen by looking across any row.
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A

B

Figure S2: Transfer learning improves overall performance for neural networks. A. Kendall-
Tau correlation. B. AUC. Comparison is between deep learning MHCnuggets-GRU networks trained
with and without the transfer learning protocol. The 50 MHC class I alleles in the Kim benchmark set
are shown and the bar height and color represent the net change Kendall-Tau correlation or AUC after
transfer learning was applied.
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Figure S3: Schematic of transfer learning protocol. A. Network weights of HLA-A*02:01 are used
to initialize 50 networks for all other alleles in the Kim benchmark test set. B. The training examples
for each allele are tested for performance using all the networks trained in A. Example for a single allele
HLA-A*25:01 is shown. The network with the highest AUC (originally trained on HLA-A*26:01) is
selected (red highlight). C. The network weights for the best networks found in the previous step (e.g.,
HLA-A*26:01) are used to initialize and retrain the network for each allele of interest.
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Supplementary Materials and Methods

MHCnuggets technical details

Peptide representation

Each residue is represented as a 21-dimensional smoothed, one-hot encoded vector (0.9 and 0.005 replace

1 and 0).

Optimization

All MHCnuggets networks were trained with backpropagation using the Adam optimizer [46], with a

learning rate of 0.001. The activation function for all intermediate network layers was tanh. The final

output layer of all architectures was a single sigmoid unit, related to the predicted binding affinity as

y = max(0, 1− log50KIC50). For all networks, the number of hidden units, dropout [47] rate, and number

of training epochs was estimated by three-fold cross-validation on the HLA allele with the largest number

of entries (HLA-A*02:01).

Artificial peptide shortening and lengthening made efficient

Convolutional neural networks and standard fully-connected neural networks require artificial shortening

and lengthening of inputs. For these methods, any peptides that were longer or shorter than 9 residues

were cut or padded. To minimize the noise added by systematic padding and cutting operations, these

operations were applied only once to each peptide and only to positions 6 and/or 7, which minimized the

impact on the critical primary and secondary anchor residue positions.

Convolutional neural networks

MHCnuggets-Chunky-CNN is a 1D convolutional neural network [27], with kernel sizes (2,3), stride=1,

number of filters =(250,250), a global max pooling layer, a fully connected layer with 64 hidden units,

and a dropout probability of 0.6, trained for 100 epochs. MHCnuggets-Spanny-CNN is a 1D convolutional

neural network, with kernel sizes (2,3,9), stride=1, number of filters =(1,1,1), a global max pooling layer,

a fully connected layer with 64 hidden units, and a dropout probability of 0.6, trained for 100 epochs.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/154757doi: bioRxiv preprint 

https://doi.org/10.1101/154757


34

Implementation

All networks were trained using the Keras python package (TensorFlow back-end) [48] [49].
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