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Abstract

The modular control hypothesis suggests that motor commands are built from pre-

coded modules whose specific combined recruitment can allow the performance

of virtually any motor task. Despite considerable experimental support, this hy-

pothesis remains tentative as classical findings of reduced dimensionality in muscle

activity may also result from other constraints (biomechanical couplings, data av-

eraging or low dimensionality of motor tasks). Here we assessed the effectiveness

of modularity in describing muscle activity by tackling typical limitations in the

experimental and computational design, and testing two essential predictions: (i)

muscle patterns must be decomposable onto invariant modules and (ii) module

recruitment must determine the task at hand. We designed a comprehensive ex-

periment comprising 72 distinct point-to-point whole-body movements for which

the activity of 30 muscles was recorded. To identify invariant modules, we used

a space-by-time decomposition of single-trial muscle activity that has been shown

to encompass classic modularity models. To critically test the decompositions, we

examined not only the amount of variance they explained but also whether the

direction of the movement performed on each trial could be inferred by the single-

trial module activations. Overall, the modular decomposition was more effective

than non-modular alternatives in terms of data approximation, direction discrim-

ination and dimensionality reduction. These findings show that few spatial and

temporal modules give a compact approximate representation of muscle patterns

carrying nearly all task-relevant information of a variety of whole-body reaching

movements.

Keywords: Modularity ; Muscle synergies ; Space-by-Time decomposition ; Task-

discrimination ; Whole-body pointing ; Single-trial analysis
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1 Introduction 3

1 Introduction

Human motor control has been hypothesized to rely on a modular orga-

nization of muscle activity (the so-called muscle synergies or motor prim-

itives) since Bernstein (1967) and the seminal works of Bizzi et al (1991).

This hypothesis postulates that the central nervous system (CNS) exploits

modularity as a simplifying mechanism to generate and control the many

neuromusculoskeletal degrees of freedom underlying voluntary movements

(Flash and Hochner, 2005; Bizzi et al, 2008). Over the past years, there has

been substantial evidence supporting the hypothesis (Berniker et al, 2009;

Overduin et al, 2012; Nazarpour et al, 2012; Berger et al, 2013) as well as

contradicting (Kutch et al, 2008; Valero-Cuevas et al, 2009) or questioning

it (de Rugy et al, 2013; Zelik et al, 2014; Inouye and Valero-Cuevas, 2016).

As this hypothesis is in fact difficult to falsify (e.g. Tresch and Jarc, 2009), it

is important to develop approaches that critically test its fundamental pre-

dictions (Kutch and Valero-Cuevas, 2012; Delis et al, 2013b; Berger et al,

2013). Here our rationale is that an effective modular decomposition of

muscle activations must allow not only the formation of genuine muscle

patterns but also the distinct characterization of a variety of movements.

On the one hand, modularity models are typically assessed based on their

ability to approximate the recorded electromyograhic (EMG) data. How-

ever, an absolute expectation on the EMG data reconstruction (quantified

as variance accounted for, VAF) is arbitrary as high VAF values may also

result in overfitting, i.e. the resulting decomposition may contain modules

that explain task-irrelevant variance in the EMG recordings, which can be
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considered “noise”. In other words, VAF measures focus on approximating

EMG activations and ignore the task-relevance of the resulting representa-

tions. On the other hand, a plausible modular decomposition must allow

mapping a desired movement onto an adequate activation of modules. The

single-trial recruitment of these modules must, in turn, lead to unequivocal

task realization (i.e. hierarchical control hypothesis; Todorov et al, 2005).

Hence, a necessary condition is that distinct movements should be discrim-

inable from the way modules are recruited on single trials. Without this

property, consistent recruitment of modules could lead to execution of unin-

tended motor tasks, thereby invalidating the hypothesized control scheme.

Hence, movement discriminability constitutes a strong falsifiability test of

the effectiveness of modular decompositions, which is complementary to the

standard VAF evaluation. Therefore, we propose assessing modular repre-

sentations of muscle activity not only in input space as usually done (EMG

data reconstruction) but also in task space (motion direction discrimination

here) (Delis et al, 2013b; Alessandro et al, 2013b; de Rugy et al, 2013).

In this study, we test how effective a modular description of muscle ac-

tivations is by comparing it with non-modular structures in terms of these

two prerequisites. To limit classical shortcomings, we combine a) a highly

comprehensive experiment with b) a unifying modularity model of EMG ac-

tivity (Delis et al, 2014). Our experimental design comprises surface EMG

recordings from a large number of muscles (30) spread across the human

body on both hemibodies. Importantly, muscle activity is recorded dur-

ing performance of a large number of whole-body pointing movements (72

distinct motions) in the 3-dimensional space (Stapley et al, 2000; Leonard
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et al, 2009). This protocol imposes no further constraints and spans a wide

range of movements requiring whole-body coordination including upper and

lower limbs while preserving equilibrium. Furthermore, multiple repetitions

(30) of the movements are recorded, which allows capitalizing on single-trial

variability and assessing its consistency with the modular control hypoth-

esis that must enable adequate task execution not only “on average” but

on individual trials. Based on these specifications, we collect a remarkably

large EMG dataset, on which we can evaluate whether modular structures

are effective in i) yielding a parsimonious yet accurate description of EMG

patterns and ii) ensuring reliable characterization of distinct movements. To

investigate the former, we apply a generic model of modularity, named space-

by-time decomposition, which assumes the concurrent existence of spatial

and temporal modules (Delis et al, 2014). The use of such a unifying model

is crucial for limiting the dependence of conclusions upon the decomposi-

tion model used, as temporal, spatial or spatiotemporal modular decom-

positions have been assumed separately before (Bizzi et al, 2008; Ivanenko

et al, 2005; d’Avella et al, 2006). To tackle the latter, we employ a single-

trial task decoding analysis (Delis et al, 2013b,a) to assess how well module

recruitment maps onto movement identity, which would be impossible or

meaningless if trial-averaged data or a limited set of tasks were considered.

Ultimately, we apply these analyses to compare the modular decomposition

with non-modular alternatives in terms of their ability to compactly and

unequivocally describe muscle patterns and motion directions. This assess-

ment allows us to critically evaluate the effectiveness of the space-by-time

modularity model by attempting to falsify it (Ajemian and Hogan, 2010).
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2 Materials and Methods 6

In other words, if its motion direction discrimination or data approximation

power are significantly smaller compared to equivalently parsimonious non-

modular descriptions of individual muscle patterns, this would cast serious

doubts about the pertinence of the space-by-time modularity, otherwise it

would prove it is a useful descriptive model compatible with the modular

control hypothesis.

2 Materials and Methods

2.1 Experimental procedures

Subjects

Four healthy participants (2 males and 2 females, aged = 25 ± 3 years

old, height = 1.72 ± 0.08 m, weight = 70 ± 7 kg, all values presented

hereafter refer to mean ± s.e.m.) voluntarily agreed to participate in this

study and performed the experiment. None of them had any previous history

of neuromuscular disease. All subjects were made aware of the protocol, and

written consents were obtained before the study. Experimental protocol

and procedures were approved by the Dijon Regional Ethics Committee and

conducted according to the Declaration of Helsinki. As the study focused

on intra-individual analyses, few subjects were included in the study.

Motor task

Participants were asked to execute whole-body point-to-point movements in

various directions at a self-selected pace. The experimental protocol (illus-

trated in Figure 1) specified 9 targets on 3 vertical bars. Subjects stood
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barefooted and performed pointing movements between all pairs of targets,

termed motion directions throughout the paper, using the index fingertip

of their dominant arm (right) while standing (i.e. a total of 72 different

pointing movement directions). No constraint was imposed on the left arm.

Each participant repeated each motion direction 30 times for a total of 2160

recorded movements per participant. Given the large amount of movements,

we separated the whole experiment in two sessions (approximately 2 hours

for each session) to avoid participants’ fatigue, with 24h between the two

visits. Movements were pseudo-randomized within each session in order to

ensure same number of trials for each of the 72 motion directions (15 on

day 1 and 15 on day 2). We marked electrode placement on subjects’ skin

to limit measurement noise due to recording position changes. As reported

previously, EMG recordings from different days yield highly similar modu-

lar structures (Santuz et al, 2016). Here, we also verified that the removal

of electrodes between the two sessions did not critically affect the EMG

recordings as well as the identified modules. We found a highly significant

mean correlation coefficients of 0.89 ± 0.09 for spatial modules and 0.99 ±

0.01 for temporal modules (p<0.001) between the two recording sessions of

each subject, which shows that the extraction method was robust and that a

single extraction including both sessions could be performed. We therefore

present the extraction with the 30 repetitions in the Results section.
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Kinematics and EMG recording and preprocessing

We recorded 30 muscles by means of an Aurion (Milan, Italy) wireless sur-

face electromyographic system. The skin was shaved before electrode place-

ment, and abraded softly. EMG electrodes were placed symmetrically on

the two sides of the body on the following muscles: tibialis anterior (Ta),

soleus (So), peroneus (Pr), gastrocnemius (Ga), vastus lateralis (Vl), rec-

tus femoris (Rf), biceps femoris (Bf), gluteus maximus (Gm), erector spinae

(Es), pectorialis superior (Ps), trapezius (Tz), anterior deltoid (Da), poste-

rior deltoid (Dp), biceps brachii (Bb), triceps brachii (Tb). These muscles

were chosen because they are involved in whole-body reaching, and impor-

tantly, they not only cover a large part of the human body but they are

also easily recordable via a surface-EMG systems. Correct electrode place-

ment was verified by observing the activation of each muscle during specific

movements known to involve it (Kendall et al, 2005). During this proce-

dure, EMG signals were monitored in order to optimize recording quality

and minimize cross-talk from adjacent muscles during isometric contrac-

tions. The 3D positions of 20 retroreflective markers (diameter = 20 mm)

were simultaneously recorded using an optoelectronic measuring device (Vi-

con Motion System, Oxford, UK) at a sampling frequency of 100 Hz. 16

passive markers were fixed symmetrically on the two hemibodies (acromial

process, humeral lateral condyle, ulnar styloid process, apex of the index fin-

ger, greater trochanter, knee interstitial joint space, external malleolus, and

fifth metatarsal head of foot). We added external cantus of the eye on the

right face, auditory meatus on the left, and head apex and the first thoracic
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2 Materials and Methods 9

vertebra (T1) at the middle. The kinematic data were low-pass filtered (But-

terworth filter, cut-off frequency of 20 Hz) and numerically differentiated to

compute tangential velocity and acceleration of each marker. To restrict our

analysis to movement-related activity, we defined movement onset (t0) and

end (tend) times as the beginning and end of a time interval in which the

fingertip velocity was continuously above 5% of its maximum, and which

contained this maximum (Delis et al, 2013b). This time interval captured

the principal EMG signal variations related to the considered conditions.

Figure 1 (right-down panel) shows movement kinematics (initial and final

posture as well as fingertip trajectories) and (both raw and filtered) EMG

signals for one pointing condition T1-T9 (diagonal movement from top right

to bottom left). Main results were qualitatively the same when defining tri-

als from t0-100ms to tend-100ms to account for the electromechanical delay

between EMG activity and real force production. The EMGs for each trial

were rectified, low-pass filtered to obtain smooth envelopes of EMG activity

(Butterworth filter, cut-off frequency of 3Hz, zero-phase distortion;Ivanenko

et al, 2004) and normalized to 1,000 time steps. A final waveform of 50 time

steps was then obtained by using trapezoidal integration of the latter signal

on a uniform temporal grid. Movement artifacts were visually removed by

discarding the associated trials (<2% of the total number of trials). The data

were then normalized in amplitude on a muscle-per-muscle basis by dividing

each single-trial muscle signal by its maximal value attained throughout the

experiment. A potential detachment of EMG electrodes was assessed, for

each subject, by visually checking a posteriori that none of the recorded mus-

cles showed an abnormal change in signal amplitude across trials. For each
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2 Materials and Methods 10

subject, we finally formed an EMG matrix of (50 time steps × 30 muscles)

in rows and 2160 trials in columns consisting of all the movement-related

EMG activity (rectified and filtered) of the 30 muscles for all recorded trials.

This matrix was used as input to the modular decomposition algorithm to

characterize the spatial and temporal structure of muscle activations for this

set of movements.

2.2 Space-by-time modular decomposition of muscle activity

Space-by-time decomposition model

To represent muscle activity as a structured modular decomposition, we

used a space-by-time decomposition model (Delis et al, 2014). This modu-

larity model decomposes muscle activity in separate but concurrent spatial

and temporal modules and combines them in single trials using scalar coef-

ficients in order to approximate the recorded EMG activity. More formally,

according to the space-by-time decomposition, a single-trial muscle pattern

ms(t) ∈ RT ×M
+ can be written as follows (T and M being the number of

time frames and muscles, respectively):

ms(t) =
P∑

i=1

N∑
j=1

wi(t)as
ijwj + residual, (1)

where wi(t) ∈ RT ×1
+ and wj ∈ R1×M

+ are the temporal and spatial modules

respectively, and as
ij ∈ R+ is a single-trial scalar activation coefficient. The

free parameters P and N correspond to the number of temporal and spatial

modules, respectively, and are set by the user.
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Variance accounted for (VAF)

To assess how well the space-by-time decomposition approximates the recorded

EMG activity, we computed the variance accounted for (VAF) by the space-

by-time decomposition. VAF is defined as the total reconstruction error

normalized by the total variance of the dataset as follows:

VAF = 1−

∑
s ||ms(t)−

P∑
i=1

N∑
j=1

wi(t)as
ijwj ||2∑

s ||ms(t)− m̄||2 , (2)

where m̄ is the mean muscle activity across all trials, time steps and muscles

and ||.|| denotes the Frobenius norm. Note that different VAFs could be

defined by replacing m̄ by zero or any other reference value (Torres-Oviedo

et al, 2006), indicating that VAF values may differ depending on the precise

definition of m̄.

Module extraction

To extract the space-by-time representation of muscle activity in the set of

movements under consideration, we applied sNM3F, a Non-negative Matrix

Factorization (NMF) based module extraction algorithm that implements

effectively the space-by-time decomposition and identify meaningful spatial

and temporal modules (Delis et al, 2014). The advantage of NMF-based

decompositions is that they restrict the extracted modules and activations to

be non-negative, which makes them physiologically relevant for EMG signals

reflecting well the “pull only” behavior of muscles (i.e. muscles cannot be

activated “negatively”). We input the preprocessed EMG matrix (see above)
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of each subject to sNM3F and extracted P temporal modules, N spatial

modules and P ×N × S activation coefficients capturing all the variations

across trials and movement directions. The numbers of spatial and temporal

modules (P and N respectively) are free parameters of the algorithm, thus

we varied P = 1, . . . , 10 and N = 1, . . . , 10 and computed the decomposition

for all the 100 possible (P, N) pairs. The smallest set of modules describing

best the data was then estimated using a decoding analysis (see Module

selection and clustering).

2.3 Direction decoding analysis

We also tested whether the identified decompositions allowed discriminating

the 72 distinct motion directions specified by the experiment. With such a

large number of directions to discriminate, achieving high decoding perfor-

mance may be challenging (chance level is very low, equal to 1.4%). We

used the single-trial activation coefficients as
ij to decode the direction of the

performed movement in each trial by means of a linear discriminant analy-

sis (LDA) in conjunction with a leave-one-out cross-validation (Delis et al,

2013b). We quantified decoding performance as the percentage of correctly

decoded trials and reported results in the form of confusion matrices. The

values on a given row i and column j of the confusion matrix C(i, j) rep-

resent the fraction of trials on which the executed motion direction j was

decoded as the direction i. If decoding is perfect, the confusion matrix has

entries equal to one along the diagonal and zero everywhere else.
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2.4 Module selection and clustering

Selecting the number of modules

We used the decoding analysis described above to identify the most com-

pact and direction-discriminative space-by-time decomposition. Decoding

performance was computed step by step by increasing gradually the num-

bers of temporal and spatial modules extracted (P , N respectively). The

number of modules was then selected as the step at which adding a supple-

mentary module did not give any significant decoding gain (p > 0.05). To

assess the significance of decoding performance, we employed a permutation

test where we randomly shuffled the coefficients corresponding to the added

module (while the distributions of all other coefficients were unaffected) and

computed discrimination performance. Hence, this procedure ensured the

detection of modules that explain the “task-relevant” variability and the ex-

clusion of other sources of noise (“task-irrelevant” variability) (Delis et al,

2013b,a).

Clustering analysis

To compare modules of the same type (spatial or temporal) extracted from

different subjects, we grouped them using an agglomerative hierarchical clus-

ter analysis (Hastie et al, 2009). Although it was not crucial for the present

study, such a clustering can be useful for visualization purpose and for com-

parison of our results with other studies. In particular, it is worth men-

tioning that the modular control hypothesis does not impose that different

subjects must have the same modules but that states that each subject may
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rely on its a modular structure to generate genuine muscle patterns. In

the following, we will present the procedure used for clustering in detail for

spatial modules, but the same procedure was followed also for clustering the

temporal modules. We quantified the similarity between spatial modules i

and j as their correlation coefficient (Ri,j). We considered spatial modules

as M -dimensional vectors and computed correlation coefficients between all

pairs of modules across all pairs of subjects. Using Ri,j as distance mea-

sure, we created a hierarchical cluster tree from all module pairs (Matlab

function “linkage” with the “average” distance method, i.e., using as dis-

tance between two clusters the average distance between all pairs of objects

across the two clusters). The number of clusters was set to the maximum

number of spatial modules across subjects (i.e. 7 here). We thus ensured

that the resulting clusters included one or zero modules from each subject.

The correlation between modules was then computed as the mean pairwise

correlation between all pairs of modules within each cluster.

2.5 Significance of identified decompositions

We used a permutation test to assess the ability of the identified decom-

positions to uncover meaningful structure in the data. We compared the

VAF and decoding performance of the identified decompositions with the

VAF and decoding performance values obtained when decomposing struc-

tureless data. We generated structureless data from the recorded data by

randomly permuting the muscles for each time step of each trial in every

movement. The input matrix thus had exactly the same numerical values

but was devoid of biomechanical significance. For each subject, we per-
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formed 10 different permutations, which resulted in 10 simulated datasets

on which we applied sNM3F to extract space-by-time decompositions and

computed VAF and decoding performance of the resulting decompositions.

We considered as significance level the maximum of the VAF and decoding

performance obtained for these decompositions. Quality of the VAF and

decoding performance obtained for the recorded data was then evaluated

relative to this significance level.

2.6 Comparison with non-modular muscle pattern descriptions

To compare the efficiency of the extracted modular decompositions with

non-modular alternatives, we computed decoding performance and VAF of

non-modular descriptions of the data with equal number of parameters as

the modular decompositions. In particular, we examined whether alternative

descriptions of muscle activity that do not rely on an explicit modularity

model are more or less effective than the space-by-time decomposition in

a) discriminating the performed motion direction and b) approximating the

EMG signals. This analysis also served to investigate whether a subset of

the recorded muscles or a shorter temporal window of muscle activity suffices

for the characterization of a) the recorded EMG signals and b) the direction

differences in single-trials. Thus, we compared direction decoding and VAF

results of the space-by-time decomposition with those obtained by artificially

reducing the spatial dimensions (i.e. choosing a subset of muscles) or the

temporal dimensions (i.e. splitting muscle activity into shorter temporal

windows) or a combination of the two. To this aim, we divided the muscle

activity of each of the M muscles (spatial dimension) into B bins (temporal
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dimension) and computed the root-mean-square (rms) of the EMG signal

of each muscle within each temporal bin. This procedure yielded M × B

parameters for each trial, which we refer to as “non-modular” parameters.

To perform a fair comparison, we then matched the number of non-modular

parameters with the dimensions of the space-by-time decomposition, i.e.

selected an identical number of parameters for both descriptions, in three

different ways.

Firstly, we examined whether adding more spatial dimensions (and ig-

noring the temporal structure of the data) would enhance direction discrim-

ination performance. Thus, the first set of non-modular parameters de-

scribed only the spatial dimension of muscle activity by varying the number

of muscles retained (M = N × P ) and keeping only one temporal dimen-

sion (B = 1). Secondly, we examined the effect of adding more temporal

dimensions (and ignoring the spatial structure of the data). Thus, to ob-

tain the second set of non-modular parameters, we varied the number of

temporal bins (B = N × P ) and kept only one spatial dimension (M = 1).

Thirdly, we selected equal numbers of spatial and temporal dimensions with

the space-by-time decomposition (M = N , B = P ) and asked whether we

could achieve higher direction discrimination using the non-modular param-

eters instead of the modular parameters. We repeated parameter selection

for each of the three sets 20 times (by randomly selecting muscles and/or

bins, when appropriate). We used these three sets of parameters to compute

the decoding performance of the non-modular muscle activity descriptions

and compare it with the decoding performance of the space-by-time decom-

position. Note that the VAF could not be evaluated from some these non-
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2 Materials and Methods 17

modular decompositions because they involve only a subset of the recorded

muscles; thus, they can reconstruct only a part of the EMG recordings.

To resolve this issue, we then quantified the maximal decoding and max-

imal VAF that can be achieved by the dataset under investigation using

non-modular descriptions of the data involving all recorded muscles. We

described EMG activity in single trials using the rms values from the single-

trial recordings of all M = 30 muscles, binned into increasing numbers of

temporal bins (B varying from 1 to 50). We input these values to LDA and

computed the maximal “non-modular” decoding performance (for B = 50

the non-modular description was identical to the one given by the original

data set). Computing the VAF was also possible here, using the following

procedure: the reconstructed EMG matrix of this non-modular decomposi-

tion was obtained by assuming all time points within each bin to be equal to

the rms value of that bin (i.e. a piece-wise constant function). The resulting

reconstructed data matrix ms
B(t) for each trial had equal dimensions as the

original single-trial EMG data matrix ms(t) and was defined as follows:

ms
B(t) =

M∑
i=1

B∑
j=1

as
ij1i,j(t) + residual, (3)

where 1i,j(t) ∈ RM is the indicator vector function that is equal to 1 on the

ith component if t belongs to bin j and to 0 elsewhere, and as
ij is the rms

value of muscle i for bin j and trial s. Hence, the VAF of the non-modular

decomposition can be computed from Eq. 2 by replacing the double sum

term by
∑M

i=1
∑B

j=1 as
ij1i,j(t).
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2.7 AIC computation and comparisons

As the different numbers of parameters of the modular and non-modular

decompositions may affect their performance in data approximation, we also

compared them by computing Akaike’s information criterion (AIC, Akaike,

1974) for each decomposition. The AIC is a measure of the goodness of fit,

based on the likelihood, that includes the decomposition’s degrees of freedom

and constitutes a numerical implementation of Occam’s razor. This measure

thus allows a more objective comparison of decompositions with different

numbers of parameters. Lower values of AIC correspond to decompositions

that achieve a better trade-off between dimensionality reduction and data

approximation. Assuming equal variances across all S trials, the AIC can

be computed as (Burnham and Anderson, 2002):

AIC = 2k + S ln(Err), (4)

where k is the number of parameters of the decomposition, S is the number of

trials and Err is the reconstruction error of the decomposition. For the mod-

ular decomposition Err2 =
∑

s ||ms(t) −
∑P

i=1
∑N

j=1 wi(t)as
ijwj ||2 whereas

for the non-modular decomposition Err2 =
∑

s ||ms(t)−
∑M

i=1
∑B

j=1 as
ij1i,j(t)||2.

Regarding the number of parameters that are required by each decom-

position to reconstruct complete time-varying muscle patterns, we have

k = N × M + T × P + N × P for the modular decomposition and k =

M × B + T ×M × B for the non-modular decompositions, where M × B

is the number of rms values and T ×M × B corresponds to the number of

parameters to define indicator functions.
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3 Results

3.1 Basic kinematic features

The four subjects performed 72 different point-to-point movements between

pairs of targets among 9 predefined target points. The movement dura-

tion ranged, on average across subjects, from 1.05 s±0.18 s (for T3-T6) to

1.64 s±0.30 s (for T9-T1). All finger velocity profiles appeared to be bell-

shaped across subjects and conditions, as previously observed in whole-body

reaching movement (Thomas et al, 2005; Berret et al, 2009). Targets were

attained with an overall mean spatial error of 10 mm±2 mm (from 8 to 15

mm for T6-T3 and T9-T5 respectively). Raw EMG data, associated with

motion direction T1-T9, for a typical trial of subject S2, are shown in the

Figure 1. These recordings for all conditions and trials formed the EMG

matrix that was used for module decomposition.

3.2 Low-dimensional modular decomposition in space and time

We extracted a space-by-time representation of muscle activity by applying

the sNM3F algorithm to the EMG recordings of each subject. Figure 2 il-

lustrates the VAF and decoding performance graphs (upper surfaces in all

plots) as a function of the number of spatial and temporal modules for one

typical subject. These graphs provide insights about the number of spatial

and temporal dimensions that are necessary to describe the set of motion

directions at hand. For all subjects, VAF exhibits a smooth increase with

the number of temporal and spatial modules with no clear saturation point.

In contrast, direction decoding performance grows quickly and reaches a
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plateau for all subjects. The 3D decoding graphs show a larger effect of

the spatial dimension on decoding compared to the temporal one indicat-

ing that precise muscle groupings may carry more task-related information

than precise timing of muscle activations. The sets of temporal and spatial

modules were selected as the dimensions of the space-by-time decomposi-

tions for which no statistically significant gain (p < 0.05) in decoding was

obtained when adding more (spatial or temporal) modules. In particular,

four temporal modules (P = 4) appear to carry all decoding power for all

subjects, whereas the number of spatial modules varies across subjects and

is usually higher (S1: N = 4, S2: N = 6, S3: N = 7, S4: N = 5). The

resulting decompositions achieved on average across subjects (mean ± sem)

a VAF value of 68%±5% and decoding performance of 86%±1%. The cor-

responding graphs for all subjects are presented in Figure 2. VAF values

may appear relatively small compared to other studies, especially if one

sets a somewhat arbitrary threshold such as 90% for selecting the number

of modules (Torres-Oviedo et al, 2006; Hart and Giszter, 2004; Ting and

Macpherson, 2005). This discrepancy is partly due to the fact that data

were not averaged across trials here (for comparison, the VAF obtained from

averaged data was 78%±7%, see Discussion for more details on these VAF

differences). We assessed the statistical significance of these VAF values

by performing a permutation test (see Methods for details on this computa-

tion). The lower surfaces in each plot of Figure 2 represent significance levels

for VAF and decoding values for unstructured data, which we compared to

the ones obtained from the space-by-time decompositions. For the selected

number of modules, significance level for VAF is 9%±3% and for decoding
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performance 19%±5% across subjects. Note that for decoding significance

level is higher than theoretical chance level (~1.4%) because our permutation

technique preserved the order of trials and motion directions (only muscles

were shuffled for each time step). Overall, VAF and decoding scores were

significantly larger than their corresponding chance and significance levels.

These results validate that the identified space-by-time decompositions ac-

count for relevant features of the recorded EMG data and are not just an

artifactual output of the methods.

3.3 Consistency and functionality of spatial/temporal modules

We examined the composition of the extracted spatial and temporal mod-

ules and their similarity across subjects for the sake of completeness. In the

space-by-time decomposition, temporal modules are T -dimensional vectors

containing time-varying patterns, accounting for the timing of muscle ac-

tivity. Here, the identified temporal modules were highly consistent across

subjects (mean correlation coefficient r̄ = 0.92). Each temporal module

was composed of a single activation burst (Fig. 3) and the four modules

were successive in time to describe the temporal profile of muscle activity in

different temporal windows of the full movement duration, which is a com-

mon finding in literature (Ivanenko et al, 2005, 2004; Chiovetto et al, 2010,

2013). This result may be the consequence of the common organization of

all movements consisting in an acceleration phase followed by a deceleration

phase.
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Spatial modules are M -dimensional vectors of muscle activation levels.

The identified spatial modules exhibited higher variability across subjects

(mean correlation coefficient r̄ = 0.52) than the temporal ones, which might

be partly explained as a result of differences in movement kinematics, the

subject-specific number of spatial modules (thus requiring different mus-

cle groupings) and/or physical discrepancies between participants (muscle

sizes, skin conductance etc.). We determined four clusters of spatial mod-

ules across subjects. Each spatial module activated muscles spread across

the whole body (and on both hemibodies, Fig. 4). This suggests that the

extracted spatial modules represent functional muscle couplings for perform-

ing the movement at hand rather than purely anatomical or biomechanical

groupings of muscles controlling the same joints or body parts.

3.4 Efficiency of the identified space-by-time decomposition in

motion direction discrimination

In this part, we aimed to assess the effectiveness of the identified space-by-

time decompositions with respect to task performance. To this end, we used

the single-trial parameters of the decompositions, i.e. the N × P activation

coefficients, to decode which of the 72 directions was performed on each trial.

Decoding results are shown as an average confusion matrix across subjects

(Fig. 5). Each entry of the confusion matrix C(i, j) represents the percent-

age of times movement j was decoded as movement i. In Figure 5, only the

matrix diagonal shows high values (on average higher than 90%), which indi-

cates highly accurate direction decoding from the way modules are recruited
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on single trials. We also observe two gray lines parallel to the diagonal (one

above and one below the diagonal) indicating incorrect classifications for

some pairs of movements (corresponding to 11% of decoding errors on av-

erage). These decoding errors concerned pointing movements starting from

neighboring points on the same bar and ending at the same point on a dif-

ferent bar. In particular, starting points T1, T2 and T3 (higher level) were

confused as T4, T5, and T6 (middle level) respectively and vice-versa (see

Fig. 1 for target positions). Hence, these confusions suggest that direction

decoding is harder between movements that have the same spatial direction

(left or right) and the same endpoint and their starting locations differ only

in the height dimension. Starting points at the lower level were confused less

often (< 10% decoding errors) probably because of the higher involvement of

lower body muscles required for these movements, which distinguishes them

from the middle and higher level starting points. Overall, the decoding

results suggest that the space-by-time decomposition succeeds in discrim-

inating movements highly accurately. Interestingly, decoding scores were

comparable to previous ones obtained during arm reaching with a lower

number of kinematic degrees of freedom and fewer muscles and movements

involved (Delis et al, 2013b), which suggests that direction decoding levels

generalize well to more complex whole-body movements.

3.5 Effectiveness of space-by-time modularity as compared to

non-modularity

To assess the effectiveness of the identified space-by-time decompositions

with respect to task performance, we used the single-trial parameters of the
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decompositions, i.e. the N × P activation coefficients, to decode which of

the 72 movements was performed in each trial. Then, in order to test the

plausibility of the modular decomposition in terms of movement discrimina-

tion, we compared its decoding power with the ones obtained with the same

number of parameters but taken directly from the recorded muscle activity

(see Materials and Methods for details on the extraction of non-modular

parameters).

Here to treat all subjects with the same methodology, we first computed

the decoding performance of the space-by-time decomposition with 9, 16

and 25 single-trial coefficients (i.e. (N, P ) = (3, 3), (N, P ) = (4, 4) and

(N, P ) = (5, 5), respectively, Fig. 6, black curve). We then compared the

decoding performance of the modular decomposition with the 95% confi-

dence intervals of decoding performance obtained using three sets of param-

eters of equal dimensionality (red, green and blue areas) that capture the

spatial, temporal and spatiotemporal structure of the EMG data respec-

tively (see Methods for details on these computations). We found that, for

all subjects, the space-by-time decomposition carried significantly higher di-

rection discrimination power than all other three sets of parameters, which

supports the effectiveness of the proposed modular decomposition in task

space. Notably, the lowest performance was obtained when decoding was

based only on the temporal parameters (red area) suggesting that temporal

dimension carries less information about direction differences, possibly be-

cause all reaches were made of one acceleration and one deceleration phases

with similar timings. On the contrary, when exploiting the spatial dimen-

sion (green area) decoding results were significantly higher. This finding
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suggests that direction information was mainly carried by the relative acti-

vation levels of different muscles (i.e. the spatial dimension), whereas the

precise timing of muscle activations did not contribute to the discrimination

of different movements. It is noteworthy that not only was decoding lower

for the tested sets of non-modular parameters but also this non-modular

analysis can reconstruct only a subset of the EMG data.

After establishing the direction discrimination superiority of space-by-

time modularity over non-modular alternatives, we aimed to compare the de-

coding power of the modular decomposition with the maximal decoding that

can be achieved by the dataset under investigation (i.e. including the single-

trial EMG activity of all 30 muscles -as the spatial dimension carries most

of the direction information- and binning their temporal activation profiles,

see Materials and Methods for details on these computations). We observed

that the maximal decoding performance that can be attained was 95%±4%

across subjects, with 5 temporal bins (i.e. 150 decoding parameters, black

curve in Fig. 7A). Further increase in the number of bins decreased the de-

coding performance first slightly and then drastically, confirming our previ-

ous findings about the small contribution of temporal precision to decoding.

In comparison, the maximum decoding performance obtained by the space-

by-time decomposition was 91%±3% (for N=10, P=10, i.e. 100 parameters,

gray curve in Fig. 7A), which was not significantly different (p = 0.54,

t-test). Interestingly, a smaller set of modular parameters (25 parameters,

N = 5, P = 5) already achieved decoding performance of 84%±5% (not sta-

tistically different from the maximal decoding performance, p = 0.1, t-test).

Also, decoding performance with modules was always higher than decoding
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without modularity for comparable numbers of parameters (e.g. 86%±3%

for 36 modular parameters -see gray curve- versus 75%±5% for 30 non-

modular parameters -see black curve- in Fig. 7A). Notably, the extracted

space-by-time decomposition using the optimal number of parameters for

each subject (S1: N = 4, P = 4, S2: N = 6, P = 4, S3: N = 7, P = 4,

S4: N = 5, P = 4, i.e. 22±1 parameters across subjects) yielded 86%±1%

decoding, which is significantly higher than the decoding performance of

the non-modular decomposition with 30 parameters (75%±1%, p < 0.05,

t-test).

Regarding data approximation power, we showed that increasing the

number of bins led to a gradual increase of the VAF values up to a maximum

of 100% when the full waveform (50 time bins) was used (see black curve

in Fig. 7B). When comparing this with the modular decomposition (gray

curve in Fig. 7B), we found that for small numbers of parameters (from 1 to

100), the modular decomposition consistently accounted for equal or higher

percentage of variance of the EMG dataset than the non-modular alternative

(e.g. for 64 modular parameters: VAF = 79%±1% vs for 60 non-modular

parameters: VAF = 75%±1%). Again, the extracted space-by-time decom-

position using the optimal number of parameters for each subject (22±1

parameters across subjects) yielded 68%±1% VAF, which is significantly

higher than the VAF of the non-modular decomposition with 30 parameters

(55%±3%, p < 0.05, t-test). When increasing the number of parameters,

the non-modular decomposition achieves higher VAF values reaching 100%,
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as expected when all data points are used, which would also be the case

if choosing N = M and P = T for the extraction of modules (although it

would be meaningless regarding the modularity hypothesis). Nonetheless, to

determine whether the VAF increase is better than that expected from the

increase in the number of parameters, we computed Akaike’s information

criteria (AIC) for both decompositions varying the number of parameters

(see Table 1 for the AIC values of the modular and non-modular decom-

positions with different numbers of parameters). The lowest (best) AIC is

found for the modular decomposition with 4 temporal and 4 spatial mod-

ules, which suggests that this is the optimal decomposition that reconstructs

the data best with the minimal number of parameters. AIC values for the

non-modular decomposition are consistently higher than for the modular de-

composition for all numbers of parameters. Notably, increasing the number

of bins leads to higher AIC values, which suggests that the observed VAF

increase is solely due to the increase in the number of parameters. Taken

together with the decoding results, these findings endorse the modular de-

composition as the representation achieving the best trade-off in terms of

dimensionality reduction, data approximation and discrimination of motion

direction.

4 Discussion

In this study, we probed the effectiveness of space-by-time modularity in

describing single-trial EMG signals in a complex motor task. We designed

a comprehensive experiment comprising a large number of distinct whole-
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body pointing movements and collected EMG signals. We assessed the ex-

tent to which a space-by-time modular decomposition of muscle activity

could approximate the single-trial EMG data and convey task-relevant in-

formation. Notably, the space-by-time modular decomposition superseded

all non-modular alternative descriptions tested in terms of direction dis-

crimination data reconstruction for comparable dimensionality reduction.

We therefore speculate that space-by-time modularity is a plausible piece of

the whole machinery used by the CNS to generate voluntary goal-directed

movements, although other processes may be necessary to fully account for

EMG patterns as discussed below.

4.1 Parsimonious representation of EMG data in space and time

Four bursts of muscle activation characterized the timing of movement-

related EMG activity. Notably, this set of temporal modules was very con-

sistent across subjects and more temporal precision did not improve the

characterization of the performed motion direction using decoding analysis.

Refining the number of temporal modules only contributed to increasing

the VAF, i.e. yielded a better reconstruction of EMG patterns. This finding

shows that all task-relevant information is conveyed in four successive tem-

poral recruitments that may correspond to different phases of goal-directed

movement, i.e. postural stabilization over starting point, movement initia-

tion, movement deceleration and stabilization over endpoint and that addi-

tional temporal modules would only be needed to characterize fine-grained

but task-independent parts of muscle activity. Similar findings have been re-

ported in a previous study that applied the space-by-time decomposition to
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2-dimensional arm reaching (Delis et al, 2014) where three temporal bursts

were identified (without the initial postural muscle activation) as well as in

other studies examining temporal modularity (Chiovetto et al, 2010, 2013).

In a similar vein, four or five temporal primitives have been shown to ex-

plain locomotive motor behaviors (Ivanenko et al, 2004, 2005; Dominici et al,

2011) and limb reaches in spinal animals (Hart and Giszter, 2004). Regard-

ing the effect of high-pass filtering, high-frequency fluctuations of the EMG

signals were analyzed in past research on spinal animals (Hart and Giszter,

2004). These studies identified temporal modules of similar shape to the

ones found here, which supports the identified temporal structure of mo-

tor modules irrespective of the study-specific signal preprocessing procedure

(Hart and Giszter, 2010; Kargo and Giszter, 2008). We also note that when

using an extension of the sNM3F that includes temporal shifts/delays in the

temporal modules (as suggested in Delis et al, 2014), we did not obtain any

direction discrimination gain but VAF could be higher. This suggests that

the task-related temporal structure of muscle patterns is well explained by

the extracted temporal modules and that any minor variations in muscle

timings likely require time shifts of those modules.

In space, our module extraction algorithm clustered muscles into a few

(4-7) spatial modules consisting of muscles from different body parts and

hemibodies suggesting that groupings did not arise solely as a result of

anatomical constraints or biomechanical couplings. Also, each spatial mod-

ule was typically activated to perform many different movements and each

movement was performed using the simultaneous activation of many spa-

tial modules, which suggests that the spatial modules are not direction-
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specific but rather functional groups of muscles shared across movements

whose weighted recruitment actually codes the motion direction being per-

formed (Tresch et al, 1999; Torres-Oviedo et al, 2006; Delis et al, 2013b,

2014; d’Avella et al, 2006, 2008). Notably, more variability in muscle group-

ings was found across participants. First, this could be due to the fact

that subjects had a different optimal number of spatial modules, thus re-

quiring different muscle groupings. Second, such inter-subject differences in

muscle synergies have been reported in previous studies (Hug et al, 2010;

Guidetti et al, 1996; Frère and Hug, 2012) and are expected to be more

pronounced when more muscles are recorded. Indeed, in complex motor

tasks (e.g. whole-body-reaching), spatial variability may increase for mul-

tiple reasons: different skin conductions or muscle characteristics, different

motion kinematics and dynamics, etc. Furthermore, different muscle group-

ings across individuals may be the outcome of learning or developmental

processes, which have recently started to be investigated (Dominici et al,

2011). Therefore, the modular control hypothesis is compatible with the

finding that different participants could exhibit different motor modules.

However, some muscles such as left Ta and Pr appeared to work in synergy

for all participants.

4.2 VAF and discrimination power compared to other studies

We found that a small set of spatial and temporal modules described mus-

cle activations during performance of a wide range of whole-body pointing

movements. This parsimonious representation explained a large part of the

variability of the EMG recordings (significantly more than chance), although
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the actual VAF values we obtained here may be relatively low compared to

other studies. One main reason is that the present EMG data exhibited a

higher level of variability as a result of a) extracting modules from single-

trial data (30 trials for each motion direction), i.e. not resorting to averaging

and b) studying a very large set of different directions (72, which gives 2160

recordings). When extracting modules from trial-averaged data, the average

VAF across subjects was 78%, which is comparable to VAF values found in

other studies using a smaller number of distinct movements and time-shifts

d’Avella et al (2006). Note also that our formula for computing the VAF

was relatively conservative compared to other formulas that could give arbi-

trarily larger VAF values, for instance by replacing the mean muscle pattern

by zero in the denominator of Eq. 2(Torres-Oviedo et al, 2006). Notwith-

standing this, the low VAF and the residual reconstruction error could be

taken as evidence that space-by-time modularity can only give an incom-

plete description of EMG patterns unless the number of modules is largely

increased. This was already noticed in another motor primitive study where

high VAF levels were needed to accurately reproduce single muscle patterns

(Zelik et al, 2014). Interestingly, we showed that the low-dimensional EMG

description was nevertheless associated to a surprisingly high decoding per-

formance in spite of the fact that direction decoding is not a direct objective

of the decomposition algorithm.

In particular, the spatial (muscle) dimension of EMG activity appeared

to carry more task information than the temporal dimension, which is con-

sistent with previous findings (Delis et al, 2014). The low task information

carried by the temporal modules may be partly explained by the fact that
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EMG single-trial data need to be normalized in time to have equal lengths

before being input to matrix factorization algorithms. Time normalization

is useful in order to align trials with different durations (and mandatory in

current NMF-based methods), however its impact on the task information

carried by the resulting signals needs to be investigated further. It is also

unlikely that varying the speed instructions (i.e. including different speed

conditions in the analysis) would have improved the direction discrimination

power of the temporal modules as this was not the case for planar arm reach-

ing movements Delis et al (2013b). Strikingly, however, our decoding results

are comparable and even higher than the ones obtained in the simpler 2-

dimensional arm reaching study mentioned above (86% versus 80%) as well

as in other studies investigating grasping movements (Weiss and Flanders,

2004; Overduin et al, 2010; Leo et al, 2016). This decoding advantage we

obtained here can be explained as a result of two main differences with prior

work. First, we used a more flexible model of muscle activation modularity,

namely the space-by-time decomposition, which was shown to have higher

movement discrimination power compared to alternative models (Delis et al,

2014). Second, we investigated a whole-body reaching task, for which, in

contrast to arm reaching and grasping, a) a large number of muscles with

complementary functional roles can be recorded using surface EMGs and b)

activations of several muscles are expected to be markedly different across

motion directions. We also note that, in this study, a larger number of

temporal and spatial modules was required to achieve these decoding val-

ues. This difference indicates that the number of dimensions is dependent

on the set of motion directions under consideration, hence, to draw more
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general conclusions about dimensionality, it is important to examine other

motor behaviors that are as unconstrained as possible. It must be noted

here that discriminating between similar reaching movements to neighbor-

ing targets is likely considerably more difficult than discriminating between

very different motor behaviors where EMG patterns differ drastically. This

point is exemplified via our confusion matrix analyses. Overall, the decoding

analysis reveals that recruitment of muscle groupings (spatial modules) is

highly dependent on the direction of hand displacement. Their combination

with adequate timing signals (temporal modules) via the descending motor

commands (activation coefficients) leads to unequivocal characterization of

distinct movements.

4.3 Space-by-time modularity for motor control

The high direction decoding values we found here show that a large number

of movements can be reliably coded in the low-dimensional space defined

by the spatial and temporal modules (Delis et al, 2013b,a; d’Avella and

Lacquaniti, 2013; Alessandro et al, 2013b). Considering the neural basis of

such a modular scheme, our modeling assumes that the (invariant) spatial

and temporal modules may be hardwired in the spinal cord or brain stem.

Then, the (variable) activation coefficients may be triggered by motor corti-

cal structures that generate the descending neural command which recruits

on each trial a specific set of modules to coordinate the task-specific recruit-

ment of several muscles and execute the movement at hand. This view is

compatible with evidence that, when stimulated, the motor cortex in the

primate brain is able to coordinate behaviorally relevant actions, whereby
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neuronal activity may trigger such goal-directed, multijoint reaching move-

ments (Graziano, 2006). Recently, similar evidence for a high-level encod-

ing of ethological actions has been found in the precentral gyrus of patients

undergoing brain surgery (Desmurget et al, 2014). Our findings are not in-

compatible with such a hierarchical neural implementation of action since

the tested modular decomposition was provably highly effective for motion

direction encoding and accomplishment. However, as already mentioned,

the relatively low VAF could also be taken as evidence against the mod-

ular control hypothesis suggesting that the set of whole-body movements

under consideration cannot be described in all its finesse with a small set

of invariant spatial and temporal modules. Undeniably, the space-by-time

decomposition gives only a crude picture of the recorded muscle patterns on

single trials. Theoretically, all trial-to-trial EMG variations should be cap-

tured by the model but a much larger number of modules would be required

to achieve VAF above an arbitrary 90% threshold, a problem which would

be the same with other existing muscle synergy models (Zelik et al, 2014).

While we have provided some computational arguments explaining why the

VAF is lower than the one observed in prior studies on the topic, we cannot

dismiss a potential departure from the proposed feedforward modular control

scheme. Indeed, the role of feedback is largely neglected in such models and

might be relevant to better replicate the recorded muscle patterns. Hence

we speculate that the high movement discrimination capacity but medium

data approximation may reflect the fact that feedback and/or intermittent

control processes occur during motor execution and thus, these processes

should be modeled in muscle synergy studies (see below). More generally,
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the question of falsifying the modular control hypothesis has proved to be a

difficult challenge although it has been tackled by several neurophysiological

and computational works as discussed hereafter.

4.4 Critical evaluation of modular motor control

Similarly to our approach, a large number of recent studies attempted to

assess modular organizations in terms of their effectiveness in motor control

and learning (Kutch and Valero-Cuevas, 2012; Valero-Cuevas et al, 2009;

d’Avella and Pai, 2010; Berger et al, 2013; Berger and d’Avella, 2014; Ben-

goetxea et al, 2014; Inouye and Valero-Cuevas, 2016). In the same vein,

other authors have proposed approaches to address the plausibility of mod-

ularity in motor control (Giszter, 2015). In particular, monkey electrophysi-

ology (Graziano et al, 2002; Holdefer and Miller, 2002; Overduin et al, 2012,

2014, 2015), human neuroimaging (Asavasopon et al, 2014; Rana et al, 2015)

and computational studies (Laine et al, 2015) were employed to investigate

the neural origins of motor modularity. Also, modeling studies examined

whether optimal motor control can rely on modular decompositions (Nori

and Frezza, 2005; Chhabra and Jacobs, 2006; Berniker et al, 2009; Neptune

et al, 2009; Alessandro et al, 2013a). Finally, studies of human motor behav-

ior investigated the robustness of modules by imposing alterations on muscle

coordination of healthy individuals (de Rugy et al, 2012, 2013; Nazarpour

et al, 2012; Steele et al, 2015) and testing muscle activations in clinical pop-

ulations (Gizzi et al, 2011; Clark et al, 2010; Cheung et al, 2012; Roh et al,

2013).

Here, we proposed a computational approach that addresses three impor-
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tant issues for the critical evaluation of modularity, in agreement with the

guidelines developed by Gao and Ganguli (2015) in neuroscience. First, to

assess whether modularity may be employed as a strategy for “simplifying”

the degrees-of-freedom problem of motor control, modularity should be ex-

amined in high-dimensional spaces. We propose the design of an experiment

that comprises as many movements as possible and multiple repetitions of

the same movement executions and involve time-varying EMG recordings of

as many muscles as possible in that spirit (Steele et al, 2013, 2015). Our

experiment here comprises more motion directions than any other study so

far and also considers a complex daily-life motor behavior of whole-body

reaching while standing for which a large inter-individual variability may

exist Hilt et al (2016). Second, it is crucial to assess whether modularity

can fulfill its functional role, that is, reliable and unequivocal representation

of a wide variety of movements. To test this, we relied upon a direction

decoding metric that evaluates quantitatively the mapping between mod-

ule activations and movements (Delis et al, 2013b). It must be noted that

decoding is not an objective of classical modular decomposition methods

that aim only at minimizing reconstruction errors. Therefore, the large di-

rection decoding performance we discovered is quite a striking result. We

further used this decoding metric to compute the maximum of task-relevant

information contained in the recorded EMG signals. We argued that if our

modular decomposition carries most of this information, it is a plausible

strategy for performing these movements. With a view to ultimately vali-

dating or falsifying the modular hypothesis, we suggest that this approach

can be a useful tool for testing the effectiveness of modular decompositions
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in describing direction differences. Third and most importantly, we used

the above two predictions of the modularity hypothesis to directly compare

modular with non-modular structures. Such a test is crucial for reaffirming

the plausibility of modular decompositions and is only rarely implemented

Inouye and Valero-Cuevas (2016). Here, we found that the optimal modu-

lar decomposition had significantly higher direction discrimination and data

reconstruction power than its non-modular alternative, which provides an

insightful contrast. We also computed AIC to assess how well the modular

decomposition trades off dimensionality reduction for data reconstruction,

which is at the core of the modularity hypothesis. Our findings validated our

chosen number of modules and showed that the optimal modular decompo-

sition achieved a better trade-off than the best non-modular decomposition

regardless of the number of parameters. Future work in this direction is

nevertheless needed, in particular to understand if higher VAF could be

achieved with more advanced synergy models and if temporal modules that

carry more task information could be identified.

4.5 Future work

Future research directions should involve investigating alternative formula-

tions of the modular control hypothesis that allow refining motor programs

by adapting the modular decompositions for specific task demands, possibly

assuming intermittent control (Karniel, 2013). Considering how well the

extracted modules allow reconstructing individual muscle activities (Zelik

et al, 2014) seems also pertinent to understand if all critical features of mus-

cle activity are considered when generating genuine muscle patterns from a
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small number of invariant modules. Finally, considering variants of the mod-

ule extraction algorithm may improve the quality of data approximation and

direction discrimination. For example, a method that incorporates the task

discrimination objective within the module extraction process was shown to

identify decompositions with nearly perfect task discrimination power while

preserving the same levels of VAF (Delis et al, 2015). Developing methods

allowing to avoid time normalization and allowing to consider recruitment

of modules via feedback signals would also be very useful. In conclusion,

further computational and experimental work is required to investigate the

motor modularity hypothesis for the neural control of movement.
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Table and Figures

No of modules/temporal bins 1 2 3 4 5 8

Modular decomposition 18410±273 18102±287 18055±292 18048±298 18076±298 18240±285
Non-modular decomposition 20521±318 22659±397 25122±433 27552±531 30043±603 37732±835

Tab. 1: AIC comparison between the modular and non-modular decompositions.
We varied the number of spatial and temporal modules for the modular
decomposition and the number of temporal bins for the non-modular de-
composition.
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Fig. 1: A. Illustration of the experimental protocol. Placement of the 9 targets
and the position of the three bars supporting the targets are based on
the subject’s height (shown as percentages in figure). Subjects performed
point-to-point movements between all pairs of targets (a total of 72 motion
directions) and repeated each movement 30 times for each direction. B.
Top-view of the task. C. Typical raw electromyographic data, for subject
S2 and condition T1-T9 (illustrated by the kinematic of initial and final
postures and finger trajectories recorded for the associated typical trial).
The recorded activity of 30 muscles, normalized in amplitude (divided by
the maximum across the whole experiment for each muscle), are plotted
from time t0-0.1sec to time tend+0.1sec. Raw activations are shown in gray
and filtered signals, used as input to the module extraction algorithm, are
shown in black. Movement onset t0 and offset tend (chosen as the initial
and final time-point of a time period in which the fingertip velocity was
continuously above 5% of its maximum) are shown in the figure as dotted
vertical lines for each muscle.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 24, 2017. ; https://doi.org/10.1101/155085doi: bioRxiv preprint 

https://doi.org/10.1101/155085
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 Discussion 54

Fig. 2: Influence of the number of temporal (P = 1...10) and spatial modules (N =
1...10) on VAF (left) and decoding performance (right), for each subject (S1,
S2, S3, S4). In each graph, the upper surface corresponds to the decoding
performance and VAF of the space-by-time decomposition as a function of
the number of spatial and temporal modules. The lower surface represents
significance levels for VAF and decoding values, computing as the maximum
decoding and VAF values obtained from a permutation test where synergies
were extracted from a random shuffling of the EMG data matrix across
muscles. For all subjects, VAF and decoding values are significant.
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Fig. 3: Representation of the four temporal modules identified by the space-by-
time decomposition for all subjects.
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Fig. 4: Representation of the main four spatial modules for all subjects. Each
panel presents the four first spatial modules of each subject (S1 left-high,
S2 right-high, S3 left-low, S4 right-low). Spatial modules were sorted for
each subject relative to their similarity with the four modules of S1. Note
however that we found more than 4 spatial modules for some subjects,
but we only depict 4 of them here for convenience. The 30 muscles are
represented by vertical bars (white filled if placed on the right hemibody,
black on the left hemibody). For S1 only 27 muscles were recorded, the
three absent muscles have zero values in the S1 panel.
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Fig. 5: Average confusion matrix across subjects. Rows correspond to the decoded
motion direction and columns to the direction actually performed by the
subject. Each gray-scaled entry of the matrix C(i, j) represents the per-
centage of times the direction j was decoded as the direction i (black cor-
responds to 100% correct decoding and white is 0%).
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Fig. 6: Comparison of decoding power between the space-by-time decomposition
and other non-modular spatial or temporal EMG parameters of equal di-
mensionality for each subject. Four different sets of parameters were com-
pared in terms of their decoding power for three different dimensionalities
(9, 16 and 25 parameters corresponding to (P, N) = (3, 3),(4, 4),(5, 5) spa-
tial and temporal modules respectively). For each subject’s graph, the black
line represents the decoding power of the space-by-time decomposition. For
the three other sets of decoding parameters, we plot the 95% confidence in-
terval for the decoding performance results obtained across 20 repetitions.
The red area represents the decoding performance for one randomly se-
lected muscle and 9, 16 and 25 temporal bins (M = 1, B = N × P ). The
green area represents the decoding performance for 9, 16 and 25 randomly
chosen muscles and one temporal bin per muscle (M = N × P , B = 1).
The blue area represents the decoding performance for N randomly chosen
muscles and P bins per muscle (M = N , B = P ). M refers to the num-
ber of muscles, B to the number of temporal bins per muscle and P , N

represent the number of temporal and spatial modules respectively.
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Fig. 7: Comparison of decoding performance (A) and VAF (B) as a function of the
number of single-trial parameters between the modular and non-modular
decompositions. Gray lines represent the average decoding performance
and VAF across subjects of the modular decomposition using 3, 4, 5, 6,
7, 8, 9, and 10 temporal and spatial modules, which correspond to a total
of 9, 16, 25, 36, 49, 64, 81 and 100 single-trial parameters respectively
(top gray x-axis). Black lines represent the average decoding performance
and VAF across subjects of the non-modular decomposition. As single-trial
parameters of the non-modular decomposition, we used the rms values of
the EMG signals of all (30) muscles binned in 1, 2, 5, 10, 25, 50 temporal
windows, which corresponds to a total of 30, 60, 150, 300, 750, 1500 single-
trial parameters respectively (bottom x-axis).
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