
Evaluating Metagenome Assembly on a Simple1

Defined Community with Many Strain Variants2

Sherine Awad1, Luiz Irber1, C. Titus Brown1∗

1Department of Population Health and Reproduction

University of California, Davis

Davis, CA 95616 USA

∗ E-mail: ctbrown@ucdavis.edu

3

July 2, 20174

Abstract5

We evaluate the performance of three metagenome assemblers, IDBA,6

MetaSPAdes, and MEGAHIT, on short-read sequencing of a defined7

“mock” community containing 64 genomes (Shakya et al. (2013)). We8

update the reference metagenome for this mock community and detect9

several additional genomes in the read data set. We show that strain10

confusion results in significant loss in assembly of reference genomes11

that are otherwise completely present in the read data set. In agree-12

ment with previous studies, we find that MEGAHIT performs best13

computationally; we also show that MEGAHIT tends to recover larger14

portions of the strain variants than the other assemblers.15
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Introduction16

Metagenomics refers to sequencing of DNA from a mixture of organisms,17

often from an environmental or uncultured sample. Unlike whole genome18

sequencing, metagenomics targets a mixture of genomes, which introduces19

metagenome-specific challenges in analysis [1]. Most approaches to analyz-20

ing metagenomic data rely on mapping or comparing sequencing reads to21

reference sequence collections. However, reference databases contain only a22

small subset of microbial diversity [2], and much of the remaining diversity23

is evolutionarily distant and search techniques may not recover it [3].24

As sequencing capacity increases and sequence data is generated from25

many more environmental samples, metagenomics is increasingly using de26

novo assembly techniques to generate new reference genomes and metagenomes27

[4]. There are a number of metagenome assemblers that are widely used -28

see [5] for an overview of the available software, and [1] for a review of the29

different assembler methodologies. However, evaluating the results of these30

assemblers is challenging due to the general lack of good quality reference31

metagenomes.32

Moya et al. in [6] evaluated metagenome assembly using two simulated33

454 viral metagenome and six assemblers. The assemblies were evaluated34

based on several metrics including N50, percentages of reads assembled, ac-35

curacy when compared to the reference genome. In addition to, chimeras per36

contigs and the effect of assembly on taxonomic and functional annotations.37

Mavromatis et al. in [7] provided a benchmark study to evaluate the38

fidelity of metagenome processing methods. The study used simulated39

metagenomic data sets constructed at different complexity levels. The datasets40

were assembled using Phrap v3.57, Arachne v.2 [8] and JAZZ [9]. This study41

evaluates assembly, gene prediction, and binning methods. However, the42

study did not evaluate the assembly quality against a reference genome.43

Rangwala et al. in [10] presented an evaluation study of metagenome44

assembly. The study used a de Bruijn graph based assembler ABYSS [11] to45

assemble simulated metagenome reads of 36 bp. The data set is classified at46

different complexity levels. The study compared the quality of the assembly47

of the data sets in terms of contig length and assembly accuracy. The48

study also took into consideration the effect of kmer size and the degree of49

chimericity. However, the study evaluated the assembly based on only one50

assembler. Also, both previous studies used simulated data, which may lack51

confounders of assembly such as sequencing artifacts and GC bias.52

In a landmark study, Shakya et al. (2013) constructed a synthetic com-53
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munity of organisms by mixing DNA isolated from individual cultures of54

64 bacteria and archaea, including a variety of strains across a range of55

nucleotide distances [12]. In addition to performing 16s amplicon analy-56

sis and doing 454 sequencing, the authors shotgun-sequenced the mixture57

with Illumina. While the authors concluded that this metagenomic sequenc-58

ing generally outperformed amplicon sequencing, they did not conduct an59

assembly based analysis. This data set was also used in several other eval-60

uation studies, including gbtools for binning [13] and benchmarking of the61

MEGAHIT assembler [14].62

More recently, several benchmark studies systematically evaluated metagenome63

assembly of short reads. The Critical Assessment of Metagenome Interpre-64

tation (CAMI) collaboration benchmarked a number of metagenome assem-65

blers on several data sets of varying complexity, evaluating recovery of novel66

genomes and multiple strain variants [3]. Notably, CAMI concluded that67

“The resolution of strain-level diversity represents a substantial challenge68

to all evaluated programs.” Another recent study evaluated eight assem-69

blers on nine environmental metagenomes and three simulated data sets70

and provided a workflow for choosing a metagenome assembler based on71

the biological goal and computational resources available [15]. [5] explored72

metagenome assembler performance on a pair of real data sets, again con-73

cluding that the biological goal and computational resources defined the74

choice of assembler. Also see [16] for an analysis of a previously generated75

HMP benchmark data set; however, the Illumina reads used for this study76

are much shorter than current sequencing and are arguably not relevant for77

future studies.78

In this study, we extend previous work by delving into questions of79

chimeric misassembly and strain recovery in the Shakya et al. (2013) data80

set. First, we update the list of reference genomes for Shakya et al. to in-81

clude the latest GenBank assemblies along with plasmids. We then compare82

IDBA [17], MetaSPAdes [18], and MEGAHIT [19] performance on assem-83

bling this short-read data set, and explore concordance in recovery between84

the three assemblers. We describe the effects of “strain confusion” between85

multiple strains. We also detect and analyze several previously unreported86

strains and genomes in the Shakya et al. data set. We find that in the ab-87

sence of closely related genomes, all three metagenome assemblers recover88

95% or more of known reference genomes. However, in the presence of89

closely related genomes, these three metagenome assemblers vary widely in90

their performance and, in extreme cases, can fail to recover the majority of91

some genomes even when they are completely present in the reads. Our re-92
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port provides strong guidance on choice of assemblers and extends previous93

analyses of this low-complexity metagenome benchmarking data set.94

Datasets95

We used a diverse mock community data set constructed by pooling DNA96

from 64 species of bacteria and archaea and sequencing them with Illumina97

HiSeq. The raw data set consisted of 109,629,496 reads from Illumina HiSeq98

101 bp paired-end sequencing (2x101) with an untrimmed total length of99

11.07 Gbp and an estimated fragment size of 380 bp [12].100

The original reads are available through the NCBI Sequence Read Archive101

at Accession SRX200676. We updated the 64 reference genomes sets from102

NCBI GenBank using the latest available assemblies with plasmid content103

(June 2017); the accession numbers are available as accession-list-ref.txt104

in the Zenodo repository, DOI: 10.5281/zenodo.821919. For convenience, the105

updated reference genome collection is available for download at the archival106

URL https://osf.io/vbhy5/.107

Methods108

The analysis code and run scripts for this paper are written in Python and109

bash, and are available at https://github.com/dib-lab/2016-metagenome-110

assembly-eval/ (archived at Zenodo DOI: 10.5281/zenodo.821919). The111

scripts and overall pipeline were examined by the first and senior authors for112

correctness. In addition, the bespoke reference-based analysis scripts were113

tested by running them on a single-colony E. coli MG1655 data set with a114

high quality reference genome [20].115

Quality Filtering116

We removed adapters with Trimmomatic v0.30 in paired-end mode with117

the TruSeq adapters [21], using light quality score trimming (LEADING:2118

TRAILING:2 SLIDINGWINDOW:4:2 MINLEN:25) as recommended in MacManes,119

2014 [22].120

Reference Coverage Profile121

To evaluate how much of the reference metagenome was contained in the122

read data, we used bwa aln (v0.7.7.r441) to map reads to the reference123
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genome [23]. We then calculated how many reference bases were covered by124

mapped reads (custom script coverage-profile.py).125

Measuring k-mer inclusion and Jaccard similarity126

We used MinHashing as implemented in sourmash to estimate k-mer inclu-127

sion and Jaccard similarity between data sets [24]. MinHash signatures were128

prepared with sourmash compute using --scaled 10000. K-mer inclusion129

was computed by taking the ratio of the number of intersecting hashes with130

the query over the total number of hashes in the subject MinHash. Jac-131

card similarity was computed as in [25] by taking the ratio of the number132

of intersecting hashes between the query and subject over the number of133

hashes in the union. K-mer sizes for comparison were chosen at 21, 31, or134

51, depending on the level of taxonomic specificity desired - genus, species,135

or strain, respectively, as described in [26].136

Where specified, high-abundance k-mers were selected for counting by137

using the script trim-low-abund.py script with -C 5 from khmer v2 [27,138

28].139

Assemblers140

We assembled the quality-filtered reads using three different assemblers:141

IDBA-UD [17], MetaSPAdes [18], and MEGAHIT [19]. For IDBA-UD v1.1.1142

[17], we used --pre correction to perform pre-correction before assembly143

and -r for the pe files. IDBA could not ingest the single-ended files so they144

were omitted from the assembly.145

For MetaSPAdes v3.10.1 [18], we used --meta --pe1-12 --pe1-s where146

--meta is used for metagenomic data sets, --pe1-12 specifies the interlaced147

reads for the first paired-end library, and --pe1-s provides the orphan reads148

remaining from quality trimming.149

For MEGAHIT v1.1.1-2-g02102e1 [19], we used -l 101 -m 3e9 --cpu-only150

where -l is for maximum read length, -m is for max memory in bytes to151

be used in constructing the graph, and --cpu-only to use only the CPU152

and no GPUs. We also used --presets meta-large for large and complex153

metagenomes, and --12 and -r to specify the interleaved-paired-end and154

single-end files respectively. MEGAHIT allows the specification of a memory155

limit and we used -M 1e+10 for 10 GB.156

All three assemblies were executed on the same XSEDE Jetstream in-157

stance (S1.Xxlarge) at Indiana University, running Ubuntu 16.04 (install158
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6/21/17, Ubuntu 16.04 LTS Development + GUI support + Docker; based159

on Ubuntu cloud image for 16.04 LTS with basic dev tools, GUI/Xfce160

added). Assemblers were limited to 16 threads. We recorded RAM and CPU161

time for each assembly using /usr/bin/time -v. Install and execute details162

as well as output timings and logs are available in the pipeline/runstats163

directory of the Zenodo release.164

Unless otherwise mentioned, we eliminated all contigs less than 500 bp165

from each assembly prior to further analysis.166

Mapping167

We aligned all quality-filtered reads to the reference metagenome with bwa168

aln (v0.7.7.r441) [23]. We aligned paired-end and orphaned reads separately.169

We then used samtools (v0.1.19) [29] to convert SAM files to BAM files for170

both paired-end and orphaned reads. To count the unaligned reads, we171

included only those records with the “4” flag in the SAM files [29].172

Assembly analysis using NUCmer173

We used the NUCmer tool from MUMmer3.23 [30] to align assemblies to the174

reference genome with options -coords -p. Then we parsed the generated175

“.coords” file using a custom script analyze assembly.py, and calculated176

several analysis metrics across all three assemblies at a 99% alignment iden-177

tity.178

Reference-based analysis of the assemblies179

We conducted reference-based analysis of the assemblies under two condi-180

tions. “Loose” alignment conditions used all available alignments, including181

redundant and overlapping alignments. “Strict” alignment conditions took182

only the longest alignment for any given contig, eliminating all other align-183

ments.184

The script summarize-coords2.py was used to calculate aligned cov-185

erage from the loose alignment conditions: each base in the reference was186

marked as “covered” if it was included in at least one alignment. The script187

analyze ng50.py was used to calculate NGA 50 for each individual refer-188

ence genome.189
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Analysis of chimeric misassemblies190

We analyzed each assembly for chimeric misassemblies by counting the num-191

ber of contigs that contained matches to two distinct reference genomes. In192

order to remove secondary alignments from consideration, we included only193

the longest non-overlapping NUCmer alignments for each contig at a mini-194

mum alignment identity of 99%. We then used the script analyze chimeric2.py195

to find individual contigs that matched more than one distinct reference196

genome. As a negative control on our analysis, we verified that this ap-197

proach yielded no positive results when applied to the alignments of the198

reference metagenome against itself.199

Analysis of unmapped reads200

We conducted assembly and analysis of unmapped reads with MEGAHIT,201

NUCmer, and sourmash as above. The new GenBank genomes are listed in202

the Zenodo archive at the file accession-list-unmapped.txt and for con-203

venience are available for download at the archival URL https://osf.io/34ef8/.204

Results205

The raw data is high quality.206

The reads contains 11,072,579,096 bp (11.07 Gbp) in 109,629,496 reads with207

101.0 average length (2x101bp Illumina HiSeq).208

Trimming removed 686,735 reads (0.63%). After trimming, we retained209

108,422,358 paired reads containing 10.94 Gbp with an average length of210

100.9 bases. A total of 46.56 Mbp remained in 520,403 orphan reads with211

an average length of 89.5 bases. In total, the quality trimmed data contained212

10.98 Gbp in 108,942,761 reads. This quality trimmed (“QC”) data set was213

used as the basis for all further analyses.214

The reference metagenome is not completely present in the215

reads.216

We next evaluated the fraction of the reference genome covered by at least217

one read (see Methods for details). Quality filtered reads cover 203,058,414218

(98.76%) bases of the reference metagenome (205,603,715 bp total size). Fig-219

ure 1 shows the cumulative coverage profile of the reference metagenome,220
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Figure 1: Cumulative coverage profile for the reference metagenome, based
on read mapping.

Table 1: Jaccard containment of the reference in the reads
k-mer size % reference in reads

21 96.8%

31 95.9%

41 94.9%

51 94.1%

and the percentage of bases with that coverage. Most of the reference221

metagenome was covered at least minimally; only 3.33% of the reference222

metagenome had mapping coverage <5, and 1.24% of the bases in the ref-223

erence were not covered by any reads in the QC data set.224

In order to evaluate reconstructability with De Bruijn graph assemblers,225

we next examined k-mer containment of the reference in the reads for k of226

21, 31, 41, and 51 (Table 1). The k-mer overlap decreases from 96.8% to227

94.1% as the k-mer size increases. This could be caused by low coverage of228

some portions of the reference and/or variation between the reads and the229

reference.230

Some individual reference genomes are poorly represented in231

the reads.232

To see if specific reference genomes exhibited low coverage, we analyzed read233

mapping coverage for individual genomes. Of the 64 reference genomes used234

in the metagenome, 60 had a per-base mapping coverage above 95%. The235

remaining four varied significantly (Table 2), with F. nucleatum the lowest –236

only 47.6% of the bases in the reference genome are covered by one or more237
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Table 2: Top uncovered genomes
Genome Read coverage

Desulfovibrio vulgaris DP4 93.2%

Thermus thermophilus HB27 91.1%

Enterococcus faecalis V583 74.6%

Fusobacterium nucleatum 47.6%

Table 3: Genomes removed from reference for low 51-mer presence
51-mers in reads Genome

98.7 Leptothrix cholodnii

98.7 Haloferax volcanii DS2

98.6 Salinispora tropica CNB-440

97.4 Deinococcus radiodurans

97.2 Zymomonas mobilis

97.1 Ruegeria pomeroyi

96.8 Shewanella baltica OS223

95.5 B. bronchiseptica D989

94.5 Burkholderia xenovorans

72.0 Desulfovibrio vulgaris DP4

65.0 Thermus thermophilus HB27

53.4 Enterococcus faecalis

4.7 Fusobacterium nucleatum ATCC 25586

mapped reads.238

We next did a 51-mer containment analysis of each reference genome in239

the reads; k=51 was chosen so as to be specific to strain content [26]. 99%240

or more of the constituent 51-mers for 51 of the 64 reference genomes were241

present in the reads, suggesting that each of the 51 genomes was entirely242

present at some minimal coverage.243

We excluded the remaining 13 genomes (see Table 3) from any fur-244

ther reference-based analysis because interpreting recovery and misassembly245

statistics for these genomes would be confounding; also see the discussion of246

strain variants, below.247
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Table 4: Running Time and Memory Utilization
Assembler CPU time Wall time RAM (Max RSS)

MEGAHIT 1191m 1h 33m 10 GB

IDBA-UD 2117m 2h 41m 21 GB

MetaSPAdes 2554m 4h 7m 28 GB

MEGAHIT is the fastest and lowest-memory assembler eval-248

uated249

We ran three commonly used metagenome assemblers on the QC data set:250

IDBA-UD, MetaSPAdes, and MEGAHIT. We recorded the time and mem-251

ory usage of each (Table 4). In computational requirements, MEGAHIT252

outperformed both MetaSPAdes and IDBA-UD, , producing an assembly in253

1.5 hours (“wall time”) – 1.7 times faster than IDBA and 2.6 times faster254

than MetaSPAdes. MEGAHIT used only 10 GB of RAM as requested –255

half to almost a third of the memory used by IDBA and MetaSPAdes, re-256

spectively. CPU time measurements (which include processing on multiple257

CPU cores) show that all three assemblers use multiple cores effectively.258

The assemblies contain most of the raw data259

Table 5: Read and high-abundance (> 5) k-mer exclusion from assemblies
Assembly Unmapped Reads 51-mers omitted

IDBA 3,328,674 (3.05%) 2.4%

MetaSPAdes 3,844,123 (3.52%) 3.2%

MEGAHIT 2,737,640 (2.51%) 2.8%

We assessed read inclusion in assemblies by mapping the QC reads to260

the length-filtered assemblies and counting the remaining unmapped reads.261

Depending on the assembly, between 2.7 million and 3.9 million reads (2.5-262

3.5%) did not map to the assemblies (Table 5). All of the assemblies included263

the large majority of high-abundance 51-mers (more than 96.8% in all cases).264

Much of the reference is covered by the assemblies.265

We next evaluated the extent to which the assembled contigs recovered the266

“known/true” metagenome sequence by aligning each assembly to the ad-267

justed reference (Table 6). Each of the three assemblers generates contigs268
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Table 6: Contig coverage of reference with loose alignment conditions.
Assembly bases aligned duplication 51-mers

MEGAHIT 94.8% 1.0% 96.7%

MetaSPAdes 93.1% 1.1% 96.2%

IDBA 93.6% 0.98% 97.2%

that cover more than 93.1% of the reference metagenome at high identity269

(99%) with little duplication (approximately 1%). All three assemblies con-270

tain between 96.2% and 97.2% of the 51-mers in the reference.271

At 99% identity with the loose mapping approach, approximately 2.5% of272

the reference is missed by all three assemblers, while 1.7% is uniquely covered273

by MEGAHIT, 0.74% is uniquely covered by MetaSPAdes, and 0.64% is274

uniquely covered by IDBA.275

The generated contigs are broadly accurate.276

Table 7: Contig accuracy measured by reference coverage with strict align-
ment.

Assembly % covered

MEGAHIT 89.3%

IDBA 87.7%

MetaSPAdes 83.4%

When counting only the best (longest) alignment per contig at a 99%277

identity threshold, each of the three assemblies recovers more than 87.3% of278

the reference, with MEGAHIT recovering the most – 89.3% of the reference279

(Table 7).280
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Pelodictyon phaeoclathratiforme BU-1

Bacteroides vulgatus ATCC 8482
Methanocaldococcus jannaschii DSM 2661

Desulfovibrio piger ATCC 29098
Pyrobaculum aerophilum str. IM2

Clostridium thermocellum ATCC 27405
Pyrococcus furiosus DSM 3638

Sulfolobus tokodaii
Thermoanaerobacter pseudethanolicus

Chloroflexus aurantiacus
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Nitrosomonas europaea ATCC 19718
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Figure 2: NGA50 and genome fraction covered, by genome and assembler.
A ’*’ after the name indicates the presence of at least one other genome with
> 2% Jaccard similarity at k=31 in the community. Where NGA50 cannot
be calculated due to poor coverage, a marker is placed at 1kb.
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Individual genome statistics vary widely in the assemblies.281

We computed the NGA50 for each individual genome and assembly in order282

to compare assembler performance on genome recovery (see left panel of Fig-283

ure 2). The NGA50 statistics for individual genomes vary widely, but there284

are consistent assembler-specific trends: IDBA yields the lowest NGA50 for285

28 of the 51 genomes, while MetaSPAdes yields the highest NGA50 for 32286

of the 51 genomes.287

We also evaluated aligned coverage per genome for each of the three288

assemblies (right panel, Figure 2). We found that 13 of the 51 genomes were289

missing 5% or more of bases in at least one assembly, despite all 51 genomes290

having 99% or higher read- and 51-mer coverage.291

There are 12 genomes with k=31 Jaccard similarity greater than 2%292

to other genomes in the community, and these (denoted by ’*’ after the293

name) typically had lower NGA50 and aligned coverage numbers than other294

genomes. In particular, these constituted 12 of the 13 genomes missing 5%295

or more of their content, and the lowest eight NGA50 numbers.296

Longer contigs are less likely to be chimeric.297

Table 8: Chimeric contigs by contig length.
Assembly > 50kb > 5kb > 500 bp

IDBA 0 1 7 (0.06%)
MEGAHIT 1 4 14 (0.13%)
MetaSPAdes 0 3 30 (0.48%)

Chimerism is the formation of contigs that include sequence from multi-298

ple genomes. We evaluated the rate of chimerism in contigs at three different299

contig length cutoffs: 500bp, 5kb, and 50kb (Table 8). We found that the300

percentage of contigs that match to the genomes of two or more different301

species drop as the minimum contig size increases, to the point where only302

the MEGAHIT assembly had a single chimeric contig longer than 50kb.303

Overall, chimeric misassemblies were rare, with no assembler generating304

more than 30 chimeric contigs out of thousands of total contigs.305

The unmapped reads contain strain variants of reference genomes.306

Approximately 4.8 million reads (4.4%) from the QC data set did not map307

anywhere in the reference provided by the authors of [12]. We extracted308
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Table 9: GenBank genomes detected in assembly of unmapped reads
match GenBank genome

44.1% Fusobacterium sp. OBRC1

23.0% P. ruminis strain ML2

18.2% Thermus thermophilus HB8

7.7% P. ruminis strain CGMCC

8.2% Enterococcus faecalis M7

7.3% F. nucleatum 13 3C

3.7% F. nucleatum subsp. polymorphum

2.9% Fusobacterium hwasookii

1.0% E. coli isolate YS

1.7% F. nucleatum subsp. polymorphum, alt.

1.9% F. nucleatum subsp. vincentii

and assembled these reads in isolation using MEGAHIT, yielding 6.5 Mbp309

of assembly in 1711 contigs > 500bp in length. We then did a k-mer in-310

clusion analysis of this assembly against all of the GenBank genomes at311

k=31, and estimated the fraction of the k-mers that belonged to different312

species (Table 9). We find that 51.1% of the k-mer content of these contigs313

positively match to a genome present in GenBank but not in the reference314

metagenome.315

To verify these assignments, we aligned the MEGAHIT assembly of un-316

mapped reads to the GenBank genomes in Table 9 with NUCmer using317

“loose” alignment criteria. We found that 1.78 Mbp of the contigs aligned318

at 99% identity or better to these GenBank genomes. We also confirmed319

that, as expected, there are no matches in this assembly to the full updated320

reference metagenome.321

We note that all but the two P. ruminis matches and the E. coli isolate322

YS are strain variants of species that are part of the defined community323

but are not completely present in the reads (see Table 2). For Proteiniclas-324

ticum ruminis, there is no closely related species in the mock community325

design, and very little of the MEGAHIT assembly aligns to known P. ru-326

minis genomes at 99%. However, there are many alignments to P. ruminis327

at 94% or higher, for approximately 2.73 Mbp total. This suggests that the328

unmapped reads contain at least some data from a novel species of Proteini-329

clasticum; this matches the observation in [12] of a contaminating genome330

from an unknown Clostridium spp., as at the time there was no P. ruminis331

genome.332
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Discussion333

Assembly recovers basic content sensitively and accurately.334

All three assemblers performed well in assembling contigs from the con-335

tent that was fully present in reads and k-mers. After length filtering,336

all three assemblies contained more than 95% of the reference (Table 6);337

even with removal of secondary alignments, more than 87% was recovered338

by each assembler (Table 7). About half the constituent genomes had an339

NGA50 of 50kb or higher (Figure 2), which, while low for current Illumina340

single-genome sequencing, is sufficient to recover operon-level relationships341

for many genes.342

The presence of multiple closely related genomes confounds343

assembly.344

In agreement with CAMI, we also find that the presence of closely related345

genomes in the metagenome causes loss of assembly [3]. This is clearly shown346

by Figure 2, where 12 of the bottom 14 genomes by NGA50 (left panel)347

also exhibit poor genome recovery by assembly (right panel). Interestingly,348

different assemblers handle this quite differently, with e.g. MetaSPAdes349

failing to recover essentially any of Thermotoga petrophila, while MEGAHIT350

recovers 73%. The presence of nearby genomes is an almost perfect predictor351

that one or more assembler will fail to recover 5% or more - of the 13/51352

genomes for which less than 95% is recovered, 12 of them have close genomes353

in the community. Interestingly, very little similarity is needed - all genomes354

with Jaccard similarity of 2% or higher at k=31 exhibit these problems.355

The Shewanella baltica OS185 genome is a good example: there are two356

strain variants, OS185 and OS223, present in the defined community. Both357

are present at more than 99% in the reads, and more than 98% in 51-mers,358

but only 75% of S. baltica OS185 and 50% of S. baltica OS223 are recovered359

by assemblers. This is a clear case of “strain confusion” where the assemblers360

simply fail to output contigs for a substantial portion of the two genomes.361

Another interest of this study was to examine cross-species chimeric as-362

sembly, in which a single contig is formed from multiple genomes. In Table 8,363

we show that there is relatively little cross-species chimerism. Surprisingly,364

what little is present is length-dependent: longer contigs are less likely to365

be chimeric. This might well be due to the same “strain confusion” effect366

as above, where contigs that share paths in the assembly graphs are broken367

in twain.368
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MEGAHIT performs best by several metrics.369

MEGAHIT is clearly the most efficient computationally, outperforming both370

MetaSPAdes and IDBA in memory and time (Table 4). The MEGAHIT371

assembly also included more of the reads than either IDBA or MetaSPAdes,372

and omitted only 0.4% more of the unique 51-mers from the reads than373

IDBA. MEGAHIT covered more of the reference genome with both loose374

and strict alignments (Table 6 and Table 7), with little duplication. This is375

clearly because of MEGAHIT’s generally superior performance in recovering376

the genomes of closely related strains (Figure 2, right panel). The sum377

“fraction of genome recovered” is arguably the most important measure of378

a metagenome assembler (see [5] in particular) and here MEGAHIT excels379

for individual genomes even in the presence of strain variation.380

When comparing details of sequence recovery between the assemblers,381

the assembly content differs by only a small amount when loose alignments382

are allowed: all three assemblers miss more content (approximately 2.5% of383

the reference) than they generate uniquely (1.7% or less). In addition to384

preferring no one assembler over any other, this suggests that combining as-385

semblies may have little value in terms of recovering additional metagenome386

content.387

The missing reference may be present in strain variants of the388

intended species.389

Several individual genomes are missing in measurable portion from the QC390

reads (Table 2), and many QC reads (4.4% of 108m) did not map to the391

full reference metagenome. These appear to be related issues: upon anal-392

ysis of the unmapped reads against GenBank, we find that many of the393

contigs assembled from the unmapped reads can be assigned to strain vari-394

ants of the species in the mock community (Table 9). This suggests that395

the constructors of the mock community may have unintentionally included396

strain variants of Fusobacterium nucleatum, Thermus thermophilus HB27,397

and Enterococcus faecalis; note that the microbes used were sourced from398

the community rather than the ATCC (M. Podar, pers. communication). In399

addition, we detect what may be portions of a novel member of the Proteini-400

clasticum genus in the assembly of these reads - this is likely the Clostridium401

spp. detected through amplicon sequencing in [12].402

Without returning to the original DNA samples, it is impossible to con-403

clusively confirm that unintended strains were used in the construction of the404

mock community. In particular, our analysis is dependent on the genomes in405
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GenBank: the genomes we detect in the contigs are clearly closely related to406

GenBank genomes not in the reference metagenome, based on k-mer anal-407

ysis and contig alignment. However, GenBank is unlikely to contain the408

exact genomes of the actually included strain variants, rendering conclusive409

identification impossible.410

Conclusions411

Overall, assembly of this mock community works well, with good recovery412

of known genomic sequence for the majority of genomes. All three assem-413

blers that we evaluated recover similar amounts of most genomic sequence,414

but (recapitulating several other studies [3, 5, 15]) MEGAHIT is compu-415

tationally the most efficient of the three. We note that assembly resolves416

substantial portions of several previously undetected strain variants, as well417

as recovering a substantial portion of a novel Proteiniclasticum spp. that418

was detected via amplicon analysis in [12], suggesting that assembly is a419

useful complement to amplicon or reference-based analyses.420

The presence of closely related strains is a major confounder of metagenome421

assembly, and causes assemblers to drop considerable portions of genomes422

that (based on read mapping and k-mer inclusion) are clearly present. In this423

relatively simple community, this strain confusion is present but does not424

dominate the assembly. However, real microbial communities are likely to425

have many closely related strains and any resulting loss of assembly would426

be hard to detect in the absence of good reference genomes. While high427

polymorphism rates in e.g. animal genomes are known to cause duplication428

or loss of assembly, some solutions have emerged that make use of assump-429

tions of uniform coverage and diploidy [31]. These solutions cannot however430

be transferred directly to metagenomes, which have unknown abundance431

distributions and strain content.432

An additional concern is that metagenome assemblies are often per-433

formed after pooling data sets to increase coverage (e.g. [4, 32]); this pooled434

data is more likely to contain multiple strains, which would then in turn435

adversely affect assembly of strains. This may not be resolvable within the436

current paradigm of assembly, which focuses on outputting linear assem-437

blies that cannot properly represent strain variation. The human genomics438

community is moving towards using reference graphs, which can represent439

multiple incompatible variants in a single data structure [33]; this approach,440

however, requires high-quality isolate reference genomes, which are generally441

unavailable for environmental microbes.442
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Long read sequencing (and related technologies) will undoubtedly help443

resolve strain variation in the future, but even with highly accurate long-444

read sequencing, current sequencing depth is still too low to resolve deep445

environmental metagenomes [34, 35]. It is unclear how well long error-446

prone reads (such as those output by Pacific Biosciences SMRT [36] and447

Oxford Nanopore instruments [37]) will perform on complex metagenomes:448

with high error rates, deep coverage of each individual genome is required449

to achieve accurate assembly, and this may not be easily obtainable for450

complex communities. Single-molecule barcoding (e.g. 10X Genomics [38])451

and HiC approaches [39] show promise but these remain untested on well-452

defined complex communities and are still challenged by the complexity of453

complex environmental metagenomes; see [40, 41, 42].454

Much of our analysis above depends on having a high-quality “mock”455

metagenome. While computationally constructed synthetic communities456

and computational “spike-ins” to real data sets can provide valuable controls457

(e.g. see [15] and [43]) we strongly believe that standardized communities458

constructed in vitro and sequenced with the latest technologies are critical to459

the evaluation of both canonical and emerging tools, e.g. efforts such as [44].460

From the perspective of tool evaluation, we must disagree somewhat with461

Vollmers et al. [5]: good metagenome tool evaluation necessarily depends on462

mock communities that are as realistic as we can make them. Likewise, from463

the perspective of bench biologists, actually sequencing real DNA is critical464

because it can evaluate confounding effects such as kit contamination [45].465

Large-scale studies of computational approaches systematically applied to466

mock communities such as CAMI [3] can then provide fair comparisons of467

entire toolchains (wet + dry) applied to these mock communities.468

We omitted two important questions in this study: binning and choice469

of parameters. We chose not to evaluate genome binning because most470

binning strategies either operate post-assembly (see e.g. [46]), in which471

case the challenges with assembly discussed above will apply; or require472

multiple samples (e.g. [47]), which we do not have. We also chose to use473

only default parameters with all three assemblers, for two reasons. First,474

we are not aware of any widely used automated approaches for determining475

the “best” set of parameters or evaluating the output, other than those476

integrated into the assemblers themselves (e.g. choice of k-mer sizes), and477

absent such guidance we do not feel comfortable blessing any particular set of478

parameters; here the choice of default parameters is parsimonious. Second,479

any parameter exploration pipeline would not only need to be automated480

but would need to run multiple assemblies, whose time and resource usage481
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should be measured; in this case, any comparison based on runtime of the482

parameter choice pipeline should naturally favor MEGAHIT because of its483

advantage in computational efficiency.484
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