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Abstract 
Over a million DNA regulatory elements have been cataloged in the human genome, but linking 
these elements to the genes that they regulate remains challenging. We introduce Cicero, a 
statistical method that connects regulatory elements to target genes using single cell chromatin 
accessibility data. We apply Cicero to investigate how thousands of dynamically accessible 
elements orchestrate gene regulation in differentiating myoblasts. Groups of co-accessible 
regulatory elements linked by Cicero meet criteria of “chromatin hubs”, in that they are 
physically proximal, interact with a common set of transcription factors, and undergo 
coordinated changes in histone marks that are predictive of gene expression. Pseudotemporal 
analysis revealed a subset of elements bound by MYOD in myoblasts that exhibit early opening, 
potentially serving as the initial sites of recruitment of chromatin remodeling and histone-
modifying enzymes. The methodological framework described here constitutes a powerful new 
approach for elucidating the architecture, grammar and mechanisms of cis-regulation on a 
genome-wide basis.  

Introduction 
Chromatin accessibility is a powerful marker of active regulatory DNA. In eukaryotes, chromatin 
accessibility at both gene promoters and distal regulatory elements, many of which are 
enhancers, delineates where DNA binding factors are bound in place of 
nucleosomes(Felsenfeld et al., 1996). Genome-wide analyses of chromatin accessibility as 
measured by DNaseI hypersensitivity have found that the repertoire of accessible regulatory 
elements in cell lines or tissues constitutes a highly specific molecular signature (Thurman et al., 
2012). Furthermore, genome-wide association studies (GWAS) consistently show that a 
substantial proportion of genetic risk for common disease falls within regions exhibiting 
chromatin accessibility in disease-relevant tissues or cell types (Gusev et al., 2014; Maurano et 
al., 2012). 
 
Despite the clear importance of chromatin accessibility, we lack a quantitative understanding of 
how changes in chromatin accessibility relate to changes in the expression of nearby genes. A 
first challenge is to generate a map that links distal regulatory elements with their target genes, 
as enhancers can operate at long distances and influence multiple genes. A second challenge 
is to understand the determinants of that map. What factors govern which gene(s) an enhancer 
will regulate, what is the degree of activation that an enhancer will confer, and what are the 
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interactions and dependencies of an enhancer with respect to other regulatory elements acting 
on the same gene(s)?  
 
Here, we describe Cicero, an algorithm that links distal regulatory elements to their target genes 
based on patterns of co-accessibility in single cell chromatin accessibility data. In contrast with 
previous approaches that rely on a large compendium of bulk chromatin accessibility data 
generated across many cell lines or tissues (Thurman et al., 2012) (see Budden et al., 2015) for 
a review of recent approaches), Cicero uses single cell chromatin accessibility data from only a 
single experiment. Cicero identifies functional regulatory elements and links them with target 
genes using unsupervised machine learning. The algorithm can therefore be applied to any cell 
type and organism for which a sequenced genome and single cell chromatin accessibility data 
are available. Because it accepts single cell data as input, Cicero can in principle work on 
complex mixtures of different cell types as are found in tissues.  
 
We demonstrate Cicero’s capabilities through an analysis of skeletal myoblast differentiation, 
which remains one of the best characterized model systems for gene regulation in vertebrate 
development. Myoblast differentiation is orchestrated by a core set of transcription factors, 
including MYOD and the MEF2 proteins (Molkentin et al., 1995), which regulate the expression 
of thousands of genes as cells exit the cell cycle, align, and fuse to form myotubes. We 
identified over 300,000 accessible DNA elements in myoblasts, nearly 12,000 of which open or 
close during differentiation. When applied to single cell combinatorial indexing ATAC-seq (sci-
ATAC-seq) data generated from thousands of differentiating myoblasts, Cicero linked the vast 
majority of dynamic sites to one or more target genes. From the resulting cis-regulatory map, we 
can predict changes in gene expression based on the chromatin accessibility dynamics of the 
linked distal elements. 
 
Co-accessible sites linked by Cicero bear the hallmarks of “chromatin hubs”, i.e. a spatial 
configuration wherein distal DNA regulatory elements are looped into the vicinity of their target 
genes. Through comparison with chromosome conformation capture data, we demonstrate that 
accessible elements linked by Cicero are in physical proximity. We also observe coordinated 
deposition and removal of histone marks at linked sites, suggesting that histone-modifying 
enzymes recruited to one site modify histones at other sites in the chromatin hub. For example, 
histone acetylation near enhancers frequently co-occurred with acetylation at target promoters 
and downstream of transcription start sites (TSSs). Sequence motifs within dynamically 
accessible distal sites predicted changes in histone modifications and expression at linked 
genes. Our observations are consistent with a model in which recruitment of epigenetic 
modifiers to one more or sites in a chromatin hub propagates changes to all of them, facilitating 
coordinated regulation of target genes. 
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Figure 1. Differentiating myoblasts follow similar single cell chromatin accessibility and gene expression trajectories. 
A) Single cell chromatin accessibility profiles for human skeletal muscle myoblasts (HSMM) were constructed with 
sci-ATAC-seq. Contaminating interstitial fibroblasts (common in HSMM cultures) were removed informatically prior to 
further analysis. B) The single cell trajectory inferred from 2,007 myoblast sci-ATAC-seq profiles by Monocle (see 
Methods). In subsequent panels and throughout the paper, we exclude cells on the branch to outcome F2 unless 
otherwise indicated, leaving 1,797 cells on the root and  F1 branches. Inset shows the sc-RNA-seq trajectory reported 
for HSMMs (reproduced from Figure 2 of Qiu et al. (2017)). C) Distribution of cells in chromatin accessibility 
pseudotime from the root to trajectory outcome F1. D) Percent of differentiating cells whose promoters for selected 
genes are accessible across pseudotime. Black line indicates the pseudotime-dependent average from a smoothed 
binomial regression.  E) Percent of cells whose promoters for selected genes in D are accessible in fibroblasts 
collected in growth medium (GM) or differentiation medium (DM), as well as myoblasts localized to the branch to F2. 
F) Change in promoter accessibility versus change in gene expression. Log2 fold changes were calculated by 
dividing the pseudotime-dependent average from a smoothed negative binomial regression at the 90th percentile of 
pseudotime by the average at the 10th percentile of pseudotime. A pseudocount of 0.1 was added to each prior to 
computing the fold changes. 

Results 

The trajectories of chromatin accessibility and gene expression during myoblast 
differentiation are highly similar  
 
We performed a differentiation time course on human skeletal muscle myoblasts (HSMM), 
harvesting cells at 0, 24, 48 and 72 hours after the switch from growth media to differentiation 
media (Figure 1A). Using an improved version of our sci-ATAC-seq protocol (Cusanovich et al., 
2015), we profiled chromatin accessibility in a total of 5,060 cells, of which 3,053 were triaged 
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as potentially corresponding to interstitial fibroblasts (see Methods; a similar proportion were 
triaged in single cell RNA-seq datasets generated in the same system (Qiu et al., 2017)). Upon 
pooling reads from the remaining 2,007 differentiating myoblasts and calling peaks using MACS 
2 (Feng et al., 2012), we identified 326,829 accessible sites, covering 5.7% of the genome. Of 
these, 34% overlapped DNaseI hypersensitive sites (DHSs) identified in myoblasts or myotubes 
and 81% overlapped combined DNaseI hypersensitive sites from 125 cell lines by ENCODE 
(The ENCODE Project Consortium, 2012) (Supplemental Figure 1A). The overwhelming 
majority of sites detected by sci-ATAC-seq that were not identified by DNaseI mapping were 
detected in fewer than 100 cells (Supplemental Figure 1B). Each cell had reads overlapping 
with, on average, 2,842 promoter-proximal accessible sites and 7,534 distal accessible sites 
(Supplemental Figure 1C). 
 
We next sought to characterize changes in chromatin accessibility as myoblasts differentiated, 
and to relate these accessibility changes to changes in gene expression. However, analyzing 
cell differentiation at single cell resolution is challenging in part because cells execute programs 
of gene regulation asynchronously. To overcome this problem, we recently developed a 
technique called “pseudotemporal reordering” (or “pseudotime”) that organizes individual cells 
using machine learning according to their progress through a biological process such as cell 
differentiation (Trapnell et al., 2014). Although our algorithm, Monocle, was designed to order 
single cells based on their transcriptomes (Qiu et al., 2017), we were able to adapt it to sci-
ATAC-seq data with straightforward modifications (see Methods).  

 
Supplemental Figure 1. A) Overlap between ENCODE DnaseI hypersensitive sites (DHSs) and MACS-called sci-
ATAC-seq peaks visualized as an UpSetR plot (Lex and Gehlenborg, 2014). Horizontal bars indicate the number of 
peaks in each data set. Vertical bars indicate the number of peaks in each compartment of the three-way Venn 
diagram. Black dots indicate which datasets are involved (i.e. intersected) in each vertical bar. B) Histogram of the 
number of cells with a read in each sci-ATAC-seq site, faceted by whether the site overlapped ENCODE DHS peaks 
in myoblasts or myotubes. C) Boxplot of the number of MACS-called sci-ATAC-seq peaks per cell. Promoter-proximal 
peaks are peaks intersecting the first 500 base pairs upstream of a transcription start site (see Methods). Distal peaks 
are all other peaks. 
 
Monocle placed the cells along a trajectory with two outcomes (denoted F1 and F2) that was 
strikingly similar to the trajectory constructed from single cell transcriptome data (Figure 1B). 
Cells harvested from growth media fell almost exclusively near the beginning of the trajectory, 
while cells from later time points were distributed over its length (Figure 1C). Over the path to 
F1, promoters for well-known myogenic regulators and structural components of muscle opened 
(i.e. became more accessible), whereas the promoter of ID1, a well-characterized repressor of 
myoblast differentiation (Benezra et al., 1990), closed (Figure 1D). Similar to the single cell 
RNA-seq trajectory (Qiu et al., 2017), a substantial number of cells were positioned on a short 
branch leading to the alternative outcome F2. Although these potentially correspond to interstitial 
fibroblasts that we failed to filter, their levels of accessibility in the MYOD1 promoter are similar 
to differentiating myoblasts. Nevertheless, the promoters of MYOG, MYH3, and other markers 
of fully differentiated myocytes did not significantly open in this branch (Figure 1E), consistent 
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with these representing “reserve myoblasts” that did not fully differentiate (Friday and Pavlath, 
2001; Yoshida et al., 1998).  
 
The similar trajectories constructed by Monocle from single cell RNA-seq and sci-ATAC-seq 
data, and the close correspondence between the kinetics in expression and chromatin 
accessibility for key muscle genes, support the conclusion that Monocle’s pseudotime ordering 
is accurate. Globally, however, changes in promoter accessibility correlated poorly with changes 
in expression (Figure 1F). For example, accessibility for the promoter of CCNB2, which is 
transcriptionally downregulated in differentiating HSMMs, remained mostly constant over 
pseudotime (Figure 1D).  

Distal DNA elements are dynamically accessible during myoblast differentiation 
 
Differential analysis revealed significant pseudotime-dependent changes in accessibility at 
11,948 of 326,829 (3.7%) sites during myoblast differentiation (Figure 2A). Of these “dynamic” 
sites, only 736 (6.2%) were promoters (Figure 2B), of which 67 overlapped with 1,464 
differentially expressed transcripts (FDR < 5%). Of the 51 of these promoters with stable 
accessibility and gene expression change (i.e. not transient change), 48 (94%) were 
directionally concordant (increase in accessibility and expression or decrease in both). 72% of 
the remaining 11,212 distal dynamically accessible sites were annotated as enhancers in 
myoblasts or myotubes by Segway (Libbrecht et al., 2016), as compared with only 32% of all 
accessible sites (Figure 2B).  
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Figure 2. Thousands of DNA elements are dynamically accessible during myoblast differentiation. A) Smoothed 
pseudotime-dependent accessibility curves, generated by a negative binomial regression and scaled as a percent of 
the maximum accessibility of each site. Each row indicates a different DNA element. Sites are sorted by the 
pseudotime at which they first reach half their maximum accessibility. B) Proportions of dynamic and static sites by 
site type. Color indicates whether a site is promoter-proximal (defined as a peak overlapping the first 500 bp 
upstream of a TSS, see Methods), a distal enhancer (defined as peaks that are not promoter-proximal, and are 
annotated by Segway as enhancers in either myoblasts or myotubes), or other distal (defined as distal sites not 
annotated as enhancers by Segway). C) Percent of sites reported as bound by MyoD in either myoblasts or 
myotubes by Cao et al. (2010) D) Motif enrichments in accessible sites. P-values result from logistic regression 
models that use the presence or absence of a given motif in each site to predict whether the site has a given 
accessibility trend (opening/closing/static). Each motif is tested against each of the three accessibility trends 
separately. Plots show up to the top 6 Bonferroni-significant motifs by p-value. E) Counts of sites undergoing 
significant changes in H3K27 acetylation as measured by ChIP-Seq (Tang et al., 2015). 
 
Using gene set enrichment analysis, we found that genes associated with contraction and other 
muscle-related functions were strongly enriched among genes with significantly opening 
promoter regions. In contrast, promoters for genes associated with the cell cycle, which are 
downregulated early in differentiation, were only marginally enriched among the differentially 
accessible sites (Supplemental Figure 2A). Like CCNB2, most markers of actively proliferating 
cells did not show significant changes in promoter accessibility. A potential explanation is that 
cyclins are downregulated by direct binding of Rb to E2F family proteins at their transactivation 
domains (Weinberg, 1995), reducing their expression without requiring nucleosome deposition 
at their promoters.   

 
Supplemental Figure 2. A) Gene set enrichment analysis of significantly opening and closing accessible sites. 
Adjusted p-values were computed using a hypergeometric test. Terms shown are all sites with an adjusted p-value < 
1e-4 in either the opening set or the closing set. Color represent the -log10 adjusted p-value. Sites are ordered by the 
-log10 adjusted p-value of the opening set. B) Smoothed pseudotime-dependent accessibility curves, generated by a 
negative binomial regression of each for a set of selected cell cycle relevant genes. Each row indicates a different 
DNA element. Annotation column represents the -log10 adjusted p-value for the test of differential accessibility across 
pseudotime. For visualization, fitted curve range was capped at 100. C) Percent of dynamic and static sites with 
changing Segway state assignment from myoblast to myotube.  
 
A broader analysis of transcription factor binding at dynamically accessible sites showed that 
most changes are concomitant with the redistribution of known myogenic regulators. 
Comparison to ChIP-seq data collected by Tapscott and colleagues(Cao et al., 2010) revealed 
that 65% of opening sites and 36% of closing sites are bound by MYOD in myotubes and 
myoblasts respectively (Figure 2C). In contrast, only 15% of static sites (those without 
significant changes in accessibility) were MYOD-bound in either myoblasts or myotubes. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2017. ; https://doi.org/10.1101/155473doi: bioRxiv preprint 

https://doi.org/10.1101/155473
http://creativecommons.org/licenses/by-nd/4.0/


 

7 

Dynamic distal elements and promoters were also strongly enriched for binding motifs for 
MYOD, MYOG, and MEF2 family members and other transcription factors with central 
regulatory roles in myogenesis (Figure 2D).  
 
Many transcription factors, in addition to their role in nucleating the assembly of the pre-initiation 
complex, also function to recruit enzymes that mark histones near regulatory DNA elements 
with modifications associated with active expression. For example, MYOD recruits 
p300(Sartorelli et al., 1997), whose histone acetyltransferase activity is required for its role in 
activating gene expression (Dilworth et al., 2004; Puri et al., 1997; Sartorelli et al., 1997). A 
comparison with ENCODE data in myoblasts and myotubes showed overwhelming directional 
concordance between sites that were gaining or losing H3K27 acetylation (H3K27ac) vs. sites 
that were opening or closing in chromatin accessibility, respectively (Figure 2E). However, the 
vast majority of changes in histone marks during differentiation cannot be explained by changes 
in chromatin accessibility. For instance, the integrative chromatin state catalog constructed by 
Libbrecht et al. (2016) shows histone modification state switching among 63% of statically 
accessible sites (Supplemental Figure 2C). Thus, myoblast differentiation is characterized by 
the modulation of histone marks at hundreds-of-thousands of sites, only a minority of which can 
be explained by changes in chromatin accessibility.  

Cicero constructs genome-wide cis-regulatory models from sci-ATAC-seq data 
We sought to exploit patterns of co-accessibility between distal regulatory elements and 
promoters to build a genome-wide cis-regulatory map from sci-ATAC-seq data. However, 
constructing a co-accessibility map is challenging for several reasons. First, the raw correlations 
in accessibility between sites are driven in part by technical factors such as read depth per cell. 
Second, we do not have sufficient observations to accurately estimate correlations between 
billions of pairs of sites. Finally, while the accessibility of regulatory elements might be 
correlated with their target promoters, pairs of very distant sites, including those on other 
chromosomes, will also be correlated, by virtue of being part of the same gene regulatory 
program. For example, one might expect most MYOD-bound sites to be correlated to some 
degree during myogenesis. 
 
To address these challenges, we developed a new algorithm, Cicero, that subtracts technical 
and genomic distance effects while constructing a global cis-regulatory map from single cell 
chromatin accessibility profiles (Figure 3A). First, the algorithm groups cells by their state using 
unsupervised clustering or by position along a pseudotemporal trajectory. Second, it aggregates 
accessibility profiles for cells in these groups to produce counts that can be readily adjusted to 
subtract the effects of experimental batch, overall number of observed sites, and other technical 
variables. Third, it computes the correlations in adjusted accessibilities between all pairs of sites 
within 500 kilobases (kb) of one another. To calculate robust correlations, we use a statistical 
machine learning technique called the Graphical LASSO (Friedman et al., 2008), which 
estimates regularized correlation matrices. Cicero penalizes correlations between sites that are 
far apart in the genome more than those that are close together, preserving local patterns of co-
accessibility at the expense of very long range ones. The output of Cicero is a set of all pairs of 
sites in the genome within 500 kb of each other, along with their co-accessibility scores. 
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Figure 3. Cicero constructs cis-regulatory models genome-wide from sci-ATAC-seq data. A) An overview of the 
Cicero algorithm (see Methods for details) B) Fraction of pairs of sites with positive co-accessibility scores at varying 
distances in the linear genome. C) The mean number of distal sites per promoter and promoters per distal site at 
increasing co-accessibility score cutoffs. D) A summary of the Cicero co-accessibility network containing the ID1 
locus. Connections to elements outside the window shown are excluded for clarity. The height of connections 
indicates the magnitude of the Cicero co-accessibility score between the connected peaks. The conservation track 
shows the 100 vertebrate PhyloP conservation scores (phyloP100wayAll). The DNase-seq track shows the ENCODE 
signal track for HSMM. E) Number of CCANs with 3 or more co-accessible DNA elements identified with Louvain 
community detection. Prior to running Louvain, connections below the indicated Cicero co-accessibility score were 
excluded (see Methods for details). CCANs that include the promoter of at least 1 detectably expressed gene are 
shown as a separate series. F) Boxplots of the number of expressed gene promoters per CCAN at increasing co-
accessibility score cutoffs. G) Percent of sites recruited into a CCAN at increasing co-accessibility score cutoff. Colors 
represent subsets of sites: green represent promoters for genes that are detectably expressed; orange and red 
represent sites that are accessible and differentially accessible across pseudotime, respectively.  
 
We applied Cicero to generate a genome-wide cis-regulatory map from our sci-ATAC-seq data 
from 1,797 differentiating myoblasts. Cicero identified 6,424,549 pairs of sites with positive co-
accessibility scores, including 1,680,416 pairs between a promoter and a distal element. 
(Figure 3B). The magnitude of a Cicero co-accessibility score indicates the strength of co-
accessibility across cells. As the co-accessibility threshold is raised, promoters are connected to 
fewer, high-confidence regulatory elements. For example, at a co-accessibility score cutoff of 
0.25, promoters were, on average, connected to 3 distal elements, and each distal element was 
linked to 1.7 promoters (Figure 3C). Cicero connected the promoter of ID1, a negative regulator 
of the myogenic program that is transcriptionally silenced during differentiation, to 4 conserved, 
distal regulatory elements within 10 kb (Figure 3D). 
 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2017. ; https://doi.org/10.1101/155473doi: bioRxiv preprint 

https://doi.org/10.1101/155473
http://creativecommons.org/licenses/by-nd/4.0/


 

9 

We noticed that co-accessible DNA elements tended to cluster together in the genome, so we 
post-processed Cicero’s co-accessibility output with a community detection algorithm to identify 
“cis-co-accessibility networks” (CCANs): modules of sites that are highly correlated with one 
another. Cicero allows a user to set a threshold co-accessibility that controls the size and 
granularity of CCANs (Figure 3E-G). At lower co-accessibility thresholds, sites were linked into 
only a few very large CCANs, while at high co-accessibility thresholds, most sites were isolated 
and most genes were disconnected from putative regulatory elements (Figure 3E). At a co-
accessibility score threshold of 0.25, we identified 4,481 CCANs which incorporated 87,574 
sites. Ultimately, we chose this threshold to maximize both the number of CCANs identified and 
the number of sites included in the CCANs. On average, each CCAN involved 575 kb of the 
linear genome, contained 19 sites, and included the promoters of 2.2 expressed genes (Figure 
3F). Overall, 57 percent of expressed genes, 27% of all peaks, and 87% of differentially 
accessible peaks are included in Cicero’s CCANs (Figure 3G). CCANs included the promoters 
for 824 of the 1,464 genes differentially expressed during myoblast differentiation.  
 
We hypothesized that CCANs linked by Cicero constitute “chromatin hubs”. Chromatin hubs, 
which are thought to involve looping interactions between distal regulatory elements and the 
genes they target, may act to coordinate the assembly of transcription complexes (de Laat and 
Grosveld, 2003; Tolhuis et al., 2002). To satisfy the definition of a chromatin hub, we expect that 
groups of genomic sites linked by Cicero should meet four criteria. First, they should exhibit 
greater physical proximity than expected based on their distance in the linear genome. Second, 
they should interact with a common set of protein complexes. Third, they should be 
epigenetically modified in concordant ways and at similar times. Finally, they should 
substantively contribute to regulating genes with promoters within the hub. 

Co-accessible DNA elements exhibit physical proximity 
 
We asked whether co-accessible sites are closer together in the nucleus than unlinked sites at 
similar distances in the linear genome. Previous analyses of ENCODE cell lines reported that 
distal DHSs and promoters that display a correlation in their sensitivity to DNase I were closer in 
the nucleus according to chromosome conformation capture data than uncorrelated pairs of 
sites (Malin et al., 2013; Thurman et al., 2012). To test this in Cicero-based links, we used our 
updated sci-ATAC-seq protocol to generate chromatin profiles from 662 human lymphoblastoid 
cells (GM12878), for which high-resolution Hi-C data was recently generated (Rao et al., 2014). 
Pairs of sites linked by Cicero were in contact more frequently than unlinked sites at similar 
genomic distances (Figure 4A).  
 
We also observed strong concordance between Cicero-based linkages and DNA elements  in 
RNA pol II-mediated contacts captured via ChIA-PET (Tang et al., 2015). About half of DNA 
elements ligated via ChIA-PET (“anchors”) overlapped with accessible sites in our data, with 
greater overlap between anchors that were supported by multiple ChIA-PET reads and sites 
that were accessible in many cells (Supplemental Figure 3). For example, Cicero constructed 
a regulatory map surrounding the LYN locus that was strikingly similar to the pol II-mediated 
contact map produced by ChIA-PET (Figure 4B). Altogether, 26% (n = 37,823) of pairs of 
anchors that were linked by Cicero were also found to be in contact via ChIA-PET, with greater 
concordance for linkages with higher Cicero co-accessibility (Figure 4C). Although agreement 
between pol II ChIA-PET and Cicero linkages was substantially higher for closely located sites, 
the assays exhibited concordance even for sites separated by 100 kb or more. Furthermore, 
46% (n = 16,066) of pairs of accessible sites found to be in contact via ChIA-PET were also 
linked by Cicero, with greater concordance for higher confidence ChIA-PET connections 
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(Figure 4D-E). Taken together, these analyses support the view that sites that are co-
accessible within single cells are in physical proximity in the nucleus, even when separated by 
tens to hundreds of kilobases in the linear genome.   

 
Figure 4. Co-accessible DNA elements linked by Cicero are physically proximal in the nucleus. A) Observed contact 
frequencies for pairs of sites linked by Cicero at varying distances in the linear genome, normalized to expected 
contact frequencies. Sites not connected by Cicero are shown for comparison. “Whole genome” indicates the 
observed:expected ratio for all pairs of genomic bins. B) Cicero connections for the LYN locus compared to RNA pol-
II ChIA-PET data. C) CCAN connections detected in ChIA-PET contacts as a function of distance. Color indicates the 
magnitude of the Cicero co-accessibility score. D) ChIA-PET contacts found in Cicero connections as a function of 
distance. Colors in D and E indicate the magnitude of the Cicero co-accessibility scores included. E) ChIA-PET 
contacts detected in Cicero CCAN connections as a function of ChIA-PET score. 

Co-accessible DNA elements carry pairs of motifs for interacting transcription 
factors 
 
Concordance between pairs of sites ligated during RNA pol II ChIA-PET and sites linked by 
Cicero prompted us to investigate whether they might also be associated with other DNA 
binding protein complexes. We performed a search for known sequence motifs within each site 
that could accurately predict which other sites, if any, Cicero would link to it. Promoters with 
DNA binding motifs for core myogenic transcription factors were significantly more likely to be 
connected to an opening distal site than promoters without them (co-accessibility score > 0.25). 
For example, promoters containing at least one MYOD, MYOG or MYF6 motif were 4.0-fold 
more likely to be connected to an opening distal site than promoters with none of these motifs (p 
= 9.6 x 10-260; likelihood ratio test for logistic regression model), and similarly, promoters with at 
least one MEF2 family motif were 2.5-fold more likely to be connected to an opening distal site 
(p = 3.4 x 10-81).  
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Supplemental Figure 3. A) Percent of pol II ChIA-PET anchors within 1 kb of an sci-ATAC-seq peak as a function of 
ChIA-PET anchor score provided by Tang et. al. (2015). B) Percent of sci-ATAC-seq peaks within 1 kb of pol II ChIA-
PET anchors as a function of overall cell accessibility (number of cells where the peak is accessible). 
 
We hypothesized that these correlations between promoter motifs and dynamic changes in their 
linked distal sites resulted from physical, transcription factor-mediated interactions. To explore 
this further, we focused on promoters linked to exactly one dynamically accessible distal site 
(co-accessibility score > 0.05). We enumerated the motifs present in each such promoter-distal 
site pair, and then used the Graphical LASSO to identify pairs of motifs wherein the presence of 
a motif in the promoter was predictive of the presence of the paired motif in the dynamically 
accessible distal site (see Methods).  
 

 
 
Supplemental Figure 4. Motifs in accessible sites predict motif content of Cicero-linked sites. The network 
summarizes a graphical model that captures how occurrences of motifs in pairs of sites predict whether they are 
connected. Each motif is connected to the motifs it suggests will exist in one or more connected sites. A motif that 
predicts itself in a connected site is shown in dark blue. If motif “A” at a distal site predicts that “B” will be found at a 
promoter, and symmetrically “B” at a distal site suggests “A” will be found at a promoter, they are connected with a 
black line, with a width proportional to the strength of the co-accessibility. Asymmetric motif relationships are not 
shown. 
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This analysis uncovered a number of motif pairs corresponding to transcription factors known to 
physically interact. For example, opening distal elements were significantly more likely to have a 
MEF2, MEIS1 or RUNX1 motif if they were linked to a promoter that included a MYOD motif 
(Supplemental Figure 4). These enrichments were generally reciprocal, i.e. holding true 
regardless of which motif was in a promoter and which was distal. Myogenic regulatory factors 
(MRFs) interact physically with the MEF2, MEIS1, and RUNX1 proteins(Knoepfler et al., 1999; 
Molkentin et al., 1995; Philipot et al., 2010). Indeed, in their report that physical interactions 
between MEF2 and MYOD greatly enhance target gene expression in co-transfected 
fibroblasts, Olson and colleagues first proposed that such interactions might establish a loop 
between distally located binding sites(Molkentin et al., 1995). The correlations between dynamic 
distal and promoter sites detected in single cell chromatin accessibility data are consistent with 
physical interactions between them, mediated by bound transcription factors. 

MYOD coordinates histone modifications in cohorts of co-accessible sites  
The physical proximity of co-accessible sites suggested that recruitment of histone-modifying 
enzymes to one site might nucleate changes in others. Indeed, pairs of sites were more likely to 
be undergoing significant, concordant gains in H3K27ac if they were linked by Cicero (Figure 
5A). Sites that themselves exhibited static accessibility, but were linked to a dynamic opening 
site, showed strong gains in H3K27ac, while static sites that were linked to dynamic, closing 
sites showed strong losses (Figure 5B). The gains in acetylation might be driven by de novo 
binding of MYOD at the opening site followed by recruitment of a histone acetyltransferase (e.g. 
p300). Supporting this, of the 1,769 sites with significant gains in H3K27ac but no change in 
accessibility, only 823 (47%) were bound by MYOD in myotubes. However, 97% were linked 
with positive co-accessibility to a MYOD-bound site. Similarly, static, deacetylated sites either 
lost MYOD binding themselves or were linked to another site that did so (Figure 5C). 
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Figure 5. Co-accessible DNA elements linked by Cicero are epigenetically co-modified. A) Odds ratio of a site 
gaining H3K27ac during myoblast differentiation, given that it is linked to a site that is doing so. Color indicates the 
strength of the Cicero co-accessibility links. The lightest color indicates pairs of sites that are unlinked by Cicero. B) 
Correspondence between a statically accessible site’s gain or loss of H3K27ac and its maximum co-accessibility 
score to a site that is opening (x axis) or closing (y axis). Sites that are not linked to an opening or closing site are 
drawn at x = 0 or y = 0, respectively. C) Similar to panel B, but describing the correspondence between a site’s gain 
or loss of H3K27ac and its maximum co-accessibility score to a site that is gaining or losing MYOD. D) The variance 
explained in a series of linear regression models in which the (Gaussian) response is the log2 fold change in 
H3K27ac level of each DNA element and the predictors are whether that site is opening, closing, or static, whether it 
undergoes gains or loses in MYOD binding, and whether it is linked to neighbors that are doing so. See Methods for 
full details on model specifications. E) The Cicero map for the 755kb region surrounding MYH3 along with called 
MYOD ChIP-seq peaks from (Cao et al., 2010). Sites opening in accessibility are colored by their opening 
pseudotime (see Methods), sites that are not opening in accessibility are shown in grey. The inset shows the 60kb 
region surrounding MYH3 along with MYOD ChIP-seq and H3K27ac ChIP-seq signal tracks from (Cao et al., 2010) 
and (The ENCODE Project Consortium, 2012). F) Opening pseudotimes for all opening sites, subdivided by whether 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2017. ; https://doi.org/10.1101/155473doi: bioRxiv preprint 

https://doi.org/10.1101/155473
http://creativecommons.org/licenses/by-nd/4.0/


 

14 

MYOD is bound in myoblasts and myotubes, myotubes alone, or neither. G) The difference in opening pseudotimes 
between pairs of linked DNA elements. The pairs are grouped based on whether one or both sites is constitutively 
bound by MYOD. For example, the bottom boxplot shows that sites that are constitutively bound by MYOD open 
earlier than the unbound sites to which they are linked. H) Transcription factor binding motifs selected by an elastic 
net regression (alpha = 0.5), with a response encoding the MYOD binding status of each site.   
 
To quantify the predictive power of MYOD binding dynamics, we constructed a linear regression 
model that aimed to explain changes in histone modifications at each accessible site based on 
whether MYOD binding was gained, lost, maintained, or absent throughout differentiation. Sites 
gaining MYOD were significantly more likely to gain a variety of histone marks associated with 
activated regulatory elements, including H3K27ac and H2A.Z (Figure 5D; Supplemental 
Figure 5). However, this model explained only 26% of variation in H3K27 acetylation. When we 
expanded it to also include each site’s maximum co-accessibility score to a linked site with a 
gain in MYOD binding, the model improved to explain 35% of the variation, a 1.35-fold increase. 
Similar analyses of other marks showed comparable gains in explanatory power when Cicero 
linkages were included, supporting the view that sites predicted to form chromatin hubs by 
Cicero are coordinately targeted by histone modifying enzymes.  

 
 

Supplemental Figure 5. Variance explained by a linear model that aims to predict log2-transformed fold changes in 
the listed ChIP-seq read counts between myoblasts and myotubes. Two models are considered. The first, with 
performance indicated as gray bars, uses a site’s accessibility and MYOD binding status. The second, indicated as 
black bars, augments the first with accessibility and MYOD at linked sites. See Methods for more details.  
 
Although recruitment of MYOD to chromatin hubs explains a substantial proportion of their 
H3K27ac dynamics, it remained unclear whether gains in MYOD were concentrated in a few 
CCANs (i.e. hubs) as opposed to being widely distributed. Of the 2,561 hubs that contained 
gene promoters, 68% contained at least one site undergoing a gain or loss in MYOD binding, 
with some containing more than one MYOD binding site. For the subset of 462 hubs with a 
differentially expressed gene, 88% contained at least one site changing in MYOD binding. For 
example, within the single hub enclosing myosin heavy chain isoforms 1, 2, 3, 4, 8, and 13 
along with numerous other genes, 18 sites underwent significant increases in accessibility. Of 
these, 13 were bound by MYOD in myotubes (Figure 5E). Interestingly, however, two sites very 
near MYH3 (marked with asterixes) opened substantially earlier in pseudotime than the others 
and were bound by MYOD in myoblasts as well. 
 
We wondered more generally whether sites bound by MYOD in myoblasts and throughout 
differentiation opened earlier than sites that gained MYOD binding during differentiation. A 
changepoint analysis using the PELT algorithm (Killick et al., 2012) revealed that DNA elements 
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bound by MYOD throughout differentiation opened significantly earlier than those that gained 
MYOD (Mann-Whitney test p-value 4.2e-89) or were never bound by it (Mann-Whitney test p-
value 1.0e-133) (Figure 5F). Moreover, rather than being enriched in whole hubs that open 
early as a group, constitutively MYOD-bound sites opened significantly earlier than sites linked 
to them that either gained MYOD (two-sided paired Student's t-test p-value = 6.0e-120) or were 
never bound by it (two-sided paired Student's t-test p-value = 6.4e-138) (Figure 5G). These 
sites with constitutively bound MYOD were enriched for some TF binding motifs that were not 
enriched in sites that gained MYOD during differentiation. Specifically, while both classes of 
MYOD-bound sites contained MRF E-boxes, only the constitutively MYOD-bound sites were 
enriched for the MEIS1 motif (Figure 5H). While 14% of sites within chromatin hubs contained 
MEIS1 motifs, 30% of constitutively MYOD-bound, dynamically opening sites in chromatin hubs 
contained them. Altogether, sites with MEIS1 motifs were linked to 66% of dynamically opening 
sites, and 54% of the sites that gained H3K27ac, compared with only 14% of sites genomewide 
(co-accessibility > 0.25). Murine Meis1, in conjunction with Pbx1, has been reported to act as a 
complex required for the MYOD-mediated activation of the myogenin promoter, and mutations 
in MYOD that prevent interaction with PBX resulted in loss of binding and regulation of roughly 
10% of its sites and regulated genes(Berkes et al., 2004; Fong et al., 2015). Our results suggest 
that MEIS1 recruitment of MYOD may be pervasive throughout the genome, and could nucleate 
activation of other sites within a chromatin hub. 

Sequence features of active chromatin hubs predict gene regulation  

 
 

Supplemental Figure 6. Correlation in expression among linked differentially expressed genes. Boxplots of the cell-
wise correlation between gene expression among pairs of differentially expressed genes whose promoters have 
different Cicero co-accessibility scores. 
  
We found that differentially expressed genes showed greater correlation in expression as a 
function of their Cicero co-accessibility score (Supplemental Figure 6). We next asked whether 
Cicero co-accessibility could be used to predict changes in gene expression. We first devised a 
linear regression model that aimed to predict changes in either expression or a variety of 
epigenetic marks associated with gene activation (Figure 6A). However, chromatin accessibility 
at distal sites might be correlated with epigenetic marks or expression with many genes in the 
surrounding region, potentially yielding a false impression of the predictive power of a model 
trained using it. To avoid this, we trained our model to predict gene activity using sequence 
features alone.  
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Figure 6. Chromatin dynamics at distal DNA elements predicts gene regulation. A) Changes in histone acetylation in 
the first 1 kb downstream of each gene’s TSS, corresponding to the “barrier” to RNA pol II elongation posed by 
nucleosomes, are correlated with changes in its expression. B) Two regression models predict changes in the histone 
marks deposited throughout each gene’s barrier region. The first model predicts changes on the basis of transcription 
factor binding motifs in gene promoters. The second model adds variables encoding the strength of co-accessibility 
with linked sites containing the motif.  See Methods for details on the various models. Adjusted R^2 is computed as 
the fraction of null deviance explained. The number to the right of each bar indicates the ratio of variance explained 
between the first and second model. C) Similar to panel B, with changes in expression as the response. D) 
Coefficients from the model incorporating sequence at distal sites for each motif surviving model selection via elastic 
net. Note that the model considers each motif twice: once at promoters and again at distal sites, and both can be 
selected by elastic net. 
 
Our first model takes as input a binary map of the transcription factor binding motifs present at 
the promoter upstream of each TSS. We then train it to predict how much of a gene’s observed 
expression change is attributable to each TF motif using elastic net regression and 50-fold 
cross-validation (Methods). The promoter-based model explained only 16% of the variance in 
expression and performed similarly in predicting a panel of histone marks (Figure 6B-C).  
 
We then augmented the model with TF motifs at distal sites linked to the promoter(s) of a TSS 
by Cicero. We computed, for each promoter and for each sequence motif, the sum of the co-
accessibility between it and any distal element that contained the given sequence. That is, the 
model associated each TSS with a co-accessibility score for each TF motif, taking the sum of 
the scores if a TSS was linked to more than one distal site carrying it. This augmented model 
markedly improved our ability to predict changes in expression, attributing 33% of the variance 
to motifs alone, a 2.04-fold increase (Figure 6C). This model similarly explained more variance 
of both activating marks such as H3K27ac and H3K9ac as well as those associated with 
silencing such as H3K27me3 (Figure 6B). The TF motifs identified by the model included the 
MRF E-box, the MADS box bound by MEF2 family proteins, the MEIS1 binding site, which were 
associated with gene upregulation, along with motifs for factors that drive cell proliferation such 
as AP-1, which were linked to downregulation. Importantly, motifs for the MRF family and 
MEIS1 survived the elastic net feature selection procedure at both promoters and distal sites, 
indicating that distal sites provide complementary, rather than redundant, information to the 
model (Figure 6D). Thus, when tasked with predicting which factors are important for gene 
regulation, our regression identified the major myogenic transcription factors using only the 
sequences in sites linked together by Cicero.   
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Discussion 
Despite their paramount importance for interpreting GWAS as well as for our basic 
understanding of gene regulation, we still lack comprehensive maps that link distal regulatory 
sequences to their target genes. There are several reasons for this. First, current methods for 
constructing genome-wide regulatory maps require input data collected from diverse tissues and 
cell lines. Second, analyzing these data poses a major statistical challenge, especially in the 
presence of batch effects and other technical features of measurements collected at different 
times by different labs. Third, a map produced by integrating data from many tissues and cell 
types might capture interactions common to many cell types at the expense of cell-type specific 
interactions.  
 
Here, we describe Cicero, which constructs cis-regulatory maps from single cell chromatin 
accessibility data such as is generated by sci-ATAC-seq. Cicero exploits the fact that patterns of 
co-accessibility between regulatory elements located in cis derive in part from physical 
interactions between the transcription factors that mediate gene regulation. Maps obtained 
through the application of Cicero may advance our quantitative understanding of the logic of 
gene regulation in eukaryotic genomes, while also advancing our ability to identify the target 
genes of noncoding GWAS signals.  
 
Pseudotemporal ordering of chromatin accessibility profiles from differentiating myoblasts, a 
classic model system of vertebrate developmental gene regulation, revealed dynamic changes 
in thousands of DNA elements. Although changes in promoter accessibility proved to be a poor 
predictor of gene expression, distal sites linked to genes by Cicero markedly improved power to 
predict gene regulation. In this study, we used easy-to-interpret linear regression techniques to 
investigate the role of distal elements in regulating target genes, but more sophisticated 
machine learning approaches might make better use of Cicero’s regulatory maps. 
 
Taken together, our analyses show that the cis regulatory elements linked by Cicero meet the 
definition of chromatin hubs: they are physically close in the nucleus, their histone marks 
change in a coordinated fashion, and their interactions are likely mediated by a common set of 
DNA binding proteins, including lineage-specific transcription factors. For myogenesis, our 
results support a model of gene activation in which a subset of “precocious” enhancers recruit 
chromatin remodeling enzymes and other epigenetic modifiers to the hub, which then mediate 
increases in accessibility of other binding sites (Figure 7). In differentiating myoblasts, MYOD is 
widely understood to recruit the BAF complex and p300/PCAF to activate enhancers of muscle 
genes (Serra et al., 2007; Simone et al., 2004). Although the role of MYOD in recruiting these is 
well appreciated, how MYOD is itself recruited to its binding sites in their inaccessible state is 
less clear. Our analyses of accessibility dynamics of regulatory elements within individual 
chromatin hubs showed that rather than simultaneously opening as a group, a subset of sites 
often open much earlier than the rest of the hub. These early-opening sites are distinguished by 
enrichment for MEIS1 motifs and the presence of MYOD throughout myoblast differentiation. 
Meis1 has previously been reported to tether Myod to the inactive myogenin promoter prior to 
the onset of differentiation, and is required for myogenin activation and chromatin remodeling 
that permits the binding of MYOD to nearby MRF E-boxes that were previously inaccessible 
(Berkes et al., 2004; Maves et al., 2007; de la Serna et al., 2005). Whether Meis1/Pbx1 acts to 
tether MYOD to inactive chromatin more generally throughout the genome has remained an 
open question, however, MYOD mutations that prevent interaction with PBX prevented binding 
at approximately 10% of MYOD bound regions (Fong et al., 2015), suggesting the possibility of 
a broad role in the myogenic program. Our analyses, which show the enrichment of MEIS1 
motifs in sites bound by MYOD prior to the onset of differentiation, but not sites bound later, 
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suggest that MEIS1 (and likely its co-factor PBX1) serve as the initial recruitment sites for 
epigenetic remodeling enzymes. Binding of p300 to MEIS1/PBX1-tethered MYOD could then 
acetylate histones at all DNA elements physically nearby in the chromatin hub. This model may 
help explain the pervasive gains and losses of histone acetylation throughout the accessible 
genome, despite the comparatively much smaller number of differentially accessible or MYOD-
bound elements. This model is also consistent with a recent study by Hilton et al. which showed 
that directly recruiting a Cas9/p300 fusion protein to distal enhancers upstream of the MYOD, 
OCT4, and globin loci increased expression and induced histone acetylation at their respective 
promoters in 293T cells (Hilton et al., 2015). 
 
Cicero provides an effective means of linking regulatory elements to their target genes in a 
tissue or cell type of interest using data from a single experiment. The chromatin hubs that it 
defines will facilitate the construction of quantitative models of epigenetic and gene expression 
dynamics, as well as the identification of genes whose dysregulation underlies GWAS 
associations. As the field pursues organism-scale cell atlases that comprehensively define each 
cell type and its molecular profile, such regulatory maps will be essential for understanding the 
epigenetic basis of each cell type’s gene expression program, both in health and disease. 
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Figure 7. A model of how 
chromatin hub activation could be 
nucleated by a subset of 
“precociously” opening DNA 
elements within it. Such sites are 
occupied by transcription factors 
competent to bind relatively closed, 
inactive DNA elements, such as 
MEIS1, which may tether less 
competent factors such as MYOD 
to the hub. Subsequent recruitment 
of p300 and the BAF complex, 
possibly through intermediary 
factors (e.g. MYOD),  leads to 
remodeling and acetylation of 
histones throughout other DNA 
elements nearby in the hub. These 
newly available sites are then 
bound by other transcriptional 
activators (e.g. MEF2), leading to 
the recruitment of Pol II. Moreover, 
acetylation of the histones 
downstream of assembled pre-
initiation complexes reduces the 
barrier they pose to elongation, 
enhancing efficient transcription of 
genes within the hub. 
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Methods 

Cell culture (HSMM and GM12878) 
HSMM derived from quadriceps biopsy (Lonza, catalog #CC-2580, lot #257130: healthy, age 
17, female, of European ancestry, body mass index 19; cells were used within 5 passages of 
purchase) were cultured in skeletal muscle growth media (GM) using the SKGM-2 BulletKit 
(Lonza). The cells and differentiation protocol are those from Trapnell et al. (2014). Cells were 
seeded in 15 cm dishes, media being replenished every 48 hours and cells were seeded in 15 
cm dishes, cells allowed to reach 80-90% confluence. Differentiation was induced at time 0 via a 
switch to differentiation medium (DM) composed of alpha-mem (Thermo Fisher Scientific) and 
2% horse serum. Cells in GM (time 0) or DM were then harvested at the specified times and 
processed as described below. HSMM tested negative for mycoplasma contamination within 6 
months of the experiment. 
 
GM12878 (purchased from Coriell Cell Repository) was cultured in RPMI 1640 medium (Gibco 
11875) supplemented with 15% FBS, 100U/ml penicillin and 100 µg/ml streptomycin. Cells were 
cultured in an incubator at 37C with 5% CO2 and were split to a density of 300,000 cells/ml 
three times a week. 

Sci-ATAC-seq library construction 
We prepared sci-ATAC-seq libraries using an improved version of the original protocol 
(Cusanovich et al, 2017, submitted). 

Defining accessible sites 
To define peaks of accessibility across all sites, we used the MACS (version 2.1.0) (Zhang et 
al., 2008) peak caller. Cells with fewer than 1,000 reads were filtered, and reads from repeat-
masked regions of the genome were excluded from peak-calling. Promoter peaks were further 
defined as the union of the annotated transcription start site (TSS) (Gencode V17) minus 500 
base pairs, and MACS defined peaks upstream of the TSS. Cells were determined to be 
accessible at a given peak if a read from that cell overlapped the peak.  
 
560 barcodes from the HSMM dataset and 100 barcodes from the GM12878/HL60 dataset with 
a high percentage of peaks with more than 2 reads mapping to them were excluded as potential 
doublets. 
 
For the GM12878 and HL60 mixed dataset, preliminary peaks were called by MACS and used 
to separate the cell types using multi-dimensional scaling by Jaccard distance. The subset of 
reads from GM12878 cells was then used to recall peaks for GM12878 as above.  

Pseudotemporal ordering 
For the HSMM dataset, contaminating interstitial fibroblasts were removed in silico based on the 
absence of promoter accessibility in any of several known muscle markers (MYOG, MYOD1, 
DMD, TNNT1, MYH1, TPM2). In addition, cells with fewer than 1,000 accessible sites were 
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excluded due to low assay efficiency. Finally, peaks present in less than 1% of cells were 
excluded during pseudotemporal ordering steps. 
 
Despite improvements to the sci-ATAC-seq protocol that delivered a substantial increase in the 
number of sites detected per cell, sci-ATAC-seq data remains zero-inflated. The quality and 
efficiency of transposition, which varies between cells and across batches, is likely to be a major 
technical source of variation in the data. Simple dimensionality reduction techniques such as 
MDS show that a poorly-assayed cell is often more similar to other poorly-assayed cells of a 
different type than to well-assayed cells of the same type. In order to accurately group cells with 
similar chromatin accessibility profiles, we first clustered peaks that were within 1 kb and 
summed the reads overlapping them to create an integer-valued count matrix .  
 
To order the cells by progress through differentiation, we determined which aggregated peaks 
were relevant to the HSMM time course by fitting the following model:  
 

 
 
Where  is the mean of a negative binomially-distributed random variable for the number of 
reads overlapping the aggregate region ,  encodes the times at which each cell was 
harvested and  is the total number of accessible sites in each cell. We compared this full 
model to the reduced model:  
 

 
 
by likelihood ratio test. Sites determined by this method to be time dependent and which were 
accessible in less than 10% of cells were then used to reconstruct the pseudotime trajectory 
using Monocle 2 (parameters ncenter and param.gamma set to 100, see (Qiu et al., 2017)). To 
remove any bias created by different assay efficiency in different cells, total sites accessible was 
included as a covariate in the tree reconstruction. Each cell was assigned a pseudotime value 
based on its position along the trajectory tree. Cells that mapped to the F2 branch were excluded 
from downstream analysis. 

Differential accessibility analysis 
When testing for differential accessibility across cells at a particular site, it is important to 
exclude technical variation due to differences in assay efficiency as discussed above. We first 
grouped cells at similar positions in pseudotime. We did this by k-means clustering along the 
pseudotime axis (k=10). These clusters were further subdivided such into groups containing at 
least 50 and no more than 100 cells. Next, we aggregated the binary accessibility profiles of the 
cells in each group into a matrix , so that  contains the number of cells in group  for which 
DNA element  is accessible. The average pseudotime  and average overall cell-wise 
accessibility  for cells in each group  were preserved for use during differential analysis. 
 
To determine which peaks of accessibility were changing across pseudotime, we fit the 
following model to the binned data: 
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Where  is the mean of a negative-binomial valued random variable of cells in which site  is 
accessible, and the tilde above  and  indicates that these predictors are smoothed with 
natural splines during fitting. This model was compared to the reduced model: 
 

 
 
by the likelihood ratio test. Peaks with an adjusted p-value of less than 0.05 were determined to 
be dynamic across pseudotime. 
 
Gene set enrichment analysis 
Gene set enrichment analysis was conducted using the R package piano (Väremo et al., 2013) 
using a hypergeometric test. We tested against the Human GO Biological Processes gene set 
from (Merico et al., 2010). 

Cicero 
Cicero aims to identify all pairs of co-accessible sites.  The algorithm takes as input a matrix of 

 by  binary accessibility values , where  is zero if no read was observed to overlap peak 
 in cell  and one otherwise. The algorithm also requires either a pseudotemporal ordering of 

the cells along a developmental trajectory (e.g. with Monocle 2) or the coordinates of the cells in 
some sufficiently low dimensional space (e.g. a t-SNE map) that the cells can be readily 
clustered. The algorithm then executes the following steps, which are detailed in the sections 
below: first, groups of highly similar cells are sampled using the clustering or pseudotemporal 
ordering, and their binary profiles are aggregated into integer counts. Second, these counts are 
optionally adjusted for user-defined technical factors, such as experimental batch. Third, Cicero 
computes the raw covariances between each pair of sites within overlapping windows of the 
genome. Within each window, Cicero estimates a regularized correlation matrix using the 
graphical LASSO, penalizing pairs of distant sites more than proximal sites. Fourth, these 
overlapping covariance matrices are “reconciled” to produce a single estimate of the correlation 
in accessibility across groups of cells. These correlation scores are reported to the user, who 
can extract modules of sites that are connected in co-accessibility networks by first specifying a 
minimum correlation score and then using the Louvain community detection algorithm on the 
subgraph induced by excluding edges below this score.  

Grouping cells 

In principle, Cicero could analyze the sample covariance computed between the vectors  and 
 of binary values encoding accessibility across cells for a pair of sites  and . However, rather 

than working with the binary data directly, Cicero groups similar cells and aggregates their 
binary accessibility profiles into integer count vectors that are easier to work with in downstream 
steps. Under the grouping discussed below, the number of cells in which a particular site is 
accessible can be modeled with a binomial distribution or, for sufficiently large groups, the 
corresponding Gaussian approximation. Modeling grouped accessibility counts as normally 
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distributed allows Cicero to easily adjust them for arbitrary technical covariates by simply fitting 
a linear model and taking the residuals with respect to it as the adjusted accessibility score for 
each group of cells.  
 
In order to control for technical variation as discussed above, Cicero operates on a grouped cell 
count matrix, .  is constructed by first mapping cells into 2 dimensions by either Monocle 2 or 
tSNE. Within this space, Cicero constructs a k-nearest neighbor graph, via the the FNN 
package, which is based on KD-trees and is highly efficient and scales to large numbers of 
cells. Cicero then selects  random cells, and their  nearest neighbors are grouped. 
Accessibility counts are then summed across all cells in a group to create count matrix .  

Adjusting accessibility counts for technical factors 

To normalize for variations in assay efficiency across groups, matrix  is divided by a group-
wise scaling factor (computed using the standard Monocle 2 method for library size calculations 
(estimateSizeFactors()) to create an adjusted accessibility matrix . Because the entries 
of  are integer counts that can reasonably be approximated by Gaussian distributions, this 
matrix can be readily adjusted for arbitrary technical covariates (e.g. using the Limma package’s 
removeBatchEffect() function). In this study we did not adjust for factors beyond library 
size. 

Computing co-accessibility scores between sites 
Cicero next analyzes the covariance structure of the adjusted accessibilities in . Given enough 
data, Cicero could in principle simply compute the raw covariance matrix . However, because 
the number of possible pairs of sites is far larger than the number of groups of cells, Cicero uses 
the Graphical Lasso to compute a regularized covariance matrix to capture the co-accessibility 
structure of the sites. The Graphical LASSO computes the inverse of the sample covariance 
matrix, which encodes the partial correlations between those variables as well as the 
regularized covariance matrix (Friedman et al., 2008). These constitute a statistically 
parsimonious description of the correlation structure in the data: informally, two variables are 
partially correlated when they remain correlated even after the effects of all other variables in 
the matrix are excluded. The Graphical LASSO expects a small fraction of the possible pairs of 
variables to be partially correlated, preferring to select a sparse inverse covariance matrix over 
a dense one that fits the data equally well. Those pairs of sites that lack sufficient partial 
correlation to be worth the penalty term are assigned zero partial correlation in the inverse 
covariance matrix reported by Graphical LASSO. Formally, Cicero uses Graphical LASSO to 
maximize: 
 

 
 
Where  is the inverse covariance matrix capturing the conditional dependence structure of  
accessible sites, and  is the sample covariance matrix computed from their values in . In 
order to ensure stability of GLASSO, which can hang on poorly conditioned input, we add a 
small conditioning constant of 1e-4 to the diagonal of  prior to running it. The matrix  contains 
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penalties that are used to independently penalize the covariances between pairs of sites, and  
denotes component-wise multiplication. 
 
In Cicero, we aim to find local cis-regulatory interactions, rather than global covariance structure 
that might be expected due to overall cell state. To achieve this, we set each penalty term in  
such that peaks closer in genomic distance had a lower penalty term. Specifically, we used the 
following equation to determine : 
 

 
 
Where  is the distance in the genome (in kilobases) between sites  and  and  is a constant 
that captures the power-law distribution of contact frequencies between different locations in the 
genome as a function of their linear distance. A complete discussion of the various polymer 
models of DNA packed into the nucleus is beyond the scope of this paper, but we refer readers 
to (Dekker et al., 2013) for a discussion of justifiable values for . We use a value of 0.75 by 
default in Cicero, which corresponds to the “tension globule” polymer model of DNA (Sanborn et 
al., 2015).  The scaling parameter  controls the distance at which Cicero expects no 
meaningful cis-regulatory contacts, and its value is calculated automatically from the data. To 
calculate , Cicero selects 200 random 500 kb genomic windows, and determines the minimum 
 value such that no more than 10% of pairs of sites at a distance greater than 250 kb (a user-

adjustable value) had non-zero entries in . The mean of these values of  is then used to set 
the penalties for the whole genome. Cicero then applies Graphical LASSO to overlapping 500 
kb windows of the genome (windows are spaced by 250 kb such that each region is covered by 
two windows).  
 

Reconciling overlapping local co-accessibility maps  

Cicero calculates correlation values (co-accessibility scores) from the resulting estimated sparse 
covariance matrix for each pair of peaks within 500 kb of each other. Because the genomic 
windows are overlapping, the majority of pairs of peaks have two calculations of co-accessibility. 
To consolidate these sites and create a genome-wide map of the accessible regulome, Cicero 
considers the co-accessibility scores for each pair of peaks to determine if they are in qualitative 
agreement (both calculated scores in the same direction). The qualitative agreement in our two 
test datasets were both >95%. Pairs of peaks not in qualitative agreement are considered 
undetermined. For peaks in qualitative agreement, the mean score of the two values is 
assigned. 

Extracting cis-co-accessibility networks (CCANs) 

Positive Cicero co-accessibility scores indicate that a pair of peaks is connected, with the 
magnitude of the co-accessibility corresponding to Cicero’s confidence in the link. To identify 
hubs of co-accessibility, Cicero can create a graph where each node is a peak of accessibility, 
and edges are the co-accessibility scores above a user-defined threshold. Communities within 
this genome-wide graph can be found using the Louvain community finding algorithm. Cicero 
can then assign peaks to cis-coaccessibility networks (CCANs) based on these communities. 
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Motif enrichment analysis 
Transcription factor motifs from the JASPAR 2016 database (Mathelier et al., 2016) were 
located in the sci-ATAC-seq peaks using FIMO (Grant et al., 2011). Motifs for TFs not 
expressed at ≥ 2 transcripts per million in bulk RNA-seq (HSMM myoblasts or myotubes) were 
excluded from downstream analysis. Many TF motifs are similar or identical to each other. To 
prevent this correlation from confounding regression analyses, we clustered motifs into motif 
families. For each pair of motifs A and B, we computed the conditional probability that given 
motif A is called at a genomic location with a FIMO p-value < 2e-5 (a stringent threshold), an 
overlapping instance of motif B will be called at p < 1e-4 (a permissive threshold). We 
constructed an undirected graph of motifs where there is an edge between motifs A and B if P(B 
at p < 1e-4 | A at p < 2e-5) ≥ 0.5 or P(A at p < 1e-4 | B at p < 2e-5) ≥ 0.5. Edges in this graph 
are assigned weights equal to the greater of these two conditional probabilities minus 0.5. We 
clustered the motifs on this graph using Louvain clustering (Blondel et al., 2008) and manually 
assigned names to each cluster. For downstream regression analyses, a genomic location is 
considered to have an instance of a motif family if any motif in the family is called at that location 
at p < 5e-5 (an intermediate threshold). 
 
To generate the motif co-accessibility networks shown in Supplemental Figure 4, we computed 
two sets of binary variables for each protein coding gene that had at least one sci-ATAC-seq 
peak in its promoter(s). The first set of variables are indicators of whether or not at least one 
instance of a motif family is present in any promoter peak for the gene. The second set of 
variables are indicators of whether or not at least one motif instance is present in any distal 
peak (excluding promoters of other genes) that is within the same Cicero CCAN (correlation 
score > 0.05) as the gene’s promoter(s). We constructed a matrix where rows are genes and 
columns are these two sets of motif indicator variables. This matrix was provided as input to the 
Graphical LASSO subject to the constraint that partial correlations between two promoter motif 
variables or two distal motif variables are fixed to zero. The regularization parameter ρ for the 
Graphical LASSO was set as the smallest value that could achieve an estimated false discovery 
rate (FDR, the proportion of truly-zero partial correlations that are estimated as non-zero) of less 
than 5%. The FDR for a given value of ρ was estimated by running the Graphical LASSO with 
that value of ρ on versions of the motif indicator matrix with the distal variables row-shuffled 
(essentially assigning each gene to a random other gene’s set of distal motifs) and counting the 
proportion of motif pairs that are assigned a non-zero partial correlation (ideally, all should be 
zero in a shuffled matrix). 
 In Supplemental Figure 4, an edge is drawn between a pair of motif families A and B if 
both 1) the partial correlation of the indicator variable for A being at a distal site to the indicator 
variable of B being at a linked promoter site is > 0.02, and 2) the same is true if B is in the distal 
position and A is in the promoter. 
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Analysis of ChIA-PET and Hi-C data 
To compare our Cicero connections to Hi-C data, we used publicly accessible GM12878 data 
(Rao et al., 2014) (GSE63525) at 5 kb resolution. The intrachromosomal raw contact matrices 
were normalized using the provided normalization vector obtained using the matrix balancing 
procedure of Knight and Ruiz and described by Rao et al. The normalized contact matrices 
were further transformed by dividing by the genome-wide model of interaction probability as a 
function of 1-dimensional genomic distance also described by Rao et al. By dividing by the 
expected contact probability based on distance, we were able to consider Hi-C interactions 
beyond those expected by linear genomic distance. To compare our data to Hi-C, we first 
assigned each peak to its appropriate 5 kb bin, and then considered the mean 
observed/expected Hi-C contact probability at various distances between bins connected by 
Cicero at various co-accessibility score cutoffs. If two bins were connected by multiple co-
accessibility scores, the bin connection was categorized based on the largest score. As a 
comparison, we also calculated the mean contact probability between bins containing 
accessible sites with co-accessibility scores less than or equal to zero. Lastly, Figure 4A 
includes the mean observed/expected Hi-C contact probability across all somatic chromosomes. 
 
As a second comparison dataset, we used publicly accessible GM12878 polII ChIA-PET data 
(Tang et al., 2015) (GSE72816). To compare these data to Cicero’s connections, we first looked 
for overlap between our peaks, and ChIA-PET anchors. Because ChIA-PET anchors often 
overlap each other, we first merged overlapping anchors to create comparable ChIA-PET 
“peaks”. We considered accessible peaks within 1 kb of ChIA-PET peaks to be overlapping. To 
generate Figure 4C-E, we considered the subset of ChIA-PET and Cicero connections where 
the peaks were present in both datasets. 
 

Analysis of ChIP-Seq data (MYOD and histone) 
To compare our accessible peaks to the known myogenesis master regulator MyoD, we used 
publicly accessible MyoD ChIP-seq in human myoblast and human myotube(MacQuarrie et al., 
2013) (GSE50413). We considered our peaks to be bound by MyoD if they overlapped one of 
the annotated MacQuarrie et al. ChIP-seq peaks. 
 
To compare our accessible peaks to histone modifications, we used publicly accessible 
ENCODE datasets in HSMM and HSMMtube (The ENCODE Project Consortium, 2012) 
(ENCFF000BKV, ENCFF000BKW, ENCFF000BMB, ENCFF000BMD, ENCFF000BOI, 
ENCFF000BOJ, ENCFF000BPL, ENCFF000BPM). We counted both HSMM and HSMMtube 
histone ChIP-seq reads in each accessible peak. To determine whether sites were changing in 
accessibility between HSMM and HSMMtube, we used DESeq2 differential analysis (Love et al., 
2014) (FDR < 5%). To determine whether the barrier regions of genes were differentially histone 
modified, we similarly used DESeq2 to compare the read counts in the first 1000 base pairs of 
each GENCODE v17 transcript in HSMM and HSMMtube datasets.  
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To compare agreement between H3K27 acetylation marks of peaks connected by Cicero, we 
divided the odds of a site gaining acetylation if it’s connected site gained acetylation by the odds 
of a site gaining acetylation is it is connected to a site that is not gaining acetylation (Figure 5A). 
 
Modeling H3K27 Acetylation Changes: 
 
To model changes in acetylation among linked sites (Figure 5D), we compared four linear 
regression models: 
 

 
 

 
 

 
 

 
 
where  is the log2 fold-change in H3K27 acetylation from myoblast to myotube at site ,  
and  are indicator variables for whether site  is closing or opening across pseudotime, , 

 and  are indicator variables for whether site  is gaining, losing, or constitutively bound by 
MYOD from myoblast to myotube according to ChIP-seq,  and   are the highest Cicero co-
accessibility scores that connect site  to another opening or closing site respectively, and , 

 and  are the highest Cicero co-accessibility scores that connect site  to another MyoD 
gaining, MyoD losing or MyoD constitutive site. For each of the fitted models, we used elastic 
net regression (Zou and Hastie, 2005) to estimate the effect of each predictor. 
 
Similarly, in Supplemental Figure 5, we predict the log2 fold-change in each of the 12 ENCODE 
histone mark ChIP-seq datasets described above using only indicator variables for whether a 
site is gaining losing or constitutively bound by MYOD, or using these variables and the highest 
Cicero co-accessibility scores connecting a site to an opening or closing site. 
 
Regression models for barrier region histone marks and gene expression: 
 
For each of the 12 ENCODE histone mark ChIP-seq datasets described previously, we fit two 
regression models that predict, for each transcription start site, the log fold change in the 
number of reads from the given ChIP-seq dataset that fall in the barrier region of that TSS (first 
1000 bp downstream) for myotubes vs. myoblasts. We exclude TSSs that do not have a 
significantly different number of barrier region reads in myotubes vs. myoblasts for any of the 12 
datasets (p > 0.01), leaving 6,205 TSS included in the model. 
 
In the first set of models (“promoter motifs”), the features are a set of binary indicator variables 
that have value 1 if any promoter sci-ATAC-seq peak for the TSS has at least one instance of a 
motif from a given motif family. In the second set of models (“promoter and distal motifs”), the 
features are the promoter motif indicator variables plus a second set of real-valued variables 
that encode the presence of distal sequence motifs. For a given motif family and TSS, the 
corresponding distal motif variable has a value equal to the highest co-accessibility score from 
any promoter sci-ATAC-seq peak for that TSS to any connected distal peak that has at least 
one instance of a motif from the motif family. If no such distal peak exists (the motif is absent in 
all connected distal sites), the distal motif variable is assigned a value of 0. The models were 
trained using elastic net regression. 
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We additionally fit models with the same features (“promoter motifs” and “promoter and distal 
motifs”) to predict the expression of the subset of the above TSSs (n = 929), that were 
additionally expressed in at least 4 cells in scRNA-seq and which were predicted by smoothed 
average across pseudotime to be expressed at above 1 copy per cell at some pseudotime.  
 
Data Availability 
Sci-ATAC-seq data will be made publicly available upon publication. 
 
Code Availability 
We will release Cicero as an R package through Github and Bioconductor upon publication.  
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