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Abstract: 

Functional similarity between genes is widely used in many bioinformatics applications 

including detecting molecular pathways, finding co-expressed genes, predicting protein-

protein interactions, and prioritization of candidate genes. Methods evaluating functional 

similarity of genes are mostly based on semantic similarity of gene ontology (GO) terms. 

Though there are hundreds of functional similarity measures available in the literature, none of 

them considers the enrichment of the GO terms by the querying gene pair. We propose a novel 

method to incorporate GO enrichment into the existing functional similarity measures. Our 

experiments show that the inclusion of gene enrichment significantly improves the 

performance of 44 widely used functional similarity measures, especially in the prediction of 

sequence homologies, gene expression correlations, and protein-protein interactions. 
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Software availability 

The software (python code) and all the benchmark datasets evaluation (R script) are available 

at https://gitlab.com/liuwt/EnrichFunSim. 

 

Background  

 With the advancement of high-throughput experimental techniques, omics data are 

increasingly being gathered and understanding biological knowledge embedded therein 

requires standard and controlled organization of biological vocabularies or ontologies that 

represent abstract descriptions of domain-specific knowledge. Gene ontology (GO) provides a 

controlled vocabulary arranged in a hierarchy of terms, and facilitates annotation of gene 

functions and molecular attributes. Sematic similarity quantitatively measures the relationships 

between two terms of GO and is widely used in deriving functional similarity between two 

genes. Functional similarity measure is widely used in inferring genetic interactions, functional 

interactions, protein-protein interactions (Pesquita et al. 2008), biological pathways (Bien et al. 

2012) (Guo et al. 2006), priorities of candidate genes (Moreau & Tranchevent 2012), and 

disease similarities (Cheng et al. 2014). 

 Semantic similarity measures the similarity of two ontology terms by typically 

evaluating their commonness normalized to their uniqueness in terms of information contents 

(Harispe et al. 2014)(Ranwez et al. 2014). The commonness of two terms is typically 

evaluated by the information content of the lowest/closest common ancestor as used by 

Resnik(Resnik 1999), Lin(Lin 1998), Nunivers(Mazandu & Mulder 2013), relevance 

similarity(Schlicker et al. 2006) measures; or by the information content of all common 

ancestors as evaluated by XGraSM(Couto & Silva 2011) and TopoICSim (Ehsani & Drabløs 

2016). The uniqueness of GO terms are often evaluated by taking the average of the 
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information content (IC) of the two terms. The IC of a term depends on that of the annotating 

corpus (Mazandu & Mulder 2014); and the topological position or semantic distance of the 

terms is based using ontology hierarchy as evaluated us SORA (Teng et al. 2013); or a 

combination of both (Wu et al. 2013).  

 Functional similarity (funsim) between two genes is typically derived using various 

combinations of semantic similarities between GO terms annotated to the two genes, such as 

the average (AVG)(Lord et al. 2003), maximum (MAX)(Mato et al. 2005), average best-

matches (ABM)(Mazandu & Mulder 2013), or best-match average (BMA)(Mazandu & Mulder 

2014). Alternatively, several variants of AVG and MAX combinations have also been 

proposed: for example, SORA(Teng et al. 2013) estimates functional similarity between two 

genes by computing the average of IC overlap ratio of the annotating term sets; Chabalier et 

al. (Chabalier et al. 2007) constructed a weighted term vector where the weight measures the 

representativeness of the term and computed the semantic similarity between gene products 

without considering their hierarchical relations; and Pandey et al.(Pandey et al. 2008) proposed 

a statistically motivated functional similarity measure taking into account functional specificity 

as well as the distribution of functional attributes across entity groups.   

 

Functional similarity measures are derived from semantic similarities depending on the 

ICs of annotating terms, which are estimated by assuming a uniform distribution of terms in 

the background corpus. This ignores the local context and the representativeness of the terms 

of the gene pair, which reduces the context specificity of the similarity measure. For example, 

the terms annotated by both genes need to be treated more importantly than when a term is 

annotated by one gene. To overcome this drawback of existing functional similarity measures, 

we propose to introduce the probability of a term annotated to a gene by incorporating GO-

enrichment of the gene pair in the computation of IC of a GO term. Specifically, in the context 
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of two genes, the probability of a GO term annotated to a gene is defined as the joint probability 

of the background probability and the GO enrichment of the terms annotating the two genes. 

Existing functional similarity (funsim) measures are enriched as funsim* measures with this 

modification that includes both the GO-enrichment and GO semantic similarity in the 

computation of functional similarity. We demonstrate the performance of new funsim* 

measures  on 44 funsim measures earlier summarized by Mazandu & Mulder(Mazandu & 

Mulder 2014).  
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Results 

 

Overall Performance on all datasets 

We assessed funsim* measures on benchmark datasets for predicting sequence similarities, 

gene expression (GE) correlations, and protein-protein interactions (PPI) and compared with 

those of funsim measures. Table 1 shows one-sided p-values on the improvement of 

performances, using Wilcoxon signed rank tests(Wilcoxon 1945) of all the experiments on 

four benchmark datasets. As seen, funsim* measures showed a significant improvement over 

funsim measures in the prediction of protein interactions on 132 experiments on yeast PPI 

data, gene co-expressions on 132 experiments using yeast GE data, and sequence similarities 

on 264 experiments on CESSM dataset; and on all 528 experiments. Irrespective of the 

ontology (BP, MF, or CC) and the type of funsim measure, the incorporation of GO 

enrichment in funsim* measure significantly improved the prediction of sequence similarities, 

gene co-expression patterns, and protein-protein interactions. 

 

Table 1. The details of three datasets and statistical significances of the improvement of 

performances of funsim* over funsim measure: yeast PPI dataset, yeast GE dataset, and 

sequence similarities (ECC, Pfam, and SeqSim) on protein pairs given by CESSM. 

DataType DataSets #protein pairs ontology #experiments p-value 

yeast_PPI PPI_BP; PPI_MF; PPI_CC 6000 BP 132 2.03E-05 

yeast_GE GE_BP;GE_MF; GE_CC 4800 BP; MF; CC 132 9.90E-08 

CESSM ECC; Pfam; SeqSim 13430 BP; MF 264 3.48E-15 

Total PPI; GE; ECC; Pfam; SeqSim 45830 BP; MF; CC 528 < 2.2e-16 
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Performance of funsim* measures on three types of biological data 

  

Table 2 lists 10 top performed funsim measures, the corresponding funsim* measures, 

percentages of performance improvement of funsim* over funsim, and statistical significances 

of the improvements on different datasets. The significances of improvement were computed 

using Williams test (DA Williams 1972) (FDR adjusted p-values). The list of 44 funsim 

measures is given in Table 3. Among the 44 funsim measures, funsim* improved for the top 

performers on almost all of them. 

 

Supplementary Tables 4-7 give the details of performances of funsim* over all 44 funsim 

measures in predicting sequence similarities, gene co-expressions, and protein-protein 

interactions. Supplementary Figures 1-4 show the improvement of evaluation scores from 

funsim to funsim* on sequence homologies on BP ontology and MF ontology, gene co-

expression correlations, and PPIs on three ontologies, respectively.  

 

 Our experiments on different funsim measures yielded similar observations as seen by 

Mazandu & Mulder(Mazandu & Mulder 2014).  In general, BMA and ABM methods 

provide the best performances and performed equally well on most semantic similarity 

measures. Adaptation of efficient correction factors improved the performance on some 

measures: Schlicker(Schlicker et al. 2006) uses the IC value of MICA and does not 

significantly improve the performance of the Lin(Lin 1998) approach; XGraSM(Couto & 

Silva 2011) uses all common informative ancestors to correct Lin(Lin 1998) and 

Nunivers(Mazandu & Mulder 2013) approaches in order to improve their performances. 

Thus, including common informative ancestors in the conception of a semantic similarity 

improves its performance, especially for approaches that include only the features of child 
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terms in the computation of IC. This is the case for the annotation-based Zhang(Zhang et al. 

2006) and Wang(Wang et al. 2007) approaches, where the SimGIC(Pesquita et al. 2008) 

measure shows the overall best performance. 

 

Lin(Lin 1998), Nunivers(Mazandu & Mulder 2013), GO-universal(Mazandu & 

Mulder 2013), Wang(Wang et al. 2007), and SimGIC(Pesquita et al. 2008) measures 

improved much more significantly than other measures with the incorporation of GO 

enrichment. As the  funsim* measure differently treats unique GO terms (annotated to only 

one gene) and common terms annotated by two genes, measures consisting of both kinds of 

terms are significantly improved with GO enrichment: for example, Lin(Lin 1998), 

Nunivers(Mazandu & Mulder 2013), and SimGIC(Pesquita et al. 2008) measures consider 

both common terms and individual terms; GO- universal(Mazandu & Mulder 2013) measure 

considers all children terms (common or individual terms); and Wang(Wang et al. 2007) 

measure consider all ancestors (common terms) and children terms (common or individual 

terms). Especially, Wang(Wang et al. 2007) measure (WABM, WBMA) improved 

significantly on capturing sequence homology, with an correlation improvement of 8% of 

ECC, 25% of Pfam, 34% of SeqSim on MF ontology; and 13% of Pfam, 16% of SeqSim on 

BP ontology;  GO-universal approach (UABM, UBMA) improved most significantly 

(labelled as green) for GE correlations on three ontologies, and inferring PPIs on CC; 

XGraSM of Nunivers approach (XNABM, XNBMA) improved most significantly for GE 

correlations on MF, and inferring PPIs on BP; and annotation-based  SimGIC and SimDIC 

are improved most significantly for inferring PPIs on MF. Out of all 44 funsim measures, the 

performance of measure related to UIC measure didn’t improve with GO enriched funsim* 

measures. This is because the UIC measure does not discriminate common terms and unique 
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terms while the enrichment is manifested by the differences between common and unique 

terms.  

 

Table 2. Performances of top 10 funsim measures, and corresponding funsim* values, 

percentage improvement of funsim* over funsim, and statistical significance of improvement 

on each dataset. 

DataSets Methods funsim funsim* Improvement(%) FDR p-value 

ECC_BP 

XNBMA 0.4748 0.4748 0.00 3.99E-01 

XLBMA 0.4708 0.4748 0.84 2.53E-253 

NBMA 0.4635 0.4651 0.33 2.25E-51 

XNABM 0.4600 0.4605 0.10 4.47E-05 

WDIC 0.4553 0.4554 0.04 9.96E-02 

XLABM 0.4547 0.4556 0.21 1.31E-10 

SBMA 0.4511 0.4523 0.26 4.89E-16 

LBMA 0.4497 0.4518 0.46 6.49E-64 

ZDIC 0.4490 0.4490 0.02 3.99E-01 

ZBMA 0.4472 0.4491 0.41 5.23E-50 

Pfam_BP 

WBMA 0.4716 0.5223 10.74 1.64E-44 

WABM 0.4621 0.5261 13.84 1.50E-71 

UBMA 0.4764 0.4764 0.00 3.99E-01 

UABM 0.4754 0.4758 0.08 2.41E-01 

XNBMA 0.4721 0.4752 0.64 3.37E-209 

XNABM 0.4673 0.4710 0.78 1.25E-236 

XLBMA 0.4590 0.4752 3.53 0.00E+00 

ZGIC 0.4665 0.4670 0.11 4.94E-32 

ZDIC 0.4606 0.4616 0.22 9.12E-89 

AGIC 0.4607 0.4608 0.04 4.19E-02 

SeqSim_BP 

AGIC 0.7622 0.7633 0.14 1.21E-248 

ZGIC 0.7592 0.7603 0.15 7.71E-293 

UGIC 0.7584 0.7570 -0.19 2.98E-06* 

WGIC 0.7446 0.7450 0.06 1.40E-29 

XNBMA 0.7256 0.7283 0.37 2.10E-263 

UDIC 0.7281 0.7247 -0.46 1.92E-20* 

UUIC 0.7368 0.7126 -3.28 3.53E-72* 

XNABM 0.7227 0.7262 0.49 0.00E+00 

ADIC 0.7228 0.7246 0.24 0.00E+00 

XLBMA 0.7091 0.7283 2.71 0.00E+00 

ECC_MF 

XNBMA 0.7525 0.7567 0.55 0.00E+00 

NBMA 0.7485 0.7525 0.54 7.68E-226 

XLBMA 0.7362 0.7421 0.80 0.00E+00 
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WBMA 0.7100 0.7665 7.96 2.59E-157 

XNABM 0.7292 0.7337 0.61 0.00E+00 

NABM 0.7248 0.7294 0.64 1.26E-243 

SBMA 0.7189 0.7229 0.56 1.50E-75 

LBMA 0.7176 0.7238 0.87 1.58E-260 

WABM 0.6889 0.7479 8.56 2.13E-152 

ZBMA 0.7145 0.7171 0.36 1.40E-90 

Pfam_MF 

AGIC 0.6170 0.6203 0.53 2.08E-124 

XNABM 0.5829 0.5849 0.34 5.17E-49 

XNBMA 0.5818 0.5833 0.27 3.68E-30 

ADIC 0.5710 0.5769 1.03 0.00E+00 

AUIC 0.5729 0.5729 0.00 3.99E-01 

XLBMA 0.5655 0.5673 0.32 3.34E-21 

XLABM 0.5650 0.5673 0.42 1.16E-31 

WABM 0.5034 0.6283 24.82 0.00E+00 

WBMA 0.5003 0.6260 25.11 0.00E+00 

NABM 0.5259 0.5309 0.95 2.69E-185 

SeqSim_MF 

AGIC 0.6285 0.6358 1.17 0.00E+00 

AUIC 0.5510 0.5510 0.00 3.99E-01 

ADIC 0.5288 0.5375 1.64 0.00E+00 

ZGIC 0.5127 0.5146 0.36 1.45E-255 

XNABM 0.5049 0.5058 0.18 1.51E-09 

XNBMA 0.5017 0.5021 0.08 7.50E-03 

XLABM 0.4922 0.4931 0.18 3.25E-05 

WAVG 0.4313 0.5514 27.84 1.42E-184 

XLBMA 0.4910 0.4912 0.04 2.70E-01 

WABM 0.4050 0.5425 33.95 0.00E+00 

WBMA 0.4001 0.5370 34.21 0.00E+00 

PPI_BP 

XNBMA 0.8785 0.8791 0.07 3.19E-10 

XNMAX 0.8780 0.8784 0.04 3.84E-06 

XLMAX 0.8778 0.8781 0.04 3.69E-03 

SMAX 0.8777 0.8777 -0.01 3.99E-01 

LMAX 0.8774 0.8776 0.03 9.64E-02 

NMAX 0.8767 0.8770 0.03 6.30E-03 

XLBMA 0.8758 0.8765 0.08 7.45E-11 

ZMAX 0.8742 0.8743 0.01 2.71E-01 

XNABM 0.8737 0.8746 0.11 1.52E-19 

NBMA 0.8726 0.8735 0.10 4.52E-19 

PPI_MF 

UBMA 0.7452 0.7454 0.03 2.00E-01 

ADIC 0.7442 0.7456 0.19 6.67E-28 

AGIC 0.7442 0.7456 0.19 3.37E-35 

AUIC 0.7440 0.7448 0.10 3.86E-01 

ZGIC 0.7429 0.7428 -0.01 2.50E-01 

ZDIC 0.7429 0.7428 -0.01 2.90E-01 

UABM 0.7422 0.7426 0.06 1.15E-02 

ZUIC 0.7394 0.7403 0.12 3.85E-01 
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NBMA 0.7383 0.7403 0.27 3.90E-13 

UMAX 0.7389 0.7389 -0.01 3.99E-01 

PPI_CC 

UABM 0.8217 0.8237 0.25 6.21E-04 

ZBMA 0.8219 0.8228 0.11 1.58E-06 

ZABM 0.8202 0.8213 0.13 2.05E-09 

NABM 0.8187 0.8197 0.13 5.02E-11 

UBMA 0.8180 0.8203 0.28 1.11E-04 

NBMA 0.8186 0.8195 0.11 4.13E-09 

XNABM 0.8176 0.8181 0.06 3.09E-05 

SBMA 0.8164 0.8153 -0.14 2.48E-07* 

LBMA 0.8143 0.8154 0.13 8.88E-10 

XLABM 0.8144 0.8150 0.07 1.46E-05 

GE_BP 

AGIC 0.2873 0.2877 0.14 6.90E-03 

ZGIC 0.2869 0.2875 0.20 2.45E-06 

WGIC 0.2839 0.2843 0.15 8.14E-03 

UABM 0.2826 0.2855 1.00 1.05E-02 

ADIC 0.2829 0.2839 0.35 2.20E-09 

UDIC 0.2812 0.2854 1.50 6.73E-04 

UBMA 0.2800 0.2828 0.99 1.25E-02 

AUIC 0.2851 0.2774 -2.69 5.28E-02* 

ZDIC 0.2798 0.2809 0.40 1.32E-13 

UGIC 0.2762 0.2815 1.93 4.43E-06 

GE_MF 

AGIC 0.2022 0.2023 0.05 3.69E-01 

ADIC 0.2002 0.2008 0.26 1.84E-02 

AUIC 0.1957 0.1973 0.81 3.69E-01 

XNBMA 0.1905 0.1921 0.85 6.18E-03 

WGIC 0.1898 0.1894 -0.21 6.39E-03* 

UABM 0.1886 0.1902 0.88 9.67E-07 

XNABM 0.1886 0.1902 0.88 6.69E-03 

UBMA 0.1886 0.1902 0.85 9.67E-07 

ZGIC 0.1885 0.1881 -0.20 2.24E-02* 

ZDIC 0.1839 0.1838 -0.06 3.68E-01 

GE_CC 

ZDIC 0.4253 0.4263 0.24 8.32E-09 

ZGIC 0.4233 0.4236 0.07 5.59E-02 

ADIC 0.4220 0.4229 0.21 2.53E-07 

ZUIC 0.4229 0.4189 -0.95 2.89E-01 

AGIC 0.4202 0.4204 0.05 1.89E-01 

AUIC 0.4190 0.4158 -0.76 3.12E-01 

WGIC 0.4081 0.4077 -0.10 8.64E-04 

WDIC 0.4063 0.4064 0.04 3.12E-01 

WUIC 0.4037 0.3932 -2.59 4.92E-02* 

UABM 0.3940 0.3997 1.45 1.24E-06 

UDIC 0.3920 0.3980 1.55 9.21E-10 
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Conclusions   

 

 From GO annotations, many funsim measures have been proposed for efficient 

exploitation of biological knowledge embedded in omics data. These measures were derived 

based on the topological structure of GO semantics and GO annotations of the genes/proteins 

annotating (background) corpus. However, the representativeness of GO terms of two 

querying genes has been neglected in deriving their functional measures. We proposed an 

enriched functional similarity between two genes, funsim*, that incorporates the enrichment 

of GO terms of the genes and demonstrated improvements of performance of a large majority 

of funsim measures in the literature.  

 We tested funsim* measures on 44 funsim measures on three benchmark datasets 

including sequence similarities given by the CESSM dataset, yeast GE data, and yeast PPI 

data. We performed a quantitative performance evaluation of funsim measures that adopt 

different methods for evaluating IC and combining semantic similarities of GO terms. Results 

indicate that funsim* generally improves the performance of funsim measures in predicting 

sequence similarities, gene co-expressions, and protein-protein interactions. We conclude that 

the enrichment by the querying genes is a necessary step when computing their functional 

similarities. Especially, for funsim measures considering both common terms and individual 

terms of the two genes, e.g., Wang approach, the performances of funsim* improved much 

significantly over funsim measure. We also noticed that funsim* significantly improved the 

performance especially on datasets containing a lot of uniquely annotated genes (i.e., those in 

the low levels of GO hierarchy). 

 Funsim* is easily adapted to and generally improves the performance of any funsim 

measure. One could extend our method to evaluate the functional coherence of gene sets, 

which will have applications in the detection of functional modules or pathways. On the other 
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hand, the accuracy of GO annotation naturally limits the performance of existing funsim 

measures as they do not consider both the local context of two genes and the background 

distribution of terms in the annotating corpus. Our experiments suggest that the local context 

of querying genes is sensitive to the missing and spurious terms in the GO annotating corpus. 

Funsim* measures help find the most significant functionally similar genes and provide more 

reliable computational evidences for finding new pathways and disease genes. We conclude 

that the GO enrichment is an essential step when assessing functional similarity of two genes.   

 

Online Methods   

 

Data Sets 

We investigated the performance of funsim* by evaluating their correlations with sequence 

similarities, gene co-expressions, and protein-protein interactions. Molecules with sequence 

similarities are likely to have similar functions or MF ontology. Molecules with similar gene 

expressions are likely to belong to the same pathway or have similar BP ontology. Interacting 

proteins are located in the same cellular location, so likely to have the similar CC ontology.  

We adopted the same benchmark datasets used by earlier comprehensive studies evaluating 

funsim measures. Correlations of funsim and enriched funsim*  measures with protein sequence 

similarities from Collaborative Evaluation of Semantic Similarity Measures (CESSM) online 

tool (Pesquita et al. 2009), gene expression (GE) correlations (Yang et al. 2012) and AUC 

scores on predicting protein-protein interactions(Pesaranghader et al. 2015) were evaluated. 

Experimental results demonstrate that the enriched functional similarity measure funsim* 

significantly improves the performance over existing funsim measures on benchmark datasets. 

 

Correlation with sequence similarity 
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Various studies have shown that similar sequences have similar ontological annotations(Lord 

et al. 2003) and used sequence similarities to demonstrate the goodness of similarity 

measures (Yang et al. 2012) (Pesaranghader et al. 2015). For BP and MF, we use the CESSM 

online tool (Pesquita et al. 2009) (http://xldb.di.fc.ul.pt/tools/cessm/) and downloaded the 

dataset of selected human proteins with known relationships to compare different measures. 

The CESSM website provides a list of protein pairs and similarity between pairs of proteins, 

using three distinct evaluations:  sequence similarity (SeqSim), Pfam domain similarity, and 

enzyme commission class (ECC) similarity. High correlations between protein similarities 

captured by SeqSim, Pfam similarity, and ECC similarity indicate the goodness and 

unbiasedness of a funsim measure.  

 

Correlation with gene expressions 

Genes involved in the same biological process, sharing similar functions or cellular 

components, tend to exhibit similar expression patterns, so a good correlation should exist 

between co-expressed genes and functional similarities. We used the same gene-expression 

dataset of S.cerevisiae, used by earlier studies (Yang et al. 2012) (Pesaranghader et al. 2015), 

which contains co-expression values of 4800 pairs of genes for each ontology, downloaded 

from GeneMANIA (Gillis & Pavlidis 2013) and other microarray experiments. We computed 

Pearson’s correlations between gene co-expressions and functional similarity values of BP, 

MF and CC ontologies.  

 

AUC on predicting protein-protein interactions 

Two interacting proteins have the same CC, share similar functions, and are likely to belong to 

same BP. Therefore, functional similarity between two proteins is an indicative of an 

interaction (Chabalier et al. 2007) (Maetschke et al. 2012).  Similar to an earlier study 
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(Pesaranghader et al. 2015), we formulated the prediction of protein-protein interaction (PPI) 

as a classification problem using functional similarities of the two proteins. Above a certain 

threshold of functional similarity, an interaction is identified between two proteins. We 

gathered data from a yeast dataset (Pesaranghader et al. 2015) containing 6,000 PPI pairs for 

each gene ontology where about half of the data are positive interactions from a core subset of 

the Database of Interacting Proteins (DIP) (Salwinski et al. 2004); and the other half are 

negative interactions generated by randomly choosing annotated protein pairs in that ontology. 

For evaluation, we used the area under the curve (AUC) values of the receiver operating 

characteristic (ROC) curve of the predictor. The ROC curves plot the true positive rate 

(sensitivity) vs false positive rate (1-specificity) values for prediction at different thresholds.  

 

Significance test for correlation improvement 

To show any improvement of the enriched funsim measures, funsim*, we computed the 

improved percentage of the correlations between funsim score and sequence similarity score 

and gene co-expression score, and of AUC of prediction of PPIs. To determine the statistical 

significance of an improvement of correlation or AUC values for each funsim to funsim* 

measure, we adopted Williams test (DA Williams 1972) for correlations between two metrics 

(Steiger. 1980) (Graham & Baldwin 2014). Specifically, to test whether the population 

correlation between 𝑋1 and 𝑋3 equals the population correlation between 𝑋2 and 𝑋3, we 

computed the following t-test:  

𝑡(𝑛 − 3) =
(𝑟13 − 𝑟12)√(𝑛 − 1)(1 + 𝑟12)

√2𝐾(𝑛 − 1)
(𝑛 − 3)

+
(𝑟23 + 𝑟13)

4

2

(1 − 𝑟12)3

 

where 𝐾 = 1 − 𝑟12
2−𝑟13

2−𝑟23
2 + 2𝑟12𝑟13𝑟23. 
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 The higher the correlation between the metric scores, the greater is the statistical power of 

this test than the Fisher r to z-transformation test on independent correlations. As funsim and 

funsim* are highly correlated, we used this Williams test (DA Williams 1972)and adopted 

FDR for multiple test correction. 

To determine whether correlations or AUC values are significantly improved for all funsim 

measures to funsim* on each dataset (CESSM, yeast GE, yeast PPI, and the combination of 

the three datasets), we implemented the Wilcoxon signed rank test with continuity 

correction(Longnecker 1983), which tests repeated measurements on a single sample to 

assess whether their population mean ranks differ. This test is suggested as an alternative for 

t-test for dependent samples when the population cannot be assumed to be normally 

distributed. We used one-sided Wilcoxon signed rank test to show whether funsim* 

significantly improves the performance of funsim irrespective of the funsim measure and the 

type of ontology.  

 

Funsim measures 

The information content of a gene ontology term 

Gene ontology (GO) describes an ontology of terms describing how gene products behave in 

a cellular context in a species-independent manner. Gene ontology covers three domains: 

biological process (BP), molecular function (MF), and cellular component (CC). BP is a 

collection of molecular events, MF defines gene functions in biological processes, and CC 

describes gene locations within a cell. A gene is associated with GO terms that describe the 

properties of its products (i.e., proteins), and the annotation corpus or gene ontology 

annotation (GOA) file corresponds to an organism. 

There are three semantic relations between two GO terms: is-a is used when one GO term is a 

subtype of another GO term, part-of is used to represent part-whole relationship in the GO 
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terms, and regulate is used when the occurrence of one biological process directly affects the 

manifestation of another process or quality(Gene & Consortium 2000). The GO terms and 

their relations are constructed in a hierarchical directed acyclic graph (DAG) where the three 

domains, BP, MF and CC, are represented as three roots at the topmost level. Nodes/terms 

near the root of a DAG have broader functions and are hence shared by many genes; leaf 

nodes/terms on the other hand convey more specific biological functions.  

GOA is the process in which gene or gene products are annotated using GO terms. GOA data 

can be readily downloaded from the GO annotation database 

(http://www.geneontology.org/GO.downloads.annotations.shtml) for a species. The 

hierarchical structure of GO allows annotators to assign properties of genes or gene products 

at different levels, depending on the availability of the information about the entity. 

Typically, when inferring information of a gene that is annotated by some hierarchy of GO 

terms, more specific information on biological functions at lower levels are chosen as the 

inference base due to their richer information content. 

The information content of a GO term t is defined as 

𝐼𝐶(𝑡) = −log 𝑝(𝑡), 

where 𝑝(𝑡), the probability of term t annotating to a gene, is usually defined as the frequency 

of the term t relative to the frequency of the root term in the same ontology tree, given a 

corpus (e.g., an organism) of annotating genes. The term probability is given by 

𝑝(𝑡) =
𝑀

𝑁
 

where M is the number of genes annotated by term t and N is the total number of genes in the 

annotating corpus. According to the true-path-rule, when a gene is annotated by a term, the 

gene should be also annotated by ancestor terms because of the hierarchical structure of GO. 

Thus, the frequency of the root term is equal to the number of all genes in annotating 
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organism and this definition of 𝑝(𝑡) assumes a uniform distribution of probabilities to 

randomly annotating a gene by term t. 

In topology-based semantic measures, 𝑝(𝑡) depends on the topological position of the term in 

GO-DAG. Specifically, Zhang’s method(Zhang et al. 2006) defines a D-value for a term by 

recursively summing gene counts of all its children from the bottom up. For a pair of terms, 

D-value is defined as the minimum D-value of their common ancestors. In GO-universal 

method (Mazandu & Mulder 2013),  

𝑝(𝑡) = {

1,                    𝑖𝑓   𝑡 𝑖𝑠 𝑟𝑜𝑜𝑡

∏
𝑝(𝑥)

|𝐶(𝑥)|
𝑥∈𝑃𝑡

     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

where 𝑃𝑡 is the parent term set of term t, and |𝐶(𝑥)| is the number of children with term x as 

parent. 

 

Semantic similarity measures between two GO terms 

Several approaches have been proposed for determining the semantic similarity measure 

between two GO terms, including annotation-based measures such as Resnik(Resnik 1999), 

Lin(Lin 1998), Jiang & Conrath(Jiang & Conrath 1997), Nunivers(Mazandu & Mulder 

2013), corrections to annotation-based measures such as Graph-based Similarity (Disjunct 

Common Ancestor eXended GraSM, denoted as XGraSM(Couto & Silva 2011)), relevance 

similarity (Schlicker et al. 2006); and topology-based measures, such as Zhang(Zhang et al. 

2006), GO-universal(Mazandu & Mulder 2013) and Wang(Wang et al. 2007) approaches. An 

implementation of these measures is provided by the A-DaGO-Fun tool(Mazandu et al. 

2015).   

 

For Resnik(Resnik 1999) measure, simantic simiarity of two terms 𝑡1 and 𝑡2 is defined as 

information content of their most informative common ancestor (MICA), denoted by 𝑡0. 
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𝑆𝑟(𝑡1, 𝑡2) = IC(𝑡0) = max{𝐼𝐶(𝑥): 𝑥 ∈ 𝑃𝑡1 ∩ 𝑃𝑡2} 

Since GO enrichment applies when both individual and common terms are considered and 

the Resnik(Resnik 1999) measure solely considers the terms annotated to both two genes, so 

both funsim and funsim* using Resnik measures have no difference, so Resnik measure is not 

considered in our assessment.  

The Lin(Lin 1998) semantic similarity measure takes MICA between terms and normalized 

by the average of IC values of the two terms. 

𝑆𝑙(𝑡1, 𝑡2) =
2 × 𝐼𝐶(𝑡0)

𝐼𝐶(𝑡1) + 𝐼𝐶(𝑡2)
 

Note that the Jiang & Conrath(Jiang & Conrath 1997) measure is a particular case of Lin 

approach, so only Lin measure is considered in the experiments. The Nunivers(Mazandu & 

Mulder 2013) measure was proposed to satisfy the requirement that the similarity between a 

term to itself should be one:  

𝑆𝑛(𝑡1, 𝑡2) =
𝐼𝐶(𝑡0)

max {𝐼𝐶(𝑡1), 𝐼𝐶(𝑡2)}
 

The Schlicker(Schlicker et al. 2006) measure combines Resnik(Resnik 1999) with Lin(Lin 

1998) similarity as 

𝑆𝑠(𝑡1, 𝑡2) =
2 × 𝐼𝐶(𝑡0)

𝐼𝐶(𝑡1) + 𝐼𝐶(𝑡2)
(1 − exp (−𝐼𝐶(𝑡0))) 

The graph-based (XGraSM(Couto & Silva 2011)) extensions of Lin(Lin 1998) and 

Nunivers(Mazandu & Mulder 2013) measures, respectively, are 

𝑆𝑥𝑙(𝑡1, 𝑡2) =
2 × 𝐼𝐶(𝑡0)

𝐼𝐶(𝑡1) + 𝐼𝐶(𝑡2)

1

𝑛
(1 +∑

𝐼𝐶(𝑡𝑗)

𝐼𝐶(𝑡0)

𝑛−1

𝑗=1

) 

𝑆𝑥𝑛(𝑡1, 𝑡2) =
𝐼𝐶(𝑡0)

max {𝐼𝐶(𝑡1), 𝐼𝐶(𝑡2)}

1

𝑛
(1 +∑

𝐼𝐶(𝑡𝑗)

𝐼𝐶(𝑡0)

𝑛−1

𝑗=1

) 
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where n is the number of all informative common ancestors of the terms 𝑡1 and 𝑡2, the 

ancestor terms are ordered in an increasing order of information content, and nth ancestor 

term is MICA. 

In topology-based measures by Zhang(Zhang et al. 2006), GO-universal(Mazandu & Mulder 

2013) and Wang(Wang et al. 2007), the information content also incorporates the position 

characteristics from GO-DAG topology, and their definitions were as given in the 

information contents section. Wang(Wang et al. 2007) considered semantic value 𝑠𝑡 of term t, 

recursively from its children set (𝐶(𝑥) is the children set with term x as parent)  based on the 

semantic contribution factor 𝑤𝑒 for is-a and part-of as 0.8 and 0.6, respectively. 

𝑠𝑡(𝑥) = {
1,                    𝑖𝑓  𝑥 =  𝑡

max{𝑤𝑒𝑠𝑡(𝑥
′): 𝑥′ ∈ 𝐶(𝑥)} ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

And the information content is computed from the summation of the semantic values of all its 

ancestors set  𝑃𝑡 , 

𝐼𝐶𝑊(𝑡) = ∑ 𝑠𝑡(𝑥)

𝑥∈𝑃𝑡∪{𝑡}

 

𝑆𝑤(𝑡1, 𝑡2) = ∑
𝑠𝑡1(𝑡) + 𝑠𝑡2(𝑡)

𝐼𝐶(𝑡1) + 𝐼𝐶(𝑡2)
𝑡∈𝑃𝑡1∩𝑃𝑡2

 

 

Functional similarity (funsim) measures between two genes 

Functional similarity between two genes is computed from a combination of their annotating 

GO terms by using basic statistical measures of closeness (mean, max, min, etc.) such as 

Best-Match Average (BMA), Average Best-Matches (ABM), Average (AVG) and Maximum 

(MAX). These measures of closeness are known to be sensitive to biases introduced by the 

abnormal distances from the majority, or outliers.  

Funsim measures based-on basic statistical measures between semantic similarities between 

two genes 𝑔1 and 𝑔2 are defined as 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 26, 2017. ; https://doi.org/10.1101/155689doi: bioRxiv preprint 

https://doi.org/10.1101/155689
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

𝐴𝑣𝑔(𝑔1, 𝑔2  ) =
1

|𝑇𝑔1||𝑇𝑔2  |
 ∑ 𝑆(𝑡1, 𝑡2)

𝑡1∈𝑇𝑔1 ,𝑡2∈𝑇𝑔2 

 

𝑀𝑎𝑥(𝑔1, 𝑔2  ) = max {𝑆(𝑡1, 𝑡2): 𝑡1 ∈ 𝑇𝑔1 , 𝑡2 ∈ 𝑇𝑔2 } 

𝐵𝑀𝐴(𝑔1 , 𝑔2 ) =
1

2
(
1

|𝑇𝑔1|
 ∑ 𝑆(𝑡1, 𝑡2)

𝑡1∈𝑇𝑔1

+
1

|𝑇𝑔2  |
 ∑ 𝑆(𝑡1, 𝑡2)

𝑡2∈𝑇𝑔2 

) 

𝐴𝐵𝑀(𝑔1 , 𝑔2  ) =
1

|𝑇𝑔1||𝑇𝑔2  |
( ∑ 𝑆(𝑡1, 𝑡2)

𝑡1∈𝑇𝑔1

+ ∑ 𝑆(𝑡1, 𝑡2)

𝑡2∈𝑇𝑔2 

) 

where 𝑇𝑔1  is the annotated term set of gene 𝑔1. 

Other measures such as SimGIC(Pesquita et al. 2008), SimDIC(Mazandu & Mulder 2013), 

and SimUIC(Mazandu & Mulder 2013) use the IC of terms directly in the computation of 

functional similarity. Direct term-based funsim measures are defined as 

𝑆𝑖𝑚𝐺𝐼𝐶(𝑔1, 𝑔2  ) =
∑ 𝐼𝐶(𝑡)𝑡∈𝑇𝑔1∩𝑇𝑔2 

∑ 𝐼𝐶(𝑡)𝑡∈𝑇𝑔1∪𝑇𝑔2 

  

𝑆𝑖𝑚𝐷𝐼𝐶(𝑔1, 𝑔2 ) =
2 × ∑ 𝐼𝐶(𝑡)𝑡∈𝑇𝑔1∩𝑇𝑔2 

∑ 𝐼𝐶(𝑡) + ∑ 𝐼𝐶(𝑡)𝑡∈𝑇𝑔2 𝑡∈𝑇𝑔1

  

𝑆𝑖𝑚𝑈𝐼𝐶(𝑔1 , 𝑔2  ) =
∑ 𝐼𝐶(𝑡)𝑡∈𝑇𝑔1∩𝑇𝑔2 

max {∑ 𝐼𝐶(𝑡), ∑ 𝐼𝐶(𝑡)}𝑡∈𝑇𝑔2 𝑡∈𝑇𝑔1

  

 

Table 3 categorizes 44 funsim measures in the literature, based on combination of nine GO 

semantic measures (the first three based on topology from GO-DAG, and the other six based 

on corpus annotation), basic statistical measures (MAX, AVE, BMA, ABM), and three direct 

term-based measures.  

 

Table 3. The details and categorization of 44 funsim measures 

Acronyms 
Semantic similarity 

method 

Statistical Measures 
Direct term-based 

Measures  

ABM BMA MAX AVG DIC GIC UIC 
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U 
GO-universal (Mazandu, 

& Mulder., 2013) 
UABM UBMA UMAX UAVG UDIC UGIC UUIC 

Z 
Zhang (Zhang., et al., 

2006),  
ZABM ZBMA ZMAX ZAVG ZDIC ZGIC ZUIC 

W Wang (Wang., 2007)  WABM WBMA WMAX WAVG WDIC WGIC WUIC 

N 
Nunivers (Mazandu, & 

Mulder., 2013) 
NABM NBMA NMAX NAVG - - - 

XN 

XGraSM (Couto et al., 

2007) on Nunivers 

(Mazandu, & Mulder., 

2013) 

XNABM XNBMA XNMAX XNAVG - - - 

L Lin (Lin., 1998) LABM LBMA LMAX LAVG - - - 

XL 
XGraSM (Couto et al., 

2007) on Lin (Lin., 1998) 
XLABM XLBMA XLMAX XLAVG - - - 

S 

Relevance similarity 

(Schlicker, Domingues, 

Rahnenführer, & 

Lengauer, 2006) 

SABM SBMA SMAX SAVG - - - 

A 
Annotation-based 

approach 
- - - - ADIC AGIC AUIC 
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Enriched term probability p*(t) and functional similarity funsim*  

Earlier approaches of functional similarity (funsim) assume the representativeness of GO 

terms based on the annotating corpus (or GOA file). They fail to take into account the 

enrichment by the querying pair of genes. GO enrichment usually assumes a hypergeometric 

distribution of annotating terms t in a given gene set(Huang et al. 2008) and has been 

effectively used in finding pathways most represented by the gene set. We propose to 

incorporate GO-enrichment in the computation of functional similarity between a pair of 

genes. Specifically, for two genes, a term t annotated to only one gene and to both two genes 

should be treated differently.  

The probability of term t annotating k genes by in a gene set of size n is given by a 

hypergeometric distribution as 

𝑝(𝑘, 𝑛|𝑡) =
(
𝑀
𝑘
)(
𝑁 − 𝑀
𝑛 − 𝑘

)

(
𝑁
𝑛
)

, 𝑘 = {0,⋯ , 𝑛} 

where N is the number of annotated genes in an organism and M is the number of genes 

annotated by term t.  The joint probability of annotating k genes in a gene set with size n by 

term t for a corpus with N genes is given by 

𝑝(𝑘, 𝑛, 𝑡) = 𝑝(𝑘, 𝑛|𝑡)𝑝(𝑡) =
(
𝑀
𝑘
)(
𝑁 − 𝑀
𝑛 − 𝑘

)

(
𝑁
𝑛
)

𝑀

𝑁
 , 𝑘 = {0,⋯ , 𝑛} 

the 𝑝(𝑡) =
𝑀

𝑁
 is the term probabilities inferred by the annotating corpus. We define the 

enriched probability term p*(t) as this joint probability in order to combine GO enrichment in 

the context of gene pairs to compute functional similarities between two genes.  

For a given pair of genes, term probabilities p(t) are evaluated using GOA data and n=2 and 

k= 1, or 2 are used for calculation of enriched term probabilities p*(t).  
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𝑝∗(𝑡) = 𝑝(𝑘, 2, 𝑡) =
(
𝑀
𝑘
)(
𝑁 − 𝑀
2 − 𝑘

)

(
𝑁
2
)

𝑀

𝑁
=

{
 
 

 
 2𝑀(𝑁 −𝑀)

𝑁(𝑁 − 1)

𝑀

𝑁
,    𝑖𝑓 𝑘 = 1

𝑀(𝑀 − 1)

𝑁(𝑁 − 1)

𝑀

𝑁
,     𝑖𝑓 𝑘 = 2

 

Enriched functional similarity funsum* is obtained by funsim measures computed from 

enriched probability term p*(t) instead of p(t) in computing information contents and 

semantic similarities. 
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