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ABSTRACT 27 
 28 
Neural basis of consciousness and its suppression are typically studied by manipulating stimuli 29 
around the conscious access threshold, or – alternatively – by contrasting conscious and 30 
unconscious states (i.e. awake/sleep). Here we show that behavioural and neural markers of 31 
conscious access are dependent on wakefulness state, and thus a comprehensive description of the 32 
neural basis of conscious access requires an integrated assessment of the state of consciousness. In 33 
particular, we demonstrate that a distinctive steepness of a behavioural slope of conscious access is 34 
severely compromised during the transition to sleep. Likewise, electrophysiological markers show a 35 
delayed processing of target-mask interaction during drowsiness. Consequently, the resolution of 36 
conscious access shifts from perceptual to executive stages of processing in the drowsy state of 37 
consciousness. Once the goal is set – to report the awareness of a target – the brain is capable to 38 
adapt to rapidly changing wakefulness states, revealing that the neural signatures of conscious 39 
access and its suppression may not be hard-wired but flexible to maintain performance. 40 
 41 
 42 
INTRODUCTION 43 

 44 
In the past decade, two independent research programs have crystalized for studying neural correlates of 45 
consciousness (NCC): one program focuses on the neural mechanisms of conscious access(Dehaene & 46 
Changeux, 2011; Koch, Massimini, Boly, & Tononi, 2016), while the other one seeks to explain the 47 
neural basis of a state of consciousness(Fernández-Espejo & Owen, 2013; Siclari et al., 2016; 48 
Tagliazucchi, Behrens, & Laufs, 2013). Conscious access, reportable awareness of exogenous input, is 49 
typically studied by presenting target stimuli around a threshold value, which enables a contrast between 50 
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trials of presence versus absence of reported awareness. A paradigmatic example of this approach is the 51 
presentation of targets with variable intensities of noise, rendering them inaccessible in a subset of 52 
trials(Marcel, 1983). Proposed neural correlates of conscious access could be grouped into relatively 53 
‘early’ processes such as recurrent processing within sensory cortices and sensory-central interactions 54 
(~100-250 ms post-stimulus)(Boehler, Schoenfeld, Heinze, & Hopf, 2008; Railo, Koivisto, & Revonsuo, 55 
2011), and relatively ‘late’ contribution of central executive processes (~250-400 ms post-56 
stimulus)(Dehaene, Charles, King, & Marti, 2014; Antoine Del Cul, Baillet, & Dehaene, 2007). While a 57 
theoretical disagreement persists as to whether the early candidates for NCC reflect a ‘pre-58 
conscious’(Dehaene, Changeux, Naccache, Sackur, & Sergent, 2006) or a ‘phenomenally 59 
conscious’(Koch et al., 2016; Koivisto & Revonsuo, 2010) stage of processing, a general consensus is that 60 
reportable conscious access is associated with the late executive NCC. The Global Neuronal Workspace 61 
model of consciousness interprets the late NCC as a non-linear stage of processing when specific 62 
information of sensory input is amplified and re-encoded in additional areas, including a prefrontal–63 
parietal network(Baars, Franklin, & Ramsoy, 2013; Dehaene et al., 2014; Salti et al., 2015). As such, 64 
conscious access is characterized -both behaviourally and neurophysiologically- by a sigmoidal 65 
relationship between performance/brain markers and degree of masking(Antoine Del Cul et al., 2007; 66 
Fisch et al., 2009; Moutard, Dehaene, & Malach, 2015). 67 

Instead of contrasting trials that differ in the awareness of particular stimuli, the second group of 68 
NCC studies aims to contrast different states of consciousness, such as awake vs. sedated(Barttfeld et al., 69 
2015), awake vs. anaesthetized(Langsjo, Revonsuo, & Scheinin, 2014),  awake vs. asleep(Tagliazucchi et 70 
al., 2013), dreaming vs. dreamless sleep(Siclari et al., 2016), or minimally conscious state vs. 71 
unresponsive wakefulness syndrome(Demertzi et al., 2015). Typically, the states of consciousness are 72 
characterized by relatively stable neural processes that range between several hundreds of milliseconds to 73 
minutes and can be measured by indices of oscillatory dynamics and information sharing(Chennu et al., 74 
2014; King et al., 2013; Sitt et al., 2014; Tagliazucchi & Laufs, 2014). From the perspective of the parallel 75 
program of research into conscious access, state NCC are typically regarded as an enabling factor 76 
determining the capacity for conscious access (Chalmers, 2000; Singer, 2015). That is, state NCC are seen 77 
as necessary to enable conscious access, but their proposed role is limited to arousal modulation, and their 78 
likely influence on conscious access mechanism has not been considered, nor included formally in 79 
integrative models of consciousness. In contrast to this mainstream view, we propose that arousal is 80 
unlikely to simply act as an enabling factor for conscious access but in fact it may differentially modulate 81 
the neural processes leading to conscious access. 82 

Here we integrated the conscious access- and the conscious state-focused NCC programs by 83 
studying behavioural and neural dynamics of auditory backward-masked targets in the transition from 84 
awake to sleep(Goupil & Bekinschtein, 2012). In particular, we suppressed consciousness along two 85 
dimensions: (1) conscious access was exogenously manipulated by masking the auditory targets, and (2) 86 
the overall level of wakefulness was endogenously decreased by facilitating natural transition from awake 87 
to sleep. This experimental paradigm reduced arousal and yielded a considerable proportion of drowsy yet 88 
responsive trials. This way, we were able to study the interaction between conscious access (“aware” vs. 89 
“unaware” trials) and conscious states (“awake” vs. “drowsy” trials). Based on the premises that (1) 90 
conscious access depends on the sensory activation as well as fronto-parietal hub(Dehaene & Changeux, 91 
2011; Koivisto & Revonsuo, 2010), (2) both sensory-perceptual and fronto-parietal networks are impaired 92 
in drowsiness(Ogilvie, 2001; Olbrich et al., 2009; Picchioni et al., 2008), (3) behavioural performance 93 
diminished in drowsiness(Bareham, Manly, Pustovaya, Scott, & Bekinschtein, 2014; Vyazovskiy et al., 94 
2011), we predicted an interaction between conscious state and access: that the slope of conscious access 95 
will decrease as a function of arousal, whilst the corresponding sensory and executive electrophysiological 96 
markers of conscious access will show more sluggish dynamics in a drowsy state of consciousness. 97 
Indeed, our findings confirm that both the behavioural and electrophysiological correlates of conscious 98 
access are altered by changing the state of wakefulness. 99 

 100 
 101 
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RESULTS  102 
 103 

To investigate neural correlates of conscious access in the transition from wakefulness to sleep, an 104 
auditory detection task was carried out with human participants (N=31) while they were entering a 105 
daytime nap, i.e. participants were encouraged to relax and fall asleep if they wished so. On test trials, a 106 
target sound was presented and then followed by a masking noise after one of 11 intervals of silence 107 
centred on an individualised target detection threshold (see Fig 1A). Participants were instructed to report 108 
if they have heard a target sound or not after a response cue. High-density electroencephalography (EEG) 109 
measurements were carried out throughout the experiment. To assess the fluctuating level of arousal at a 110 
single trial level, two EEG measures were derived from the spontaneous pre-stimulus oscillations. First, 111 
the ratio of theta/alpha (θ/α: 4-7 Hz/8-12 Hz) spectral power over a 2 sec pre-stimulus period was used for 112 
behavioural analyses (see Fig 1 and Online Methods); and second, Hori stages of sleepiness over a 4 sec 113 
pre-trial period were assessed for EEG analyses (Bareham, Manly, Pustovaya, Scott, & Bekinschtein, 114 
2014; Hori, Hayashi, & Morikawa, 1994). As a complementary behavioural measure of drowsiness, 115 
reaction times (RT) locked to the onset of response cue were calculated.  116 
 117 

[insert Figure 1] 118 
 119 
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 120 
Figure 1. Experimental design and measurement of drowsiness. (A) Trial structure depicted in a time window of 121 
a single EEG epoch from -4000 ms to 6000 ms in relation to the onset of a target tone. Following a target tone that 122 
lasted for 10 ms, a variable gap of silence took place until the onset of a masking noise. A mask lasted for 300 ms 123 
(marked as a grey shaded bar) and 1000 ms after its offset the target tone was presented again, this time acting as a 124 
response cue. Participants were instructed to respond if they could hear the target tone preceding the masking noise. 125 
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Responses beyond 6000 ms from the onset of target were not considered and the trial was regarded as unresponsive. 126 
Green lines indicate time windows of the three measures of drowsiness: -4000 ms to 0 ms period was used for 127 
scoring Hori stages of sleep onset (in this example, Hori Stage 5 is shown in the right occipital channel); -2000 ms 128 
to 0 ms time window was used to calculate EEG spectral power ratio between theta (4-7 Hz) and alpha (8-12 Hz) 129 
frequency bands; and a time window from the response cue to the response was used as an indirect behavioural RT 130 
measure of drowsiness. (B) EEG examples and brief definitions of 9 Hori stages of sleep onset progression from the 131 
relaxed wakefulness to the non-rapid eye movement (NREM) Stage 2 sleep (modified with permission 132 
from(Ogilvie, 2001)). Hori stages 1-2 defined awake trials (marked in red), whereas Hori stages (4-5) defined 133 
drowsy trials (marked in blue). (C) Percentage of trials scored as different Hori stages within each participant 134 
whose data were used for the analyses of conscious access. Datasets are sorted here from the most alert participants 135 
1-6 with the dominance of Hori stage 1 to the drowsiest participants 30 and 31 with the dominance of Hori stage 5. 136 
There were relatively few epochs of Hori stage 4 (EEG flattening is known to last for a relatively short period of 137 
time(Doerfling, P., Ogilvie, R.D., Murphy, T., Lamarche, 1996)) and Hori stages 6 and above. (D) A representative 138 
dataset of one participant with good agreement between the three measures of drowsiness across 500 consecutive 139 
trials. The top subplot indicates Hori stages, the middle subplot depicts θ/α ratio, and the bottom subplot shows 140 
fluctuation of RT. An RT of 0 indicates an unresponsive trial, whereas a negative RT indicates a premature 141 
response that took place before the response cue. (E) Correlations between different measures of drowsiness: Hori 142 
stages vs. θ/α power (top), Hori stages vs. RT (middle), and θ/α power vs. RT (bottom). Bars represent intra-143 
individual Spearman’s rank order correlation coefficients between the respective measures of drowsiness for 31 144 
participants, sorted from the most positive to the least positive correlation coefficients. Green bars represent 145 
participants with a significant intra-individual correlation, whereas white bars represent participant who did not 146 
show a significant correlation between two respective measures of drowsiness. Group level analyses of the 147 
correlation coefficients were carried out using one-sample t tests with the following levels of significance: ** 148 
p<0.005; ***p<0.0005; *****p<0.000005. While some individuals showed a consistent pattern of state-fluctuation 149 
across all three measures of drowsiness, a very high convergence was observed only between Hori and θ/α 150 
measures of drowsiness. 151 

 152 
 153 
Transition to sleep modulates behavioural marker of conscious access  154 

To compare distribution of a hit rate as a function of conscious state, sigmoid function was fitted across 155 
11 gap conditions for each participant separately for the θ/α- and RT-defined awake and drowsy trials, 156 
yielding individual threshold and slope estimates for both states of consciousness. While the threshold of 157 
conscious access did not differ significantly between awake and drowsy trials, we observed a significant 158 
decrease of sigmoid slope in drowsy states of consciousness (see Fig 2A-B, Supplementary Table 1, and 159 
Supplementary Fig 1A-B). Notably, a decreased slope in drowsiness was observed following four 160 
alternative splits of data defined by θ/α and RT measures of drowsiness (θ/α-33%, θ/α-50%, RT-33%, and 161 
RT-50%; see Online Methods). In all cases, the decreasing slope of sigmoid function indicated that 162 
conscious access becomes more gradual in the transition from wakefulness to sleep. 163 

To test formally if the dynamics of conscious access differs between states of consciousness, we 164 
analysed how well the behavioural data fits a sigmoidal versus a linear model, comparing the coefficient 165 
of determination R2 of both models in the θ/α- and RT-defined awake and drowsy states. A significant 166 
Models x States interaction was observed (θ/α-33%: F(1,26)=13.82, p=0.0009, see Fig 2C; RT-33%: 167 
F(1,25)=33.34, p=0.000005). Even though sigmoidal models had a higher R2 than linear models in both 168 
states of consciousness, a difference between the models was significantly lower in drowsiness (θ/α-33%: 169 
M=0.057, SEM=0.015; RT-33%: M=0.037, SEM=0.01) than in wakefulness (θ/α-33%: M=0.098, 170 
SEM=0.014, t(26)=3.72, p=0.001, d=0.54; RT-33%: M=0.114, SEM=0.015, t(25)=5.77, p=0.000005, 171 
d=5.97). These findings point to a change of conscious access dynamics in the transition from 172 
wakefulness to sleep. As the slope of conscious access decreases in drowsy states of consciousness, a 173 
distinction between “aware” and “unaware” trials becomes less dichotomous.  174 

Hypothetically, the decrease of slope in trials split by EEG θ/α power ratio may have depended on 175 
neurocognitive processes other than changes in arousal, e.g. changes in pre-stimulus alpha power may 176 
reflect endogenous fluctuation of attentional sampling and/or sensory gating(Capotosto, Babiloni, 177 
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Romani, & Corbetta, 2009; van Dijk, Schoffelen, Oostenveld, & Jensen, 2008). To examine this 178 
alternative, we carried out a complementary analysis based on Hori-defined stages of the transition from 179 
wakefulness to sleep. For each individual, the percentage of hits in the most difficult gap conditions ‘-180 
100%’, ‘-75%’, ‘-50%’ was subtracted from the percentage of hits in the easiest gap conditions ‘+50%’, 181 
+75%’, ‘+100%’, separately for each of the available Hori Stages 1-6. The difference score between the 182 
easy and difficult conditions decreased from Hori Stage 1 to Stage 6 (F(1,5)=30.18, p<0.00005; see Fig 183 
2D), confirming that participants gave less “aware” responses in the easy trials and more “aware” 184 
responses in the difficult trials when the level of drowsiness increased, which indicates a reduced 185 
capability to discern between difficult and easy trials in a drowsy state. This finding corresponds to a 186 
decrease of slope observed in the RT- and θ/α-based analyses, confirming a reduced steepness of 187 
conscious access in a drowsy state of consciousness. 188 

Interestingly, threshold estimates in the θ/α- and RT-awake state correlated strongly with threshold 189 
estimates in drowsiness (coefficient r: 0.52-0.77, see Supplementary Table 1). Likewise, slope estimates 190 
correlated positively between awake and drowsy states of consciousness as defined by θ/α (coefficient r: 191 
0.2-0.78, see Supplementary Table 1). That is, participants who performed well in wakefulness were also 192 
more accurate in drowsiness, showing that individual traits of threshold and slope of auditory access are 193 
relatively stable across the two states of consciousness. Contrary to this, threshold and slope were not 194 
correlated in any of the θ/α- or RT-based data splits of data (p: 0.12-0.94; see Supplementary Table 1), 195 
suggesting that these two behavioural measures of conscious access are independent. This observation is 196 
consistent with the main behavioral finding that slope decreases with drowsiness but threshold remains 197 
unaffected. Overall, behavioural findings revealed that the distinctive non-linearity of conscious access 198 
may not be a necessary feature of consciousness; instead, it might be state-dependent. To study whether 199 
neural markers of conscious access are also state-dependent, we first determined a sequence of neural 200 
processing stages that distinguish aware and unaware trials. 201 
 202 

[insert Figure 2]  203 
 204 
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 205 
Figure 2: Slope and threshold of conscious access in the EEG-defined awake and drowsy states. (A) Sigmoidal 206 
functions fitted to the awake (red) and drowsy (blue) hits, following θ/α-33% definitions of the states of 207 
consciousness. The trials were first averaged within each participant and then across all participants. The error bars 208 
indicate the standard error of mean (SEM), calculated across all participants. (B) Threshold and slope estimates in 209 
the drowsy state subtracted from those in the awake state. Individual participants (N=27), represented as bars, are 210 
sorted from the one with the largest increase of threshold (light brown) to the one with the largest decrease (dark 211 
brown) of threshold in drowsiness (left), and from the one with the largest increase of slope (light brown) to the one 212 
with the largest decrease of slope (dark brown) in drowsiness (right). Data split in this plot is based on the θ/α-33% 213 
definition of the awake and drowsy states. Levels of significance: ns = p>0.05; ** p<0.005. (C) Goodness of fit 214 
(coefficient of determination, R2) of linear and sigmoidal models of the proportion of hits as a function of gap 215 
conditions in the awake and drowsy trials as defined by θ/α-33%. The error bars indicate the SEM. Levels of 216 
significance: ** p<0.005; ******p<0.0000005. (D) Proportion of hits in the right tail of sigmoid (easy gap 217 
conditions +50%, +75%, +100%; light green) and in the left tail of sigmoid (difficult gap conditions -100%, -75%, -218 
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50%; dark green) across Hori stages. A difference between the easy and difficult conditions decreases with 219 
increasing drowsiness. The error bars indicate the SEM. Level of significance (linear contrast): **** p<0.00005. 220 
 221 
 222 
Neural markers of conscious access and its suppression 223 
 224 
Given that both sensory and executive stages of processing may index conscious access(Dehaene et al., 225 
2014; Railo et al., 2011), and that the target and the masking stimuli were presented serially, we 226 
considered that reported awareness of a target might be associated with an increase of target-evoked 227 
event-related potentials (ERP), namely N100, P200 and P300, whereas suppression of conscious access 228 
might be marked by the higher amplitude of mask-evoked N100, P200 and P300 responses. Thus, aiming 229 
to identify neural markers of the suppression of conscious access, we first contrasted respective potentials 230 
locked to the onset of mask (see Fig 3A) by carrying data-driven spatiotemporal clustering of hits and 231 
misses at a single-trial level (see Online Methods).  232 

We found a significantly more negative fronto-central N100 cluster from 42 ms to 142 ms (see Fig 233 
3B) and a significantly more positive occipital cluster from 42 ms to 134 ms in misses compared hits. 234 
Likewise, clustering of P200 potentials revealed that misses were associated with a more positive central 235 
cluster (150-246 ms, see Fig 3C) and a more negative frontal cluster (146-246 ms) than hits. Finally, 236 
misses were associated with more positive parieto-occipital P300 cluster (290-482 ms, see Fig 3D) and 237 
more negative frontal cluster (278-530 ms) than hits. In other words, when amplitude of N100, P200 and 238 
P300 responses to the masking sound was relatively low, i.e. the mask evoked a relatively weaker ERP 239 
response, participants reported awareness of the target sound. Contrary to this, when the mask evoked 240 
relatively higher N100, P200 and P300 responses to noise, conscious access was suppressed. 241 

We next investigated if ERP to the target sound would also distinguish hits and misses, this time 242 
revealing neural mechanisms of conscious access rather than its suppression. We found a significantly 243 
more negative central N100 cluster of electrodes from 118 ms to 166 ms (see Fig 3B) and a more positive 244 
occipital cluster of electrodes from 112 ms to 166 ms in hits compared to misses. That is, hits or “aware” 245 
trials had higher amplitude of N100 response to the target tone, pointing to a relatively early sensory 246 
ignition of auditory consciousness. Given that the target and the masking sounds were relatively adjacent 247 
in time, i.e. the mean gap of silence between them was 71 ms (range: 7-202 ms), evoked potentials to the 248 
target and mask largely overlapped, occluding the analysis of P200 and P300 responses specific to the 249 
target. No significant ERP differences between hits and misses were found within P50 time window. 250 

In summary, spatiotemporal clustering of ERP differences between hits and misses revealed a 251 
cascade of electrophysiological markers at different depths of processing that distinguished conscious and 252 
unconscious trials. In particular, conscious access was associated with enhanced N100 response to the 253 
target, whereas the suppression of conscious access was associated with enhanced amplitude of potentials 254 
evoked by the mask (N100, P200, P300). To investigate which of these markers of target-mask interaction 255 
are modulated by the state of wakefulness, we split the data between awake (Hori 1-2 stages) and drowsy 256 
(Hori 4-5 stages) trials, and investigated (1) whether the temporal proximity of target and mask 257 
differentially modulates ERP clusters in the awake and drowsy states; (2) whether the ERP markers of 258 
conscious access and its suppression are state-dependent; and (3) whether the activation of fronto-parietal 259 
sources of these ERP markers, a proposed NCC of globally broadcasted and reported awareness (Baars et 260 
al., 2013; Dehaene et al., 2014), is state-dependent.  261 
 262 
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 263 
Figure 3: ERP markers of the suppression of conscious access. (A) A butterfly plot of ERP waveforms locked to 264 
the onset of mask, baseline corrected from -100 ms to 0 ms. Topographical voltage maps depict spatial distribution 265 
of the butterfly peaks at at 92 ms, 196 ms, and 528 ms (brown verticals), revealing typical distribution of N100, 266 
P200 and P300 auditory potentials. Data are taken from all 31 participants. (B-D) Spatiotemporal clustering of 267 
ERPs (hits vs. misses) locked to the masking sound within N100, P200 and P300 time windows. Misses were 268 
associated with significantly more negative amplitude of (B) N100 peak (cluster t=3674.8, p=0.001), and more 269 
positive amplitude of (D) P200 peak (cluster t=3327.3, p=0.001) and (E) P300 peak (cluster t=5534.7, p=0.004) 270 
compared to the hits. (B-D) Grey shaded vertical bars behind the waveforms represents time window of a 271 
significant difference between hits (green waveform) and misses (black waveform): green for the N100 cluster, 272 
orange for the P200 cluster, and grey for the P300 cluster. The waveforms are taken from the electrode with the 273 
largest difference between hits and misses, marked as a green dot in the topographical voltage map. The black 274 
contours within the map reveal which electrodes showed a significant difference, i.e. the higher amplitude in misses 275 
than hits, and formed a spatiotemporal cluster. Red vertical lines in the waveforms reveal the peak time of the 276 
largest difference between hits and misses. The topographical voltage maps depicts the very same time point of the 277 
most significant difference between conditions.  278 
 279 
 280 

 281 
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Transition to sleep modulates sensory-central gating 282 
 283 
Given that temporal proximity of the target and masking sounds largely determines if target awareness 284 
will be reported (see Fig 2A), we first hypothesized that electrophysiological signature of this proximity 285 
will echo the first stages of neural processing that leads to conscious access. In particular, neuronal 286 
responses to suppressive masking noise should change as a function of a delay from the preceding target 287 
tone. That is, mask-evoked ERP responses should have higher amplitude in the most difficult gap 288 
conditions when conscious access is suppressed, and smaller amplitude in the easiest gap conditions when 289 
target tones escape suppression. More specifically, we hypothesized that the delay between target and 290 
mask will modulate mask-evoked responses in N100 or P200 time windows when sensory information 291 
becomes available for central processing, i.e. during sensory- or sensory-central gating(Lijffijt et al., 292 
2012). Contrary to this, P300 as a marker of the final stages of processing of conscious access was not 293 
expected to expose relatively early sensory-central gating as it reflects central processes rather than 294 
perceptual processing of stimuli(Chennu et al., 2013). To test these hypotheses, we fitted a linear function 295 
to the mean amplitude of ERP responses in the N100, P200, and P300 cluster time windows across 11 gap 296 
conditions, separately for each electrode, and then analysed topographical heat maps of slope and R2 297 
values (see Fig 4A-B).  298 

N100 and P200 maps showed relatively high slope and R2 values, indicating that mask-evoked 299 
potentials reflect temporal proximity of target-masking sounds in these time windows. Contrary to this, 300 
slope and R2 values were very low in P300 time window (see Supplementary Fig 2). Furthermore, we 301 
observed that sensory-central gating in N100 and P200 time windows is state-dependent. In particular, 302 
slope maps showed a linear decrease of N100 amplitude across the gap conditions in the Hori-awake state, 303 
whereas P200 rather than N100 showed a similar effect in Hori-drowsiness (see Fig 4). These findings 304 
indicate that temporal proximity of target and masking sounds, which is key determinant for conscious 305 
access and its suppression, is processed at a relatively early N100 time window in the awake state of 306 
consciousness, and that this stage of processing is delayed to the P200 time window in drowsiness. That 307 
is, sensory-central gating becomes more sluggish in the transition from wakefulness to sleep, and probably 308 
more resources are required to determine the presence of the target followed by the mask during drowsy 309 
states.  310 
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Figure 4: Linear fit of N100 and P200 responses to the onset of mask across gap conditions. Linear fit of the 312 
mask-locked N100 (A) and P200 (B) mean amplitudes across 11 gap conditions. In both (A) and (B), the top line 313 
represents fit of the awake trials (Hori 1-2), whereas the bottom line depicts fit of the drowsy trials (Hori 4-5). 314 
Subplots on the left show the weighted global field power (wGFP) in a time window of interest (N100 and P200) 315 
across 9 equally spaced gap conditions. Conditions ‘-12.5%’ and ‘+12.5%’ are not presented here, as they were 316 
additional intermediate intervals. The middle subplots show scalp maps of slope values of a linear function, which 317 
was fitted to the mean amplitude of N100 and P200 peaks across 11 gap conditions. The slope was first calculated 318 
for each electrode and the obtained values were interpolated in the heat maps. Likewise, subplots on the right show 319 
scalp maps of the goodness of linear fit, expressed as R2, which was first calculated for each fit across gap 320 
conditions within a single electrode, and the obtained values were interpolated in the heat maps. (C) Statistical 321 
comparisons of the heat maps shown in (A) and (B). Repeated measures ANOVA was carried out on 92 slope (on 322 
the left) or R2 values (on the right), representing each electrode, with the State (Awake, Drowsy) and Component 323 
(N100, P200) as independent factors. The plots show the mean slope or R2 of all electrodes, and the error bars 324 
represent SEM. Analysis of the slope showed a significant main effect of the ERP components (N100 vs. P200; 325 
F(1,91)=41.62, p=0.00000), the States (Awake vs. Drowsy; F(1,91)=10.47, p=0.0017), and a significant ERP 326 
components x States interaction (F(1,91)=313.35, p=0.00000) (see Fig 4C). N100 slope was higher in awake 327 
compared to drowsy state (t(91)=6.99, p=0.00000, d=1.47), whereas P200 slope was higher in drowsy than awake 328 
state (t(91)=9.25, p=0.00000, d=1.94) of consciousness. Furthermore, a difference between ERP slope in P200 and 329 
N100 cluster windows was higher in the drowsy state (t(91)=9.35, p=0.00000, d=1.96) than in wakefulness 330 
(t(91)=2.21, p=0.029, d=0.46). Analysis of R2 maps yielded significant main effect of the States (F(1,91)=17.56, 331 
p=0.00006) but not of the ERP components (F(1,91)=2.67, p=0.11), and a significant ERP components x States 332 
interaction (F(1,91)=79.64, p=0.00000) (see Fig 4C). Coefficient of determination differed between N100 and P200 333 
components in drowsy (t(91)=4.7, p=0.00001, d=0.99) but not in awake (t(91)=1.8, p=0.076, d=0.38) states of 334 
consciousness. N100 had higher R2 in awake than in drowsy state (t(91)=9.52, p=0.00000, d=2). Contrary to this, 335 
P200 had higher R2 in drowsy than in awake state (t(91)=2.83, p=0.0058, d=0.59). * p<0.05; **** p<0.00005 336 
*****p<0.000005. 337 
 338 

Transition to sleep modulates neural markers of conscious access  339 

In the above analysis, sensory-central gating was contrasted between awake and drowsy states irrespective 340 
of whether individual trials were hits or misses. To determine how the identified sequence of ERP clusters 341 
behaves when States (Hori-awake vs. Hori-drowsy) and Access (hits vs. misses) vary simultaneously, 342 
trials were split between 4 conditions: awake misses, awake hits, drowsy misses and drowsy hits. We 343 
were particularly interested which of the four consecutive neural markers of conscious access are 344 
modulated by the level of wakefulness: (1) facilitatory sensory ignition by a target tone (target N100); (2) 345 
inhibitory sensory ignition by a noise (mask N100); (3) inhibitory sensory-attentional gating of noise 346 
(mask P200); or (4) inhibitory global broadcasting of noise (mask P300).  347 

While the target-evoked N100 cluster showed higher amplitude in the awake than in the drowsy 348 
trials, the relationship between hits and misses remained the same in both states of consciousness (see 349 
Supplementary Fig 4), i.e. a changing brain state did not modulate access NCC at the earliest sensory 350 
ignition stage of target-evoked auditory processing. However, a significant Access x State interaction was 351 
observed for the mask-evoked N100 cluster, with misses being associated with higher amplitude than hits 352 
in the awake, but not in the drowsy state of consciousness (see Fig 5A). That is, sensory processes evoked 353 
by a masking noise interfered with conscious access only when arousal was relatively high. A similar 354 
state-dependent modulation of conscious access was observed in the analysis of mask-evoked P200 355 
cluster: misses had higher cluster amplitude than hits in the awake but not the drowsy state of 356 
consciousness (see Fig 5A). Regarding mask-evoked P300 cluster, misses were associated with higher 357 
amplitude than hits in both states of consciousness, with no significant Access x State interaction (see Fig 358 
5A).  359 

These findings indicate that while conscious access was initially associated with higher amplitude of 360 
target-evoked N100 cluster in both awake and drowsy states, the final resolution of target-mask 361 
interaction was delayed in drowsiness. In particular, awake misses had higher mask-locked N100 and 362 
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P200 amplitude than awake hits, whereas no difference was observed between drowsy misses and hits in 363 
the same N100 and P200 time windows. Nevertheless, an efficient masking of conscious access in 364 
drowsiness was revealed at the later P300 stage of processing, when – arguably – conscious processing of 365 
mask did not spare central resources for conscious awareness of targets. These ERP findings indicate that 366 
the mechanisms of conscious access and its inhibition are not hardwired; instead, they are state-dependent 367 
and flexible. Mask-evoked N100 and P200 clusters with a relatively low amplitude did not contribute to 368 
the inhibition of conscious access in drowsy trials, while a high-amplitude P300 cluster differentiated 369 
aware and unaware trials in drowsiness. Conscious access is thus resolved at the dominating stage of 370 
processing – N100/P200 stage during alpha-marked levels of wakefulness (Hori stages 1-3), and P300 371 
during EEG flattening and the occurrence of theta waves in drowsiness (Hori stage 4-5) (see Fig 5B). 372 

 373 

 374 
Figure 5: Drowsiness modulates ERP clusters that signature suppression of conscious access. (A) Interaction 375 
plots of State (awake, drowsy) and Access (miss, hit) factors for the mask-locked N100, P200, and P300 clusters. 376 
Waveforms are locked to the onset of mask (0 ms) and averaged across all cluster electrodes, which are depicted in 377 
green in the electrode montage map. Individual trials are averaged separately for the four conditions: awake misses, 378 
awake hits, drowsy misses, and drowsy hits. Shaded vertical bars indicate time windows that were used to calculate 379 
the mean amplitude of N100 (green), P200 (orange) and P300 (grey) clusters. (Left) Mask-evoked N100 cluster 380 
revealed a significant main effects of Access (F(1,3168)=5.24, p=0.022), and a significant State x Access interaction 381 
(F(1,3168)=3.887, p=0.049), whereas the main effect of State was not significant (F(1,3168)=2.55, p=0.11). Misses had 382 
higher amplitude than hits (t(3170)=2.29, p=0.022, d=0.08); however, this was observed only in awake trials 383 
(t(1584)=3.81, p=0.00015, d=0.19), but not in drowsy trials (t(1584)=0.19, p=0.85, d=0.01). ***p<0.0005. (Middle) 384 
Mask-evoked P200 cluster revealed significant main effects of State (F(1,3168)=39.45, p=0.00000) and Access 385 
(F(1,3168)=9.3, p=0.0023) and a significant State x Access interaction (F(1,3168)=4.28, p=0.039). Misses had higher 386 
P200 amplitude than hits (t(3170)=3.03, p=0.0025, d=0.11), and this effect held for the awake trials (t(1584)=5.18, 387 
p=0.00000, d=0.26), but not for the drowsy trials (t(1584)=0.56, p=0.57, d=0.03). Cluster amplitude was higher in 388 
awake than drowsy states (t(2523.2)=6.27, p=0.00000, d=0.25). ******p<0.000005. (Right) Mask-evoked P300 389 
cluster revealed significant main effects of State (F(1,3168)=294.75, p=0.00000) and Access (F(1,3168)=7.43, 390 
p=0.0064), whereas the State x Access interaction was not significant (F(1,3168)=1.67, p=0.197). Cluster amplitude 391 
was higher for misses than hits (t(3161)=2.61, p=0.0092, d=0.09; depicted as <*> in a subplot), and also it was higher 392 
in the drowsy state compared to the awake trials (t(2185.9)=17.15, p=0.00000, d=0.73). (B) Non-linear dynamics of 393 
mask-evoked P200 cluster for misses and hits across Hori Stages 1 to 5. Error bars in this figure indicate SEM. 394 
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 395 
Reduction of cortical network underlying conscious access while falling asleep 396 
 397 
We expected the suppression of auditory conscious access to involve wide broadcasting of masking noise 398 
within temporal and fronto-parietal nodes, which would spare no serial resources for the maintenance of a 399 
target tone(Dehaene & Changeux, 2011; Dehaene et al., 2014). Following previous research into fronto-400 
parietal functioning during drowsiness(Olbrich et al., 2009; Picchioni et al., 2008), we further 401 
hypothesized that drowsiness will differentially modulate fronto-parietal network in critical stages of 402 
mask processing. To address these hypotheses, we carried out exploratory single-trial analysis by 403 
averaging activation of temporal and fronto-parietal sources locked to the onset of mask (see Fig 6A). The 404 
main effect of Access was observed in P200 (F(1,3168)=5.47, p=0.019) and P300 (F(1,3168)=5.1, p=0.024), 405 
but not in N100 (F(1,3168)=0.16, p=0.69) time windows. Similar to the sensor-level statistics, analysis in 406 
the source space showed a significant State x Access interaction for the P200 cluster (F(1,3168)=3.99, 407 
p=0.046), with misses having higher amplitude than hits in the Hori-awake (t(1563.8)=3.98, p=0.00007, 408 
d=0.2), but not in the Hori-drowsy (t(1584)=0.2, p=0.84, d=0.01) states of consciousness. Contrary to this, 409 
the States x Access interaction was not significant in the P300 time window (F(1,3168)=0.00, p=0.98), with 410 
misses having higher P300 amplitude than hits (t(3170)=2.09, p=0.037, d=0.07) in both awake and drowsy 411 
trials. These findings confirm our earlier observation at the sensor level that the resolution of conscious 412 
access is delayed in drowsiness to the final P300 stage of mask processing, whereas an earlier target-mask 413 
interaction predicts if a target will be reported in awake trials. 414 

To identify which of the 6 predefined regions of interest (left frontal, right frontal, left parietal, right 415 
parietal, left temporal, right temporal) show an expected increase of amplitude in misses compared to hits, 416 
we carried out planned t tests for each source and state of consciousness. In the P200 time window, the 417 
mask evoked higher activation of the bilateral temporal and the left parietal and frontal sources in the 418 
Hori-awake trials, whereas no differences between hits and misses were observed in Hori-drowsy trials 419 
(see Fig 6B, for temporal sources, see Supplementary Fig 6). That is, suppression of conscious access in 420 
the P200 time window depended on neuronal processing in both perceptual and fronto-parietal networks 421 
in the awake but not in the drowsy state. In the P300 time window, a higher amplitude in misses than hits 422 
was observed in the left parietal and bilateral frontal sources in the awake state, but only in the left frontal 423 
source in the drowsy state of consciousness (see Fig 6B). These findings indicate that in addition to the 424 
temporal restriction of neural markers, the neural network underlying reported awareness shrinks to a 425 
single left frontal node during transition to sleep, despite of a higher general activation. 426 

 427 
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 428 
Figure 6: Fronto-parietal cortical sources of mask-evoked ERP clusters. (A) Weighted minimum norm 429 
estimation (wMNE) of single trial sources averaged across all four conditions in the N100, P200 and P300 cluster 430 
time windows. N100 and P200 clusters were used to identify temporal lobe sources and P300 cluster revealed 431 
fronto-parietal sources of mask-evoked responses. A unit of dipole current density is weighted pico Ampere meter 432 
(wpA.m), i.e. the sources were modelled using weighted EEG data. (B) The planned t test comparisons of fronto-433 
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parietal source activations between hits and misses in awake and drowsy states in P200 (orange) and P300 (grey) 434 
time windows. Waveforms indicate time courses of source activations, whereas statistical plots depict significance 435 
level of the planned comparisons within respective time windows: *=p<0.05, **=p<0.005, ***=p<0.0005, 436 
****=p<0.00005. Error bars indicate SEM. In the P200 time window, awake misses had higher amplitude than 437 
awake hits in the left frontal (t(1433.7)=4.32, p=0.000017, d=0.23) and the left parietal (t(1584)=2.11, p=0.035, d=0.11) 438 
sources, and in the P300 time window, awake misses had higher amplitude than awake hits in the left frontal 439 
(t(1507.3)=3.72, p=0.00021, d=0.19), the right frontal (t(1570)=2.16, p=0.031, d=0.11), and the left parietal 440 
(t(1529.7)=3.15, p=0.0017, d=0.16) sources. Drowsy misses had higher amplitude than drowsy hits in the P300 time 441 
in the left frontal source (t(1514.7)=2.22, p=0.027, d=0.11). 442 

 443 
DISCUSSION 444 
 445 

Our findings demonstrate that behavioural and neural markers of conscious access are state-dependent. In 446 
particular, we observed a more gradual interaction between the masking intensity and the rate of target 447 
detection when participants became drowsy compared to more abrupt conscious access dynamics in 448 
awake state. A more gradual build-up of evidence for conscious access(Sandberg, Bibby, Timmermans, 449 
Cleeremans, & Overgaard, 2011) in drowsiness may depend on the increased variance in the underlying 450 
neural processes that could produce a shallower response slope(Marreiros, Daunizeau, Kiebel, & Friston, 451 
2008). At the behavioural level, the increase of a hit rate in the most difficult trials with its simultaneous 452 
decrease in the easiest trials when the threshold point remains constant suggest detection instability in a 453 
proportion of drowsy trials. This finding implies that a steep detection slope(Antoine Del Cul et al., 2007) 454 
may not be a fundamental property of conscious access, but instead it can change as a function of arousal 455 
microstate before a stimulus appears. Thus, the opposing gradual(Elliott, Baird, & Giesbrecht, 2016) vs. 456 
non-gradual(Sergent & Dehaene, 2004) models of conscious access may not be mutually exclusive; 457 
instead, some aspects of their mismatch can be reconciled by adding a factor of a varying level of arousal, 458 
which may modulate attention and awareness(Chennu & Bekinschtein, 2012). 459 

Drowsiness thus seems to provide a distinctive behavioural distortion of consciousness, which takes 460 
place during a period of rapid fronto-parietal reorganization (Olbrich et al., 2009; Picchioni et al., 2008), 461 
as further indicated by the increased P300 amplitude in the present study. It has been observed previously 462 
that neurological patients with prefrontal lesions have an increased threshold yet a stable slope of 463 
conscious access(A. Del Cul, Dehaene, Reyes, Bravo, & Slachevsky, 2009). Contrary to this, transition to 464 
sleep uncovered a unique case of a decreasing slope yet spared threshold of conscious access, which 465 
differs orthogonally from the earlier neurological observations(A. Del Cul et al., 2009). The possibility 466 
that either a slope or a threshold can be selectively modulated by a change of a brain state suggests that 467 
these two behavioural markers of consciousness are partially independent, further confirmed by the 468 
absence of their correlation in the present study. 469 

At the electrophysiological level of analysis, we identified a sequence of evoked potentials that 470 
distinguished hits and misses across different stages of a complex target-mask interaction. In particular, 471 
hits were associated with higher amplitude of target-evoked potential in the N100 time window (peaking 472 
at 150 ms), replicating earlier ERP studies of auditory masking(Androulidakis & Jones, 2006; Gutschalk, 473 
Micheyl, & Oxenham, 2008; Parasuraman & Beatty, 1980). Given that the N100 marker of auditory 474 
detection is generated in the auditory cortex(Gutschalk et al., 2008), our finding provides support to the 475 
‘early’ sensory NCC accounts of conscious access(Boehler et al., 2008; Railo et al., 2011). In the later 476 
stages of target-mask interaction, the initial representation of target was suppressed by mask-evoked 477 
N100, P200, and P300 potentials. Thus, in addition to the previous report that misses have higher P200 478 
amplitude(Makeig, Jung, Bell, Ghahremani, & Sejnowski, 1997), we show that mask evoked activity 479 
interferes with conscious access at each of the perceptual (N100), perceptual-central (P200), and central 480 
(P300) stages of information processing. 481 

After splitting the EEG data between awake and drowsy trials, we found evidence that EEG markers 482 
of conscious access are also state-dependent. In particular, the graduality of mask-evoked N100 response 483 
across 11 gap conditions in the awake state was shifted to the P200 time window when participants 484 
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became drowsy. This finding suggests that the drowsy brain requires the involvement of central resources 485 
for the distinction between two serially presented stimuli. Arguably, delayed processing of the target-486 
mask interaction may also contribute to the decreasing sigmoidal slope of conscious access in drowsiness. 487 

The sluggishness of EEG response in drowsiness was also observed when interaction between 488 
conscious access (hits, misses) and state (awake, drowsy) was studied in the sensor as well as the source 489 
space. While target-evoked N100 had higher amplitude in hits than in misses in both states of 490 
consciousness, mask-evoked suppression of conscious access occurred only in P300 time window in 491 
drowsiness compared to significant effects observed in mask-evoked N100, P200 and P300 time windows 492 
in the awake state of consciousness. Conscious access was thus associated with a decreased response to 493 
mask, i.e. a higher resistance to the interfering sound, in all three stages of processing in the awake but not 494 
in the drowsy state of consciousness. Notably, mask evoked N100 and P200 potentials had relatively low 495 
amplitude compared to P300 potentials in drowsiness (see Fig. 5C), and likewise neuronal processes that 496 
distinguished hits and misses were resolved in the time window of the largest ERP response. These 497 
observations seem to point to the multiple realization of the NCC(Chalmers, 2000) in different states 498 
within the same participants. That is, the neural markers of consciousness and its suppression appear to be 499 
flexible and dependent on the overall state of the brain, and an NCC observed in one state may not hold 500 
for another state of consciousness. Alternatively, a possibility cannot be ruled out that the subjective 501 
quality of auditory awareness differed between awake and drowsy states, which may have involved 502 
correspondingly different NCC(Overgaard & Mogensen, 2011).  503 

Despite state-dependent differences in the association between conscious access and N100 / P200 504 
clusters, the final P300 stage of the neuronal cascade towards conscious access distinguished hits and 505 
misses in both states of consciousness. Source modelling of P300 revealed a fronto-parietal activation that 506 
likely reflects global broadcasting of suppressive masking noise(Dehaene & Changeux, 2011). While 507 
three of the four P300 sources distinguished aware and unaware trials in awake trials – the left and right 508 
frontal and the left parietal cortex – only the left frontal source showed a higher activation in misses than 509 
hits in drowsiness. Interestingly, patients with lesions in the left compared to the right prefrontal cortex 510 
also show stronger suppression of conscious access(A. Del Cul et al., 2009). The left frontal component of 511 
the global broadcasting network appears to be critical for the conscious access, and is the last one to 512 
survive a state of decreasing level of arousal.  513 

Previous attempt to study conscious access in different states relied on pharmacological 514 
intervention(van Loon, Scholte, van Gaal, van der Hoort, & Lamme, 2012). Transition to sleep provides a 515 
fruitful naturally occurring alteration of the state of consciousness with a preserved capacity to respond, 516 
which can be utilized to study the modulation of conscious access by a changing brain-state. Such natural 517 
fluctuation of the level of alertness may also occur unintentionally and go undetected(Tagliazucchi & 518 
Laufs, 2014), which may hinder or distort neural markers of conscious access if left uncontrolled.  519 

Our study indicates that configuration of neural processing stages underlying cognitive performance 520 
may fluctuate within the same participant at a rapid rate within a single session of experiment. Yet, 521 
despite decreased level of wakefulness, responsive participants can maintain their goal-set to report 522 
auditory awareness, demonstrating flexibility of human brain to adapt to increasing levels of both 523 
exogenous (masking) and endogenous (arousal) noise. We have previously shown that individuals 524 
maintain capacity to categorize semantic categories of words even during NREM sleep(Kouider, 525 
Andrillon, Barbosa, Goupil, & Bekinschtein, 2014), although it remained uncertain if they were aware of 526 
presented stimuli. In the present study, participants were conscious in both awake and drowsy trials, 527 
revealing that different modes of evidence accumulation, such as a decreased behavioural slope and ERP 528 
reconfiguration in drowsiness, can underlie conscious access in different states of consciousness. We thus 529 
conclude that a comprehensive model of conscious access should include an independent factor of the 530 
state of wakefulness, and that access NCC should not be studied in isolation of state NCC(Noreika, 2015). 531 

 532 
 533 
 534 
 535 
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 536 
ONLINE METHODS 537 
 538 
Participants. 56 participants (23 male; mean age 26.9; age range 19-39) signed informed consent 539 

and took part in the study. Inclusion criteria were being 18 to 40 years old, having no history of hearing 540 
impairment or injury and no neurological or psychiatric disorders, and being right handed, which was 541 
assessed with the Edinburgh Handedness Scale(Oldfield, 1971). In order to recruit individuals who are 542 
likely to become drowsy and fall asleep in a suitable setting during daytime, potential participants were 543 
screened with the Epworth Sleepiness Scale(Johns, 1991), aiming to have a minimum daytime sleepiness 544 
score of 7. Given the difficulty in carrying out a very demanding auditory detection task for a long period 545 
of time (2 hours) in a drowsy state of mind, a large proportion of participants failed to maintain a 546 
sufficient level of accuracy throughout the session, e.g. their false alarm rate was more than 50% in catch 547 
trials, and/or sigmoid function could not be fitted to their responses, especially in a drowsy state of 548 
consciousness (see Section 3.1). These participants were excluded from the analyses reported here, and 549 
the final sample consisted of 31 participants (9 male; mean age 27.4; age range 20-39). Notably, the 550 
excluded participants reached a deeper level of drowsiness as measured by the intra-individual mode of 551 
Hori scores of sleepiness (see Section 2.4.1; inter-individual Mode=5; Range=4) than the remaining 552 
participants (inter-individual Mode=2; Range=4; Mann-Whitney U: Z=2.23; p=0.026). Thus, it is likely 553 
that the failure to maintain a sufficiently high level of response accuracy was due to a deep level of 554 
sleepiness. Interestingly, the excluded participants were also more likely to be male (Pearson χ2=4.16, 555 
p=0.041), who are generally known to have shorter sleep latency than female adults(Tsai & Li, 2004).  556 

The experimental protocol was approved by the Cambridge Psychology Research Ethics Committee 557 
(2012.15), and the study was carried out in accordance with the Declaration of Helsinki. Participants were 558 
recruited through the electronic volunteer database of the MRC Cognition and Brain Sciences Unit by 559 
posting an online advertisement about the study. They received £30 for taking part in the study.  560 
 561 

Experimental design. After signing informed consent, participants filled in the handedness and 562 
sleepiness questionnaires, and were seated in a shielded chamber of the EEG lab. While placing the EEG 563 
net, participants were instructed that they will have to attend to sounds and report if they have heard a 564 
target sound, i.e. a tiny beep, which may or may not occur before a masking sound of noise. Notably, this 565 
was not a forced-choice task and participants were not asked to guess if there was a target or not; instead, 566 
they were instructed to report if they could hear the target (an “aware” or a “hit” trial) or not (an 567 
“unaware” or a “miss” trial). Once the EEG net was applied, participants laid in a fold-back chair in a 568 
relaxed position with eyes closed in a dark room. First, a behavioural staircase experiment was carried out 569 
in order to estimate individual threshold, i.e. a minimal duration of a silent gap between the target and 570 
masking sounds required for the detection of targets. Next, the main EEG experiment was carried out 571 
using the individual threshold that was estimated during the behavioural task. Auditory stimuli were 572 
presented binaurally using Etymotics ER-3A earphones, and the volume of sound was individually 573 
adjusted at a comfortable level. 574 

 575 
Behavioural staircase procedure. During behavioural experiment, a series of masked target sounds 576 

were played, and participants responded each time if they could hear the target or not (for the trial 577 
structure, see Fig 1A). Each trial began with a target stimulus (10 ms; 1000 Hz; fade-in and fade-out: 2.5 578 
ms each; attenuation: -24 Db), followed by a masking noise (300 ms; fade-in and fade-out: 5 ms; 579 
attenuation: 0 Db). The frequency range of the masking sound (FM) was octave wide around the 580 
frequency of the target sound (FT) (707.1-1414.2 Hz): 581 

 582 

𝐹𝑀 =  
𝐹𝑇
√2

: 𝐹𝑇 ∗ √2  

 583 
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The target and the masking sounds were separated by a changing interval of silence, which was the 584 
main independent variable in this experiment. 1000 ms after the offset of the masking noise, a second 10 585 
ms beep, identical to the target (1000 Hz; fade-in and fade-out 2.5 ms; attenuation: -24 Db), was presented 586 
after which the participant had 5 s to respond by pressing one of the two response keys whether they have 587 
heard the target stimulus using a keyboard. To avoid a possible inter-trial variability in the relative timing 588 
of the stimuli, all sounds (i.e. target, mask, response cue) and intervals of silence were created and played 589 
within each trial as a single continuous clip of audio.  590 

Half of the participants responded with the right hand button if they could hear the target and with 591 
the left if they could not, whereas the response keys were reversed for the other half of participants in 592 
order to account for possible lateralization effects in reaction times between the dominant and non-593 
dominant hand responses(Kerr, Mingay, & Elithorn, n.d.). After a response, or the end of a 5 s response-594 
free period in a case of an omission, there was a 8-12 s pause until the presentation of the next target tone. 595 
The inter-trial interval was relatively long in order to allow for drowsiness to develop, which is more 596 
difficult to achieve if a task is speeded. Participants were instructed that a target sound will not always be 597 
presented, and they did not know that in fact all trials had a target sound, i.e. there were no catch trials 598 
during the behavioural staircase experiment.  599 

The first trial always had a detectable target with the masking noise presented after a 400 ms gap, 600 
which was considerably longer than the highest threshold among our participants (see below). For the 601 
following trials, a simple up-down staircase procedure was applied to determine a required gap between 602 
the target and masking sounds(von Békésy, 1947). That is, the gap was increased if participants were 603 
unaware of the target, making the next trial easier, and it was increased if participants could hear the target 604 
sound, making the next trial more difficult. The staircase procedure continued until 12 reversals of the 605 
change of gap. Until the fourth reversal, the gap duration changed by a factor of 2, and afterwards, until 606 
the 12th reversal, it changed by a factor of 2. Threshold was calculated as an arithmetic mean of the gap 607 
values during the last 8 reversals. The same staircase procedure was repeated twice, and the mean 608 
threshold of these two blocks was used for the main EEG experiment. For the behavioural experiment, the 609 
stimuli were created and the staircase procedure was controlled by the Psychoacoustics toolbox(Soranzo 610 
& Grassi, 2014) running in Matlab (R2011b) on a MacBook Pro. 611 

Staircase procedure revealed a high variability of auditory threshold, i.e. the silent interval between 612 
the target and masking sounds required to hear the target, across participants (M=71.03 ms, SD=55.58, 613 
Min=6.67 ms, Max=202.4 ms). Nevertheless, despite individual differences, almost identical thresholds 614 
were estimated in both blocks of the behavioural experiment (Block 1: M=67.75, SD=52.85; Block 2: 615 
M=74.31, SD=61.50; Pearson’s r = 0.89, p<0.000001), confirming the high reliability of the staircase 616 
procedure. 617 

 618 
Stimuli during EEG experiment. During the main EEG experiment, the same auditory stimuli 619 

were presented as in the behavioural staircase procedure, except that the interval (𝑇) between the target 620 
stimulus and the noise, which varied now around the participant’s individual threshold (𝑇!). 11 different 621 
interval conditions were calculated via: 622 

 623 
𝑇 = 𝐼 ∗ 𝑇!  624 
 625 
𝐼 = 0, 0.25, 0.5, 0.75, 0.875, 1, 1.125, 1.25, 1.5, 1.75, 2   626 
 627 

Additionally, a 12th ‘catch trial’ condition in which there was no target stimulus was presented in order to 628 
assess the false alarm rate of each participant. The three conditions centred around an individual 629 
participant’s threshold (𝑇 = [0.875, 1, 1.125] ∗ 𝑇!) were four times more likely to be presented in 630 
comparison to the other gap conditions and catch trials. All trials were presented in a random order. 631 
Stimuli were generated within each trial using Psychoacoustics toolbox(Soranzo & Grassi, 2014) and the 632 
whole experiment was programmed and controlled using Psychtoolbox version 3(Brainard, 1997) running 633 
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in Matlab (R2011b) on a MacBook Pro. Participants were instructed to respond using the same keys as 634 
during the behavioral staircase experiment. They were also explicitly told that they are allowed to fall 635 
asleep if they want to. The maximal duration of data collection during EEG experiment was 120 min; 636 
however, the experiment was terminated earlier if a participant became too tired or uncomfortable. On 637 
average, 501 trials were run per participant (SD=65, Min=361, Max=604). 638 

 639 
EEG acquisition and preprocessing. 129-channel EEG data, sampled at 500 Hz and referenced to the 640 
vertex, were recorded with the Net Amps 300 amplifier (Electrical Geodesics Inc., Oregon, USA). 641 
Conductive gel was applied to each electrode to ensure that the impedance between the scalp and 642 
electrodes was kept below 100 kΩ. For the data preprocessing and analyses, EEG channels over forehead, 643 
cheeks, and neck were excluded to minimise the influence of eye- and muscle-related noise, retaining 92 644 
channels that covered the scalp. Continuous EEG data were then filtered (high pass: 0.5 Hz; low pass: 40 645 
Hz) and re-referenced to the average of all channels. Afterwards, data were epoched around the onset of 646 
the target sound (-4000 ms to 6000 ms) and baseline corrected to the 100 ms preceding the target 647 
stimulus. The first 5 trials were deleted for each participant, thereby excluding an approximately 1 min 648 
period during which participants often moved in the chair till they settled into a comfortable position. The 649 
remaining extremely noisy epochs and EEG channels were manually deleted before running the 650 
independent component analysis (ICA) for the final removal of artefacts (such as eye blinks and saccades, 651 
heart beat, sweating, etc.). ICA was carried out on relatively clean channels only, and the noisy channels 652 
were recalculated by spherical spline interpolation of surrounding channels after deleting ICA components 653 
with artefacts. On average, 38 trials (7.6%) were deleted per single participant during EEG pre-654 
processing, and there were on average 463 trials per participant (SD=60, Min=345, Max=584) available 655 
for further EEG analyses. Data pre-processing was carried out using EEGlab toolbox for Matlab(Delorme 656 
& Makeig, 2004). 657 

 658 
Hori-measure of drowsiness. Given that there is no single widely accepted measure of drowsiness in 659 
cognitive experiments, three complementary measures were used to assess the depth of transition from 660 
waking to sleep: Hori scoring system, EEG theta/alpha power, and reaction times (RT). A clinical Hori-661 
measure of drowsiness is based on visual scoring of 4 sec segments of continuous EEG recording(Hori et 662 
al., 1994). In Hori system, Stage 1 indicates alpha-dominated relaxation, Stage 9 is marked by complete 663 
spindles that coincide with a classical Stage 2 NREM sleep, and other stages in-between reflect the 664 
gradual progression of sleep onset and the slowing down of dominating EEG frequencies (see Fig 1B). 665 
Sequential analysis of the progression of Hori stages during uninterrupted transition from wakefulness to 666 
sleep confirms the validity of the rank order of these stages(Tanaka, Hayashi, & Hori, 1996). In addition, 667 
several studies showed systematic ERP and EEG spectral power changes throughout the Hori-defined 668 
progression of sleep onset(Nittono, Momose, & Hori, n.d.; Tanaka, Hayashi, & Hori, 1997). For instance, 669 
amplitude of mismatch negativity (MMN) decreases from Hori Stages 1 to 3 and then changes its polarity 670 
from Hori Stages 4 to 9(Nittono et al., n.d.), whereas the peak regions of EEG alpha power move from 671 
posterior to anterior regions of scalp with an increasing depth of transition(Tanaka et al., 1997). Finally, 672 
reaction times as well as the rate of subjective reports of being asleep steadily increase from Hori Stages 1 673 
to 9(Hori et al., 1994), corroborating the use of this system to measure the depth of drowsiness in humans.  674 

In the present study, Hori stages were visually assessed over 4 sec epochs of pre-stimulus period 675 
(see Fig 1A) by two experienced raters, who were blind to the response type (hit, miss, or unresponsive) 676 
of each particular trial. For scoring purposes, EEG recordings were low pass filtered (20 Hz), and only 21 677 
EEG channels of the standard 20-10 system were evaluated. In a case of a disagreement (which occurred 678 
on 13.2% of trials, usually between any two adjacent stages), the raters discussed the difference until an 679 
agreement was achieved. For the EEG analyses, “Hori-awake” trials were defined as Hori Stages 1 and 2, 680 
dominated by alpha waves, and trials scored as Hori Stages 4 and 5, dominated by the slower theta waves, 681 
were regarded as “Hori-drowsy”.  682 

While being perhaps the most accurate electrophysiological assessment of the level of sleep onset 683 
progression(Ogilvie, 2001), the use of Hori system in cognitive neuroscience experiments is however 684 
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limited by the unpredictable proportion of different stages within an individual participant. In our dataset 685 
of 31 participants, distribution of Hori scores ranged from participants having mostly Stage 1 epochs to 686 
participants with mostly Stage 5 trials (see Fig 1C), rendering within-participant comparisons between 687 
awake and drowsy trials difficult to perform. In such cases, trials of different participants could be 688 
grouped by Hori score and merged into a single dataset, following which analysis could carried out at a 689 
single trial level, under the assumption that the variation in the relative contribution of individual 690 
participants to each Hori score does not contribute significantly to the variance between experimental 691 
conditions of interest. An alternative approach would be to carry out analyses at individual participant 692 
level following other measures of drowsiness that enable equal division of trials across arousal conditions, 693 
such as theta/alpha- or RT-based measures of drowsiness. 694 
 695 
Theta/alpha-measure of drowsiness. Given that Hori Stages 1 to 4 are marked by a decreasing alpha 696 
range activity, whereas Stages 4 to 8 have an increasing theta range activity(Hori et al., 1994) (see Fig 697 
1B), progression of drowsiness can be quantified by the spectral power of respective EEG frequency 698 
bands. That is, drowsiness can be defined as a period of time with an increased theta and a decreased 699 
alpha band power, or – by combining these two measures – as a period of an increased ratio of theta/alpha 700 
(θ/α) power. After calculating theta/alpha ratio for each trial within an individual participant, data can be 701 
divided into equal number of “awake” and “drowsy” trials, this way maximizing power of neurocognitive 702 
contrasts between these states of consciousness(C. A. Bareham, Bekinschtein, Scott, & Manly, 2015; C. a 703 
Bareham et al., 2014).  704 

To apply θ/α measure of drowsiness in the present study, spectral power of EEG frequency 705 
oscillations was computed every 4 ms between -2444 ms to 2444 ms in respect to the onset of a target 706 
tone using continuous wavelet transform, set from 3 cycles at 3 Hz to 8 cycles at 40 Hz. Theta (4-7 Hz) 707 
and alpha (8-12 Hz) power was then averaged individually for each trial from -2000 ms to 0 ms and a 708 
theta/alpha ratio was calculated for each electrode. Finally, theta/alpha power was averaged across all 709 
electrodes, resulting in a single “sleepiness” value per trial. Trials were then split between the most “θ/α- 710 
awake” and the most “θ/α-drowsy” trials, separately for each gap condition. Two data splits were used for 711 
each individual participant: a thirds’ split between 33% of the most “awake” and 33% of the most 712 
“drowsy” trials (θ/α-33%), and a median split between 50% of the most “awake” and 50% of the most 713 
“drowsy” trials (θ/α-50%). Arguably, θ/α-33% measure could avoid uncertain intermediate trials, whereas 714 
θ/α-50% measure could maximize on the available number of trials. 715 

  716 
RT-measure of drowsiness. We also used reaction times (RT) as a behavioural measure of sleepiness 717 
that may reflect the depth of drowsiness at the moment of response execution rather than several seconds 718 
before the presentation of stimuli (see Fig 1A). Typically, reaction times are prolonged in a state of low 719 
vigilance(Buck, 1966; Schmidt et al., 2009), increased drowsiness(Hori et al., 1994; Ogilvie & Wilkinson, 720 
1984), and after sleep deprivation(Blatter et al., 2006; Lim & Dinges, 2010; Ratcliff & Van Dongen, 721 
2011). Arguably, the speed of processing may become slower in the drowsy state at any stage of 722 
information processing: sensory processing, stimuli recognition and categorization, decision-making, 723 
motor preparatory processes, and/or execution of motor commands. To narrow down a potential variance 724 
of RT-measure of drowsiness to the motor processes, a response cue was presented indicating a time to 725 
respond (see Fig 1A). Assuming that a 1000 ms period from the offset of mask to the onset of response 726 
cue was sufficient to make a response decision, RT was interpreted as reflecting a period required for a 727 
motor plan and its execution.  728 

Importantly, some conflicting evidence from traffic psychology shows no association between RT 729 
and sleepiness(Baulk, Reyner, & Horne, 2001) or sleep debt(Philip, Taillard, Quera-Salva, Bioulac, & 730 
Åkerstedt, 1999). We thus employed the RT-measure of drowsiness with a caution, treating it as a 731 
complimentary rather than a central measure in the analyses reported below. Similarly to the θ/α-based 732 
split between “awake” and “drowsy” states, trials were separated for each gap condition within each 733 
participant into the fastest third of RTs and the slowest third of RTs (RT-33%). In addition, a similar split 734 
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around the median RT separated data into a half of “awake” trials with the fastest RT and another half of 735 
“drowsy” trials with the slowest RTs (RT-50%). 736 
 737 
Agreement between different measures of drowsiness. Where possible, Hori measure of drowsiness 738 
was preferred over the θ/α- and RT- measures because its absolute electrophysiological signatures of the 739 
transition from wakefulness to sleep can be identified within each participant. When psychophysical 740 
analyses required equal number of “awake” and “drowsy” trials within each participant (see Section 2.4), 741 
we considered following θ/α- and RT- measures of drowsiness that allowed such splits of data. As a 742 
downside, these measures are relative and even if all trials would be of Hori Stage 1, one third (or half) of 743 
them would still get scored as “drowsy”. Thus, aiming to verify the use of θ/α- and RT- data splits, we 744 
compared all three measures at an individual as well as at a group level.  745 

First, we carried out correlation analyses between any two measures of drowsiness within each 746 
participant, using a raw Hori, θ/α or RT score of all trials within a session, i.e. without splitting them into 747 
“awake” and “drowsy” categories (see Fig 1D). Only responsive trials were used for correlations 748 
involving RT. Second, we compared correlation coefficients against zero, aiming to assess a consistency 749 
of an association between any two measures of drowsiness at a group level (see Fig 1E). Hori and θ/α- 750 
measures were positively and significantly correlated for all 31 participants (individual rho ranged from 751 
0.39 to 0.88). Group analysis confirmed a very strong association between these two electrophysiological 752 
measures of drowsiness (one sample t test: t(30)=26.16, p<0.000005), confirming that θ/α can be used 753 
reliably to assess the level of drowsiness. Contrary to this, correlation coefficients between Hori and RT- 754 
measures were less consistent (from -0.15 to 0.41) and significant only in 16 out of 31 participants. 755 
Similarly, correlation coefficients between θ/α- and RT- measures ranged from -0.14 to 0.41. While group 756 
level analyses showed a significant association between Hori scores and RTs (t(30)=3.75, p=0.001) as well 757 
as between θ/α and RTs (t(30)=4.12, p=0.00028), we further treated RT as a complementary rather than a 758 
central measure of drowsiness as it was not reliable at a single participant level.  759 
 760 
Behavioural analyses. We aimed to investigate conscious access in awake and drowsy trials by fitting 761 
two different models, a sigmoid function and a linear function, and comparing threshold and slope 762 
measures. The auditory detection in awake and drowsy trials was first investigated by fitting a sigmoid 763 
function to the ratio of hits to misses (constrained from 0 to 1 on the y axis) across 11 gap conditions and 764 
comparing the threshold and slope measurements between the states of consciousness in each participant 765 
separately: 766 

 767 

𝐹 =
1

1+ 𝑒!
!!!
!

 

 768 
where F is the hits ratio, x is the gap condition, µ is the threshold value (the gap condition at the inflection 769 
point), and s is inversely proportional to the slope at the threshold. The sigmoid was fit using the Signals 770 
Approach Toolbox for Matlab (Spencer Lynn, http://code.google.com/p/satb/). 771 

In order to investigate whether conscious access remained non-linear in the drowsy state, the data 772 
were also fitted to a linear function: 773 

 774 
𝐹 = 𝑚𝑥 + 𝑐 

 775 
where F is the predicted hits ratio, x is the gap condition, m is the slope, and c is the point at which the 776 
line crosses the y axis.  777 

The goodness of fit was compared for each model in each state of consciousness. As both fitting 778 
functions contained the same number of free parameters, 2, the models were compared using the R2 values 779 
given by: 780 
 781 
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𝑅! = 1−  
𝛾! − 𝑓! !

!

𝛾! − 𝑓
!

!

 

 782 
where 𝛾! is the hits ratio measured for each gap condition x, 𝑓! is the predicted hit ratio given by the 783 
model, and 𝑓 is the mean hits ratio measured over all gap conditions. R2 varies from 0 to 1 with 1 784 
indicating a perfect fit to the data.  785 
 786 
Spatio-temporal ERP clustering. To identify neural signatures of conscious access and its inhibition, 787 
auditory ERP dynamics were studied using data-driven spatiotemporal clustering analysis similar to what 788 
we previously described(Chennu et al., 2013). Time windows of interest were compared between hits and 789 
misses at a single trial level, i.e. by concatenating individual datasets without participant-level averaging. 790 
While participant-level averaging is typically performed to contrast independent experimental conditions, 791 
a single trial-level analysis is arguably more appropriate when trials of independent conditions fluctuate 792 
spontaneously and their count cannot be pre-determined within- and between-participants, such as during 793 
rapid transitions between awake and drowsy states (see Fig 1D). To narrow down possible physical 794 
variance between the stimuli, only trials corresponding to gap conditions close to participant-wise 795 
thresholds (‘-12.5%’, ‘0%’, ‘+12.5%’) were subjected to ERP clustering. Furthermore, ERP clustering 796 
was limited to trials of Hori stages 1-5, as ERP topography tended to change in Hori stages ≥6. 797 

Using functions of FieldTrip toolbox(Maris & Oostenveld, 2007; Oostenveld, Fries, Maris, & 798 
Schoffelen, 2011), we compared corresponding spatiotemporal points in individual awake and drowsy 799 
trials with an independent samples t test. Although this step was parametric, FieldTrip used a 800 
nonparametric clustering method(Bullmore et al., 1999) to address the multiple comparisons problem. t 801 
values of adjacent spatiotemporal points with p <0.05 were clustered together by summating them, and the 802 
largest such cluster was retained. A minimum of two neighbouring electrodes had to pass this threshold to 803 
form a cluster, with neighbourhood defined as other electrodes within a 4 cm radius. This whole 804 
procedure, i.e., calculation of t values at each spatiotemporal point followed by clustering of adjacent t 805 
values, was repeated 1000 times, with recombination and randomized resampling before each repetition. 806 
This Monte Carlo method generated a nonparametric estimate of the p value representing the statistical 807 
significance of the originally identified cluster. The cluster-level t value was calculated as the sum of the 808 
individual t values at the points within the cluster. Spatiotemporal clustering was always carried out 809 
within a restricted time window around the ERP peak of interest (P50, N100, P200, or P300).  810 

First, a butterfly plot of trials locked to the onset of mask and taken together from all participants 811 
(N=31) revealed 3 prominent peaks at 92 ms, 196 ms, and 528 ms after the onset of mask (see Fig 3A). 812 
Based on their topography and latency, the peaks were identified as N100, P200 and P300 potentials (see 813 
Fig 3A). Afterwards, hits (N=3442) and misses (N=3277) were subjected to spatiotemporal ERP 814 
clustering around the time window of each individual peak, namely a ± 50 ms time window around the 92 815 
ms peak for N100 potentials, a ± 50 ms time window around the 196 ms peak for P200 potentials, and a ± 816 
250 ms time window around the 528 ms peak for P300 potentials. 817 

To isolate relatively early responses to the target, EEG data were selected from 10 participants who 818 
showed the highest thresholds in the behavioural staircase experiment (M=139.66 ms, SD=35.86 ms, 819 
range: 83.55-202.4 ms). Given that for these participants the masking noise was presented on average 140 820 
ms after the onset of the target, and assuming that the earliest responses to the mask would arise around > 821 
30 ms after its onset (see Fig 3A), we expected that potentials in a time window < 170 ms will be driven 822 
by the target sound. When trials of these 10 participants were grouped together, a butterfly plot of hits and 823 
misses revealed two prominent peaks at 50 ms and 116 ms (see Supplementary Fig 3A). Trials were then 824 
separated between hits (N=1527) and misses  (N=842), and data-driven clustering at a single-trial level 825 
was carried out separately in a ± 25 ms time window around the P50 peak, and in a ± 50 ms time window 826 
around the N100 peak.  827 
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ERP conditioning and normalization. Following spatio-temporal clustering, neuronal responses to the 828 
mask between awake and drowsy trials were compared across 11 gap conditions. For this, awake and 829 
drowsy datasets were created by concatenating corresponding trials of all 31 participants. Next, trial 830 
counts were matched between awake and drowsy datasets by deleting randomly selected trials from the 831 
awake condition. The following numbers of trials were obtained across 11 gap conditions: 193, 191, 180, 832 
164, 721, 726, 739, 188, 170, 194, and 203 trials in each state of consciousness. To contrast neural 833 
markers of hits and misses in awake and drowsy states, four datasets were created to study target-evoked 834 
N100 by appending trials of 10 participants who had the highest target detection threshold: awake misses 835 
(N=363), awake hits (N=931), drowsy misses (N=319) and drowsy hits (N=320). All four conditions were 836 
matched to have 319 trials each by deleting randomly selected trials from the awake misses, awake hits 837 
and drowsy hits conditions. Similarly, four single-trial datasets were created to study mask-evoked N100, 838 
P200 and P300 components, this time appending trials of all 31 participants: awake misses (N=1593), 839 
awake hits (N=1759), drowsy misses (N=793) and drowsy hits (N=803). All four conditions were then 840 
matched to have 793 trials each by deleting randomly selected trials from the awake misses, awake hits 841 
and drowsy hits conditions. 842 

To normalise within-trial variance, raw voltage of each individual trial was transformed to z-scores 843 
using the mean and standard deviation of the baseline period (-100 to 0 ms). As in the preceding 844 
spatiotemporal ERP clustering, 0 ms indicated the onset of a target tone when target-evoked N100 was 845 
studied, and the onset of a mask when mask-evoked ERP components were studied. Next, to correct for 846 
between-trial variance introduced by inter-individual EEG differences in the drowsy state of 847 
consciousness, cross-trial weighting of variance was performed. Namely, each data point along a time axis 848 
of a single trial was multiplied by the absolute value of the mean divided by the standard deviation of the 849 
same time point across all trials and all conditions:  850 

 851 

𝑆!"# = 𝑆!"# ∙  𝑎𝑏𝑠
𝑀
𝑆𝐷  

 852 
where Snew is a new weighted single time sample of an individual trial, Sold is an original value of the 853 

same time sample of an individual trial, M is the mean of all trials across all conditions at the same time 854 
sample, and SD is the standard deviation of all trials across all conditions at the same time sample. Cross-855 
trial weighting reduces amplitude of time points that show relatively high inter-trial variance (induced 856 
activity) and amplifies signal with relatively high inter-trial consistency (evoked activity). Importantly, 857 
ERP cross-trial weighting is sensitive to the number of trials included, and thus all conditions in each ERP 858 
analysis were matched by a trial count. Both standardization and cross-trial weighting were carried out 859 
separately for each electrode, i.e. there was no spatial correction implemented in the analysis. For the EEG 860 
slope analysis, cross-trial weighting was carried out by calculating joint M and SD over awake and drowsy 861 
trials separately for each gap condition, which had physically different stimuli. For the ERP analysis of 862 
States x Access interaction and ERP source modelling, cross-trial weighting was carried out by 863 
calculating joint M and SD over trials in all four conditions included in the analysis, i.e. awake misses, 864 
awake hits, drowsy misses, and drowsy hits. 865 
 866 
EEG slope analysis. To study the sensory-central gating and its modulation by the state of consciousness, 867 
EEG epochs locked to the onset of mask were divided between Hori-defined awake (stages 1-2) and 868 
drowsy (stages 4-5) conditions. Next, trials were averaged separately for the 11 gap conditions, and this 869 
was repeated for the awake and the drowsy trials. Mean amplitude of mask-evoked ERP clusters in N100, 870 
P200, and P300 time windows was then averaged separately for each gap condition and both states of 871 
consciousness (see below). This reduced data to six two-dimensional matrices of 92 electrodes x 11 gap 872 
conditions, i.e. one matrix for each state (awake, drowsy) and time window (N100, P200, P300). Next, for 873 
each electrode, a linear function was fitted to 11 amplitude values (one per gap condition), and a slope and 874 
a coefficient of determination (R2) were calculated, using the same functions as for behavioural analysis. 875 
The same procedure was repeated for all six matrices of awake and drowsy datasets at N100, P200 and 876 
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P300 time windows. Finally, the obtained slope and R2 raw values were plotted as topographical maps 877 
(see Fig 4A-B and Suppl. Fig 2), and their absolute values were used for statistical analyses. 878 

To visualize changing slope across 11 gap conditions, the identified ERP markers of conscious 879 
access were analysed using a measure of global field power (GFP)(Lehmann & Skrandies, 1980) within a 880 
time window of interest. GFP was calculated as a standard deviation of raw voltage values at a single time 881 
point of individually averaged waveforms across all 92 electrodes. This way, GFP reduces spatial 882 
dimension of EEG data to a single value as a parametric summary of a momentary strength of 883 
topographical EEG map. Given that GFP was calculated from weighted EEG data, we refer to the 884 
obtained measure as weighted GFP (wGFP). 885 

ERP analysis of States x Access interaction. For the analysis of Access x States interactions of the 886 
identified N100, P200 and P300 spatio-temporal clusters (see above), cluster peaks were reassessed by 887 
plotting a waveform of averaged cluster electrodes in gap conditions ‘-12.5%’, ‘0%’ and ‘+12.5%’, and 888 
detecting a peak within a significant cluster time window. While doing this, four conditions of interest – 889 
awake misses, awake hits, drowsy misses, and drowsy hits – were matched by the trial count and then 890 
averaged. Waveform peaks were searched within significant time windows of originally identified 891 
clusters, and the following time windows were used to calculate mean amplitude as close around the peak 892 
as possible without going beyond a cluster significant time windows: 50 ms for N100, 80 ms for P200 and 893 
120 ms for P300. This way, the following time windows were identified and used to calculate mean 894 
amplitude: 118-166 ms for the positive target-evoked N100 cluster (mean amplitude constrained by 895 
cluster significant window of 48 ms), 76-126 ms for the negative mask-evoked N100 cluster, 166-246 ms 896 
for the positive mask-evoked P200 cluster, and 362-482 ms for the positive mask-evoked P300 cluster. 897 
The same cluster time windows were also used for the ERP slope analysis (see above) as well as the ERP 898 
source modeling (see below). Weighted amplitude of a respective ERP component (N100, P200, or P300) 899 
was averaged across cluster electrodes and identified time samples for the statistical analyses. 900 
 901 
EEG source modelling. Weighted minimum norm estimation (wMNE) of single trial sources was carried 902 
out to study whether temporal and fronto-parietal sources contribute to the States x Access interaction. 903 
Source modelling was performed with Brainstorm(Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011), 904 
which is documented and freely available for download online under the GNU general public license 905 
(http://neuroimage.usc.edu/brainstorm). A head model was computed using OpenMEEG BEM forward 906 
modelling(Gramfort, Papadopoulo, Olivi, & Clerc, 2010; Kybic et al., 2005), with the following BEM 907 
layers and conductivities: scalp: 1082 vertices – 1; skull: 642 vertices – 0.0125; brain: 642 vertices – 1. 908 
The canonical Colin27 was used as a structural magnetic resonance imaging (MRI) template to create 909 
these surfaces. Noise covariance computed across all channel pairs was incorporated in the wMNE 910 
algorithm. To draw scouts of the hypothesized sources in the expected regions of interest (ROIs), absolute 911 
values of source activations within each scout were averaged across cluster peak time window that was 912 
determined during ERP analyses (see above), trials and all four conditions, i.e. awake misses, awake hits, 913 
drowsy misses, and drowsy hits (793 trials per condition). N100 and P200 time windows guided 914 
identification of joint temporal lobe source, and P300 time window guided identification of frontal and 915 
parietal sources. The size of the scouts was fixed at 85 cm2, centred on the cortical peak of the average 916 
activation. Source activation of each trial and condition within selected scouts was subjected to statistical 917 
analysis. 918 
 919 
Statistics. Statistical analyses were carried out using IBM SPSS Statistics and Matlab R2014a. When 920 
possible, parametric tests were used. When Levene’s test indicated different amounts of variability 921 
between scores of two conditions, equal variances were not assumed when running an independent-922 
samples t test. Cohen’s d was calculated to assess effect size of pairwise comparisons, using pooled 923 
variance. In cases when data were ordinal, non-parametric tests were used. Regarding specific contrast 924 
conditions:  925 
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(1) For within-participant comparisons of different measures of drowsiness (Hori, θ/α, RT), the 926 
Spearman rank order correlation test was used, as Hori stages are ordinal. The obtained correlation 927 
coefficients were subjected to group level analysis with a one-sample t test. (2) Unequal spread of the rate 928 
of hits across 11 gap conditions was tested using one-way repeated measures ANOVA. (3) To compare 929 
threshold and slope estimates between awake and drowsy trials, a separate paired sample t test was carried 930 
out for each split of data, i.e. θ/α-33%, θ/α-50%, RT-33%, and RT-50%. (4) To compare R2 of sigmoid 931 
versus linear fits of the hits’ rate across 11 gap conditions between awake and drowsy states of 932 
consciousness, repeated measures ANOVA was carried out separately for the θ/α-33% and RT-33% based 933 
splits with Models (linear, sigmoid) and States (awake, drowsy) as independent factors. Pairwise 934 
comparisons were carried out using paired samples t tests. (5) To compare a difference score of the rate of 935 
hits between the easiest and the most difficult gap conditions across Hori Stages 1-6, a one way between 936 
samples ANOVA with a linear contrast was carried out with Hori stages as an independent factor and the 937 
difference score of hits between the easiest and most difficult gap conditions as a dependent factor. In this 938 
trend analysis, a weighted linear term was used to compensate for unequal size of observations across 939 
Hori stages. (6) Association between slope and threshold estimates in awake and drowsy trials was 940 
evaluated using Pearson correlation, which was carried out separately for the θ/α-33%, θ/α-50%, RT-33%, 941 
and RT-50% splits of the data. (7) To compare the slope of a linear fit across the mean ERP amplitude of 942 
11 gap conditions between awake and drowsy trials in 92 electrodes, repeated measures ANOVA was 943 
carried out with ERP component (N100, P200) and States (awake, drowsy) as fixed factors. Identical test 944 
was carried out to analyse R2 of these fits. Paired sample t tests were used for follow up analyses of 945 
significant main effects and interactions. (8) To evaluate state-induced modulation of ERP-clusters of 946 
conscious access at a single trial-level, two-way between-trials univariate ANOVA was carried out with 947 
States (awake, drowsy) and Access (miss, hit) as fixed factors, separately for N100, P200, and P300 948 
components. Independent samples t tests were used for follow up analyses of significant main effects and 949 
interactions. (9) To evaluate state-induced modulation of the sources of mask-evoked ERP-clusters at a 950 
single trial-level, two-way between-trials univariate ANOVA was carried out with States (awake, drowsy) 951 
and Access (miss, hit) as fixed factors and the amplitude of the weighted current density averaged across 6 952 
scouts (left frontal, right frontal, left parietal, right parietal, left temporal, right temporal) as the dependent 953 
variable, separately for N100, P200, and P300 components. In a case of a significant main effect of 954 
Access, planned independent samples t tests were carried out to contrast hits and misses in awake and 955 
drowsy states in frontal, parietal and temporal sources, aiming to identify sources with the higher 956 
amplitude in misses than hits. (10) To compare ordinal Hori scores of sleep progression between the 957 
excluded (N=25) and the remaining (N=31) participants, the mode of Hori scores was first calculated for 958 
each participant across the whole EEG session, and these scores were then compared between the groups 959 
using non-parametric Mann-Whitney U test. (11) Pearson χ2 test was used to test if excluded participants 960 
were more likely to be male or female compared to the remaining participants. (12) Pearson correlation 961 
was used to assess the strength of association between detection threshold estimates in Block 1 and Block 962 
2 of the behavioural staircase procedure.  963 
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SUPPLEMENTARY TABLE 

 
Supplementary Table 1. Slope and threshold estimates in awake and drowsy states: statistics 

Note: a N=27; b N=31; c N=26; d N=29 (some participants were excluded because sigmoid could not be fitted to their 
responses, or because their threshold or slope difference between awake and drowsy states was an outlier, i.e. 2 SD 
above/below the group mean). Results significant after correction for multiple comparisons are highlighted in bold. 
 

 
SUPPLEMENTARY FIGURES 

 
 

 
 
Supplementary Figure 1: Slope and threshold estimates in RT-defined relaxation and drowsiness. (A) 
Sigmoidal functions fitted to the awake (red) and drowsy (blue) hits, following RT-33% definitions of the states 
of consciousness. The trials were first averaged within each participant and then across all participants. The error 
bars indicate the standard error of mean (SEM), calculated across all participants. (B) Threshold and slope 
estimates in the drowsy state subtracted from those in the awake state. Individual participants (N=29), 
represented as bars, are sorted from the one with the largest increase of threshold (light brown) to the one with 
the largest decrease (dark brown) of threshold in drowsiness (left), and from the one with the largest increase of 
slope (light brown) to the one with the largest decrease of slope (dark brown) in drowsiness (right). Data split in 
this plot is based on the RT-33% definition of the awake and drowsy states. Levels of significance: ns = p>0.05; 
**** p<0.00005. (C) Coefficient of determination (R2) of linear and sigmoidal models of the proportion of hits 
as a function of gap in the awake and drowsy trials as defined by RT-33%. The error bars indicate the SEM. 
Levels of significance: ** p<0.005; ****** p<0.0000005. 
 

State 
definition  

Difference 
between awake 

and drowsy  
states in slope 

Difference 
between awake 

and drowsy  
states in threshold 

 

Correlation 
between slope  
and threshold 
in awake state 

Correlation 
between slope 
and threshold  

in drowsy state 

 Correlation 
between awake 

and drowsy  
slope 

Correlation 
between awake 

and drowsy 
threshold 

t(d) p t(d) p  r p r p  r p r p 
                
θ/α-33% a  3.2(.78) .004 .78(.15) .44  -.07 .73 -.2 .33  .2 .33 .52 .006 

                
θ/α-50% b  2.99(.61) .006 .74(.11) .47  -.11 .58 -.3 .12  .41 .027 .68 .000047 

                
RT-33% c  5.81(1.3) .00001 1.83(.29) .078  -.14 .48 -.15 .48  .68 .0001 .7 .00008 

                
RT-50% d  5.93(1.1) .000002 1.33(.17) .19  .01 .94 -.21 .25  .78 .000001 .77 .000002 
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Supplementary Figure 2: ERP marker of conscious access. (A) A butterfly plot of ERP waveforms locked to 
the onset of target, baseline corrected from -100 ms to 0 ms. Topographical voltage maps depict spatial 
distribution of the butterfly peaks at 50 ms and 116 ms (brown verticals), revealing typical distribution of P50 
and N100 auditory potentials. A relatively late 116 ms latency of the N100 peak likely depended on a weak 
intensity of the target sound (single frequency, short duration, low amplitude), as the N100 latency increases 
with a decreasing intensity of auditory stimuli(Adler & Adler, 1989; Covington & Polich, 1996). These data 
were taken from 10 participants with the highest threshold of target detection, i.e. the longest period of silence 
between the target and the masking tones. While the first two peaks reflect neuronal processing of target, the 
mask, timing of which varied within and between participants, likely contributed to the peaks above 170 ms. (B) 
Spatiotemporal clustering of ERPs locked to the target sound. Hits (green waveform) and misses (black 
waveform) were compared within N100 time window for 10 participants with the highest auditory detection 
threshold. Green shaded vertical bar behind the waveforms represents time window of a significant difference 
between hits and misses (cluster t=2373.1, p=0.001). These waveforms are taken from the fronto-central 
electrode with the largest difference between hits and misses, marked as a green dot in the topographical voltage 
map. The black contours within the map reveal which electrodes showed a significant difference, i.e. the more 
negative amplitude in hits than misses, and formed a spatiotemporal cluster. Red vertical line at 150 ms in the 
waveform reveals the peak time of the largest difference between hits and misses. The topographical voltage 
map depicts the very same time point of the most significant difference between conditions. 
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Supplementary Figure 3: Linear fit of P300 responses to the onset of mask across gap conditions. Linear fit 
of the mask-locked P300 mean amplitudes across gap conditions 1-11. The top line represents fit of the awake 
trials (Hori 1-2), whereas the bottom line depicts fit of the drowsy trials (Hori 4-5). Subplots on the left show the 
mean weighted GFP in a P300 time window across equally spaced gap conditions 1-4, 6, 8-11. Conditions 5 and 
7 are not presented here, as they were additional intermediate intervals. The middle subplots show scalp maps of 
slope values of a linear function, which was fitted to the mean amplitude of P300 peaks across gap conditions 1-
11. The slope was first calculated for each electrode and the obtained values were interpolated in the heat maps. 
Likewise, subplots on the right show scalp maps of the goodness of linear fit, expressed as R2, which was first 
calculated for each fit across gap conditions within a single electrode, and the obtained values were interpolated 
in the heat maps. 
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Supplementary Figure 4: Target locked N100 marks conscious access in awake and drowsy states. (A) 
Time course of N100 cluster locked to the onset of target. Waveforms are averaged across the cluster electrodes, 
which are depicted in green in the electrode montage map. Individual trials are averaged separately for the four 
conditions: awake misses, awake hits, drowsy misses, and drowsy hits. Green shaded bar indicates time window 
that was used to calculate the mean amplitude of the cluster. Error bars indicate SEM. (B) Target-evoked N100 
cluster revealed significant main effects of State (F(1,1272)=4.48, p=0.035) and Access (F(1,1272)=5.03, p=0.025), 
whereas the States x Access interaction was not significant (F(1,1272)=0.63, p=0.43). Hits were associated with 
higher target-evoked N100 amplitude than misses (t(1274)=2.24, p=0.025, d=0.13), and awake state was 
associated with higher cluster amplitude than drowsiness (t(1083)=2.11, p=0.035, d=0.13). *p<0.05.  
 
 
 
 

 
Supplementary Figure 5: Temporal sources of mask-evoked ERP clusters. The planned t test comparisons 
of temporal source activations between hits and misses in awake and drowsy states in P200 (orange) and P300 
(grey) time windows. Waveforms indicate time courses of source activations, whereas statistical plots depict 
significance level of the planned comparisons within respective time windows: *p<0.05. Error bars indicate 
SEM. In the P200 time window, awake misses had higher amplitude than awake hits in the left temporal 
(t(1560.6)=2.73, p=0.0063, d=0.14) and the right temporal (t(1520.6)=2, p=0.045, d=0.1) sources.  
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