
	
   1	
  

Dissecting targeted therapy resistance: 
Integrating models to quantify environment 

mediated drug resistance 
 

Noemi Picco1,2, Erik Sahai3, Philip K. Maini2*, Alexander R. A. Anderson1* 
 
1. Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center 
and Research Institute, Tampa, FL, USA  
2. Wolfson Centre for Mathematical Biology, Mathematical Institute, University of 
Oxford, UK 
3. Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK 
 
* These authors contributed equally. 

This manuscript has been accepted for publication in Cancer Research, which is 
published by the American Association for Cancer Research 
 
Running Title: Integrating models to quantify EMDR to targeted therapy 
 
Keywords: Melanoma/skin cancers, Tumor-stromal cell interactions, Drug 
resistance, Heterogeneity, Integrated experimental - mathematical modelling, 
Targeted therapy. 
 
Precis: 
Quantification of the environmental contribution to drug resistance reveals 
heterogeneity that significantly alters treatment dynamics that can be exploited 
for therapeutic gain. 
 
Financial Support:  
Picco and Anderson: US National Cancer Institute grant U01CA151924.  
Picco: UK Engineering and Physical Sciences Research Council (EPSRC grant 
number EP/G037280/1). 
 
Corresponding Author: 
Noemi Picco, St John’s College, St Giles’, OX1 3JP, Oxford, United Kingdom 
noemipicco@gmail.com 
phone: +44  7552 162449 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 6, 2017. ; https://doi.org/10.1101/156547doi: bioRxiv preprint 

https://doi.org/10.1101/156547


	
   2	
  

 
Conflict of Interest Disclosure: 
The authors declare no potential conflicts of interest. 
 
Abstract 
 
Drug resistance is the single most important driver of cancer treatment failure for 
modern targeted therapies. This resistance may be due to the presence of 
dormant or aggressive tumor cell phenotypes or to context-driven protection. 
Non-malignant cells and other factors, constituting the microenvironment in which 
the tumor grows (the stroma), are now thought to play a crucial role in both 
therapeutic response and resistance. Specifically, the dialogue between the 
tumor and stroma has been shown to modulate the response to molecularly 
targeted therapies, through proliferative and survival signaling. The goal of this 
work is to investigate interactions between a growing tumor and its surrounding 
stroma in facilitating the emergence of drug resistance. We use mathematical 
modeling as a theoretical framework to bridge between experimental models and 
scales, with the aim of separating the intrinsic and extrinsic components of 
resistance in BRAF mutated melanoma. The model describes tumor-stroma 
dynamics both with and without treatment. Calibration of our model, through the 
integration of experimental data, revealed significant variation across animal 
replicates in either the intensity of stromal promotion or intrinsic tissue carrying 
capacity. Furthermore our study highlights the need to account for this variation 
in the design of treatment strategies. Major Findings. Through the integration of 
a simple mathematical model with in vitro and in vivo experimental growth 
dynamics of melanoma cell lines (both with and without drug), we were able to 
dissect the relative contributions of intrinsic versus environmental resistance. Our 
study revealed significant heterogeneity in vivo, indicating that there is a diversity 
of either stromal promotion or tumor carrying capacity under targeted therapy. 
We believe this variation may be one possible explanation for the heterogeneity 
observed across patients and within individual patients with multiple metastases. 
Therefore, quantifying this variation both within in vivo model systems and in 
individual patients could have a significant impact on the design of future 
treatment strategies that target both the tumor and stroma. Further, we present 
guidelines for building more effective and longer lasting therapeutic strategies 
utilizing our experimentally calibrated model. These strategies explicitly consider 
the protective nature of the stroma and utilize inhibitors that modulate it.  
 
Quick Guide to Equations and Assumptions 
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The tumor is classified into two subpopulations, with respect to their sensitivity to 
the targeted inhibitor. 𝑆 and 𝑅 are, respectively, drug sensitive and drug tolerant 
populations. The stroma is divided into normal cells 𝐹  (i.e. fibroblasts) and 
reactive cells 𝐴  (i.e. cancer associated fibroblasts). The latter compartment 
represents fibroblasts in a transformed, secretory phenotype that promotes 
survival and tumor growth under drug treatment. We assume that 𝑆 grows in the 
absence of treatment with growth rate 𝜌&, 𝑅 grows under targeted treatment at 
rate 𝜌'. They share a carrying capacity 𝐾, representing the maximum packing 
capacity of the tissue where the tumor is growing. Targeted therapy (BRAFi) 
induces the stroma to switch to its reactive form at a rate 𝜃. In turn reactive 
stroma (𝐴 ) will promote tumor growth by an additional growth rate 𝜂 . Upon 
removal of the targeted inhibitor, stromal renormalization occurs at rate 𝜑 and 
cancer cells are re-sensitised at rate 𝜉. The stromal-targeted inhibitor (FAKi) is 
assumed to reduce the stromal promotion by rate 𝛼. These interactions occur 
dynamically in time (𝑡) as defined by the following system of ordinary differential 
equations (ODEs): 
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(1) 
 
In addition we use the initial conditions:  𝑆 0 = 	
  𝑆R, 𝑅 0 = 	
  𝑅R, 𝐹 0 = 	
  𝐹R,
𝐴 0 = 	
  𝐴R. Note that, 𝑔(𝑡), ℎ(𝑡) and 𝑓(𝑡) are binary functions of time that allow 
for specific terms in the equations to be switched on and off, depending on 
treatment scheduling. Given a protocol calling for targeted therapy for the time 
interval [𝑡CUU, 𝑡VUU]  and FAKi for [𝑡CLL, 𝑡VLL] , the binary functions are defined as 
follows. 
 

𝑓 𝑡 = 	
   	
  1 𝑖𝑓	
  𝑡CLL < 	
  𝑡 < 	
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(2) 
 
A useful measure of tumor burden control over a window of time [𝑡M, 𝑡`] is the 
inverse of the area under the curve, defined as follows: 
 

Π =	
  1 𝑆 𝑡 + 𝑅 𝑡 𝑑𝑡2c
2d

.     (3)	
  
 
Introduction 
 
In the past decade many molecular targets of oncogenic drivers have been 
developed and approved for the treatment of pathway-specific cancers, in the 
hope that they could accompany or even replace highly toxic chemotherapeutic 
drugs [1-4]. Unfortunately this strategy turned out to be only partially successful, 
with strong initial responses often followed by relapse [3]. In an attempt to 
improve these poor long-term responses, combinations of multiple inhibitors 
(including immunotherapies) have been attempted [5-7]. Despite successes in 
concurrent inhibition of several pathways in preclinical models [8,9], it would 
seem that in the clinical setting, combination of targeted inhibitors does not offer 
cure, but can at best delay inevitable disease progression caused by the onset of 
drug resistance [2, 10, 11].  
 
In an effort to understand why these treatment strategies fail, and how we might 
redesign better and more successful treatments, we must embrace the reality 
that cancer is a complex evolving system. Because cancer is an evolutionary 
disease, it can evolve strategies to override or circumvent the action of a given 
inhibitor. These strategies include producing secondary mutations [11] or 
exploiting pre-existing genetic heterogeneity. However, mutations alone are not 
sufficient to explain the often rapid timescale over which cancer stops responding 
to therapy [12]. Recent evidence suggests that cancer is able to co-opt the 
surrounding stroma to create an environment that can facilitate treatment escape 
[13, 14]. This phenomenon is termed Environment-Mediated Drug Resistance 
(EMDR) [12], and includes several processes ranging from cell-adhesion 
mediated drug resistance [15-17] to therapy-induced secretomes such as IGF, 
HGF, TGF-beta [8, 18] and fibronectin [19]. The mechanisms of context-driven 
resistance we consider here are shared across a variety of solid tumors 
characterized by aberrations in growth-control signaling and a high level of 
interaction with the surrounding tumor microenvironment. Our primary focus here 
is on BRAF mutated melanoma. A particular instance of EMDR in melanoma is 
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represented by the action of cancer associated fibroblasts (CAFs) that create a 
habitat favorable for drug tolerance and tumor growth. The environmental 
remodeling includes deposition of extracellular matrix (ECM) components, 
upregulation of growth factor production, intensification of paracrine signaling 
between the stroma and the tumor cells, and rewiring of the tumor cells’ 
proliferative and survival signaling via integrin binding [12]. The effect of this 
transformed habitat on the cancer and stromal cells is transiently induced by 
application of the targeted drug and is mostly reversible [20]. Given the transient 
nature of EMDR there may be an opportunity to modulate it through treatment 
holidays by allowing renormalization of the stroma to occur – potentially 
facilitating a better overall treatment outcome. Additionally, preliminary 
investigations have shown benefits in inhibiting stromal-derived processes, such 
as elevated FAK signaling [13]. Dual targeting of tumor and stromal processes 
represents a promising strategy for better management of BRAF mutated 
melanoma. 
 
Understanding this complex interplay between tumor and host cells undergoing 
treatment is ideally suited for mathematical and computational models. Recently, 
several theoretical studies have addressed the role of the environment in 
facilitating drug resistance. Mumenthaler et al. have studied how gradients of 
nutrients and drug concentration modulate the fitness of drug-sensitive and drug-
resistant cell lines, and eventually determine recurrence [21]. Sun et al. modeled 
the environmental adaptation to drug treatment via drug-induced resistance 
factors that modulate the growth dynamics of metastatic disease [22]. Silva et al. 
and, more recently, Robertson-Tessi et al. modeled microenvironmental 
heterogeneity, specifically the regulation of metabolism, to understand the 
evolutionary dynamics driving treatment response and leading to resistance [23, 
24]. A significant literature already exists for mathematical models of intrinsic 
resistance in cancer progression and response to treatment. Lavi et al. offer a 
comprehensive review of models of cancer resistance [25]. However, the focus of 
the majority of these models is limited to intrinsic chemotherapy resistance [26]. 
Models that integrate the role of the stroma, which is key in the emergence of 
resistance to targeted therapeutics, are less well developed, but are beginning to 
emerge. Many studies analyze the dynamics emerging from tumor-immune 
interactions [27-30]. Fewer mathematical models specifically describe 
interactions between cancer and stromal fibroblasts and their role in drug 
resistance [31-34]. To our knowledge, the problem of separating intrinsic 
resistance from EMDR, through the dynamics of response to targeted therapy, 
has not yet been addressed. 
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Here we present a first minimal model of tumor-stromal interactions, which aims 
to bridge the growth dynamics of cancer from in vitro and in vivo experimental 
models. Specifically, by using exponential growth dynamics from cells growing in 
vitro we can calibrate baseline unconstrained growth dynamics. Then using the 
same cancer cell line in vivo (mouse allograft) we can capture the saturation 
dynamics. Using these two experimental model systems, under treatment, we 
can then quantify the relative contribution of the environment to tumor growth. 
 
Our calibrated model describes the baseline growth dynamics and the relevant 
tumor-stromal interactions determining growth and response to treatment. This, 
in turn, allows a fuller exploration of the role of stroma in the promotion of drug 
resistance, which we propose is critical for the design of optimal treatment 
strategies. To this end we will explore treatment schedules that exploit tumor-
stromal interactions to limit and/or delay the emergence of EMDR. Our study 
gives preliminary guidelines for building more effective and longer lasting 
therapeutic strategies, including dose fractionation and timing. 
 
Materials and Methods 
 
A common paradigm for the treatment of advanced stage BRAF-mutated 
melanoma includes targeted therapy in the form of a BRAF inhibitor (BRAFi), 
such as vemurafenib, recently approved for patients carrying the V600E mutation 
[35]. Kinase inhibitors such as vemurafenib specifically block a molecular 
pathway that the cancer cells are strongly dependent on, resulting in reduced 
toxicity for the whole body and increased specificity for the tumor. While this 
treatment can keep the cancer in check for many months, the disease will 
eventually recur. Having identified the environment as a key factor in therapy 
failure [12], alternative blockades of stromal-derived processes are actively being 
investigated. Here we specifically model FAK inhibition (FAKi) that has proved 
effective in the pre-clinical setting [13]. 
 
We propose a model of EMDR for molecularly targeted cancers. Figure 1 shows 
a schematic of the interactions between key players in our system: cancer cells 
classified as either sensitive or tolerant to the targeted drug ( 𝑆  and 𝑅 , 
respectively), and stroma cells in normal or reactive form (𝐹 and 𝐴, respectively). 
The 𝑅 compartment accounts for an initial intrinsic resistant cancer population as 
well as cells that are transiently drug-tolerant through the action of EMDR. It is 
worth noting that this “catch all” compartment does not correspond to a single 
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biological phenotype or genotype, however, it allows us to analyze growth 
regimes with and without targeted treatment, and most importantly to quantify the 
relative contribution of the environment to tumor growth dynamics under 
treatment. Significant bacterial literature indicates the existence of persister 
phenotypes which are tolerant to a number of antibiotic agents and yet do not 
appear to be driven by genetic changes [36]. Very recently, such populations of 
‘cancer persister cells’ have been discovered in an EGFR+ lung cancer cell line 
[37, 38].  However, in the absence of more detailed data, we develop a simplified 
model with an initial 𝑅 population that includes cells derived from any of these 
mechanisms, and allow all cells to return to sensitivity, irrespective of resistance 
mechanism. 
 
The interactions between the cell compartments, modulated by the two drugs 
(BRAFi and FAKi), are defined by a set of ordinary differential equations 
(ODEs) (1) discussed in more detail in the guide to equations. A key advantage 
of this simple model is that it can incorporate data from both in vitro and in vivo 
experimental models. 
 
Figure 2 shows the experimental data for BRAF mutated melanoma cell lines 
5555 and 4434. These cells were both cultured in vitro (Figure 2A) and injected 
in vivo (Figure 2B). Growth was observed over time, both in the absence of drug 
and under treatment with PLX4720, a BRAF inhibitor. We can adapt the model 
(1) to represent each one of these experimental conditions. Table 1 shows a 
summary of the experimental conditions and corresponding models. Starting 
from the in vitro experimental setup, corresponding to a simplified system of 
equations with fewer unknown parameters, we obtain parameter estimates by 
data fitting and consequently use these values for the data fitting of the in vivo 
experimental setup. In doing so we significantly reduce the number of unknown 
parameters for each fit, as well as the risk of overfitting. 
 
The in vitro setup (with a time scale on the order of a few days, Figure 2A) can 
be represented by an exponential growth regime, and lacks the stromal 
component. This corresponds to reducing system (1) for small time 𝑡 with 𝐹R = 0, 
obtaining: 
 

1&
12
= 	
  𝜌&𝑆 1 − 𝑔 𝑆 0 = 𝑆R
1'
12
= 𝜌'𝑅𝑔 𝑅 0 = 𝑅R

      (4) 
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where the only unknown parameters are: 𝑅R, 𝑆R, 𝜌& for the untreated case (𝑔 = 0), 
and 𝑅R, 𝑆R, 𝜌' for the treated case (𝑔 = 1). Parameter estimation for these triplets 
is carried out by Approximate Bayesian Computation, which builds a discrete 
approximation of the posterior distribution. Data are fitted to the analytical 
solution of (4). Analytical solutions are reported in Table 1 and a detailed 
description of the estimation method is reported in the supplementary material. 
Figure 3A shows the marginal distributions for the growth rates of each cell line. 
Comparing the estimates for control and treated conditions, we see a reduction in 
growth rate for the treated cancer. The deficit in growth rate reveals that under 
drug treatment the 𝑅  population, irrespective of the mechanism of resistance, 
exhibits slower growth compared to the 𝑆  population in untreated conditions, 
consistent with the previous literature [20]. 
 
We assume that the growth dynamics of the cancer cells treated in vitro can be 
solely attributed to pre-existing drug tolerant subpopulations. On the other hand, 
in order to quantify the role of the environment on the dynamics of resistance, we 
turn to the mouse allografts. When the same cell lines are injected in mice, 
growth is significantly constrained and experiments cover a longer time scale 
(Figure 2B). The observed dynamics are more accurately captured with a logistic 
growth regime, as described by:  
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By assuming that cells from the same cell line grow at the same exponential rate 
in an unconstrained environment, we are able to use the growth rates estimated 
from the in vitro data (i.e. and 𝜌&  and 𝜌' ) to help calibrate the parameter 
estimates for the in vivo model. 
 
By fitting the model to the untreated mice data we obtain estimates for the 
parameters 𝑅R, 𝑆R, 𝐾. Note that in the absence of treatment (𝑔 = 0), the equations 
for the tumor and stromal populations are decoupled, therefore the estimate of 
tissue carrying capacity (𝐾) is independent of the quantification of interacting 
stromal cells. However, 𝐾 is intrinsically dependent on nutrient constraints as well 
as the packing capacity of the tissue. Indeed, variations of this quantity are 
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captured in the range of estimated values (see Figure 3B and Table 2). Posterior 
distributions are wider in mice with higher values of carrying capacity (e.g. mice I, 
II cell line 5555). For low 𝐾, logistic curves reach carrying capacity within the time 
window of the in vivo experiments. Curves with higher 𝐾, however, have a later 
inflection point and their characteristic shape is not captured in the same time 
window, resulting in more uncertain estimates. It is worth noting that for some  
mice, the data do not capture the saturating dynamics, as the experiment had to 
be interrupted due to animal welfare (for details on the original experiments see 
[13]). 
 
For the treated mice setup (𝑔 = 1), the equations are coupled. We can solve the 
last two equations of (5) analytically, to write 𝐴	
  as a function of 𝐹R and 𝜃. Defining 
𝜂 = 	
  𝜂𝐹R, we reduce the parameter number in the analytical solution of (5). At this 
stage, experimental quantification of the rate of stromal activation is not 
available; therefore estimates for the parameters 𝑅R, 𝑆R, 𝜂 will be carried out with 
a range of 	
  𝜃  values. We observed high sensitivity of the estimates of 𝜂  to 
variations in this experimentally undefined parameter 𝜃 (Figure S3). Figure 3C 
shows the estimated values for 𝜂  for each mouse. This reveals considerable 
variation in the stromal support across mice, hinting at an underlying 
heterogeneity in stromal habitats and activation. Since estimates of 𝐾	
  and 𝜂	
  are 
dependent on the previously estimated growth rates (𝜌& and 𝜌', respectively), the 
ABC estimation was run for values of growth rates within the range captured by 
the fit to the in vitro data (see Table 2). The resulting posterior distributions 
varying in relation to the growth rates are shown in Figure S1 and S2, 
respectively. The variation in response to BRAF inhibition across replicates could 
be the result of underlying heterogeneity either in tissue carrying capacity or in 
stromal support, or both. Our estimation protocol for the stromal promotion 
parameter 𝜂 makes use of an average carrying capacity 𝐾 previously estimated. 
However, the variation across replicates could also be explained by variation in 
carrying capacity. Therefore we further investigated the BRAFi treated mice data, 
to infer the posterior distribution of 𝜂	
  as 𝐾 is varied and vice versa. Figure S4 
shows the resulting posterior distributions in the 𝐾, 𝜂  space for a sample 
mouse. The posterior distribution of 𝐾 is highly sensitive to the variation of 𝜂 (see 
yellow violin plots), and vice versa. However, the best overall fits of 𝜂	
  and 𝐾 are 
located in the same region of the space. This means that for a given mouse we 
can unequivocally identify a combination of values for the carrying capacity and 
stromal support that best explains the data. 
 
Finally, we can quantify the inhibiting action of the stromal-targeted drug in the 
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form of 𝛼 = 	
  𝛼𝐹R, fitting data from mice treated with both BRAFi (PLX4720) and 
FAKi (PF562271) to the following version of the model: 
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  (6) 

 
Despite the variability of responses across replicates (see data and fits in Figure 
S5), the resulting estimates for 𝛼 show little variation (Figure 3D and Table 2). 
This implies that the variability in treatment response may be attributed to the 
heterogeneous stromal composition of the tissue (highlighted in Figure 3C), as 
opposed to the efficacy of the stromal inhibition. 
 
Results 
 
Calibrating our model across in vitro and in vivo data allows us to gain insight into 
the dynamics of the system that a qualitative analysis of these experiments 
cannot capture. Figure 3A shows the marginal posterior distribution for growth 
rates 𝜌&  and 𝜌' , with a reduction of the latter quantifying the impact that drug 
tolerance has on proliferative capacity. 
 
Comparing in vitro and in vivo dynamics allows us to assess the relative 
contribution of the environment to drug resistance. This analysis revealed 
significant heterogeneity across replicates (mice), both in terms of tissue carrying 
capacity, and stromal protection (Figures 3B and 3C). This heterogeneity 
translates to a high variability of response to treatments that target both the 
tumor and the stroma, despite the apparent more homogeneous inhibitory effects 
of the stromal-targeted drug (Figures S5 and 3D). 
 
Analysis of the ODE model with the combination treatment of BRAFi and FAKi 
(equation (6)) gives insight into the dynamics of the system as a function of 
stromal promotion and tumor growth rate. Specifically, we can discriminate two 
distinct cases: 
 
1) If 𝛼 < 𝜂	
    or 𝛼 > 𝜂	
  𝑎𝑛𝑑	
   gh

Li jkl
> 1  then 1 &<'

12
≥ 0	
  ∀	
  𝑡 ≥ 0, 
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2) If 𝛼 > 𝜂	
  𝑎𝑛𝑑	
  0 < gh
Li jkl

< 1  then 1 &<'
12

≥ 0	
  ∀	
  0 ≤ 	
  𝑡 ≤ 𝑡∗, 

where 𝑡∗ = 	
  − q
r
	
  log	
   1 − gh

Li jkl
. 

 
In the first case, either the stromal promotion is too strong to be compensated by 
the FAKi, or the stromal promotion is weak, but the tumor growth rate is elevated. 
Then the overall tumor burden is monotonically increasing, although bounded by 
the carrying capacity, and therapy is ineffective. In the second case, when 
stromal promotion is weak and the tumor growth rate is reduced, then the 
therapy is effective provided that it is administered for a sufficiently large period 
of time. 
 
As an example, consider the cohort of 5555 BRAFi-treated mice (VII through XII) 
and using the parameterized model (1), with 𝛼  taken as the average of the 
previous estimates (see Table 2), we can sub-classify the mice. According to our 
estimates, mice VII, X, XI, XII fall into case 2, meaning that with a combination of 
BRAFi and FAKi it is possible to achieve control as long as we treat past time 𝑡∗. 
On the other hand, mice VIII and IX fall into case 1, hence the tumor is always 
growing under treatment, eventually reaching carrying capacity. Figure S6 and 
S7 show a simulated treatment combination of BRAFi + FAKi calibrated on two 
representative mice, case 1 and case 2, respectively. 
 
For a tumor-stroma system falling into case 1, recurrence is inevitable, but may 
be delayed with alternative scheduling strategies. Given that the phenotypic 
changes underlying EMDR are transient and reversible upon drug removal, we 
hypothesize that the introduction of drug holidays could significantly improve 
treatment response and recurrence times. Intermittent application of vemurafenib 
has proved to be successful in melanoma xenograft models [20] and ongoing 
clinical trials are testing intermittent versus continuous dosing of a combination of 
BRAF and MEK inhibitors (NCT02196181). However, we believe that a 
mechanistic and quantitative approach to treatment scheduling can improve the 
success of the otherwise empirical approach that these studies offer. We 
therefore systematically explored the space of holiday versus treatment days of 
an intermittent schedule treatment with BRAFi, combined with continuous FAKi.  
 
Specifically, the targeted inhibitor is administered during the time windows 
[𝑡C
UU,v,, 𝑡V

UU,v], for 𝑘	
  𝜖	
  ℕR  with 𝑡V
UU,v−	
  𝑡C

UU,v = 𝑇U, 	
  𝑡C
UU,v<q−	
  𝑡V

UU,v = 𝐻, ∀𝑘 ≥ 0.  That is, 
we consider treatments of fixed duration 𝑇U, with the time between the end of one 
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treatment and the start of the next treatment being fixed at H. Figure 4 shows the 
treatment outcome in the holiday vs. treatment space (𝐻, 𝑇U), where the outcome 
of each treatment strategy over the time frame of 0,70 	
  𝑑𝑎𝑦𝑠 is quantified with Π, 
defined in (3). This reveals that the region corresponding to tumor burden 
minimization ( Π  maximisation) is concentrated around the line 𝐻 = 	
  2𝑇U . 
Intuitively this means that the length of holiday needed to renormalize the system 
is proportional to the pulse of treatment. Additionally, it indicates that longer 
treatment holidays are more effective at controlling tumor burden, while the total 
number of treatment days is reduced.  
 
Figure 5 shows the temporal dynamics for one of the best combination treatment 
schedules predicted by our model. FAKi is continuously administered, and helps 
control the tumor burden when EMDR sets in, whereas BRAFi is given 
periodically for 1 day, then off for 2 days. This treatment induces only minimal 
stromal activation and delays progression by approximately ten days when 
compared to the untreated tumor.  When compared to the continuous treatment, 
this intermittent treatment delays progression by approximately twenty days, 
while using a third of the amount of BRAFi. Although this study does not explicitly 
account for drug toxicity, total dose reduction is a desirable outcome, especially 
in the case of combination therapy, where resulting toxicity might be a significant 
issue.	
  
 
Discussion 
 
Molecularly targeted therapies for cancers with known driver mutations are 
extremely effective for six to eight months (e.g. vemurafenib for BRAF V600E 
melanoma [39]) and are accompanied by lower toxicity when compared to 
cytotoxic chemotherapeutic agents [3]. However, with continuous and prolonged 
treatment, the emergence of drug resistance seems to be inevitable. Upon 
removal of the targeted drug, due to relapse, a typical disease flare is observed 
(e.g. EGFR mutated lung cancer treated with a combination of tyrosine kinase 
inhibitors [40]), suggesting that the treatment has somehow selected for a more 
aggressive clonal population in the tumor. However, subsequent treatment with 
the same inhibitor often leads to an additional response [41, 42], suggesting that 
selection of resistant clones alone cannot explain this disease etiology. The 
environment is now considered an important source of non-intrinsic drug 
resistance mechanisms [43], collectively referred to as Environment Mediated 
Drug Resistance. Since the changes accompanying EMDR are considered 
transient and therefore reversible, the possibility of regulating EMDR dynamics 
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with smarter treatment scheduling is promising. However, a necessary first step 
towards the design of such treatment strategies is a more quantitative 
understanding of the interactions and dynamics occurring between the tumor and 
the stroma. 
 
In vitro model systems can accurately quantify temporal tumor growth and 
treatment response in controlled environments, whereas in vivo models more 
readily capture the native environment that is directly relevant to patients. 
However, both of these are models of human disease and only capture specific 
aspects of reality over very specific spatial and temporal scales. The ODE model 
we develop here bridges between these experimental scales, in order to 
integrate relevant information from each of them.  
 
Starting from analysis of BRAF-mutated melanoma cell lines, we quantified the 
baseline dynamics of cancer cells in a uniform nutrient-rich environment. By 
comparing the growth rates of cells untreated and treated with the BRAF 
inhibitor, we were able to quantify the overall reduction of growth under drug 
application. Our model facilitates this analysis by classifying the cancer into two 
separate populations, growing with or without drug (𝑅  and 𝑆 ). Then using 
Approximate Bayesian Computation we calculate plausible regions of parameter 
values. This type of estimation can be particularly useful when assessing the 
error in fitting. Our parameter estimation method does not make assumptions on 
the initial conditions, and 𝑅R  and 𝑆R  are included in the parameters to be 
estimated. Consequently, the model is agnostic to the mechanisms producing the 
initial resistant population, 𝑅R. These mechanisms could be EMDR- related as 
well as epigenetic or non-autonomous. However, at this stage, no data are 
available to distinguish between these instances of resistance, and we group all 
cells that grow under drug treatment in the 𝑅 compartment, irrespective of the 
underlying mechanisms of resistance. 
 
Subsequent analysis of data from mice xenografts implanted with the same cell 
lines allowed us to identify the relative contribution of the environment to drug 
resistance. This analysis revealed heterogeneity in both the local tissue carrying 
capacity and in the stromal promotion of tumor growth. This heterogeneity maybe 
one possible explanation for the spectrum of response observed across patients. 
In the context of metastatic disease, with tumors seeded across a variety of 
tissues, heterogeneity in stromal composition could be an important 
discriminating factor in the success of a systemic treatment. Therefore, 
quantifying this variation in individual patients could have a significant impact on 
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the design of future treatment strategies that target both the tumor and stroma. 
 
Within the current experimental and modeling framework, assessing the strength 
of stromal protection is non-trivial. This quantity is dependent on the abundance 
of the interacting stroma (we could only estimate the overall promotion rate 𝜂 =
	
  𝜂𝐹R) as well as the speed of drug-induced stromal activation (we found high 
sensitivity to parameter 𝜃). At the same time, with the available data, we can 
explain the variability of responses across mice by variation in carrying capacity 
and/or stromal promotion (Figure S4). Further investigation of the heterogeneity 
that our study revealed would require additional experimental quantification of 
these stromal-related processes. This would, in turn, allow us to address the 
main shortcoming of the current model, namely the high sensitivity of the 
estimate of stromal protection to the parameter 𝜃 (Figure S3). 
 
Analysis of our ODE model revealed that the degree of stromal protection 𝜂, and 
cancer proliferation 𝜌' under drug treatment, are key in discriminating between 
responses to the combined action of inhibitors targeting tumor and stromal 
processes (BRAFi and FAKi, respectively). We found that for slower growing 
tumors it is possible to keep growth in check provided treatment with BRAFi is 
applied for a sufficient period of time. Conversely, for fast growing tumors or 
elevated stromal protection, the tumor burden increases, despite the 
administration of the inhibitors. However, for these tumors we can exploit the 
transient nature of the EMDR-associated mechanisms and delay progression. 
Specifically, scheduling treatment holidays for the mouse- (patient-) specific 
calibrated model would allow for renormalization of the system directly translating 
into better disease burden control. We used our parameterized ODE model to 
explore the space of intermittent treatment strategies, with the hope of improving 
response in cancers falling into the treatment refractory category. Neglecting 
toxicity of targeted drugs, we searched the space of holiday versus treatment 
length for intermittent BRAFi application, combined with continuous FAKi. We 
found that most effective tumor control is achieved with short BRAFi treatment 
pulses and longer holidays, requiring significantly less inhibitor, when compared 
to the continuous treatment. 
 
It is worth noting that in optimizing the treatment schedule for these inhibitors, we 
are only modulating the dynamics by reducing the emergence of EMDR. This 
allows us to delay recurrence by approximately ten days. If we were to combine 
this strategy with a cytotoxic treatment, such as chemotherapy, which provides 
additional reduction of the tumor burden, then recurrence could be further 
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delayed [44]. However, in order to consider additional treatments for combination 
therapies it is necessary to account for toxicity of the single agents, as well as 
toxicity resulting from their combination. The latter would impose an additional 
constraint in the optimization problem. Here we made no assumption regarding 
the toxicity of both inhibitors and therefore allowed any length of continuous 
targeted drug administration. Nevertheless, it is worth noting that the intermittent 
drug treatment we propose not only delays progression but also uses only a third 
of the drug, when compared to continuous treatment. 
 
The heterogeneity our study revealed from the in vivo experiments highlights the 
importance in accounting for mouse- (human-) specific microenvironmental 
parameters to accurately capture response dynamics. This heterogeneity is often 
ignored in pre-clinical models, as they aim at establishing general relationships of 
causality between biological mechanisms. However, as our study suggests, 
heterogeneity can be key in explaining the variation observed across replicates 
of an experimental system. Furthermore, models that exploit the transient nature 
of EMDR must rely on individually calibrated dynamics in order to propose 
effective and improved treatment strategies.  
 
Whilst this study has been focused on melanoma, our model is also applicable to 
the treatment of other molecularly targeted tumors, such as non-small cell lung 
cancer. Within the practical constraints of frequency in monitoring a patient’s 
systemic tumor burden and tissue characteristics, our simple model could be 
used to drive patient (and tumor) specific treatment strategies that target both the 
tumor and stroma. In addition, our approach is ideally suited to directly inform the 
design of adaptive therapies [45]. 
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Figure Legends 
 
Figure 1. 
Interactions hypothesized in the compartmental model: positive interactions 
are represented with green arrows, negative ones with red flat ends. The 
BRAFi (targeted to the tumor) inhibits growth in the drug-sensitive portion of 
the tumor (S) and induces activation of normal stroma (F). In turn, reactive 
stroma (A) promotes growth in the drug-tolerant portion of the tumor (R). The 
stroma-targeted inhibitor FAKi dampens the effect of stromal-induced growth 
promotion. Upon removal of BRAFi the tumor reacquires sensitivity to the 
drug and the stroma renormalizes (grey arrows). 
 
Figure 2. 
Unpicking the relative contributions of intrinsic resistance and extrinsic 
environment conferred tolerance (EMDR). A. In vitro data and fit. For each 
condition we obtained one estimate that best fits the three replicates at the 
same time. B. In vivo data and fit. Data consist of six and four untreated 5555 
and 4434 mice, respectively, and six and five BRAFi treated 5555 and 4434 
mice, respectively. Only few representative mice are shown. For each 
condition the model is fitted individually to each replicate (mouse). Solid and 
dashed lines correspond to untreated and BRAFi treated tumor, respectively. 
Note different y axis scale for the two cell lines. Data from [13]. 
 
Figure 3. 
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Approximated posterior distribution of estimated parameters. A. Estimates for 
cancer growth rates: 𝜌& (untreated cancer), 𝜌' (treated cancer). The black bar 
highlights the fitness cost of intrinsic resistance. B. Estimates for 𝐾 reveal 
heterogeneity of carrying capacity across mice. 𝜌&  from previous estimate 
(Table 2). C. Estimates for 𝜂  reveal heterogeneity of stromal-derived 
protection found in vivo. θ = 0.03	
   1 𝑑𝑎𝑦. 𝜌' from previous estimates (Table 
2). D. Estimates for 𝛼  for ten 5555 mice treated with BRAFi and FAKi 
combination. θ = 0.03	
   1 𝑑𝑎𝑦 . 𝜌' = 0.49539	
   1 𝑑𝑎𝑦.  𝜂 = 12.67  1 𝑑𝑎𝑦 
(average of previous estimates, Table 2).  
 
Figure 4. 
Exploration of treat/holiday space for intermittent BRAFi combined with 
continuous FAKi to maximize control of tumor burden. Surface plot of Π (see 
equation (3)) in the treat/holiday space.  
Model parameterized on mouse IX of cell line 5555. 𝜌& = 0.66325	
  	
   1 𝑑𝑎𝑦 ,
𝜌' = 0.49543	
  	
   1 𝑑𝑎𝑦 , 𝐾 = 4818.62	
  𝑚𝑚�	
  , 𝜂 = 26.876	
   1 𝑑𝑎𝑦 , 𝛼 =
14.4	
   1 𝑑𝑎𝑦 , θ = 0.03	
   1 𝑑𝑎𝑦 , 𝜉 = 0.01	
   1 𝑑𝑎𝑦,	
  	
   
𝜑 = 1	
   1 𝑑𝑎𝑦 , 𝑆R = 48	
  𝑚𝑚�, 𝑅R = 12	
  𝑚𝑚�, 𝐹R = 60	
  𝑚𝑚�, 𝐴R = 0	
  𝑚𝑚�. The 
star indicates the treatment schedule simulated in Figure 5.  
 
Figure 5.  
Example of combination therapy schedule (BRAFi+FAKi) to exploit tumor-
stroma interactions. The model is parameterized as reported in Figure 4. Blue 
and pink bands above the graph indicate the BRAFi and FAKi administration 
windows. The BRAFi is intermittently administered for 1 days with 2 days 
holiday. The FAKi is continuously administered. This treatment schedule 
delays the disease progression by approximately ten days (compare red and 
dashed black lines) while using a third of the BRAFi dose. The green and 
orange lines show the breakdown of the total tumor burden in sensitive and 
resistant population, respectively. 
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