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Abstract 
 
Ribosome profiling (Riboseq) is a powerful technique for measuring protein translation, 

however, sampling errors and biological biases are prevalent and poorly understand. 

Addressing these issues, we present Scikit-ribo (https://github.com/hanfang/scikit-ribo), 

the first open-source software for accurate genome-wide A-site prediction and 

translation efficiency (TE) estimation from Riboseq and RNAseq data. Scikit-ribo 

accurately identifies A-site locations and reproduces codon elongation rates using 

several digestion protocols (𝑟 = 0.99). Next we show commonly used RPKM-derived TE 

estimation is prone to biases, especially for low-abundance genes. Scikit-ribo introduces 

a codon-level generalized linear model with ridge penalty that correctly estimates TE 

while accommodating variable codon elongation rates and mRNA secondary structure. 

This corrects the TE errors for over 2000 genes in S. cerevisiae, which we validate 

using mass spectrometry of protein abundances (𝑟 = 0.81). From this, we determine the 

Kozak-like sequence directly from Riboseq and discover novel roles of the DEAD-box 

protein Dhh1p, deepening our understanding of translation control. 

 

Introduction 
	
First introduced by Ingolia et al in 20091, ribosome profiling (Riboseq) allows 

researchers to investigate genome-wide in vivo protein synthesis through deep 

sequencing of ribosome-protected mRNA footprints2. Since the original introduction, 

several improved versions have been developed to mitigate biases in the data3-5 and 

address new biological questions6-8. After the protocol became standardized in 2012, 

there was a rapid increase in adoption9, leading to discoveries of new mechanisms 

involving translational defects in different forms of cancer10-13, other important human 

diseases14, 15, and the identification of novel drug targets16, 17. Riboseq has also 

revealed new insights into many steps in the translation process itself18, 19.  
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Riboseq provides genome-wide insights into the regulation of gene expression at the 

level of translation. A key metric of measuring translational control is translational 

efficiency (TE), defined as the level of protein production per mRNA1, 20. Assuming 

minimal ribosome fall-off, Li showed that TE is the same as translation initiation 

efficiency (TIE) in the steady state20. Shah et al showed that TIE is the rate limiting 

factor for translation21. In practice, this metric is calculated for a given gene by taking 

the ratio of the ribosome density from Riboseq to the mRNA abundance measured by 

RNAseq. We refer to this ratio as RPKM-derived TE (ribosome density per mRNA, 

Equation 1), because both values have RPKM units, reads per kilobase of transcript per 

million mapped reads (Equation 2). Although this metric is commonly used in the 

Riboseq and RNAseq literature, it is not a direct measure of protein output but ribosome 

density, and the two are only correlated assuming the same elongation rate across 

genes20. However, this assumption does not hold in many cases, especially genes with 

extensive ribosome pausing22-26.  

 

Technical shortcomings in the Riboseq workflow can introduce bias and systematic 

error into the analysis, masking the true ribosome density on an mRNA. Ribosome 

footprints come in many sizes depending on the organism, nuclease, and cell lysis 

conditions, making it difficult to identify the ribosome position on the fragment. Sampling 

only part of the footprint distribution can yield misleading results23. Another source of the 

noise in the data can be attributed to ligation bias in cloning ribosome footprints and 

amplification by PCR27. Finally, early protocols used antibiotics such as cycloheximide 

(CHX) to arrest translation prior to cell lysis; CHX treatment distorts ribosome profiles 

because initiation continues even though elongation is blocked5. This artifact leads to 

high levels of ribosome density at alternative initiation sites and the 5’-end of ORFs. 

CHX also masks the local translational landscape at the single-codon level28. Weinberg 

et al produced excellent quality reference datasets and showed that RNAseq libraries 

are subject to their own problems; isolation of mRNA through interaction with the poly-A 

tail leads to error in measuring mRNA abundance3. All of these problems confound the 
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accurate determination of TE. Below, we summarize the major experimental and 

analytical challenges and proposed solutions to overcome them. 

 

Analytically, it is first essential to correctly determine the location of the ribosome within 

the Riboseq reads, and particular, the location of the codon bound in the ribosomal A-

site. Decoding of the A-site codon by incoming aminoacyl-tRNAs is rate limiting during 

elongation19; low levels of specific aminoacyl-tRNA species lead to pausing as indicated 

by changes in the codon-specific elongation rate (ER). Precise determination of the A-

site codon of a Riboseq read is needed to determine whether a given read belongs to 

the canonical open reading frame (ORF) of a gene, especially when genes are 

overlapping. RiboDeblur29 models ribosome profiles as blurred position signals, but it is 

not suitable for downstream analysis beyond finding the A-site. Most other studies 

followed the 15-nucleotide (nt) rule from Ingolia et al1, based on the work of Wolin and 

Walter30; the A-site codon starts at 15 nt in 28mer reads produced by RNase I. Reads of 

other lengths are commonly excluded from consideration, significantly reducing the data 

for downstream analysis, and perhaps missing important signals that affect footprint 

size. Correct identification of the ribosome position is particularly problematic in 

bacteria23, 31 and Arabidopsis32 where MNase generates a broad distribution of 

footprints31. Here, we introduce a novel method of finding the A-site codon that 

substantially improves the resolution of the downstream analysis.  

 

Next, in almost every published Riboseq study, the distributions of RPKM-derived 

log 𝑇𝐸 are severely skewed with a long tail on the negative side1, 33, 34 (Supplemental 
S1A). This observation is also reported by Weinberg et al in their analysis of wild-type S. 

cerevisiae data from ten different labs3. One of the main reasons for the skewed 

distribution is sampling error from low-abundance genes: the range of gene expression 

level spans 8 to 11 orders of magnitude, but a limited amount of sequencing coverage is 

available. As a result, the sampling of low-abundance transcripts is more error-prone 

(Figure 1A), yielding higher dispersion of RPKM among low-abundance genes, and 

subsequently even higher dispersion of RPKM-derived TE (Figure 1A). To address this 
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same problem in analyses of RNAseq data, fold change shrinkage methods (e.g. 

empirical Bayesian shrinkage) have been widely adapted in differential expression (DE) 

methods such as DEseq235, edgeR36, and Slueth37. In order to perform shrinkage with 

between-sample normalization, however, these methods rely on at least three replicates, 

which are not typically available in Riboseq studies. Even where multiple replicates are 

available, it is not appropriate to use RNAseq DE methods to compute TE, because 

those methods were developed to estimate changes of gene expression under 

perturbation, while TE reflects the level of translation control under a single condition 38, 

39. To overcome this limitation, we developed a robust model for estimating TE using a 

shrinkage method that is compatible with a single library of Riboseq data. 

 

Finally, traditional techniques for mRNA quantification and DE testing rely on a strong 

assumption: random fragmentation and uniform sequencing of mRNA molecules. 

However, this assumption does not apply to Riboseq data, given that the abundance of  

ribosome-protected fragments is strongly influenced by local translational elongation 

rates. In fact, peaks due to paused ribosomes (Figure 1B) have been observed in the 

literature22, 40, 41. Two major determinants of ribosome pausing are slow codons42 and 

downstream mRNA secondary structure43 (Figure 1B), although their importance and 

relative contributions have been controversial in Riboseq studies23, 44-46. The presence 

of paused ribosomes problematizes the use of ribosome density for calculating TE25 

(Figure 1C). Genes with paused ribosomes have more reads than expected, depleting 

coverage on other genes. Traditional read counting methods do not control for these 

biases (when using RPKM to derive TE). In contrast, our proposed method correctly 

estimates TE while accounting for biological biases simultaneously, enabling us to 

separate out the effects of translation initiation and elongation. 

 

There were earlier attempts to model TE that are relevant for this work, although the 

published methods have significant restrictions and have seen limited application so far. 

Pop et al developed a queuing model for translation, but it failed to recover significant 

correlation between codon dwell time and cognate tRNA availability, and the source 
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code is not publicly available47. Weinberg et al proposed a comprehensive model to 

estimate TE3 in S. cerevisiae (budding yeast) using the analytical approximations of 

initiation probability, but this required parameterizations from a whole-cell simulation 

from Shah et al21, making it difficult to apply to other organisms. Duc and Song 

developed a simulation-based inference algorithm to estimate translation initiation and 

local elongation rates, but it could only be applied to ~900 (13%) genes in S. cerevisiae, 

because it requires filtering genes by length and coverage48. None of these methods 

addressed the prevalent sampling errors and biological biases in Riboseq data 

described above. 

 

Here, we present Scikit-ribo, the first statistical model and open-source software 

package for accurate genome-wide TE inference from Riboseq data (Figure 2). The 

software is written in python and is freely available at https://github.com/hanfang/scikit-

ribo. Scikit-ribo is very fast; it can analyze more than 6000 genes from a high-coverage 

S. cerevisiae Riboseq data (over 75 million reads) in less than one hour with single-

codon resolution. It can accurately infer A-site codons with a variety of different mRNA 

digestion methods. We applied it to 10 Riboseq data sets and demonstrated its 

robustness to low-abundance genes while automatically correcting biases across 

different genes. We next show that the commonly used RPKM-derived TE is very 

sensitive to sampling errors and biological biases, creating substantial discrepancies 

and skewing the values of this key metric in previous studies. To address this, we 

developed a codon-level generalized linear model (GLM) with a ridge penalty to shrink 

the TE estimates. The GLM also serves as a mechanistic model for translation 

elongation and initiation, incorporating codon-specific elongation rates, local mRNA 

secondary structure, and gene-specific translational initiation efficiencies. We validate 

the model using in silico analysis as well as large-scale experimental mass 

spectrometry data and show a very high correlation in predicted protein abundance 

(r=0.81). This successfully corrects the biases for ~2000 genes, and resolves the 

negative skew in TE observed in previous studies of Riboseq data. Finally, we show the 

importance of accurate TE estimation for interpreting Riboseq data. Our refined TE 
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analysis using Scikit-ribo helped recover the Kozak-like consensus sequence in S. 

cerevisiae and reveal novel roles of the DEAD-box protein Dhh1p24. Together, these 

results showed that Scikit-ribo substantially improves Riboseq analysis and deepen the 

understanding of translation control.  

 

Results 
 
Accurate A-site codon prediction with different organisms and nuclease digestion  
	
Using a supervised learning approach, Scikit-ribo trains a model for identifying the A-

site codon within Riboseq data using reads that contain start codons (Figure 2A). 
Briefly, the algorithm uses a random forest model to evaluate eight features of how the 

Riboseq reads align to the genome: the length of the read, the distance from the 5’ or 3’ 

end of the read to the start codon, and the nucleotides flanking the ends of the Riboseq 

reads (Online Methods). Unlike other methods, Scikit-ribo can easily accommodate 

different types of Riboseq data because of its recursive feature selection technique. For 

a given dataset, Scikit-ribo uses cross validation (CV) to find the optimal features with 

the lowest prediction error. This is an effective way to remove irrelevant features for the 

given data and avoids overfitting an unnecessarily complex model. 

 

Using this approach on the S. cerevisiae data prepared with RNase I by Weinberg et al, 

the accuracy of the prediction of the A-site codon was extremely high (mean 

accuracy=0.98, SD=0.003, 10-fold CV)3. Unlike the basic 15-nt rule, our model’s 

predictions are consistent across reads with different lengths or A-site locations, as 

demonstrated using the multi-class ROC curves (Supplemental Figure S2A). This 

means that we can utilize the full complement of reads for downstream analysis; this is 

especially helpful for low-abundance genes. Our model also achieved very high 

accuracies in seven other S. cerevisiae datasets (Supplemental Table S1). 

Interestingly, for all eight S. cerevisiae datasets the most important features learned 

were the phase of the 5’-end of a read (whether it falls in the first, second, or third frame) 
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and the read length (Supplemental Figure S3A). This is consistent with the previous 

findings that RNase I was not always precise in generating ribosome footprints4. When 

we look at elongating ribosomes within the canonical ORF (not overlapping the start 

codon), 94.3% of the predicted A-sites are in the correct frame, confirming Scikit-ribo’s 

very high accuracy. 

 

To test whether Scikit-ribo can maintain high accuracy in different model organisms or 

with different nuclease digestions protocols, we next applied it to the Riboseq data from 

E. coli. Bacterial ribosome profiling protocols use MNase instead of RNase I because as 

an E. coli protein, RNase I is inhibited by bacterial ribosomes. The resulting read 

distributions are broad and have posed challenges in assigning ribosome position41, 49. 

One promising approach is to employ MNase together with the endonuclease RelE, 

taking advantage of RelE’s ability to cleave the A-site codon within the ribosome with 

high precision. In the resulting ribosome footprints, the A-site codon is found at the 3’-

end of reads, rather than 12 to 18 nt away from the 5’-end of a read as in S. cerevisiae. 

In spite of these differences, the accuracy of Scikit-ribo on the E. coli data generated 

with RelE was still very high (mean accuracy=0.91, SD=0.041, 10-fold CV, 

Supplemental Figure S3B) and showed 99.8% assignment of the A-site codon to 

canonical ORFs for reads not overlapping the start codons. Interestingly, for the RelE 

data, the optimal feature was the phase of 3’-end of a read, while the 5’-end did not 

have a strong effect (Supplemental Figure S3B). This is consistent with the report in 

Hwang et al that RelE preferentially cleaves at the ribosome A-site codon, generating 

precise 3’-ends31. Using Scikit-ribo, we also analyzed E. coli Riboseq libraries prepared 

with MNase alone, but the accuracy was much lower (0.70) than observed in libraries 

prepared with RelE. This indicates that RelE improves the precision of the ribosome 

sub-codon position and thus is a better nuclease for analyses requiring codon resolution.  
	
Paused ribosomes and biological biases of TE 
 
Ribosome pausing (RP) events are prevalent in several different model organisms22. 

Pausing can occur for a number of reasons, including slow recruitment of tRNAs and 
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mRNA secondary structure46. These biological effects can introduce biases in ribosome 

profiles on different genes, leading to overestimation of TE in genes with high levels of 
pausing. In Weinberg et al3, the distribution of RPKM-derived log2 𝑇𝐸  is negatively 

skewed with a mean of -0.5 (Supplemental Figure S1B), although this is likely an 

artifact of RPKM-derived TE. We hypothesized that the distribution of RPKM-derived TE 

was largely skewed due to RP events. To illustrate this, we simulated both Riboseq and 

RNAseq data, with and without paused ribosomes in S. cerevisiae (Online Methods). 
Upon comparing log2 𝑇𝐸%& (i.e. the log2 𝑇𝐸 in the data with RP) with log2 𝑇𝐸'()*+,-* (i.e. 

the log2 𝑇𝐸 in the data without RP), we observed that several genes had inflated TEs, 

while the remaining majority had decreased estimates. We also observed that the 
log2 𝑇𝐸%& distribution for paused data became broader and negatively skewed, similar 

to what has been observed in previous reports. These results suggest the possibility 

that this skew arises from the fact that genes with significant pausing will have more 

Riboseq reads and higher RPKM-derived TE, although their protein abundance remains 

the same. Pausing on these genes also reduces the available Riboseq reads available 

on other non-paused genes, so that their TE estimates of those genes are deflated.  

 

Since pauses can be induced by non-optimal codons and downstream mRNA 

secondary structure46, we developed a statistical model to jointly correct for these 

effects that we refer to as biological biases. Since the observed ribosome profiles are 

affected by changes in elongation rates, and not simply initiation rates, Scikit-ribo uses 

a codon-level generalized linear model (GLM) to separate out these two processes, 

considering three categorical covariates and one continuous covariate (Online 
Methods, Equation 5-6). The general model to explain the data is that at a codon 

position, the ribosome coverage is proportional to mRNA abundance and gene specific 

TE, reflecting initiation levels, as well as downstream mRNA secondary structure and 

codon specific dwell time, reflecting limiting steps in elongation rates (Figure 2B).  

 

Sampling errors for low abundance genes using Riboseq  
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Another difficulty in estimating TE is caused by sampling error for low-abundance genes 

due to lack of depth in the sequencing data. Similar trends have been reported in DE 

analysis of RNAseq data, where low abundance genes can have extreme fold changes 

if not corrected for dispersion35. This is a side-effect of modeling high-dispersion count 

data; measurements are inherently noisier when counts are low35. Riboseq data shares 

the same issue. Since most of the Riboseq experiments are done in two or fewer 

replicates, estimation of between-sample variability and subsequent shrinkage of 

dispersion has not been feasible38. Thus, most published Riboseq studies used the 

RPKM-derived TE:  𝑅𝑃𝐾𝑀%,23

𝑅𝑃𝐾𝑀4%56 (Equation 1)1. However, low abundance 

genes, especially those with a “transcripts per million” (TPM, Equation 3) value less 

than one, tend to show much more dispersed TE values, compared with other genes 

(Figure 1A). This is true even if the TPM cutoff is increased to 10 (Supplemental 
Figure S1D). Consequently, the standard deviation (SD) of log2 𝑇𝐸 in low abundance 

genes from the Weinberg et al3 data was 3-fold higher than for other genes (Levene test, 

p-value=3×10−89), the overall range in TE was 5-fold larger (99 vs 20), and the median 

absolute deviation (MAD) was also larger (1.9 vs 1.0). In fact, the high dispersion of TEs 

was driven by the high variance of the ratio between the numbers of reads per gene 

(Equation 4).  

 

One ad-hoc solution is to remove low abundance genes from downstream analysis, 

although this is not very effective as the chosen threshold is arbitrary and cannot be 

determined rigorously. Furthermore, this filtering approach reduces the sensitivity of 

finding genuinely extreme TE genes and reduces the power of finding significance. 

Instead of imposing arbitrary thresholds, Scikit-ribo uses a shrinkage method based on 

ridge penalty to account for the sampling uncertainty for low abundance genes (Online 
Methods, Equation 7-8). This method helps address the sampling errors issues even 
without having replicates. As a result, Scikit-ribo reports balanced log2 𝑇𝐸 distributions 

while the distributions of RPKM-derived log2 𝑇𝐸 are negatively skewed (Supplemental 

Figure S1). 
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Accurate inference reveals the interplay between cognate tRNA availability and 
mRNA secondary structure 
	
Having described how Scikit-ribo addressed the errors and biases, we asked whether it 

can reveal new aspects of biology that were not detectable using previous methods. To 

investigate whether the biological covariates from Scikit-ribo were meaningful, we 

analyzed the CHX-free S. cerevisiae Riboseq data from Weinberg et al3. The codon 

dwell time (DT) estimates from the GLM are the inverse of the codon elongation rates 

(ER). Scikit-ribo almost perfectly reproduced the codon DT (Pearson 𝑟 = 0.99) from 

Weinberg et al3, in which the three slowest codons are CGG, CGA, and CCG (Figure 
3A). The tRNA adaptation index (tAI) measures the efficiency of a coding sequence 

recognized by the intra-cellular tRNA pool, taking into account each gene’s codon 

compositions, mRNA expression levels, and the availability of the conjugate tRNA50. 

Reis et al50 estimates tAI by taking the geometric mean of its codons’ relative 

adaptiveness value (RAV). A codon with lower RAV means that it is sub-optimal for 

translation elongation, i.e. slower codon. We found CGG, CGA, and CCG have very low 

RAV values50 and are among the rarest codons in the S. cerevisiae transcriptome. 

Following Weinberg et al and others3, 22, 46, 48, we compared the relative codon ERs with 

RAV and their cognate tRNA abundance (measured by microarray3), and reproduced a 
positive correlation against both (Spearman 𝜌<6= = 0.54, 𝜌<%56 = 0.47, Figure 3B-C). 

 

Although our findings confirm that ribosomes have lower DT on codons with higher 

cognate tRNA levels, it still cannot solely explain the variation in ER given the imperfect 

correlation. Consequently, we tested whether part of the missing contribution was from 

downstream mRNA secondary structure. We adjusted the within-gene ribosome 

densities by the inferred codon ERs, which controlled for the codon-specific effects on 

local translational elongation. We used RNAfold51 to predict the optimal mRNA 

secondary structure and test if large downstream stem-loops would increase ribosome 

density (Online Methods). We found that the ribosomes move slower with the presence 

of a downstream mRNA stem-loops (t-test, p-value= 5×10−3). We computed the 
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average adjusted ribosome density in a five-codon sliding window and notice a peak 

right at the junction (Figure 3D). This finding is consistent with previous reports that 

downstream stem-loops decrease the ribosome ER, i.e. increase the DT as ribosomes 

wait for the downstream stem-loops to be unfolded44, 52, 53. Taken together, our analyses 

show that ribosome elongation rates are affected by a complex interplay of cognate 

tRNA availability and downstream mRNA secondary structure. These results also 

confirm that Scikit-ribo accurately estimates codon-specific DT and the effect of mRNA 

secondary structure, after it correctly predicted the A-site codon and fit the GLM. 
	
Simultaneously correcting sampling errors and biological biases for TEs  
	
To understand how Scikit-ribo corrects the biases in the Riboseq analysis, we 
compared the Scikit-ribo log2 𝑇𝐸 with the RPKM-derived log2 𝑇𝐸 from the Weinberg et al 

data (Figure 4A). The correlation between the estimates was high (r=0.82), but the 

RPKM-derived TE estimates showed clear trends of systematic biases (negative skew) 

that were successfully corrected by Scikit-ribo (Figure 4B). We calculated the 
differences between the two estimates, ∆ log2 𝑇𝐸 = log2 𝑇𝐸)@,A,<−B,23 − log2 𝑇𝐸%&DE, 

and colored them with respect to the values: 1) ∆ log2 𝑇𝐸 > 0.5, previously 

underestimated (green), 2) ∆ log2 𝑇𝐸 < −0.5, previously overestimated (orange), and 3) 

other genes in between (gray) (Supplemental Table S2). The green points in the left 

half of the plot shifted upward from the diagonal line, while the points in the right half 

were more consistent (Figure 4A). There were 1957 genes with large differences 
(|∆ log2 𝑇𝐸 | > 0.5); 897 being under-estimated and 1060 being over-estimated. 

Compared with RPKM-derived TE, we found the log2 𝑇𝐸 of some genes were previously 

underestimated by as much as 11 (2048 fold), while other genes were overestimated by 

almost 3 (8 fold) (Supplemental Figure S4B).  

 
We further defined six regions based on ∆ log2 𝑇𝐸 and the sign of Scikit-ribo log2 𝑇𝐸. 

For example, region 1 corresponds to genes with ∆ log2 𝑇𝐸 greater than 0.5 with 

negative Scikit-ribo log2 𝑇𝐸 (n=629); most of these genes were of low abundance with a 

TPM less than 10 (Figure 4C, Supplemental Figure S4). This means given 75 million 
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reads, these genes had fewer than 750 reads on average, i.e. ~2 reads per codon. The 

sampling of such genes is highly unstable, causing the ratio of the read counts to have 

even higher variance. As a result, the RPKM-derived TE reports a very high dispersion 

and incorrect TE estimates in region 1, while Scikit-ribo successfully corrected the 

sampling errors by leveraging the power of shrinkage estimates.  

 

While improvements in TE estimates in region 1 arise from a better treatment of 

sampling error on low abundance genes, how can we address differences in regions 

with more highly expressed genes? For this part of the analysis, we excluded low 

abundance genes with TPM less than 10 to focus on the effects on biological covariates, 

codon specific ER and mRNA structure. There were 268 and 981 genes in the highly-

translated regions 4 and region 6, respectively. If downstream mRNA secondary 
structure had an effect, one would expect the RPKM-derived log2 𝑇𝐸 of genes with high 

levels of structure would be inflated as additional ribosomes are paused at the loop; the 
∆ log2 TE becomes smaller with a higher stem loop density (normalized by ORF length). 

We found this was indeed the case: there is a negative correlation between ∆ log2 TE 

and stem loop density (Figure 4D, Spearman 𝜌 = −0.33). This bias was automatically 

adjusted by the mRNA secondary structure covariate of the Scikit-ribo GLM as we found 

enrichment of 15% more ribosome density when there was a downstream secondary 

structure.  

 

Second, we investigated the influences of variation in codon-specific ER values. The 

gene level tRNA-adaptation index (tAI) indicates whether a gene is enriched for optimal 

or non-optimal codons: higher tAI means the gene is enriched for faster codons, while a 

lower tAI means the gene is enriched for slower codons. The middle regions (gray), 2 
and 5, served as baseline for genes with negative and positive log2 𝑇𝐸, respectively 

(Figure 4E). For negative log2 𝑇𝐸 genes, there were no significant difference of tAI 

between genes in the region 1 and 2, but the region 3 genes had significantly lower tAI 

than those in region 2 (Supplemental Table S2, t-test, p-value=2×10−6). We conclude 

that the differences in TE for region 1 between RPKM-derived TE and our TE estimates 
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is not due to tAI but is instead due to the shrinkage estimates via the ridge penalty of 

the Scikit-ribo model. In contrast, the TE values of region 3 genes were previously 
overestimated because they contained more non-optimal/slow codons. When log2 𝑇𝐸 is 

positive, tAI values have a stronger effect: region 4 genes had much higher tAI values 

than region 5 genes (t-test, p-value=1×10−17) while genes in region 6 had lower tAI (t-

test, p-value=5×10−55). This means the genes in the region 4 and 6 were previously 

underestimated and overestimated, respectively, because their genes tend to enrich for 

fast and slow codons.  

 

We further found the region 4 genes are enriched for the biological process of 

cytoplasmic translation [GO:0002181] (Supplemental Table S3, p-value=3×10−25). 

Genes encoding ribosomal proteins are enriched for optimal codons and genes with 

more optimal codons are preferentially translated54. Since ribosomes move faster on 

mRNAs encoding ribosome proteins, RPKM-derived TE values are underestimated for 

these genes and corrected by Scikit-ribo. These observations do not depend on the use 

of the tAI metric that is based on gene expression data (including ribosome proteins: the 

same conclusion holds true using the species-specific tAI (stAI)55 metric developed to 

provide a similar measurement of codon efficiency without using gene expression data 

(Supplemental Figure S5).  

 
Scikit-ribo discovers Kozak-like consensus in S. cerevisiae 
	
The Kozak consensus sequence, GCCRCCATGG, promotes translation initiation in 

vertebrates56. In S. cerevisiae, the Kozak-like sequence was shown to be 

AAAAAAATGTCT57, and it has been widely used as a positive control to train translation 

initiation start (TIS) site prediction methods7, 58, 59. The Kozak sequence has been re-

discovered in Riboseq studies in humans (homo sapiens), mice (Mus musculus) and 

maize (Zea mays) 60-62. However, no clear signal of Kozak-like sequences in S. 

cerevisiae has been found using Riboseq data, only a very weak resemblance of the 

Kozak-like sequence (4 out of 12 bases) was reported by Pop et al47. Thus, we were 
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interested in whether the improved TE estimates from Scikit-ribo can help re-discover 

this mRNA element associated with high TE.  

 
We collected the 5’UTR sequences from genes with log2 𝑇𝐸  > 2, and scanned for 

enriched sequences using HOMER63. Based on HOMER’s suggested p-value threshold, 

there were two statistically significant sequences. Strikingly, the top hit exactly matched 

the Kozak-like sequence from Hamilton et al57, AAAATGTCT (p-value=1×10−21, Figure 

4F). This is the first report of the identical Kozak-like sequence in the S. cerevisiae 

Riboseq analyses. The other enriched sequence was AAATAAGCTCCC, which has 

never been reported in vivo (p-value=1×10−11, Supplemental Figure S6). Interestingly, 

this sequence contains the motif ATAAG, one of the top five sequences that leads to 

higher TE in a large-scale HIS3 reporter assay from Cuperus et al64. In contrast, using 

the same threshold, RPKM-derived TE failed to discover either of these Kozak-like 

sequences. Instead, it only found a weak signal of CAACATGGCT with a much less 

significant p-value (1×10−11) and weak resemblance to the Kozak-like sequence 

(Supplemental Figure S6). This failure of RPKM-derived TE to yield the Kozak-like 

motif was likely because that approach provided skewed estimates where some lower 

TE genes had artificially high RPKM-derived TE. This therefore contaminated the gene 

set for enrichment analysis, and reduced the ability to find motifs with high statistical 

significance. 

 
Large-scale validation showed Scikit-ribo’s accurate TE estimation, especially for 
low-abundance genes 
 
To further understand the discrepancies between Scikit-ribo and RPKM-derived TE, we 

performed a large-scale validation using the selected reaction monitoring (SRM) mass 

spectrometry data from a recent reference proteome dataset containing high quality 

measurements of about 1,800 gene in S. cerevisiae65. Based on the master equations 

relating mRNA transcription and protein translation (Equation 9)20, the relative protein 

abundance (PA) is proportional to the product of mRNA abundance and TE, assuming a 

consistent protein degradation rate across genes (Equation 10). There were 1,180 
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genes in the validation set, with a mean of 55,012 copies per cell, ranging from 6 to 

4,366,751. The correlation between the protein abundance derived by Scikit-ribo and 

derived by mass spectrometry was indeed very high (Pearson 𝑟 = 0.81, Figure 5A) and 

the fitted line was close to the diagonal (linear regression, 𝛽 = 0.83). When we further 

considered protein degradation rates from Christiano et al66, the correlation became 

even higher (Pearson 𝑟 = 0.83, Supplemental Figure S8). In comparison, RPKM-

derived log 𝑃𝐴 reported a lower correlation (Pearson 𝑟 = 0.77) and the fitted line is more 

distant from the diagonal (𝛽 = 0.75, Figure 5C). In addition, many of the outliers in the 

RPKM-derived PA were low abundance genes, suggesting a systematic bias (Figure 
5C). Focusing on a set of 933 low abundance genes with a TPM less than 100, the 

Scikit-ribo derived log 𝑃𝐴 maintained a high correlation with mass spectrometry derived 

log 𝑃𝐴 (Pearson 𝑟 = 0.6, 𝛽 = 0.48, Figure 5B). In contrast, RPKM-derived PA became 

more inaccurate with a much lower correlation (Pearson 𝑟 = 0.35, 𝛽 = 0.29, Figure 5D). 

This analysis demonstrates that Scikit-ribo more accurately estimates genome-wide TE 

regardless of mRNA abundance, while the RPKM-derived TE performed poorly among 

low abundance mRNAs. 

 
Refined TE analysis revealed Dhh1p’s role in translation repression 
 
The DEAD-box protein Dhh1p is a sensor for codon optimality and ribosome speed, 

targeting an mRNA for repression and subsequent decay24. Radhakrishnan et al 

performed ribosome profiling in three S. cerevisiae strains: wild-type (WT), dhh1Δ (KO), 

and overexpressed (OE) Dhh1p24 with substantial differences in TE between the strains 

(Supplemental Figure S9). Here, we re-analyze their data to make use of Scikit-ribo’s 

more refined analysis to reproduce major findings and to yield new biological insights 

into Dhh1p’s activity.  

 

First, regarding reproducibility, the mean correlation of log 𝑇𝐸 and the codon DT were all 
very high between the biological replicates for a given strain (𝑟<* = 0.95, 𝑟L< = 0.99, 

Supplemental Figure S10-S11), indicating that the data are of high quality and that the 

inference procedures in Scikit-ribo are stable. When comparing codon DTs between 
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different strains, we observe OE and KO have the largest and smallest standard 

deviation, respectively (Supplemental Figure S11, S12A-C). This is consistent with 

Radhakrishnan et al24. They also showed a pattern of increased ribosome density per 

mRNA on non-optimal genes in the OE strain24, which was successfully reproduced by 

Scikit-ribo as well (Supplemental Figure S13). Compared with WT, codon-optimal 

genes (higher tAI) had enhanced TE in KO, while non-optimal genes had much lower 

TE (Supplemental Figure S13A). Overall, whenever Dhh1p was overexpressed, 

codon-optimal genes exhibited reduced TE (Supplemental Figure S13B), which 

became even more distinct when comparing OE with KO (Supplemental Figure S13C).  

 

We next refined the estimation of the codon DT differences between strain using the log 

ratios of DTs in OE and KO relative to those in WT. A lower log ratio indicates the codon 

becomes faster, and a higher ratio indicates the codon becomes slower. In 

Radhakrishnan et al24, the AGG codon was an outlier and had large differences, 

although it is an optimal codon. In our analysis, it only had minimal differences (log 

ratio=-0.03, Supplemental Figure S12B, Table S4). The two slowest codons in WT 

(CCC, CCG) had the most changes in DT, which became much faster in OE (log ratio=-

0.68, -0.50, Supplemental Table S4, Figure 6F). Radhakrishnan et al24 showed that 

Dhh1p stimulated the degradation of low codon optimality mRNAs and increased of 

their ribosome densities per mRNA, meaning the number of non-optimal codons 

decreased in OE while the amount of tRNA availability stayed unchanged. Thus, the 

pairing of non-optimal codons became more efficient and these codons elongated faster. 

We also sorted the 61-sense codons by their DT in WT, and discovered a strong 

negative correlation against the log ratios (𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 𝜌 = −0.63, Supplemental Figure 

S12D). This means slower codons in WT reported larger changes of DT in OE. The 

findings of codon DT differences are particularly interesting for Scikit-ribo because its 

GLM infers codon DTs directly from the data, without the need of pre-defined 

parameters.  
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Finally, genes with large changes in TEs (Δ log2 𝑇𝐸), might provide insights about 

Dhh1p’s role in translation regulation. We examined this with a conservative approach, 

focused on the two extreme tails, and compare results from Scikit-ribo with RPKM-

derived TE (Online Methods). Using both methods, we found genes with reduced TE in 

OE enriched for optimal codons (t-test, p-value=1×10−51, Figure 6B). This set of genes 

is significantly enriched for the GO categories “cytosolic ribosome” (GO:0022626, p-

value=3×10−16) and “cytosolic small ribosomal subunit” (GO:0022627, p-value=6×10−11) 

(Supplemental Table S5). Dhh1p is a known mRNA translation repressor67-69 and 

associates with the eukaryotic ribosome24. Here, we further speculate that Dhh1p might 

reduce translation of the 40S ribosomal subunit mRNA, in addition to inhibiting the 

production of a stable 48S preinitiation complex to form on mRNA70. In contrast, genes 

with increased TE in KO tend to be codon sub-optimal (t-test, p-value=3×10−52, Figure 

6A). Found with Scikit-ribo but not with RPKM-derived TE, these genes are enriched for 

“inner mitochondrial membrane protein complex” (GO:0098800, p-value=3×10−4, 

Supplemental Table S6). To investigate the GO enrichments that are specific to Scikit-

ribo, we selected the tail genes that correspond to the significant GO categories (Online 

Methods). Among these genes, we only kept the ones specific to Scikit-ribo (not found 

with RPKM-derived TE), and we again observed the same patterns with respect to 

codon optimality and Dhh1p expression (Figure 6C-E). This means the Scikit-ribo-

specific genes are consistent with the global patterns, thus strengthening our 

understanding of Dhh1p’s role in translation. 

Discussion 
	
For nearly 60 years, the central dogma of molecular biology has been the guiding model 

for explaining how genetic information flows from DNA to RNA and then to proteins. 

Through widespread genome and transcriptome sequencing, the first half of this 

process has been extensively explored, revealing many important relationships between 

genomic sequences, gene expression, and gene regulation in evolution, development, 

and disease. In contrast, relatively little is known about the final phases of this process, 

largely because of the difficulties in acquiring high throughput and high quality data 
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about translation and translational control. Riboseq is a powerful approach poised to fill 

this void. Several methods have been developed for selected aspects of Riboseq 

analysis, including differential TE testing71-74, identifying ORFs and alternative 

translation initiation sites75, 76, and predicting the shape of ribosome profiles77. But few 

practical statistical methods have been developed for robust TE estimation and most 

previous analyses were not performed in a systematic fashion. This had led to conflicted 

findings about the roles of codons and mRNA secondary structure on translation, and 

has prevented biological discoveries from being made in some cases. Here, through a 

systematical characterization and validation using mass spectrometry data, we exposed 

some of the more troubling issues of RPKM-derived TEs, including sampling errors and 

biological biases, especially for the low abundance genes.  

 

We argue that Scikit-ribo is the first statistically robust model and open-source software 

package for accurate genome-wide TE inference from Riboseq data. The core of Scikit-

ribo is a codon-level generalized linear model that unifies our study of translation 

elongation and initiation including the effects of codon specific elongation rates, mRNA 

secondary structure, and gene specific translation initiation efficiency. When paired with 

a powerful ridge regression regularization method, Scikit-ribo corrects the negative 

skew in TE observed in most previous papers, especially for low expressed genes. 

Using three case studies involving ten different datasets, we showed how these 

statistical advancements allow universal improvement to Riboseq data analysis. This 

particularly improves the estimation of genome-wide TE, allowing us to discover the 

Kozak-like consensus sequence in S. cerevisiae, and yield novel insights into Dhh1p’s 

role on translation repression. Our findings showcase the interplay between biology and 

statistics; biological knowledge informs statistical methods development, and statistical 

improvement yields novel biological insights. Together, we demonstrate that Scikit-ribo 

substantially improves Riboseq analysis and our understandings of translation control. 

In the future, we foresee more researchers applying Riboseq to address their biological 

questions related to protein translation and Scikit-ribo can unlock the full potential of this 

technique. 
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Online Methods 
 
Overview of Scikit-ribo 
	
Scikit-ribo has two major modules (Figure 2): (1) Ribosome A-site codon location 

prediction, and (2) TE inference using a codon-level generalized linear model (GLM) 

with ridge penalty. A complete analysis with Scikit-ribo involves two steps: 1) data pre-

processing to prepare the ORFs and codons for a genome of interest, 2) the actual 

model training and fitting. The few inputs to Scikit-ribo includes the alignments of 

Riboseq reads (i.e. BAM file), gene-level quantification of RNAseq reads (i.e. from 

Salmon78 and Kallisto79), a gene annotation file (i.e. gtf file) and a reference genome (i.e. 

fasta file) for the model organism of interest. The main outputs include log$ 𝑇𝐸 

estimates for the genes, and the translation elongation rates for the 61-sense codons. 

Scikit-ribo also has modules to automatically produce diagnostic plots of the random 

forest model and the GLM. The ribosome profile plots for each gene can also be plotted 

using Scikit-ribo. For details of preparing the inputs, see data processing steps in 

Methods. For a complete workflow from raw sequencing reads to results, see 

Supplemental Figure S15. Scikit-ribo can be easily installed with a single command: 

“pip install scikit-ribo”. The documentation of Scikit-ribo is available at http://scikit-

ribo.readthedocs.io/. 

 
Ribosome A-site codon prediction 
	
Scikit-ribo uses a random forest80 classifier from Scikit-learn81 to predict the ribosome A-

site locations over the 61-sense codons in the ORFs after excluding the start and stop 

codons.  (Figure 2A). Low mapping quality (MAPQ<20) and clipped alignments are 

removed from downstream analysis. After filtering out overlapping genes, it collects all 

reads that intersect the start codons as training data. In the Weinberg et al data, the 

sample size of the training data is ~700,000, with ~85,00 in each class. The feature set 

of the classifier include 1) read length, 2) reading frame phase of the 5’-end and 3’-end 

nucleotides (1st, 2nd, or 3rd), 3) the edge and the flanking nucleotides of the Riboseq 

reads. In the RNase I data, the label of the training data is the distance between the 3’-
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end of the start codon and the 5’-end of the read. In the RelE data, the label of the 

training data is the distance between the 3’-end of the start codon and the 3’-end of the 

read, which is enabled by the flag –r of the Scikit-ribo program.  

 

The training of the random forest classifier involved two steps: recursive feature 

selection with CV, and training the classifier with reduced feature set. The first step of 

the training uses CV to find the optimal features that gives the lowest prediction error. 

During each step of the CV, the features are re-ranked and the lowest ranked feature is 

dropped. This is similar to finding the “elbow” point in the feature importance plot 

(Supplemental Figure S3), which indicates the last sharp decrease of feature 

importance. Once the optimal feature set is selected, Scikit-ribo performs another ten-

fold CV to measure the accuracy (1 - error rate) of the model and learns the weights for 

each feature. After this, the learned classifier is applied to all the reads in the ORF and 

the A-site location on each read is predicted. Finally, Scikit-ribo compares the A-site 

locations to the canonical ORF, and reads that do not match it will be dropped from 

downstream analysis.  

 
Calculating RPKM-derived TE 
 

We refer to ribosome density per mRNA as RPKM-derived TE. It is a commonly used 

proxy for TE, which can be calculated by the ratio of RPKM for a given gene 𝑖1, 20: 

 Ribosome density per mRNA,  =  RPKM,
Ribo

RPKM,
mRNA Equation 1 

 

where 𝑅𝑃𝐾𝑀,
%,23 and 𝑅𝑃𝐾𝑀,

4%56 are the relative abundance of gene 𝑖 in the Riboseq 

data and RNAseq data, respectively. 

 

RPKM and TPM are defined by: 

 
RPKM, = 𝑅,

𝑙,
103

𝑅,,
106

= 𝑅,
𝑙, ⋅ 𝑅,,

⋅ 109 
Equation 2 
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 TPM, = ( RPKM,
RPKM,,

)  ⋅ 106 Equation 3 

 
where 𝑅,, 𝑙, are the sequencing coverage and coding sequence length of a gene, 

respectively.  

 

In Riboseq studies, rather than using fragments per kilobase of gene per million reads 

mapped (FPKM), RPKM is employed (Equation 1). This is because the Riboseq reads 

are single stranded, and the companion RNAseq libraries were also made using a 
single stranded protocol to mimic the Riboseq data. Since 𝑙, is a shared term between 

the two data, RPKM− derived 𝑇𝐸, can be further derived as: 

 RPKM-derived TE, =

𝑅,
%,23

𝑅,
%,23

,
𝑅,

4%56

𝑅,
4%56

,

=

𝑅,
%,23

𝑅,
4%56

𝑅,
%,23

,
𝑅,

4%56
,

 Equation 4 

 

The total number of reads 𝑅,
%,23

,  and 𝑅,
4%56

,  are fixed normalization factors 

shared between genes. Thus, the variance of the nominator, the ratio of the number of 
reads, determines the dispersion of RPKM− derived 𝑇𝐸,. That is why low abundance 

genes, either in the Riboseq or RNAseq data, report highly dispersed TE derived with 

RPKM.  

 
 
Correcting for biological biases with the Scikit-ribo GLM 
 
The joint inference of TE and codon DT is achieved via a codon-level GLM with a 

penalized likelihood function82 (Equation 5). The model can be fit using a python 

implementation of glmnet (https://github.com/hanfang/glmnet_python83). In Scikit-ribo, 

the design matrix is loaded as a scipy84 compressed sparse column matrix. This can 

effectively reduce memory usage, as the size of the design matrix grows exponentially 

with respect to the number of categorical variables. As a quality control, low MAPQ 
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regions and genes with TPM less than one are excluded from the analysis. If a gene 

has fewer than 10 effective codons remaining, it is also excluded. The model assumes 
that the number of ribosomes 𝑌,` for each codon at 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑗 𝑜𝑓 𝑔𝑒𝑛𝑒 𝑖 follows a 

Poisson distribution with the mean equal to 𝜇,` (Equation 5). A log link function is 

employed. 

 
𝑌,` ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑚𝑒𝑎𝑛 =  𝜇,`  𝑓𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑗 𝑜𝑓 𝑔𝑒𝑛𝑒 𝑖 

𝑙𝑜𝑔 𝜇,` = 𝛽0 + 𝛽j𝑥,` 
𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ 0, 𝐼 , 𝑗 ∈ 0, 𝐽  

Equation 5 

 

To correct for the biological biases, Scikit-ribo considers the below three categorical 

covariates and a continuous covariate (Figure 2B, Equation 6). The first continuous 
covariate 𝑋,

4 represents mRNA abundance in TPM and its coefficient is fixed to be one, 

indicating the ribosomes are proportional to mRNA abundance. Before putting into the 
model, the log 𝑇𝑃𝑀, values are normalized by their mean and SD. The coefficients 𝛽,

< 

(in 𝑙𝑜𝑔* scale) of the first categorical covariate 𝑋,
< represent TE/TIE for each gene. The 

log2 𝑇𝐸, can further be computed by using median normalization: log2 𝑇𝐸, = (𝛽,
< −

𝑚𝑒𝑑𝑖𝑎𝑛(𝛽s
<))/ log* 2. The second categorical covariate 𝑋,`

@  represent the 61-sense 

codons. Their coefficients, 𝛽@ (in 𝑙𝑜𝑔* scale) are proportional to the relative codon DT, 

which are the inverse of codon ERs. The start and stop codons in each ORF are 

excluded, because of their relevance to translation initiation and termination, rather than 
elongation. Finally, the third categorical covariate 𝑋,`

)  indicates whether a likely double-

stranded stem loop exists within 18 nt downstream of the current ribosome, as predicted 

from the optimal minimum free energy structure from RNAfold51. The current ribosome 

is likely to reside at a single strand part of the mRNA molecule.  

 

 

 𝑔 𝜇,`  =  𝛽0 +   𝑥,  
4

4%56

+    𝑥,
< 𝛽,

<  
jt

+   𝑥,`
@ 𝛽@  

@3L3-

+   𝑥,`
) 𝛽,`

)   
)*@3-L(Bu )<Bv@<vB*

 Equation 6 

 
where g .  is a log link function, µij = E[𝑌,`], 

           xi
m is the mRNA abundance for gene i with its coefficient fixed to 1, 
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         βi
t is the translational efficiency coefficient for gene i, 

         β@ is the codon dwell time inverse of elongation rate  for codon c, 
         xij

s  denotes whether secondary structure exists downstream of position j in gene i, 

         β0 is the intercept. 

 
Correcting for sampling errors with ridge penalty 
 
To correct for the sampling errors, i.e. the high dispersion of TE among low-abundance 
genes, Scikit-ribo employs a GLM with a ridge penalty82 (𝑙2 𝑛𝑜𝑟𝑚) to provide shrinkage 

estimates of TEs (Equation 7 and 8). This is computed by setting the 𝛼 parameter in 

glmnet to zero. The lasso penalty is not considered here because we wish to infer all 

the coefficients (e.g. TEs of all genes), rather than performing variable selection. To 

optimize the log-likelihood, Scikit-ribo calls glmnet82, which uses a Newton quadratic 

approximation (outer loop) and then coordinate descent on the resulting penalized 

weighted least-squares problem (inner loop). A ten-fold CV is performed to find the 
optimal 𝜆, which controls the strength of 𝑙2 𝑛𝑜𝑟𝑚 regularization. If one wishes to utilize 

or inspect the coefficients from an un-penalized GLM, this could be done by setting 𝜆 =

0 when printing the coefficients. 

 
The log likelihood for the observations x,`, y,`  is given by 

 𝑙(𝜷|𝑿, 𝒀) =  (𝑦,` 𝛽0 + 𝜷T𝒙,` −  𝑒�0+ �����)
�

`=0

=

,=0
 Equation 7 

 
We optimize the 𝑙2 norm penalized log likelihood w. r. t. a total of N observations and K parameters: 

 𝑎𝑟𝑔𝑚𝑖𝑛�0,� − 1
𝑁 𝑙 (𝜷|𝑿, 𝒀)   +  𝜆( 𝛽A

2/2) 
D

A=1
 Equation 8 

 
where the optimal λ with the smallest Poisson deviance is decided via CV. 

 
Deriving relative protein abundance 
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As per the master equations for mRNA transcription and protein translation from Li20, for 

a gene 𝑖,  

 
𝑑
𝑑𝑡 𝑃, = 𝑘,

2𝑀, −  𝜆,
2𝑃, Equation 9 

 
where 𝑀𝒊 and 𝑃𝒊 are the concentration of mRNA and protein, respectively. 𝑘,

1 

and 𝑘,
2 are the transcription and translation efficiency, while 𝜆,

1 and 𝜆,
2 are the 

degradation rates of mRNA and protein. Under steady state, L
L< 𝑃, = 𝟎, thus, the relative 

protein abundance (PA) can be derived from Riboseq and RNAseq data using: 

 𝑃, = 𝑘,
2 

𝜆,
2 𝑀, = 𝑇𝐸,

𝐷𝑅,
 𝑀, ∝ 𝑇𝐸, 𝑀, Equation 10 

where 𝑇𝐸, is the translation efficiency, 𝑀, is the relative mRNA abundance in TPM, and 

𝐷𝑅, is the relative protein degradation rates, which can be assumed identical across 

genes. For the Riboseq data alone, 𝑃, approximates to the relative ribosome 

density/abundance in TPM. 

 

Sequencing reads processing 
	
The complete sequencing reads processing workflow is shown in Supplemental Figure 

S15. Each time a new fastq file is generated, it is recommended to run fastqc to ensure 

the expected outcome and replace runs with excessive quality errors. For both Riboseq 

and RNA-seq data, the first step is to identify and trim the 3’-end adapters from each 

read using cutadapt85 (v1.13). The first base of the reads’ 5’-end is also clipped to avoid 

contamination on the 5’-end. To filter out ribosomal RNA (rRNA) sequences, the 

resulting reads are aligned to the known rRNA using Bowtie86 (v1.2.0). As a quality 

control, the reads that are too short or too long are removed using Prinseq87, keeping 

reads in a range from 15nt to 35nt (v0.20.4). In E. coli, the size range of the Riboseq 

reads is larger, so this filtering step on read size should be adjusted accordingly. The 

remaining reads are then aligned with STAR88 (v2.4.0j) in a single pass mode with 

parameters tuned for short reads (--sjdbOverhang 35). The quality control report file of 

the resulting bam is generated using Qualimap89 (v2.0.2). From there, the RNAseq data 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2017. ; https://doi.org/10.1101/156588doi: bioRxiv preprint 

https://doi.org/10.1101/156588
http://creativecommons.org/licenses/by-nc/4.0/


	 26	

is used to quantify the gene-level mRNA abundance in TPM using a quantifier. 

Salmon78 and Kallisto79 are recommended here because they are extremely fast and 

their file formats are automatically supported by Scikit-ribo.  

 
Scikit-ribo input processing 
	
Scikit-ribo uses the pandas90 data frame as the main data structure: a codon-level data 

frame for the GLM, and a read-level data frame for A-site prediction. The codon-level 

data frame consists of the following variables: chromosome, start, end, codon, 

secondary structure pairing probability, mRNA abundance in TPM, number of 

ribosomes at this codon. Scikit-ribo filters and converts the provided Riboseq bam file 

into a bed file using pysam(v0.10.0)91 and pybedtools(v0.7.9)92, 93, which is 

subsequently converted into a read-level data frame. To prepare the codon-level data 

frame, it retrieves the cDNA sequence (includes ORF, 5’/3’-UTR) given a reference 

genome and a gene annotation file. The 24 nucleotides in both the 5’UTR and 3’-UTR 

are included for calculating mRNA secondary structure. The cDNA sequence is then 

used to predict the optimal secondary structure under minimal free energy using 

RNAfold(v2.3.4)51. By parsing the postscript files, Scikit-ribo finds the lbox entries, which 

represent the pairing of nucleotides in the optimal structure. With that, it identifies the 

positions on the ORF with a likely stem loop downstream (i.e. nine nucleotides 

downstream of the A-site), while the ribosome is residing at a likely single-strand region 

(i.e. from six nucleotides upstream to nine nucleotides downstream). Due to the 

uncertainty of RNAfold prediction, a likely stem loop requires at least 17 out of the 18 

nucleotides to be paired, while a single-strand region requires no more than three 

nucleotides paired. Given the canonical ORF of a gene, Scikit-ribo splits the sequences 

into tri-nucleotides as codons.  

 
Data and statistical analysis in this paper 
	
For the wild-type S. cerevisiae analysis, the Riboseq (flash-freeze protocol) and RNA-

seq (Ribo-zero protocol) data were from Weinberg et al3. The accession numbers are 
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GSM1289257, GSM1289256. For the analysis involving Dhh1p, the Riboseq and RNA-

seq data were from Radhakrishnan et al 24 under the accession number GEO: 

GSE81269. The reference genome of S. cerevisiae used is S288C R64-2-1. The gene 

annotation file was the SGD annotation downloaded from UCSC. For the E. coli 

analysis, the Riboseq (RelE protocol) and RNA-seq data were from Hwang et al31. The 

accession number is GSE85540. The reference genome of E. coli used is the MG1655 

genome. For more details of how these data were generated, please refer to the original 

papers. All the figures in the paper were plotted using matplotlib94 (v2.0.0) and 

seaborn95 (v0.7.1). The Pearson correlation and Spearman correlation are denoted as 𝑟 

and 𝜌, respectively.  

 

To ensure reproducibility, all source codes for data processing, statistical analyses and 

figure plotting are available in the iPython notebooks under the GitHub repository: 

https://github.com/hanfang/scikit-ribo_manuscript 

 

Simulation, sequence enrichment, and gene enrichment analysis  
	
The simulation of the S. cerevisiae Riboseq and RNAseq data were done with 
polyester96 and the log 𝑇𝐸2()*+,-*, followed a balanced normal distribution. To mimic 

paused ribosomes, we randomly sampled 2500 sites (occurring within ~20% of the 

genes) and added 1000 additional reads into these locations of the Riboseq data. We 

then sampled back to the same number of reads as the original data and computed the 
new RPKM-derived log 𝑇𝐸%&. For the sequence enrichment analysis, we collected 

5’UTR sequences from genes with log2 𝑇𝐸 greater than two. The 5’UTR region is from 

50 nt upstream to 6nt downstream of the translation start site. Then we used HOMER 

(v4.9) to scan for enriched sequences from the 56nt windows63, using the HOMER 

recommended  p-value cutoff of 1×10−10.  

 

Gene set enrichment analysis required three steps. First, we excluded low abundance 

gene (TPM < 10) to focus on effects of the biological covariates (e.g. codon ER). 
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Second, we selected 50 genes from the left and right tails, i.e. genes with the most 
changes of TE. This cutoff gave bounds of Δ log2 𝑇𝐸 about -0.9 and +1.7 in the three 

comparisons. Finally, we uploaded the gene sets to http://www.yeastgenome.org/ and 

performed enrichment analysis97. 
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Figure 1. Sources of biases using ribosomes densities per mRNA (RPKM-derived 
TE) as a proxy for TE. (A) Sampling biases towards low abundance genes (left), and 
biological biases due to paused ribosomes (right). (B) Idealized ribosome footprints 
distribution without biases (left), or with downstream mRNA secondary structure and low 
conjugate tRNA availability for the A-site codon (right). (C) Confounding effects of 
translation initiation and elongation on Riboseq profiles, figure adapted from Quax et al 
2013. Initiation rate should be proportional to actual protein yield.  
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Figure	2	
 

 
 
Figure 2. Overview of the analysis workflow in Scikit-ribo. The complete workflow 
consists of Ribosome A-site classifier training, A-site codon prediction and mapping, 
and translation efficiency inference. (A) Ribosome A-site training and prediction, gray 
text boxes denote the major steps. (B) Illustration of the covariates in the codon level 
generalized linear model. In the model, the mRNA abundance (in TPM) are considered 
as offset with fixed coefficient equal to one. Codon dwell time and mRNA secondary 
structure are shared covariates across genes. Translation efficiencies are gene specific 
covariates.  
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Figure	3	

	
 
Figure 3. Accurate inference of codon elongation rates and mRNA secondary 
structure. (A) Almost perfectly reproduced codon dwell time (DT), inverse of elongation 
rate) from Weinberg et al (𝑟=0.99). (B) Correlation with the codon’s adaptiveness value 
(RAV, 𝑟=0.5), (C) Correlation with tRNA abundance (𝑟=0.47). In A-C, the gray dashed 
line denotes the diagonal line; y=x. The RAV scales from 0 to 1. A codon with lower 
RAV means that it is less optimal for translation elongation, i.e. slower codons. (D) Meta 
gene analysis of the log ratio of adjusted DT (ADT), divided by the mean adjusted DT. 
The solid line denotes the average ADT in a five-codon sliding window. A log ratio 
greater than zero means ribosomes at this position are faster than average. The log 
ratios on the left were significantly higher than the ones on the right (T-test, p-value= 
5×10&'). The unit of the distance is codon.  
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Figure	4	

 
 
Figure 4. Pair-wise comparisons of estimates between Scikit-ribo and RPKM-
derived TE. (A) Scatter plot of Scikit-ribo and RPKM derived 𝑙𝑜𝑔2 𝑇𝐸 . Difference in 
𝑙𝑜𝑔2 𝑇𝐸 : ∆ 𝑙𝑜𝑔2 𝑇𝐸 .  ∆ 𝑙𝑜𝑔2 𝑇𝐸 > 0.5, previously underestimated (green), 
∆ 𝑙𝑜𝑔2 𝑇𝐸 < −0.5, previously overestimated (orange), and other genes in between 
(gray). The genes with ∆ 𝑙𝑜𝑔2 𝑇𝐸  less than -8 are indicated by triangles. (B) 
Histograms of scikit-ribo and RPKM-derived 𝑙𝑜𝑔2 𝑇𝐸 , 𝑙𝑜𝑔2 𝑇𝐸  values less than -10 are 
adjusted to -10 (C) Histograms of ribosome TPM in all genes (blue), and region 1 
(green). (D) Violin plots of ∆ 𝑙𝑜𝑔2 𝑇𝐸  by the number stem loops. (E) Violin plots of tAI 
for genes in the six regions, left: 𝑙𝑜𝑔2 𝑇𝐸 < 0, right:  𝑙𝑜𝑔2 𝑇𝐸 > 0. (F) The Kozak 
consensus sequence, AAAATGTCT, found with the TE estimates from Scikit-ribo (p-
value=1×10−21). The lower panel is adapted from the original paper, Hamilton et al 
(1987).   
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Figure	5	

 
Figure 5. Large-scale validation with mass spectrometry data confirmed Scikit-
ribo’s accurate TE estimates, especially for low-abundance genes. (A) Scikit-ribo 
derived protein abundance (PA) for all genes in the validation set (𝑟 = 0.81, 𝛽 = 0.83). 
(B) Scikit-ribo derived PA for genes with TPM less than 100 (𝑟 = 0.6, 𝛽 = 0.48). (C) 
RPKM-derived PA for all genes in the validation set (𝑟 = 0.77, 𝛽 = 0.75). (D) RPKM-
derived PA for genes with TPM less than 100 (𝑟 = 0.35, 𝛽 = 0.29). The black dashed 
line denotes the identity line; y=x. 
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Figure	6	
 

 
 
Figure 6. Analysis of the Dhh1p data using Scikit-ribo. Violin plots of tAI for genes 
with decreased/increased TE in (A) Knock Out (KO), (B) Over Expressed (OE), relative 
to Wild Type (WT). Violin plots of tAI for tail genes unique to Scikit-ribo in (C) KO, (D) 
OE. (E) Violin plot of tAI for genes, left: reduced TE in OE, and right: increased TE in 
OE. (F) Scatter plot of DT comparing OE and WT. WT: wild type, KO: knock out Dhh1p, 
OE: Overexpression of Dhh1p. The black dashed line denotes the identity line; y=x. 
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