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Visual perception is essential for animal survival in natural environments. Mice 

use vision to navigate and avoid predators. However, the spatial resolution of 

mouse vision is poor compared to primates and carnivores, and mice lack a fovea. 

Thus, it is unclear how well mice can discriminate ethologically relevant scenes. 

Here, we examined natural scene discrimination in mice using an automated 

touch-screen system, which measured the discriminability for sets of target and 

distractor scenes. We found that a conventional metric for estimating image 

resemblance, structural similarity (SSIM), reasonably predicted the discrimination 

performance. Mouse-to-mouse consistency was high, and the performance of 

each mouse was better predicted by the population mean than SSIM. This high 

inter-mouse agreement indicates that mice use common and robust strategies to 

discriminate natural scenes. We tested several alternative image metrics to find 

an alternative to SSIM for predicting mouse discrimination performance. We found 

that a primary visual cortex (V1) model-inspired approach predicted mouse 

performance with fidelity comparable to the inter-mouse agreement. The model 

was based on convolving the images with Gabor filters, and its performance was 

orientation-specific. The orientation-specificity was stimulus-dependent. These 

results indicate that, compared to artificial parameters like SSIM, 

neurophysiological-based models of V1 processing can better predict visual 

discrimination behavior of naturalistic stimuli.  
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1. Introduction 

Visual processing of natural scenes is essential for animal survival. Mammalian 

visual systems including primates and rodents evolved to efficiently process natural 

stimuli (Olshausen 1996, Bell and Sejnowski 1997, Itti, Koch et al. 1998, Vinje and 

Gallant 2000, Froudarakis, Berens et al. 2014). Mice use vision to hunt prey (Hoy, 

Yavorska et al. 2016) and navigate (Harvey, Collman et al. 2009).  

A number of studies have characterized the behavioral performance of mice in 

discriminating visual stimuli including simple shapes (Bussey, Saksida et al. 2001), 

gratings, (Prusky, West et al. 2000), shapes (Glickfeld, Histed et al. 2013, Long, Jiang et 

al. 2015, Nithianantharajah, McKechanie et al. 2015), and random dot kinematograms 

(Stirman, Townsend et al. 2016). However, these results cannot be extrapolated to 

natural scene discrimination because visual coding is substantially different between 

natural images and artificial ones (Vinje and Gallant 2000, Froudarakis, Berens et al. 

2014). Moreover, the spatial resolution of mouse vision is orders of magnitude lower than 

that of primates and carnivores. Even when natural scenes might be discriminated, 

individual mice might focus on different regions of the images to discriminate them, and 

this would lead to high mouse-to-mouse variability. Thus, the behavioral investigation 

using natural images provides essential information for understanding evolutionally 

optimized encoding strategy of visual systems. 

The perception of visual information depends on a hierarchical processing by visual 

cortical areas (Felleman and Van Essen 1991, Andermann, Kerlin et al. 2011, Marshel, 

Garrett et al. 2011). Visual information is first processed in the primary visual cortex (V1). 

One remarkable feature of the primary visual cortex is the orientation specific processing 
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(Hubel and Wiesel 1962, Ohki, Chung et al. 2005). This would facilitate the sparse coding 

of natural images by V1 neurons (Olshausen 1996, Bell and Sejnowski 1997, Itti, Koch 

et al. 1998). Orientation specific features are further transformed and integrated in higher 

visual areas to extract higher order statistical structures of the image and detect objects 

(Young and Yamane 1992, Quiroga, Reddy et al. 2005, Serre, Wolf et al. 2007). Thus, 

the orientation feature selectivity is the foundation of visual perception in many contexts. 

However, it is unclear how orientation features in naturalistic images are perceived and 

whether they are relevant to the animal behavior.  

 Here, we developed a natural image discrimination task for freely moving mice 

using an automated touchscreen-based system that we recently established for global 

motion discrimination task (Stirman, Townsend et al. 2016). The mice successfully and 

quickly learned to discriminate images of natural scenes. We investigated which features 

of natural images including orientation features explained the discriminability by mice, 

and discussed how the mice discriminated the natural images. 
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2.  Methods 

2.1 Subjects 

Ten adult C57BL/6 mice (2 males and 4 females in main experiments and 2 males and 

2 females in additional experiments) were used in the experiments reported here. 

Animals were between 80 and 160 days old at the start of training, which lasted for 

approximately 1 month. Mice were housed in rooms on reversed light-dark cycle (dark 

during the day, room light on at night), and training and testing were performed during 

the dark cycle of the mice. All training and procedures were reviewed and approved by 

the Institutional Animal Care and Use Committee of the University of North Carolina, 

which ensures compliance with the standards of the American Association for Laboratory 

Animal Science (AALAS).  

 

2.2 Apparatus 

The operant chamber and controlling devices were the same as previously described 

(Stirman et al., 2016), and are based on work by Saksida and Bussey (Bussey, Saksida 

et al. 2001, Bussey, Padain et al. 2008, Nithianantharajah, McKechanie et al. 2015). 

Briefly, a touchscreen panel was on the long size of a trapezoidal chamber, opposite of 

liquid reward port (a strawberry-flavored yogurt-based drink; Kefir). Correct responses 

were indicated by a brief auditory tone, and the reward port was illuminated. During time 

outs, a brief burst of white auditory noise was played, and the chamber light was 

illuminated for the duration of the time-out. 
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2.3 Stimuli 

For the natural scene discrimination task, we selected pictures of natural scenes (430 by 

430 pixels static images, JPEG format). The original set of images was taken from three 

naturalistic image databases: UPenn (http://tofu.psych.upenn.edu/~upennidb/) (Tkačik, 

Garrigan et al. 2011), McGill (http://tabby.vision.mcgill.ca/) (Olmos and Kingdom 2004), 

and MIT (http://cvcl.mit.edu/database.htm) (Oliva and Torralba 2001). Average 

luminance of images was almost the same. One image was set as the target image 

during NID (naturalistic image discrimination) training sessions. Ten images which have 

low structure similarity (SSIM) with the target image, and eleven images with varied SSIM 

plus one image which is the same as the target image were selected as distractor images 

on the NID training and NID testing sessions, respectively (Fig.1; Supplementary table 

1.). All images were masked by a circular aperture. During NID testing sessions, 5 

interleaved training trials were provided after every 12 testing trials. One image with low 

SSIM of the eleven distractors was used as the distractor for the interleaved training. 

  

2.4 Behavioral Training 

Food restriction and training stages 1-3 (FR, free reward; MT, must touch; IM image 

discrimination) were conducted as previously described (Stirman, Townsend et al. 2016). 

Briefly, during DR (Free Reward) phase (training stage 1), mice learned to lick the reward 

spout to receive a reward. As a result, mice associated the tone with the delivery of a 

reward, and learned the location of the reward. During MT (Must Touch) phase (training 

stage 2), mice had to touch any location on the screen at the front of the box to receive 

a reward. The goal of this phase was to associate touching the screen with delivery of a 

reward. During IM (Image Discrimination) phase (training stage 3), a dot and fan image 
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pair stimulus (Bussey, Saksida et al. 2001) was presented and mice required to touch a 

specific target stimulus on the screen to earn a reward. 

 

Training stage 4: Natural image discrimination (NID)  

Before this phase, mice were trained to discriminate two static images (dots vs fan). On 

this phase, the mice had to touch the target natural image, avoiding one of 10 distractors. 

SSIM index of all pairs were less than 0.2 (low SSIM implies that the two images are not 

similar). This stage of training incorporated correction trials as described previously 

(Stirman, Townsend et al. 2016). 

 

2.5 Behavioral Testing  

This condition was similar to the testing condition of the kinematogram we previously 

described (Stirman, Townsend et al. 2016). Images for testing phase consisted of one 

target image and 12 distractor images whose SSIM indices were 0.074 to 0.54. Testing 

consisted of interleaved blocks of testing and training. Mice were not cued as to whether 

they were in a testing or training block. During testing blocks, all 12 distractors (12 trials 

per block) were presented in a random order, and all answers were rewarded. During 

training blocks (5 trials per block), stimuli with SSIM = 0.13 were presented and normal 

performance feedback (including timeout periods and correction trials) was provided. 

Performance during these interleaved training blocks served as an internal control to 

ensure the mice were still working to perceive the direction of the NID stimuli in the testing 

blocks. Testing data was analyzed only if the animal performed on average at criteria (≥ 

85% correct) during the interleaved training blocks. This criterion excluded one mouse 

out of the six mice in the main experiments. Testing sessions were conducted for 120 - 
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150 minutes per day. In additional experiments, the target and rotated images were 

rotated only in the NID training and testing sessions. All 5 mice generated testing data in 

the additional experiments.  

 

2.6 SSIM (Structural similarity) 

SSIM indices for all pairs of presented natural stimuli were calculated as reported by 

Wang et al 2004 (Wang, Bovik et al. 2004). First, the pair of two images were smoothed 

with Gaussian filter ( = 1.5 pixels). SSIM index was obtained for each window of a pair 

of images. First, the SSIM for each pixel was calculated for square windows, centered at 

the same pixel (w,h) of two images. The length of a side of square window was 8. The 

SSIM (x,y) was then obtained for two windows in a target image (x) and a distractor 

image (y) as follows, 

,  

where x, y are pixel intensity averages of window x and y, x, y, xy are standard 

deviation of window x and y, and covariance of two windows, c1 and c2 are (0.01 x L)2 

and (0.03 x L)2, respectively, where L is 255 (corresponding to the dynamic range of 8-

bit monochrome images). 

SSIM(x,y) was obtained for all (w,h) and was averaged over the circular area 

where the natural images are located. The average of SSIM(x,y) was called simply as 

SSIM index for each pair of target and distractor in this paper (Fig.1). One distractor was 

the same as a target image, so that its SSIM index is 1. The pairs of the other distractors 

and a target image had SSIM index less than 1. 
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2.7 Psychometric curve 

Psychometric curve was obtained with regression of the following function (Weibull 

function) to the data, 

  

 

where  and are parameters determined by the regression to each data set. The 

threshold was set to 70 % accuracy value of SSIM estimated by this function. 

 

2.8. Image processing 

Pixel-wise correlation and root-mean-squared error (RMSE) between a target image and 

each distractor image were obtained as candidate parameters that may capture the 

similarity of two images. The registration of two images were done with a MSE based 

registration algorithm (Turboreg) (Thevenaz, Ruttimann et al. 1998).   

 

2.9. Gabor filter 

We used Gabor filtering to analyze the orientation specific features of the image.  

𝑔ఒ,ఏ,ఊ,ఙ(𝑥, 𝑦) = exp ቆ−
𝑥ᇱ + 𝛾𝑦ᇱ

2𝜎ଶ ቇ ∗ exp (𝑖(2𝜋
𝑥ᇱ

𝜆
)) 

The Gabor filter bank was generated using the built-in Matlab function ‘gabor’. The 

wavelength (λ) of the Gabor filters ranged from 5 – 28 pixels per cycle. The orientation 

(θ) of Gabor filters is either 0°, 30°, 60°, 90°, 120°, and 150°. We set the aspect ratio (γ) 

of Gabor filter to 0.5. The standard deviation of the Gaussian envelops (σ) is 𝜎 =
ఒ

గ
∗

ට
୪୭୥(ଶ)

ଶ
∗ 3 is determined by the wavelength. We computed the Gabor feature magnitude 

(𝐺ఒ,ఏ(𝑥, 𝑦)) by convolving Gabor filter at specific orientation and wavelength with each 
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image. Then we compute the orientation specific similarity (OSS) between two images 

by the following function.  

𝑂𝑆𝑆(𝜆, 𝜃) =
1

𝑁
∗ ෍

2 ∗ 𝐺ఒ,ఏ(𝑥, 𝑦)ௗ௜௦௧௥௔௖௧௢௥ ∗ 𝐺ఒ,ఏ(𝑥, 𝑦)௧௔௥௚௘௧

(𝐺ఒ,ఏ(𝑥, 𝑦)ௗ௜௦௧௥௔௖௧௢௥)ଶ + (𝐺ఒ,ఏ(𝑥, 𝑦)௧௔௥௚௘௧)ଶ

ே ௣௜௫௘௟௦

  

. 

 

2.10. Statistics. 

Student’s t-test and Spearman’s correlation test were used for statistical comparisons. 

Pairwise comparisons were two-tailed unless otherwise noted. Error bars in graphs 

represent the mean  s.e.m unless otherwise noted. Analysis of variance (ANOVA) was 

used for multiple comparisons, followed by t-test (presented p-values for t-test were 

Bonferroni corrected). No statistical tests were performed to predetermine sample size. 

No blinding or randomization were performed. 
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3. Results 

3.1. Training 

All mice trained in the main experiment (6 of 6) successfully passed the pre-training 

phases (FR, MT, & IM), meeting criteria to advance to NID training in 14.5 ± 2.9 days 

(mean ± S.D.) (Fig. 2a). These mice also readily acquired the NID training task (6 of 6), 

ultimately discriminating correctly between a natural target image and 10 distractor 

images on 85% or more of trials (Fig. 2b, c). Two out of 6 mice were trained for an hour 

per day, and the other 4 mice were trained for two hours per day. Once mice performed 

the NID training task with 85% accuracy for 2 consecutive days, they moved to the NID 

testing phase. Mice required fewer training sessions to reach criterion for NID compared 

to the mice trained in the random dot kinematogram (RDK) task we previously reported 

(Stirman, Townsend et al. 2016) (3, 3, 3, 5, 8, 9 days for NID vs 5, 10, 11, 14, 15 and 18 

days for RDK; p = 0.0088, t-test). 

 

3.2. Testing 

Five out of six mice retained the correct trial rate with > 85 % in the interleaved training 

trials during testing phase, but one mouse (Mouse 6) had a lower correct rate for 

interleaved testing trials. This mouse seemed to recognize that it does not have to touch 

the target image to get rewards during testing phase, and it always tended to select the 

left panel (Fig. 3a,b). Accordingly, we excluded this mouse, and analyzed data from five 

mice. We obtained the correct trial rate with all five animals for the testing sessions 

(range: 1920 - 2712 trials, over 4 – 8 sessions per mouse). Many numbers of repeated 

trials with the same sets of a target and distractor enabled us to precisely estimate the 

correct trial rate. Psychometric curves were obtained using correct trial rate and SSIM 
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indices for 12 distractor images (Fig. 4a). The performances of the mice were remarkably 

similar (the thresholds of the psychometric curves were 0.29, 0.30, 0.27, 0.34 and 0.32; 

Fig. 4b). In total, the SSIM index approximated the correct trial rate, and the threshold 

was ~0.30 (Fig. 4c).  

Next, we explored the relation between response time (RT) and correct rate. 

The mean RT varied mouse to mouse, but each mouse tended to have long RTs for the 

distractor images with high SSIMs and high correct rates (Fig. 5a). To examine the 

relative RT values of different mice, we calculated the z-score of the RT for each mouse. 

The normalized RT was negatively correlated with the SSIM index, and positively 

correlated with the correct rate (Fig. 5b,c). Thus, the mice spent a longer time to 

discriminate easy trials than difficult ones. This unexpected result will be examined in the 

Discussion section. 

The SSIM index approximated the correct rate, but correct rate of some of the 

distractor images were better or worse than predicted by the psychometric curve based 

on SSIM (Fig. 6a). Notably, this deviation was not due to outliers of a few mice, but all 

mice similarly behaved. In fact, correct rate of each mouse was highly predictable by the 

mean correct rate of the other four animals (Fig. 6b). Root mean squared error (RMSE) 

for linear regression of correct rate for each mouse by the mean correct rate of the other 

mice were significantly smaller than the RMSE values between psychometric curve and 

real data (Fig. 6c; p = 0.0037, paired t-test). These results indicate that the mice visual 

system has rules that is not fully captured by SSIM values.   

The mouse visual system does not have sufficient acuity with which to 

distinguish each pixel of the touch screen in this apparatus. Thus, mice might have to 

discriminate two images with lower resolution representations than those we presented 
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on the video screen. To investigate the visual acuity dependency, we filtered the image 

with Gaussian filter with standard deviation 2 to 64 pixels (Fig. 7a, b), and obtained SSIM 

after Gaussian filtering (fltSSIM). The fltSSIM reached minimal when the standard 

deviation was 4.6 pixels, but the improvement was small.  

SSIM is commonly used for estimating image similarity, but is vulnerable to 

image translation. To robustly estimate the similarity between two images, we translated 

images so that the mean squared difference between two images was the lowest. The 

SSIM values were then obtained between target image and translated distractor images 

(SSIM after registration, regSSIM). However, the predictability of regSSIM was 

comparable to that of original SSIM, and not as good as the correct rate of the other mice 

(Fig. 7c). 

We used other metrics to measure the similarity of two images (pixel-wise cross-

correlation, and RMSE). These parameters were also not as good predictor of correct 

rate as the correct rate of the other mice (Fig. 7d,e). Finally, we suspected that mice 

tended to avoid images similar to the distractor of the interleaved training phase (‘anti-

target’), because mice were only punished when they mistakenly selected interleaved 

‘anti-target’ images during the NID testing. In this case, larger the SSIM index between 

distractor and the anti-target should lead to higher the correct trial rate. However, SSIM 

index between 11 the other distractors and anti-target was not positively correlated with 

correct rate (Fig. 7f), indicating that the mice did not have tendency to avoid the image 

which is similar to the distractor of training phase during testing sessions. These results 

indicate that the mouse visual system has unpredictable rules, by which the mouse 

judges the similarity between two images. 
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So far, we have explored the parameters that may capture the global similarity 

between two images. SSIM and the other parameters predicted mice behavior, but it is 

not an intuitive model for the mouse visual pathway. Accordingly, we tried to predict the 

behavior performance with a model mimicking neuronal activity of mouse V1. Previous 

studies showed that receptive field of the simple neurons in mouse V1 can be modeled 

as Gabor filters (Bonin, 2011). Each Gabor filter extract a small patch of image with 

specific orientation and wavelength (Fig. 8a). We filtered the target and distractor images 

with a Gabor filter with various orientation and wavelength, and calculated the similarity 

of the filtered target image and each distractor image. We defined this similarity as the 

orientation specific similarity (OSS) (Fig. 8b), which is a function of the orientation and 

wavelength. The prediction of mouse behavior OSS was fit by psychometric curve 

similarly as the SSIM model (Fig. 8c). We obtained RSME value for each set of 

wavelength and orientation parameters (Fig. 8e,f). The RMSE of OSS model averaged 

over all orientations reached minimal value when the wavelength of Gabor filters is 7.07 

– 10 pixels (Fig. 8d), or the sigma of the Gaussian envelop if 2.6 – 3.7 (methods), which 

is comparable to the optimal Gaussian filter size for the SSIM model (standard deviation, 

4.6 pixels; Fig. 7b). Average of the OSS over all orientations with optimal wavelength 

predicted animal behavior was similar to the SSIM model after optimally filtered with 

Gaussian function (RMSE of OSS, 0.082 ± 0.003 (λ = 7.07); RMSE of SSIM, 0.074 ± 

0.003; t-test, p=0.08). These results indicated that Gabor filtering averaging over all 

orientations had similar predictability of mouse behavior. 

If the orientation specific information was used in the image discrimination task, 

we wondered whether either of the individual orientation would predict the performance 

better than other orientations. Interestingly, the prediction RMSE of OSS at different 
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orientation was significantly varied (Fig. 8e, ANOVA p = 9.0 ×10-11). The horizontal 

OSS was the worst parameter for predicting the correct trial rate regardless of the spatial 

scale of the Gabor fitters, while the near-vertical OSS predicted the animal behavior more 

accurately than the SSIM model and the averaged OSS over all orientations. The 

orientation bias was consistent over a wide range of Gabor filter wavelength (Fig. 8f). 

These results suggest that mice use orientation specific features in the naturalistic image 

discrimination task.  

The orientation specific prediction accuracy could result from intrinsic biases of 

orientation selectivity in mouse visual system, or acquired through the learning of specific 

images. To investigate these possibilities, we trained a new cohort of mice using the 

same set of images but rotated by 90° (n = 4 mice; Fig. 9a). If the orientation specific 

biases were intrinsic, the results of orientation biases with rotated images will be 

preserved; while if the orientation biases were acquired, the biases will be rotated by 90°. 

All mice trained in the additional experiments (four of four) successfully passed the pre-

training phases as the mice in the main experiments did. In NID testing phase, we found 

that the orientation bias was shifted by ~90° (Fig. 9b). These results suggest that mouse 

visual system can learn to extract specific orientation information based on the presented 

natural image. Although, we did not find out exactly what features of images the mice 

attended to, this feature may be one of the additional factors that the correct rates of the 

different mice were similar than predicted by similarity parameters such as SSIM. 

 

4. Discussion 

In this paper, we investigated the ability of mice to discriminate natural scenes, 

using an automated touchscreen-based system. We found that the mice learned to 
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discriminate natural scenes quickly, and that the psychometric function with SSIM 

predicted the correct rate. However, the behavioral performance of each mouse was 

highly consistent, and deviated in significant and reproducible ways from the prediction 

based on SSIM. Thus, we searched for a parameter or model that more accurately 

predicts the performance of the mice on this task. We found that a V1-inspired model 

provides a prediction whose accuracy can approach that of the inter-animal agreement. 

Thus, V1 processing may partly explain the way in which the mouse vision discriminates 

natural images. 

Natural scenes were compared using the SSIM index, which is commonly used 

to estimate the similarity of two images. SSIM indices correlated with the correct rate of 

the mice in our task. However, the psychometric curves plotted against SSIM provided 

only marginal fits to the data. In particular, there were several images that had 

significantly higher or lower correct rates across all mice than predicted by SSIM (Fig. 

4a). In addition, the correct rates of mice were highly correlated, which indicated that the 

deviations from the SSIM-based psychometric curves were not due to mouse-to-mouse 

variance, but rather that the mice perceived the similarity of images in ways not captured 

by SSIM.  

Reducing the spatial resolution (i.e., blurring) of the images to better match 

mouse vision did not improve the fits of SSIM-based psychometric functions, nor did 

several other manipulations that we explored. Instead, we found that a Gabor filter-based 

approach provided the best fit. Notably, the improvement was specific to the orientation 

angle of the Gabor patch used. Horizontal orientation filtering did not provide a good fit, 

but a peri-vertical one did. In addition, the orientation bias was shifted accordingly when 
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mice were required to discriminate rotated images. These results indicate that mice could 

extract orientation specific information depending on the task context.  

In mammals, the orientation information itself could be modulated depending on 

the current demands. For instance, human visual cortex showed increased activity during 

being forced to attend to specific orientation, which is similar to the preferred orientation 

of the cortical areas (Warren, Yacoub et al. 2014). In monkey, neurons in visual cortical 

areas with orientation specificity increased its stimulus evoked firing rate when the 

monkey attends to the receptive field of the neurons (McAdams and Maunsell 1999). The 

direction and orientation specificity of mouse V1 neurons increased during learning visual 

discrimination tasks using grating stimuli when the preferred direction of the neuron was 

task relevant (Goltstein, Coffey et al. 2013, Poort, Khan et al. 2015). Thus, the orientation 

specific enhancement of the visual processing would be common features of human, 

monkey and mouse visual systems, and visual processing to specific orientation might 

explain our results. The changes of the neural activity to specific orientation, if it exists, 

might not arise by nature but by learning. This might be also consistent with the fact that 

while the orientation selective neurons observed in mouse V1 has horizontal bias during 

developing, it has an almost equal distribution in adults (Hagihara, Murakami et al. 2015).  

On the RT analysis, we found that the mice spent longer time to discriminate 

dissimilar distractors (Fig. 5). This may suggest that mice made a decision based on the 

judgement of one figure, rather than extensively comparing two figures, which were 

displayed side by side. Here is the reasoning. Mice probably select the image they first 

see, when it is similar enough to the target image, while avoided the image they first see, 

when it is not similar at all to the target. The RT would be longer for the latter case, as 

mice had to move to the other side of the screen to finish the task.  
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Visual processing tasks can be categorized into scene/object recognition and 

motion/action, which are represented along different “streams” or subnetworks of cortical 

visual areas (Goodale and Milner 1992, Wang, Gao et al. 2011). In that context, this NID 

task complements the random dot kinematogram task we recently developed (Stirman, 

Townsend et al. 2016). We can use these experimental paradigms to investigate stream-

specific higher visual processing of mice (Andermann, Kerlin et al. 2011, Marshel, Garrett 

et al. 2011, Stirman, Smith et al. 2016). 
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Figures and legends 

 

 

 

Fig. 1. SSIM index for quantifying expected discrimination difficulty 

a. Target image for testing sessions. b. Example pairs of a distractor image and a target 

image. SSIM map is obtained for each pair. SSIM index is obtained by averaging the 

SSIM map inside the dotted area. When the distractor is the same as target, the SSIM 

index is 1 by definition (right most). Dotted line indicates the edge of the photo. c. 12 

distractor images and corresponding SSIM indices (top). Each number on the left is ID 

of each distractor. A distractor (ID, 12) is the same as a target image. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 27, 2017. ; https://doi.org/10.1101/156653doi: bioRxiv preprint 

https://doi.org/10.1101/156653


21 

 

 

Fig. 2. Learning rates for each mouse 

a. Number of sessions that required mice to reach criteria for each phase. b. Correct rate 

of each mouse as a function of days of training during NID training phase. (c) Correct 

rate of each mouse as a function of incremental hours of training during NID training 

phase. 
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Fig. 3. Touch rate analysis disqualified one mouse 

a. Rate of the trials the left panel was touched. Response bias is clearly observed in 

Mouse 6. b. Rate of the trials the same panel as the previous trial was touched. History 

dependent choice was not observed mice except for Mouse 6. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 27, 2017. ; https://doi.org/10.1101/156653doi: bioRxiv preprint 

https://doi.org/10.1101/156653


23 

 

 

Fig. 4. Psychometric curves 

a. Psychometric curves were obtained for five mice (Mouse 1-5, left to right and bottom 

left to center bottom) by data obtained during testing blocks. During the testing blocks, 

mice were presented stimulus pairs of SSIM indices between 0.074 and 1 in random 

order, allowing us to sample the full range of SSIM indices for each animal. Bottom right, 

the five psychometric curves were overlayed. b. SSIM threshold (percent coherence at 

70% accuracy, horizontal dotted line in a) for the five mice. c. Each data point shows 

average  s.e.m for each distractor. Psychometric curves for the average data were also 

overplayed. Threshold was 0.30. Note that for some distractors the correct rate was not 

approximated by the psychometric curve. 
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Fig. 5. Response time (RT) vs SSIM  

a. RT were plotted as a function of SSIM indices (left) and performance (correct trial rate, 

right) for each mouse. b. Z-scored RT were plotted as a function of SSIM indices (left) 

and performance (correct trial rate, right) for each mouse. c. The same as (b). The same 

as in c, but shows mean and s.e.m. Left c= -0.43; right, c= 0.61; ***p<0.001 (Spearman’s 

rank correlation test, two- tail).  
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Fig. 6. High inter-mouse agreement 

a. Difference between actual correct rate of each mouse and predicted correct rate by 

the SSIM-based psychometric curve for each distractor image. Note the behavior 

performances for three distractor images were not well predicted by the SSIM-based 

psychometric curve (ANOVA, F(48, 11) = 17.8, p= 2.3 x 10-13 ;post-hoc Tukey test, 

*p<0.05, **p<0.01, ***p<0.001). b. Correct rate of each mouse was plotted as a function 
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of mean correct rate of the other mice. Note that correct rate of each mouse can be 

precisely predicted by that of other animals. c. RMSE obtained from the correct rate of 

the other mice was smaller than that from psychometric curves based on the SSIM index 

(**p<0.01; pared t-test). 
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Fig. 7. Blurring the images and other attempts to reduce the fit error (RMSE) 

a-f. Mean correct rate of the 12 images as a function of variety of parameters. The 

parameters are as follows. a; SSIM between distractors and a target image after filtering 

the images with Gaussian filter with specified standard deviation (sigma). The inset 

shows the filtered target image. b; SSIM between distractors and a target image after 
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registration of images. c; SSIM between distractors and a target image after registration 

of images. d; pixel wise RMSE (root mean squared error) between distractors and a 

target image. e; pixel wise cross correlation between distractors and a target image. f; 

SSIM between distractors and a distractor for training phase. RMSE for c-f was 0.089, 

0.095, 0.11 and 0.10. 
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Fig. 8. A simple Gabor filter model predicts mouse performance on this task 

a. Gabor filters with various orientations and wavelengths are shown. b. Illustration of 

the quantification of orientation specific similarity (OSS) between the target image and a 

distractor image. The Gabor filter presented here has orientation θ = 90°, and wavelength 

λ = 10. c. The average correct rate of 5 animals was fit by a model of OSS with θ = 30°, 
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λ = 10 (left, RMSE = 0.055); and a model of OSS with θ = 90°, λ = 10 (right; RMSE = 

0.13). d. Mean and s.e.m. of RMSE values based on average OSS over all orientations 

were plotted against the wavelengths. Image patches are example Gabor filter patches 

of particular wavelength in 81x81 pixel squares. e. RMSE values based on OSS 

(wavelength = 10) was plotted against the orientations. Error bars are the s.e.m. (n = 5 

mice). Orientation significantly affected the predictability of behavior (p = 9*10-11, 

ANOVA). f. The prediction error (mean RMSE, n =5 mice) as in c were obtained with 

various wavelengths and orientations. Colors indicate different orientations 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 27, 2017. ; https://doi.org/10.1101/156653doi: bioRxiv preprint 

https://doi.org/10.1101/156653


31 

 

 

Fig. 9. Experiments with rotated images show that the orientation bias is not innate 

a. Two example of original images and rotated images. The mice were trained with 

rotated images in NID training and testing sessions. b. Prediction error (RMSE) by OSS 

with each orientation (wavelength = 10). The black line shows the result from the mice 

trained with original images. The gray line is data from the experiments with rotated 

images, plotted against the top axis, which is shifted by 90 degrees relative to the bottom 

axis. This shows that the orientation specific prediction accuracy also shifted by 90 

degrees. 
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Supplementary table 1. Distractor images 

All distractor images for testing phase (left) and for training phase (right). The SSIM 

index for each image is also listed. 
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