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The neurophysiological processes underlying non-invasive brain activity measurements 19 

are not well understood. Here, we developed a novel connectome-based brain network 20 

model that integrates individual structural and functional data with neural population 21 

dynamics to support multi-scale neurophysiological inference. Simulated populations 22 

were linked by structural connectivity and, as a novelty, driven by 23 

electroencephalography (EEG) source activity. Simulations not only predicted subjects’ 24 

individual resting-state functional magnetic resonance imaging (fMRI) time series and 25 

spatial network topologies over 20 minutes of activity, but more importantly, they also 26 

revealed precise neurophysiological mechanisms that underlie and link six empirical 27 

observations from different scales and modalities: (1) slow resting-state fMRI 28 

oscillations, (2) spatial topologies of functional connectivity networks, (3) excitation-29 

inhibition balance, (4, 5) pulsed inhibition on short and long time scales, and (6) fMRI 30 

power-law scaling. These findings underscore the potential of this new modelling 31 

framework for general inference and integration of neurophysiological knowledge to 32 

complement empirical studies.  33 
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Introduction 34 

Neural activity is pervaded by dynamic patterns on multiple spatiotemporal scales, whose 35 

mutual relationships and significance for function and behaviour are unclear. Empirical 36 

approaches to characterizing the mechanisms that govern brain dynamics often rely on the 37 

simultaneous use of different acquisition modalities. These data can be merged using 38 

statistical models, but the inferences are constrained by information contained in the different 39 

signals, rendering a mechanistic understanding of neurophysiological processes elusive. Brain 40 

simulation is a complementary technique that enables inference on model parameters that 41 

reflect mechanisms that underlie emergent behaviour, but that are hidden from direct 42 

observation. 43 

We developed a novel type of brain network model, dubbed ‘hybrid model’, where each 44 

subject’s source-modelled EEG data was used to drive local dynamics in a large-scale 45 

connectome-based model. Resulting hybrid models reproduced ongoing subject-specific 46 

fMRI time series over a period of 20 minutes and a variety of other empirical phenomena 47 

(Figure 1). In contrast to previous brain network models that used noise as input, hybrid 48 

models are driven by EEG source activity and therefore simultaneously incorporate structural 49 

and functional information from individual subjects (Figure 2). The injected EEG source 50 

activity serves as approximation of excitatory synaptic input currents (EPSCs), which helped 51 

increase the biological plausibility of generated model activity (Atallah & Scanziani, 2009; 52 

Buzsáki et al., 2012; Nunez & Srinivasan, 2006). Individualized hybrid models yielded 53 

predictions of ongoing empirical subject-specific resting-state fMRI time series (Figures 3). 54 

Additionally, spatial topologies of fMRI functional connectivity networks (Figure 4), E/I 55 

balance of synaptic input currents, α-rhythm mediated pulsed inhibition of population activity 56 

on short (Figure 5), and on long time scales (Figure 6), and fMRI power-law scaling were 57 

reproduced (Figure 7). More importantly, our subsequent analysis of intrinsic model activity 58 

revealed neurophysiological processes that could explain how brain networks produce the 59 
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aforementioned signal patterns (Figures 5 to 7). That is, simulation results not only predicted 60 

ongoing subject-specific resting-state fMRI time series and several empirical phenomena 61 

observed with invasive electrophysiology methods, but more importantly, they also show how 62 

the network interaction of neural populations lead to the emergence of these phenomena and 63 

how they are connected across multiple temporal scales in a time scale hierarchy. 64 

  65 
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 66 

 67 

Figure 1. Overview of six empirical phenomena on different temporal scales reproduced by 68 

the hybrid model. In addition to reproducing empirical phenomena, model activity also 69 

reveals neurophysiological mechanisms underlying their emergence (Figures 5 to 7). (a) 70 

Neuron firing is related to the phase of alpha waves (8 - 12 Hz) (Haegens et al., 2011). 71 

During peaks of alpha waves neurons fire the least, while they fire with maximum rate during 72 

troughs. Behavioural studies indicate that this effect is related to neural information 73 

processing, which is formulated in ‘gating by inhibition’ and ‘pulsed inhibition’ theories 74 

(Jensen & Mazaheri, 2010; Klimesch et al., 2007). (b) Our simulation results indicate that 75 

this relationship between firing and alpha phase is related to the well-established observation 76 

of ongoing balancing of neural excitation and inhibition (Atallah & Scanziani, 2009; 77 

Isaacson & Scanziani, 2011; Okun & Lampl, 2008). The empirically observed relationship 78 

between local field potentials (LFPs), EPSCs and IPSCs is reproduced in hybrid models as a 79 

result of source activity injection and inhibitory population activity. Model activity indicates 80 

that the inhibitory effect of alpha (a) is related to ongoing E/I-inhibition balance mediated by 81 

inhibitory populations (Figure 5). (c) On a longer time scale (<0.25 Hz) neuron firing rates 82 

and task performance are inversely related to alpha power (Haegens et al., 2011), which was 83 
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also reproduced by the model. (d) More importantly, simulation results indicate that the 84 

inverse relationship between firing and alpha power is the underlying cause of the inverse 85 

relationship between fMRI and alpha power oscillations, which is a well-established finding 86 

from simultaneous measurements of electric and hemodynamic neural activity (de Munck et 87 

al., 2008; Feige et al., 2005; Goldman et al., 2002; Moosmann et al., 2003). In particular, the 88 

model shows a direct mechanism that transforms alpha power oscillations into fMRI 89 

oscillations, which constitutes the first concrete hypothesis on the relationship between 90 

electric and hemodynamic resting-state oscillations (Figure 6). Importantly, the model was 91 

able to predict ongoing subject-specific resting-state fMRI time series and corresponding 92 

spatial network patterns of 15 subjects on the basis of their individual EEG and structural 93 

brain connectivity (Figure 3). (e) Relatedly, the model also explains the emergence of scale-94 

free fMRI power spectra (He, 2011) as a result of global network interaction (Figure 7) and 95 

predicts (f) individual functional connectivity matrices (Allen et al., 2014) computed over 96 

long and short time windows (Figure 4). The ability of the hybrid model to infer precise 97 

neurophysiological mechanisms that give rise to empirical phenomena and to link the 98 

involved mechanisms and signal patterns across different scales and neuroimaging modalities 99 

makes it a potentially valuable tool for neuroscience research. 100 

 101 

 102 

Resting-state fMRI studies identified so-called “resting-state networks” (RSNs), which are 103 

widespread networks of coherent activity that spontaneously emerge across a variety of 104 

species in the absence of an explicit task (Biswal et al., 1995; Fox & Raichle, 2007; Raichle et 105 

al., 2001). Despite correlations between fMRI and intracortical recordings (He et al., 2008; 106 

Logothetis et al., 2001), EEG (Becker et al., 2011; Goldman et al., 2002; Mantini et al., 2007; 107 

Moosmann et al., 2003; Ritter et al., 2009) and magnetoencephalography (Brookes et al., 108 

2011; de Pasquale et al., 2010) the link between RSNs and electrical neural activity is not 109 
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fully understood. Electrical neural activity is dominated by oscillations in the α-band, which is 110 

rhythmic activity in the 8 to 10 Hz frequency range first discovered by Hans Berger in 1929 111 

(Berger, 1929). A growing body of research suggests that information processing, attention, 112 

perceptual awareness, and cognitive performance are rhythmically modulated by α-power and 113 

phase (Busch et al., 2009; Klimesch, 1999; Mathewson et al., 2009). The roles of α-rhythms 114 

for mediating top-down control, timing of oscillations and directing attention by blocking 115 

task-irrelevant pathways are central to prevailing hypotheses termed ‘gating by inhibition’ 116 

and ‘pulsed inhibition’ (Jensen & Mazaheri, 2010; Klimesch et al., 2007). Interestingly, 117 

intracellular recordings showed that inhibitory events are inseparable from excitatory events, 118 

resulting in an ongoing excitation-inhibition balance (E/I balance) (Isaacson & Scanziani, 119 

2011; Okun & Lampl, 2008). The significance of the α-rhythm is underscored by strong 120 

negative correlations between its ongoing power fluctuation and resting-state fMRI amplitude 121 

fluctuation (de Munck et al., 2008; Feige et al., 2005; Goldman et al., 2002; Moosmann et al., 122 

2003). Lastly, despite wide-spread interest in critical dynamics (Bak, 2013) the emergence of 123 

power-law scaling, a signal pattern that is ubiquitous in nature and commonly observed in 124 

neural activity, is unclear (Beggs & Timme, 2012; Marković & Gros, 2014). 125 

  126 
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 127 

To illustrate the potential of this framework for inference of neurophysiological processes 128 

we show inferred mechanisms for three different empirical phenomena and how they relate to 129 

other well-established neural signal patterns (Figure 1). Upon finding that the hybrid model 130 

predicts fMRI activity, we first sought to identify how injected EEG drove the prediction of 131 

subject-specific fMRI time series, which led us to a mechanism that transformed α-power 132 

fluctuations of injected EEG source activity into fMRI oscillations, which may explain the 133 

empirically observed correlation between EEG and fMRI. Consequently, we asked how the 134 

inhibitory effect of α-power oscillations was created, which led to the identification of an 135 

inhibitory effect on the considerably faster timescale of α-phase fluctuations. As these 136 

inhibitory effect of alpha rhythms on short and long time scales were mediated by the 137 

interaction of local populations, but prediction quality decreased when large-scale coupling 138 

was deactivated, we interrogated the model for the influence of structural coupling on the 139 

emergence of fMRI oscillations and found that global coupling amplified brain oscillations in 140 

a frequency-dependent manner, which facilitated the emergence of power-law scaling. 141 

Starting with fast-scale effects, our first model outcome accounts for the invasively observed 142 

inverse relationship between neuronal firing and α-rhythm phase by identifying a mechanism 143 

that explains this ‘pulsed inhibition’ with ongoing E/I balance. The second model outcome 144 

posits a neural origin of fMRI RSN oscillations by identifying an explicit mechanism that 145 

transforms ongoing α-power fluctuations into slow fMRI oscillations, which also explains the 146 

empirically observed anti-correlations between α-power and fMRI time series. Our third 147 

model outcome indicates that scale invariance of fMRI power spectra results from self-148 

reinforcing feedback excitation via large-scale white-matter coupling, which leads to 149 

frequency-dependent amplification of neural oscillations.  150 
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Results 151 

Hybrid models predict subject-specific fMRI time series 152 

The brain network models used here are dynamical systems where individual brain areas are 153 

simulated by neural mass models that are coupled by weighted structural coupling strength 154 

estimates obtained from diffusion-weighted MRI white-matter tractography. Neural mass 155 

models are derived from networks of spiking neuron models to capture their essential modes 156 

of behaviour based on mean-field approximation techniques (Deco et al., 2008). In contrast to 157 

previous brain network models that used noise as input, the neural mass models of our 158 

‘hybrid’ model are driven by EEG source activity that was simultaneously acquired with 159 

fMRI (Figure 2). Simulation results predicted a considerable part of the variance of ongoing 160 

resting-state fMRI time series (Figure 3) and spatial network topologies (Figure 4). 161 

Furthermore, models that were fitted to subject-specific fMRI time series reproduced a variety 162 

of empirical phenomena observed with EEG and invasive electrophysiology (Figure 1) and, 163 

more importantly, simulation results revealed mechanistic explanations for the emergence of 164 

these phenomena (Figures 5, 6 and 7) 165 

  166 
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 167 

 168 

Figure 2. Hybrid modelling framework. Hybrid brain network models are constructed from 169 

diffusion-weighted MRI tractography results and region-parcellations obtained from T1-170 

weighted MRI. In contrast to conventional models, hybrid models are injected with EEG 171 

source activity time series of the same subject, instead of noise. By tuning model parameters, 172 

predicted fMRI time series are fit to each subject’s empirical fMRI time series, which were 173 

simultaneously acquired with EEG. Injection of EEG source activity enabled better prediction 174 

of subject-specific fMRI time series compared to noise-driven brain network models (Figure 175 

3). 5-fold cross-validation was performed to guard against overfitting. At each node (small 176 

red circles) of the large-scale network (green lines) are local networks of excitatory (E) and 177 

inhibitory (I) neural cell population models that are driven by EEG source activity (red 178 

arrows). Population models represent the activity of individual brain regions and are globally 179 

coupled by structural connectomes (green arrows) that represent the heterogeneous white 180 

matter coupling strengths between different brain areas. Firing rates and synaptic activity 181 

time series underlying fMRI predictions are analysed to identify how neural population 182 

activity and network interaction relates to observable neuroimaging signals. See also 183 

supplementary movie 1 for a visualization of brain network model construction and 184 

exemplary results from hybrid model simulations. 185 

 186 

We constructed individual hybrid brain network models for 15 human adult subjects 187 

using each subject’s own structural connectomes and injected each with their own region-wise 188 
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EEG source activity time courses. Using exhaustive searches, we tuned three global 189 

parameters for each of the 15 individual hybrid brain network models to produce the highest 190 

fit between each of the subject’s empirical region-average fMRI time series and 191 

corresponding simulated time series. The first parameter scales the strength of structural 192 

coupling and the second and third parameters scale the strengths of EEG source activity 193 

inputs injected into excitatory and inhibitory populations, respectively. To compare the 194 

quality of fMRI predictions, the hybrid model simulation results were compared with three 195 

control scenarios: (i) a brain network model where local dynamics were driven by noise, (ii) a 196 

variant of the hybrid model that used random permutations of the region-wise EEG source 197 

activity time series and (iii) a statistical model where ongoing α-band power fluctuation of 198 

EEG source activity was convoluted with the canonical hemodynamic response function 199 

(henceforth called α-regressor). The first two controls are brain network models and the third 200 

is inspired by traditional analyses of empirical EEG-fMRI data.   201 

Visual inspection of example time series showed good reproduction of characteristic 202 

slow (<0.1 Hz) RSN oscillations by the hybrid model and the α-regressor (albeit inverted for 203 

the latter), but poor reproduction of temporal dynamics in the case of noise and random 204 

permutations models (Figure 3). To quantify prediction quality, we compared for each subject 205 

the average correlation coefficients over all 68 regions of the brain parcellation between all 206 

simulated and empirical fMRI time series for each of the four scenarios (i.e., hybrid model 207 

and the three control setups). Predictions from the hybrid model correlated significantly better 208 

with empirical fMRI time series than predictions from the two random models and the α-209 

regressor (Figure 3b). For the hybrid model, five-fold cross-validation showed no significant 210 

difference of prediction quality between training and validation data sets (two-tailed 211 

Wilcoxon rank sum test, p = 0.71, t = 0.54, Cohen’s d = 0.013) and between validation data 212 

sets and prediction quality for the full time series (two-tailed Wilcoxon rank sum test, p = 213 

0.42, t = -0.2, Cohen’s d = -0.036).   214 
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 215 

Figure 3. Person-specific fMRI time series prediction. (a) Example time series of the hybrid 216 

model and the three control scenarios. (b) Box plots of average correlation coefficients 217 

between all simulated and empirical region time series (20.7 min) for each subject (n = 15; 218 

values for the α-regressor were inverted for illustration purposes). (c) Scatter plot of RSN 219 

time course standard deviation (s.d.) versus prediction quality. Dots indicate the s.d. of each 220 

of the nine RSN time courses in each of the 15 subjects versus the prediction quality of fMRI 221 

time series for all regions underlying the respective RSN. Predictions are better when the 222 

corresponding RSN time course has a high s.d., i.e., when the RSN contributes a higher 223 

variance to the overall fMRI signal. (d) Box plots compare prediction quality during upper 224 

versus lower quartile of epoch-wise RSN time course s.d.s. Upper row: spatial activation 225 

patterns of nine RSNs. Middle row: correlation coefficients between RSN temporal modes and 226 

hybrid model simulation results and the three control setups. Lower row: sliding window 227 

(length = 100 fMRI scans = 194 s; one fMRI scan step width) correlations for the upper (first 228 

and third boxplot per panel) and lower quartiles (second and fourth boxplot per panel) of 229 
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window-wise RSN temporal mode for the hybrid model and the α-regressor (n = 2010 230 

epochs). Asterisks indicate significantly increased prediction quality of the hybrid model 231 

compared to control conditions in one-tailed Wilcoxon rank sum test (*p < 0.05, **p < 0.01). 232 

Additionally, all hybrid model correlations in (b) and (d) were tested for the null hypothesis 233 

that they come from a distribution whose median is zero at the 5 % significance level. All tests 234 

rejected the null hypothesis of zero medians except for RSN correlations over 20 minutes for 235 

the executive control and the frontoparietal networks (middle row). 236 

 237 

 238 

Figure 3—figure supplement 1. Parameter space exploration results. (a-c), 2d parameter 239 

space heat maps show average time series correlation over all 68 regions obtained from the 240 

hybrid model for different combinations of the three varied parameters scaling of global 241 

coupling strength G, scaling of EEG source activity injected into excitatory population ωBG
I, 242 

and into inhibitory populations ωBG
E (the latter depicted as ratio ωBG

I / ωBG
E); results were 243 

averaged over all subjects. Parameter values that yielded the highest average correlation 244 

were used for simulations with artificial alpha input (marked with an asterisk). We confirmed 245 

identifiability of the model by showing that parameter space search converges towards a 246 

single optimal solution yielding best predictions. 247 

 248 

To estimate the ability of the four scenarios to predict the time courses of different 249 

commonly observed RSNs we performed a group-level spatial independent component 250 

analysis (ICA) of the empirical fMRI data. Next, we computed average correlation 251 

coefficients between each subject-specific RSN time course and the model regions at the 252 
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position of the respective RSN. As in the case of region-wise fMRI (Figure 3b), correlation 253 

coefficients of the hybrid model were significantly larger than the control network models for 254 

most RSNs (Figure 3d). The sliding-window analyses showed that prediction quality varied 255 

over time, regions and subjects: window-wise prediction quality was highly correlated with 256 

the standard deviation of RSN temporal modes (Figure 3c, d). That is, the higher the variance 257 

contributed to overall fMRI activity by an RSN in a given subject and time window, the better 258 

the prediction of empirical fMRI. As a consequence, epochs in the upper quartile of RSN s.d.s 259 

were significantly better predicted than epochs in the lower quartile (Figure 3d). In order to 260 

assess subject-specificity of fMRI time series predictions we correlated all simulation results 261 

of each subject (i.e. for every tested parameter combination) also with the empirical fMRI 262 

activity of all other subjects. We found that the maximum correlation coefficients over all 263 

tested parameters were significantly larger when empirical and simulated data sets belonged 264 

to the same subject compared to when they came from different subjects (p < 10-4, Wilcoxon 265 

rank sum test).  266 
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 267 

Figure 4. Functional connectivity prediction. In contrast to the α-regressor, the hybrid 268 

model concurrently predicts fMRI time series (Figure 3) and the spatial topology of fMRI 269 

networks. (a, b) Box plots show correlation coefficients between predicted and empirical FC 270 

for the three model types and the α-regressor (n = 15 subjects). FC was computed for long 271 

epochs (static FC; computed over 20.7 min) and short epochs (dynamic FC; average sliding 272 

window correlation; 100 fMRI scans window length; one fMRI scan step width). The hybrid 273 

model yields significantly higher FC correlations than noise model and α-regressor. Results 274 

were compared for the parameter set that generated the best fMRI time series prediction (a) 275 

and the parameter set that yielded the best FC predictions for each subject (b). (c) Scatter 276 

plots compare empirical and simulated average region-wise FC for hybrid model simulations 277 

and the α-regressor. Dots show all average region-wise static FC values over all subjects. 278 

Asterisks indicate significantly increased prediction quality of the hybrid model compared to 279 

control conditions in one-tailed Wilcoxon rank sum test (*p < 0.05, **p < 0.01). 280 

 281 

 282 

Next, we estimated the ability of all four setups to predict the spatial topology of 283 

empirical fMRI networks. In contrast to time series prediction, the α-regressor showed low 284 

correlations with empirical functional connectivity (FC). Compared to the α-regressor, all 285 

three model-based approaches provided significantly better predictions of subjects’ individual 286 

long-term FC and short-term FC (Figure 4). Furthermore, hybrid model simulation results 287 

correlated significantly better with empirical network topology than predictions obtained from 288 

the conventional noise-driven model (Figure 4a,b). Interestingly, correlations for hybrid and 289 

random permutation models were effectively the same, likely because the large-scale network 290 
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dynamics, enabled by structural coupling, that drive the emergence of FC would be relatively 291 

preserved when permuting injected activity. Prediction of group-average FC (all pairwise FC 292 

values averaged over all subjects) was better for the hybrid model compared to the α-293 

regressor (Figure 4c). 294 

 295 

E/I balance generates pulsed inhibition 296 

After fitting the individual hybrid models for each of the 15 subjects, we analysed the local 297 

population activity to infer neurodynamic mechanisms underlying predicted fMRI time series. 298 

Our first observation was that on the fast time scale of individual α-cycles (~100 ms) the 299 

optimized hybrid model reproduced the inverse relationship between α-phase and firing rates 300 

observed in invasive recordings (Haegens et al., 2011) (Figure 5a). To investigate these fast-301 

acting dynamics related to α-phase, we computed grand average waveforms of modelled 302 

synaptic inputs, population firing rates, and synaptic gating time-locked to the zero-crossings 303 

of α-cycles. Resulting waveforms illustrate the relation between α-oscillations and neural 304 

firing and how the ongoing balancing of rhythmic excitatory and inhibitory inputs generated 305 

pulsed inhibition (Figure 5b).  306 
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 307 

Figure 5. E/I balance generates pulsed inhibition. Hybrid models reproduced the invasively 308 

observed rhythmic inhibition of firing relative to α-cycle phase (Haegens et al., 2011). (a) 309 

Histogram of population firing rates divided into six bins according to α-cycle segments and 310 

normalized relative to the mean firing rate of each cycle. Population firing rates were highest 311 

during the trough and lowest during the peak of α-cycles. (b) Grand average waveforms of 312 

population inputs and outputs time locked to α-cycles of injected EEG source activity (black, 313 

column II). Shaded areas indicate standard errors of the mean; left and right axes denote 314 

input currents to excitatory and inhibitory populations, respectively. Inhibitory population 315 

inputs (blue, column IV) were dominated by EPSCs (red, column III). Consequently, firing 316 

rates and synaptic gating of inhibitory populations (blue, columns VI and VII) closely 317 

followed source activity shape. As inhibitory populations revert the effect of their input 318 

currents, the shape of resulting inhibitory postsynaptic currents (IPSCs; blue, column III) was 319 

inverted to source activity shape. Further reproducing empirical observations (Atallah & 320 

Scanziani, 2009; Xue et al., 2014), the amplitude of IPSCs at excitatory populations was 321 

several times larger than EPSCs. Accordingly, excitatory population input was inverted 322 

relative to the α-cycle, leading to rhythmic inhibition of firing rates (red, column VI) near the 323 

peak of the alpha cycle. 324 

 325 

As a result of optimizing the three model parameters, injected EPSCs dominated the 326 

inputs to inhibitory populations and the sum of synaptic input currents to inhibitory 327 
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populations closely followed the shape of EPSCs. Also, because of the monotonic 328 

relationship between input currents and output firing rates (defined by Eqs. 3 and 4, 329 

Methods), the waveform of inhibitory firing rates and synaptic gating also closely followed 330 

injected EPSCs. As increased input to inhibitory populations leads to increased inhibitory 331 

effect and vice versa, resulting feedback inhibition (i.e. IPSC) waveforms were inverted to 332 

injected EPSCs. In other words, excitation and inhibition were balanced during each cycle, 333 

which is in accordance with published electrophysiology results (Atallah & Scanziani, 2009; 334 

Okun & Lampl, 2008). Consequently, IPSCs peaked during the trough of the α-phase and 335 

were lowest during the peak of the α-phase. Fitting the models to fMRI activity resulted in a 336 

biologically plausible ratio (Atallah & Scanziani, 2009; Xue et al., 2014) of EPSCs to IPSCs, 337 

with IPSC amplitudes being about three times larger than EPSC amplitudes (Figure 5b). 338 

Because IPSCs have dominated excitatory population inputs, firing rates of excitatory 339 

populations showed a similar shape as feedback inhibition currents, i.e., they peaked during 340 

the trough of the α-cycle and fell to their minimum during the peak of the α-cycle, 341 

reproducing their empirical relationship (Haegens et al., 2011). 342 

 In summary, the fast population activity underlying fMRI predictions showed a 343 

rhythmic modulation of firing rates on the fast time scale of individual α-cycles in accordance 344 

with empirical observations (Haegens et al., 2011). Analyses revealed that periodically 345 

alternating states of excitation and inhibition resulted from the ongoing balancing of EPSCs 346 

by feedback IPSCs, which explains α-phase related neural firing. 347 

 348 

α-power fluctuations generate fMRI oscillations 349 

Similar to intracranial recordings in monkey (Haegens et al., 2011), we found that increased 350 

alpha power of injected EEG source activity was accompanied by decreased firing rates 351 

(Figure 6—figure supplement 1). Furthermore, we also observed the empirically observed 352 

inverse relationship between α-power and fMRI amplitude (Goldman et al., 2002; Moosmann 353 
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et al., 2003) in our empirical data in the form of negative correlations between the α-regressor 354 

and fMRI activity (Figure 3). Our findings raised the question what physiological mechanism 355 

led to this inverse relationship between α-power, firing rate, and respectively fMRI amplitude. 356 

We therefore analysed model activity on the longer time scale of α-power fluctuations. To 357 

isolate the effects of α-waves from other EEG rhythms, we replaced the injected EEG-source 358 

activity in the 15 individual hybrid models with artificial α-activity and simulated all 15 359 

hybrid models using the single parameter set that previously generated the highest average 360 

fMRI time series prediction quality (Figure 3—figure supplement 1). Injected activity 361 

consisted of a 10 Hz sine wave that contained a single brief high power burst in its centre in 362 

order to allow for model activity to stabilize for sufficiently long phases before and after the 363 

high power burst. After simulation we computed grand average waveforms of model state 364 

variables over all simulated region time series and found that input currents, firing rates, 365 

synaptic activity and fMRI activity of excitatory populations decreased in response to the α-366 

burst (Figure 6a). Notably, this behaviour emerged despite the fact that injected activity was 367 

cantered at zero, i.e., positive and negative deflections of input currents were balanced. The 368 

reason for the observed asymmetric response to increasing input α-power levels originated 369 

from inhibitory population dynamics: while positive deflections of α-cycles generated large 370 

peaks in ongoing firing rates of inhibitory populations, negative deflections were bounded by 371 

0 Hz. Because of this rectification of high-amplitude negative half-cycles, average per-cycle 372 

firing rates of inhibitory populations increased with increasing α-power. As a result, also 373 

feedback inhibition had increased for increasing α-power, which in turn led to increased 374 

inhibition of excitatory populations, decreased average firing rates, synaptic gating variables 375 

and ultimately fMRI amplitudes.  376 
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 377 

Figure 6. α-power fluctuations generate fMRI oscillations. Grand average waveforms of 378 

population inputs and outputs. (a) Hybrid models were injected with artificial α-activity 379 

consisting of 10 Hz sine oscillations that contained a single brief high power burst (black, 380 

column I; orange: signal envelope). While positive deflections of the α-wave generated 381 

positive deflections of inhibitory population firing rates, large negative deflections were 382 

bounded by the physiological constraint of 0 Hz (blue, fifth column; black: moving average). 383 

That is, inhibitory populations rectified input α-oscillations such that only the positive half-384 

wave had an inhibitory downstream effect (blue, column VII and II). As a result, average per-385 

cycle feedback inhibition increased for increasing α-power, and consequently the average 386 

firing rates, synaptic gating and ultimately fMRI signals (red, column V, VI and VII) 387 

decreased. (b) Hybrid models were injected models with 10 Hz sine waves where ongoing 388 

power was modulated similar to empirical α-rhythms (0.01 – 0.03 Hz). Similarly to (a), but 389 

for a longer time frame, inhibitory populations rectified negative deflections, which 390 

introduced the α-power modulation as a new frequency component into firing rates and fMRI 391 

time series. 392 
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 393 

 394 

Figure 6—figure supplement 1. α-power predicts firing rate. In analogy to 395 

electrophysiological results shown in Figure 4b in Haegens et al. (Haegens et al., 2011), all 396 

time series for each subject and brain region were divided into five equal-sized bins on the 397 

basis of α-power level and average firing rate (normalized with average firing rate per brain 398 

region) was computed per bin. Firing rate decreased with increasing α-power (median firing 399 

rate in all higher-power bins is significantly smaller than in lower-power bins, p < 0.001, 400 

one-tailed Wilcoxon rank sum test). 401 

 402 

We next analysed the relationship between α-power fluctuations and fMRI 403 

oscillations. We generated artificial α-activity consisting of a 10 Hz sine wave that was 404 

amplitude modulated by slow oscillations (cycle frequencies between 0.01 and 0.03 Hz) and 405 

injected it into the hybrid models of all subjects (Figure 6b). As in the previous example, 406 

inhibitory populations filtered negative α-deflections during epochs of increased power. This 407 

half-wave rectification led to a modulation of average per-cycle firing rates in proportion to α-408 

power, which introduced a new slow frequency component into the resulting time series. The 409 

activity of inhibitory populations can be compared to envelope detection used in radio 410 

communication for AM signal demodulation. The new frequency component introduced by 411 

half-wave rectification of α-activity modulated feedback inhibition, which in turn modulated 412 
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excitatory population firing rates. Furthermore, the resulting oscillation of firing rates was 413 

propagated to synaptic dynamics where the large time constant of NMDAergic synaptic 414 

gating (τNMDA = 100 ms vs. τGABA = 10 ms) led to an attenuation of higher frequencies. The 415 

low-pass filtering property of the hemodynamic response additionally attenuated higher 416 

frequencies such that in fMRI signals only the slow frequency components remained. To 417 

restate: α-power fluctuation introduced an inverted slow modulation of firing rates and 418 

synaptic activity; the low-pass filtering properties of synaptic gating and hemodynamic 419 

responses attenuated higher frequencies such that only the slow oscillation remained in fMRI 420 

signals. To check whether this mechanism is robust to the choice of the frequency of the 421 

injected alpha rhythm (10 Hz) we simulated otherwise identical models for artificial alpha 422 

waves at 9 Hz and 11 Hz frequencies and found qualitatively identical results: simulated 423 

fMRI and moving average firing rate time series of the 9 Hz and the 11 Hz model had 424 

correlation coefficients r > 0.99 with the respective time series of the 10 Hz model. 425 

In summary, we found that increased α-power led to increased feedback inhibition of 426 

excitatory populations introducing a slow modulation of population firing, which can explain 427 

the empirically observed anticorrelation between α-power and fMRI. 428 

 429 

Long-range coupling controls fMRI power-law scaling 430 

Empirical fMRI power spectra follow a power-law distribution P ∝ f β, where P is power, f is 431 

frequency and β the power-law exponent, which is an indicator of criticality and scale-free 432 

dynamics that appears throughout nature (Beggs & Timme, 2012; He, 2011). In accordance 433 

with systematic analyses of empirical data (He, 2011), average power spectra of our empirical 434 

fMRI data obeyed power-law distributions with exponent βemp = -0.82 (Figure 7a and Figure 435 

7—figure supplement 1). Time series were tested for scale invariance using rigorous model 436 

selection criteria that overcome the limitations of simple straight-line fits to power spectra for 437 
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estimating scale invariance (see Methods; for illustration purposes straight-line fits are shown 438 

in Figure 7a and Figure 7—figure supplement 1). 439 

Our previous results associated resting-state fMRI oscillations with EEG by 440 

identifying a neural mechanism that transforms instantaneous EEG source power fluctuations 441 

into fMRI oscillations (Figure 6). Surprisingly, however, the power spectrum of EEG source 442 

power had a considerably smaller negative exponent than fMRI (βα-band = -0.53 for α-power 443 

and βwide-band = -0.47 for wide-band power). Comparison of power spectra indicated that 444 

power-law fits of simulated fMRI power spectra had a higher negative exponent than power-445 

law fits of source-activity power spectra because the power of slower oscillations increased 446 

relative to the power of faster oscillations (Figure 7a and Figure 7—figure supplement 1). 447 

That is, model dynamics transformed input activity such that the amplitude of output 448 

oscillations increased inversely proportional to their frequency. The effect is visible in Figure 449 

6b, where fMRI, synaptic and firing rate amplitudes of slow oscillations were larger than 450 

amplitudes of fast oscillations, despite equally large amplitudes of input α-power oscillations. 451 

In comparison, simulation results obtained for deactivated large-scale coupling, but an 452 

otherwise identical setup, did not show this frequency-dependent amplification (Figure 7b). 453 

Without large-scale coupling the power-law exponent of simulated fMRI (βsim_Gzero = -0.54) 454 

was close to the exponent of alpha power time series of injected EEG source activity (βα-band = 455 

-0.53).  456 
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 457 

Figure 7. Long-range coupling controls fMRI power-law scaling. (a) Power spectral 458 

densities (straight-line fits are for illustration purposes only; scale-invariance was 459 

determined using rigorous model selection criteria, see Methods). Previous results indicated 460 

that the model transformed ongoing EEG source power fluctuation into fMRI oscillations. 461 

However, α-power time series had a considerably flatter power spectrum slope (βα-band = -462 

0.53, βwide-band = -0.47) than fMRI. Simulation results that were obtained for deactivated 463 

large-scale coupling had a similarly flat power spectrum (βzeroG = -0.54). Parameter space 464 

exploration suggests that the emergence of scale-free fMRI power spectra depends on the 465 

proper balancing of recurrent large-scale excitation with local inhibition (Figure 7—figure 466 

supplement 1 and Figure 7—figure supplement 2). When large-scale coupling was absent or 467 

inadequately balanced, prediction quality decreased and models produced flatter power 468 

spectra or no scale invariance at all. (b) As in Figure 6b, but with disabled large-scale 469 

coupling. In contrast to Figure 6b, the resulting firing rates, synaptic gating and fMRI 470 

waveforms showed no frequency-amplitude dependence. Comparison of model dynamics 471 

between both scenarios suggests that gradually accumulating self-reinforcing excitation 472 

through white-matter coupling leads to frequency-dependent amplification that augments 473 
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slower oscillations more than faster oscillations, which results in the emergence of scale-free 474 

fMRI power spectra. 475 

 476 

Figure 7—figure supplement 1. Power spectral densities for simulations with the simplified 477 

hybrid model. Power spectra for empirical and simulated fMRI, ongoing alpha power time 478 

series of EEG source activity input and the alpha regressor averaged over all subjects and 479 

regions (straight-line fits are for illustration purposes only; scale-invariance was determined 480 

using rigorous model selection criteria and dynamic fluctuation analysis). For comparison 481 

with simulation results shown in Figure 7a, the models used here implemented no feedback 482 

inhibition control (FIC), i.e., a single value for all local inhibitory connection parameters Ji 483 

was used. Empirical and simulated fMRI spectra have a large power-law exponent, i.e. a 484 

steeper slope, compared to ongoing alpha power or wide-band power (βα-band = -0.53, βwide-485 

band = -0.47). To analyse the effect of large-scale network interaction, simulated fMRI was 486 

computed with and without long-range coupling. To exclude that power-law spectra emerge 487 

despite absent large-scale coupling, local inhibition was tuned such that the model produced 488 

highest fMRI time series predictions. Without long-range coupling, simulated fMRI showed a 489 

similar exponent as injected source activity. When large-scale coupling was activated and 490 

global excitation was properly balanced with local inhibition, the exponent was closer to the 491 

exponent of empirical fMRI (Figure 7—figure supplement 2). 492 

 493 
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 494 

Figure 7—figure supplement 2. Fine-grained parameter space exploration of the simplified 495 

hybrid model. Here, global coupling and a single value for all local inhibitory connection 496 

parameters Ji was tuned for an exemplary subject. Colors indicate the average correlations 497 

between simulated and empirical data (a-c) and the absolute difference between exponents of 498 

power-law fits with empirical and simulated power spectral densities (d, colormap was 499 

flipped to indicate highest fits in red to be consistently with the other subplots), averaged over 500 

all regions. The distributions of the different metrics suggest a link between prediction quality 501 

(of raw fMRI, RSNs and FC and the power-law exponent β) and the relative strengths of long-502 

range coupling G and local inhibition Ji. A diagonal pattern in heat maps indicates that 503 

prediction quality and power-law exponents depend on the balancing of large-scale excitation 504 

with local inhibition. The plots illustrate that when large-scale coupling was absent or 505 

inadequately balanced, models did not produce scale-free behavior and prediction quality 506 

decreased. 507 
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 508 

Comparison of the individual components of population inputs for activated (Figure 509 

6b, column II) vs. deactivated (Figure 7b, column II) long-range coupling show that the only 510 

difference between both setups is the shape of long-range input in the former case. When 511 

long-range coupling is activated, the emerging long-range input (column II, green trace) 512 

shows in-phase coherence with IPSCs (column II, blue trace, moving average: black trace), 513 

which leads to constructive interference of both waves and in turn to a stronger modulation of 514 

total excitatory population inputs compared to the deactivated case (column III, red trace, 515 

moving average: black trace). This constructive interference of long-range input and IPSC 516 

oscillations in combination with slowly decaying NMDA synaptic gating activity (Eq. 5, 517 

effective time constant of NMDA is τNMDA = 100 ms) leads to a situation in which NMDA 518 

synaptic gating activity accumulates. The period of time for which this excitatory feedback 519 

persists is longer during slower oscillations than during faster oscillations. Consequently, 520 

synaptic activity (column VI) has more time to accumulate and is therefore larger during 521 

slower oscillations compared to faster oscillations. As a result, the amplitudes of excitatory 522 

population fMRI (column VII, red traces) reach higher values during slower oscillations than 523 

during faster oscillations for activated large-scale coupling (Figure 6b). Accordingly, the 524 

power of slower oscillations, and therefore the slope of the power spectrum, increases in the 525 

case of long-range coupling. Note that this effect (i.e., that slower oscillations reach higher 526 

amplitudes) can already be observed in firing rates and synaptic gating time series, which 527 

excludes an influence of the hemodynamic forward model. In contrast, in the case of 528 

deactivated large-scale coupling (Figure 6b) all amplitude peaks are approximately equal, 529 

which was the expected result, since the amplitude-peaks of the power modulation of injected 530 

α-activity were equally high by construction (column I, orange trace). 531 

We asked how the relative strengths of white-matter excitation and feedback inhibition 532 

influence scale-free dynamics. In order to test how E/I balance affects power-law scaling of 533 
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neural activity, we varied the parameters that control the strength of global white-matter 534 

coupling and global feedback inhibition (the latter being controlled by a single parameter for 535 

all inhibitory populations), while keeping the strengths of EEG source activity injected into 536 

excitatory and inhibitory populations fixated. Screening of individual parameter spaces 537 

showed that the power-law exponent of simulated fMRI depended on the balance of large-538 

scale excitation and local inhibition: the 2D distribution of prediction quality (of fMRI time 539 

series, functional connectivity and the power-law exponent) showed a characteristic diagonal 540 

pattern, which demonstrated the crucial role of E/I balance for the emergence of scale 541 

invariance and long-range correlations Figure 7—figure supplement 1 and Figure 7—figure 542 

supplement 2).  543 
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Discussion 544 

In this work we describe a biophysically based brain network model that predicts a 545 

considerable part of ongoing subject-specific fMRI resting-state time series. Furthermore, we 546 

show how this novel modelling approach can be used to infer the neurophysiological 547 

mechanisms underlying neuroimaging signals. Instead of mere reproduction of empirical 548 

observations, our central aim was to provide an integrative framework that unifies empirical 549 

data with theory of the nervous system in order to derive mechanisms of brain function 550 

underlying empirical observations across many scales. A key point of consideration is that the 551 

brain model was built from networks of generic neural population models that were 552 

constrained by empirical data, but not explicitly constructed to address specific reproduced 553 

phenomena. This is mirrored by the emergence of processes at considerably faster time scales 554 

than the subject-specific fMRI time series that were the target of the model fitting. It is 555 

important to point out that the inferred mechanisms constitute candidate hypotheses that 556 

require empirical falsification. The model-derived mechanisms make concrete predictions on 557 

the waveforms of different input currents, output firing rates, synaptic activities and fMRI 558 

signals, which can be empirically tested. Through ongoing integration of biological 559 

knowledge, falsification with empirical data and subsequent refinement, hybrid brain network 560 

models are intended to represent a comprehensive and increasingly accurate theory about 561 

large-scale brain function. The construction of hybrid brain network models and our major 562 

results are visualized in Supplementary Movie 1. 563 

Hybrid models draw on empirically estimated EEG source activity to constrain input 564 

current dynamics. Models, by definition, omit features of the modelled system for the sake of 565 

simplicity, generality and efficiency. Adding degrees of freedom renders parameter spaces 566 

increasingly intractable and increases the risk of over-fitting. Injection of source activity is a 567 

way to systematically probe sufficiently abstract neural systems while maintaining 568 

biologically realistic behaviour. Thereby, the approach aims to balance a level of abstraction 569 
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that is sufficient to provide relevant insights, with being detailed enough to guide subsequent 570 

empirical study. It is not the goal of this approach to attain the highest possible fit between 571 

different imaging modalities at the cost of biological plausibility, which would be the case for 572 

abstract statistical models that do not relate to biological entities and therefore preclude the 573 

inference of neurophysiological knowledge. Here, imperfect reproduction of neural activity 574 

directly points to deficits in our understanding and conceptualization of large-scale brain 575 

structure and function, which to iteratively improve is the goal of this approach. 576 

In line with our results, cellular-level studies indicate that rhythmic GABAergic input 577 

from the interneuronal network is associated with E/I balance (Dehghani et al., 2016) and α-578 

related pulsed inhibition (Jensen & Mazaheri, 2010; Lőrincz et al., 2009; Osipova et al., 579 

2008). However, the identification of an exact physiological mechanism that explains how α-580 

rhythms can produce an inhibitory effect remained elusive (Jensen & Mazaheri, 2010; 581 

Klimesch, 2012). Mazaheri et al. (Mazaheri & Jensen, 2010) suggest that pulsed inhibition 582 

occurs due to an observed amplitude asymmetry of ongoing oscillations, also termed baseline-583 

shift. Our results suggest, in accordance with the model from Mazaheri et al. (Mazaheri & 584 

Jensen, 2010), that a symmetrically oscillating driving signal in the α-range leads to 585 

asymmetric firing rates and synaptic currents, but we extend this scheme with an explicit 586 

explanation of the generation of inhibitory pulses from oscillating input currents. 587 

It is unclear to which degree non-neuronal processes affect the fMRI signal, as 588 

different physiological signals such as respiration and cardiac pulse rate were shown to be 589 

correlated with resting-state oscillations (Biswal et al., 1996; Power et al., 2016), which raised 590 

concerns that RSN oscillations may be unrelated to neuronal information processing, but 591 

rather constitute an epiphenomenon (Birn et al., 2006; de Munck et al., 2008; Shmueli et al., 592 

2007; Yuan et al., 2013). The interpretation and handling of these signal modulations is 593 

therefore hotly debated and they are often considered as artifactual and removed from fMRI 594 

studies (Birn et al., 2006; Chang & Glover, 2009). Importantly, however, low-frequency 595 
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BOLD fluctuations are also strongly correlated with electrical neural activity, which was 596 

shown by studies that analysed fMRI jointly with EEG (Goldman et al., 2002; Laufs et al., 597 

2003; Moosmann et al., 2003), intracortical recordings (He et al., 2008; Logothetis et al., 598 

2001) or MEG (Brookes et al., 2011; de Pasquale et al., 2010). Similarly, strong temporal 599 

correlations and spatially similar correlation maps of EEG α-power, respiration and BOLD 600 

(Yuan et al., 2013), as well as of EEG α-power, heart rate variations and BOLD (de Munck et 601 

al., 2008) suggest that these fMRI fluctuations are not unrelated to neural activity, but may be 602 

of neural origin. 603 

Our results extend the current understanding by showing an explicit mechanism for a 604 

neural origin of fMRI RSN oscillations that explains a large part of their variance by a chain 605 

of neurophysiological interactions. That is, our simulated activity not only reproduces the 606 

negative correlation between α-power fluctuations and BOLD signal, but also reveals a 607 

mechanism that transforms ongoing α-power fluctuation into fMRI oscillations. In addition to 608 

fMRI time series, the hybrid model also reproduces the spatial topology of fMRI networks, 609 

which are not predicted by the α-power regressor. These findings thereby add to accumulating 610 

evidence suggesting that RSNs originate from neuronal activity (Brookes et al., 2011; de 611 

Pasquale et al., 2010; Goldman et al., 2002; He et al., 2008; Logothetis et al., 2001; Mantini et 612 

al., 2007; Moosmann et al., 2003) rather than being a purely hemodynamic phenomenon that 613 

is only correlated, but not caused by it (Birn et al., 2006; de Munck et al., 2008; Shmueli et 614 

al., 2007). The conclusions from these results have important implications for future fMRI 615 

studies, as they implicate that low-frequency fMRI oscillations may be attributed to a neural 616 

process that has a considerable state-dependent effect on neural information processing as 617 

indicated by the large modulations of neuronal firing and synaptic activity. Methods for 618 

physiological noise correction might remove variance from fMRI experiments that is related 619 

to neuronal activity and may therefore exclude relevant information for the interpretation of 620 

fMRI data.  621 
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Parameter space exploration shows that structural coupling is critical for fMRI 622 

prediction, as prediction quality decreases for sub-optimal global coupling strengths or when 623 

global coupling is deactivated altogether (Figure 7—figure supplement 2). We observed that 624 

the prediction quality of resting-state network activation time courses fluctuates over time and 625 

is highest during epochs of highest variance of the respective temporal mode. During these 626 

time windows resting-state networks contribute the largest variance to whole-brain fMRI, i.e., 627 

they are the most active. A possible explanation may be that during states of asynchronous 628 

neural activity (i.e. states of low functional network activity) destructive interference of 629 

electromagnetic waves decreases the ability of source imaging methods to reconstruct source 630 

activity. It is important to note that the observed processes may not be specific to α-631 

oscillations, but may apply also to other frequencies or non-oscillatory signal components. 632 

Additional empirical and theoretical studies will be needed to address these limitations more 633 

comprehensively.  634 

Despite the ubiquity of scale invariant dynamics, models that generate power-law 635 

distributions are often rather generic and detached from the details of the modelled systems 636 

(Bak et al., 1987; Marković & Gros, 2014). Furthermore, the precise mechanisms that lead to 637 

the emergence of fMRI power spectrum power-law scaling or the relationship between brain 638 

network interaction and fMRI power-law scaling are unclear (He, 2011). Our simulation 639 

results indicate that fMRI spectra power-law scaling is due to the observed frequency-640 

dependent amplification of oscillatory activity in networks that contain self-reinforcing 641 

feedback excitation together with slow decay of activity. Central to theories on the emergence 642 

of criticality is the tuning of a control parameter (e.g. connection strengths) that leads the 643 

system to a sharp change in one or more order parameters (e.g. firing rates) when the control 644 

parameter is moved over a critical point that marks the boundary of a phase transition. In vivo, 645 

in vitro and in silico results show that the dynamical balance between excitation and 646 

inhibition was found to be essential to move the system towards or away from criticality, e.g., 647 
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by pharmacologically altering the excitation-inhibition balance in anesthetized rats (Osorio et 648 

al., 2010), acute slices (Beggs & Plenz, 2003) or by changing parameters that control global 649 

excitation and inhibition in computational models (Deco et al., 2014). However, the exact role 650 

played by excitation-inhibition balance is unclear. In line with these results, we found that 651 

power-law scaling varied as a function of the relative levels of global excitation and 652 

inhibition, further emphasizing the need for a proportional relationship between these control 653 

parameters (Figure 7—figure supplement 2). Extending from that, our simulation results 654 

indicate that E/I balance may cause a tuning of the relative strengths of local and long-range 655 

inputs to neural populations that supports constructive interference between the different input 656 

currents, which in turn amplifies slower oscillations more than faster oscillation. These results 657 

address an open question on whether power-laws in neural networks result from power-law 658 

behaviour on the cellular level or from a global network-level process (Beggs & Timme, 659 

2012), by giving an explanation for scale-free fMRI power spectra as an emergent property of 660 

large-scale brain network interaction that does not require small-scale decentralized processes 661 

like the constant active retuning of microscopic parameters as proposed in some theories of 662 

self-organized criticality (Bak et al., 1987; Hesse & Gross, 2015). Furthermore, these results 663 

explicitly address the effect of input activity, while in vitro and in silico studies have so far 664 

focused on systems without or considerably decreased input (Hesse & Gross, 2015). The 665 

observed co-emergence of spatial long-range correlations (i.e. functional connectivity 666 

networks) and power-law scaling may point to a unifying explanation within the theory of 667 

self-organized criticality, as previously proposed by others (Linkenkaer-Hansen et al., 2001). 668 

A wide range of disorders like autism, schizophrenia, intellectual disabilities, 669 

Alzheimer’s disease, multiple sclerosis or epilepsy have been linked to disruption of E/I 670 

balance (Marín, 2012) and altered structural and functional network connectivity (Stam, 671 

2014). The presented modelling approach may therefore play a key role for identifying the 672 

precise mechanisms underlying the pathophysiology of different disorders and assist in 673 
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developing novel therapies that restore altered E/I balance or brain connectivity, e.g., by 674 

identifying the targets for neural stimulation therapies or by guiding individually customized 675 

therapy.   676 
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Methods 677 

Computational model. The model used in this study is based on the large-scale dynamical 678 

mean field model used by Deco and colleagues (Deco et al., 2014; Wong & Wang, 2006). 679 

Brain activity is modelled as the network interaction of local population models that represent 680 

cortical areas. Cortical regions are modelled by interconnected excitatory and inhibitory 681 

neural mass models. In contrast to the original model, excitatory connections were replaced 682 

by injected EEG source activity. The dynamic mean field model faithfully approximates the 683 

time evolution of average synaptic activities and firing rates of a network of spiking neurons 684 

by a system of coupled non-linear differential equations for each node i: 685 

Ii
(E ) =WEI0 +G CijSj

(E ) − JiSi
(I ) +wBG

(E )IBGj∑
Ii
(I ) =WII0 − Si

(I ) +wBG
(I )IBG

ri
(E ) =

aEIi
(E ) − bE

1− exp −dE aEIi
(E ) − bE( )( )

ri
(I ) =

aI Ii
(I ) − bI

1− exp −dI aI Ii
(I ) − bI( )( )

dSi
(E ) t( )
dt

= −
Si
(E )

τE
+ 1− Si

(E )( )γEri(E )

dSi
(I ) t( )
dt

= −
Si
(I )

τ I
+γ Iri

(I )

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Here, ri
(E,I) denotes the population firing rate of the excitatory (E) and inhibitory (I) 686 

population of brain area i. Si
(E,I) identifies the average excitatory or inhibitory synaptic gating 687 

variables of each brain area, while their input currents are given by Ii
(E,I). In contrast to the 688 

model used by Deco et al.(Deco et al., 2014) that has recurrent and feedforward excitatory 689 

coupling, we approximate excitatory postsynaptic currents IBG using region-wise aggregated 690 

EEG source activity that is added to the sum of input currents Ii
(E,I). This approach is based on 691 

intracortical recordings that suggest that EPSCs are non-random, but strongly correlated with 692 

electric fields in their vicinity, while IPSCs are anticorrelated with EPSCs8-10. The weight 693 
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parameters ωBG
(E,I) rescale the z-score normalized EEG source activity independently for 694 

excitatory and inhibitory populations. G denotes the large-scale coupling strength scaling 695 

factor that rescales the structural connectivity matrix Cij that denotes the strength of 696 

interaction for each region pair 𝑖 and j. All three scaling parameters are estimated by fitting 697 

simulation results to empirical fMRI data by exhaustive search. Initially, parameter space (n-698 

dimensional real space with n being the number of optimized parameters) was constrained 699 

such that the strength of inhibition was larger than the strength of excitation, satisfying a 700 

biological constraint. Furthermore, for each tested parameter set (containing the three scaling 701 

parameters mentioned above) the region-wise parameters Ji that describe the strength of the 702 

local feedback inhibitory synaptic coupling for each area 𝑖 (expressed in nA) are fitted with 703 

the algorithm described below such that the average firing rate of each excitatory population 704 

in the model was close to 3.06 Hz (i.e. the cost function for tuning parameters Ji was solely 705 

based on average firing rates and not on prediction quality). The overall effective external 706 

input I0=0.382 nA is scaled by WE and WI, for the excitatory and inhibitory pools, 707 

respectively. ri
(E,I)denotes the neuronal input-output functions (f-I curves) of the excitatory 708 

and inhibitory pools, respectively. All parameters except those that are tuned during 709 

parameter estimation are set as in Deco et al. (Deco et al., 2014). BOLD activity was 710 

simulated on the basis of the excitatory synaptic activity S(E) using the Balloon-Windkessel 711 

hemodynamic model(Friston et al., 2003). 712 

Parameter optimization. For each brain network model, three parameters were varied to 713 

maximize the fit between empirical and simulated fMRI: the scaling of excitatory white-714 

matter coupling and the strengths of the inputs injected into excitatory and inhibitory 715 

populations. Following in vivo observations (Atallah & Scanziani, 2009; Xue et al., 2014), we 716 

ensured the EPSC amplitudes at excitatory populations are smaller than IPSC amplitudes by 717 

constraining parameters such that the standard deviation of injected source activity was larger 718 
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for inhibitory populations, i.e., ωBG
(E) < ωBG

(I). Specifically, we scanned 12 different ratios of 719 

both parameters ωBG
(I) / ωBG

(E) with values between 5 and 200. Besides tuning these three 720 

global parameters, which were the sole optimization criterion to maximize the fit of simulated 721 

activity with empirical fMRI time series, we adjusted local inhibitory coupling strengths in 722 

order to obtain biologically plausible firing rates in excitatory populations. For this second 723 

form of tuning, termed feedback inhibition control (FIC), average population firing rates were 724 

the sole optimization criterion, without any consideration of prediction quality, which was 725 

only dependent on the three global parameters. FIC modulates the strengths of inhibitory 726 

connections that is required to compensate for excess or lack of excitation resulting from the 727 

large variability in white-matter coupling strengths obtained by MRI tractography, which is a 728 

prerequisite to obtain plausible ranges of population activity that is relevant for some results 729 

(Figure 5 and Figure 6). Prediction quality was measured as the average correlation 730 

coefficient between all simulated and empirical region-wise fMRI time series of a complete 731 

cortical parcellation over 20.7 minutes length (TR = 1.94s, 640 data points) thereby 732 

quantifying the ability of the model to predict the activity of 68 parcellated cortical regions. 733 

Accounting for the large-scale nature of fMRI resting-state networks, the chosen parcellation 734 

size provides a parsimonious trade-off between model complexity and the desired level of 735 

explanation. What this parcellation may lack in spatial detail, it gains in providing a full-brain 736 

coverage that can reliably reproduce ubiquitous large-scale features of empirical data, which 737 

we further present below. To exclude overfitting and limited generalizability, a five-fold 738 

cross-validation scheme was performed on the hybrid model simulation results. Therefore, the 739 

data was randomly divided into two subsets: 80 % as training subset and 20 % as testing 740 

subset. Prediction quality was estimated using the training set, before trained models were 741 

asked to predict the testing set. Resulting prediction quality was compared between training 742 

and test data set and between test data set and the data obtained from fitting the full time 743 

series. Furthermore, despite the large range of possible parameters, the search converged to a 744 
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global maximum (Figure 3—figure supplement 1). Therefore, we ensured that when the 745 

model has been fit to a subset of empirical data, that it was able to generalize to new or 746 

unseen data. In contrast to model selection approaches, where the predictive power of 747 

different models and their complexity are compared against each other, we here use only a 748 

single type of model. 749 

Feedback inhibition control. Using standard parameters of the original model, the excitatory 750 

populations of isolated nodes have an average firing rate of 3.06 Hz, which conforms to the 751 

Poisson-like cortical in vivo activity of ~3 Hz (Softky & Koch, 1993; Wilson et al., 1994). For 752 

coupled populations, firing rates change in dependence of the employed structural 753 

connectivity matrix and injected input. To compensate for a resulting excess or lack of 754 

excitation, a local regulation mechanism, called feedback inhibition control (FIC), was used. 755 

The approach was previously successfully used to significantly improve FC prediction as well 756 

as for increasing the dynamical repertoire of evoked activity and the accuracy of external 757 

stimulus encoding (Deco et al., 2014). Despite the mentioned advantages of FIC tuning, it has 758 

the disadvantage of increasing the number of open parameters of the model. To prove that 759 

prediction quality is not due to FIC, but solely due to the three global parameters and to 760 

exclude concerns about over-parameterization or that FIC may be a potentially necessary 761 

condition for the emergence of scale-freeness, we devised a control model that did not 762 

implement FIC, but used a single global parameter for inhibitory coupling strength. Instead of 763 

tuning the 68 individual local coupling weights individually, only a single global value for all 764 

inhibitory coupling weights Ji was varied. We compared the effect of FIC on time series 765 

prediction quality and found no significant difference in prediction quality to simulations that 766 

used only a single value for all local coupling weights Ji per subject (one-tailed Wilcoxon 767 

rank sum test, p = 0.36, z = -0.37, Cohen’s d = -0.038). In contrast to simulations that are 768 

driven by noise (Deco et al., 2014), FIC parameters for injected input must be estimated for 769 
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the entire simulated time series, since the non-stationarity of stimulation time series leads to 770 

considerable fluctuations of firing rates. Therefore, we developed a local greedy search 771 

algorithm for fast FIC parameter estimation based on the algorithm in Deco et al. (Deco et al., 772 

2014). To exert FIC, local inhibitory synaptic strength is iteratively adjusted until all 773 

excitatory populations attained a firing rate close to the desired mean firing rates for the entire 774 

~20 minutes of activity. During each iteration, the algorithm performs a simulation of the 775 

entire time series. Then, it computes the mean firing activity over the entire time series for 776 

each excitatory population and adapts Ji values accordingly, i.e., it increases local Ji values if 777 

the average firing rate over all excitatory populations during the k-th iteration r̂k is larger than 778 

3.06 Hz and vice versa. In order to reduce the number of iterations the value by which Ji is 779 

changed is, in contrast to the algorithm by Deco et al. (Deco et al., 2014), dynamically 780 

adapted in dependence of the firing rate obtained during the current iteration  781 

Ji
k+1 = Ji

k + (r̂k-3.06)τk,  (7) 782 

where Ji
k denotes the value of feedback inhibition strength of node i and τk denotes the 783 

adaptive tuning factor during the k-th iteration. In the first iteration, all Ji values are initialized 784 

with 1 and τk is initialized with 0.005. The adaptive tuning factor is dynamically changed 785 

during each iteration based on the result of the previous iteration: 786 

τk+1 = (Σi(Ji
k-1 - Jk)) / (r̂k-1 - r̂k). (8) 787 

For the case that the result did not improve during the current iteration, i.e.,  788 

|r̂k – 3.06| ≥ |r̂k-1 – 3.06|, (9) 789 

the adaptive tuning factor is decreased by multiplying it with 0.5 and the algorithm continues 790 

with the next iteration. After 12 iterations, all Ji values are set to the values they had during 791 

the iteration k where |r̂k – 3.06| was minimal.  792 

 793 

MRI preprocessing. Structural and functional connectomes from 15 healthy human subjects 794 

(age range: 18 – 31 years, 8 female) were extracted from full data sets (diffusion-weighted 795 
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MRI, T1-weighted MRI, EEG-fMRI) using a local installation of a pipeline for automatic 796 

processing of functional and diffusion-weighted MRI data (Schirner et al., 2015). From a 797 

local database of 49 subjects (age range 18 - 80 years, 30 female) that was acquired for a 798 

previous study (Schirner et al., 2015) we selected the 15 youngest subjects that fulfilled 799 

highest EEG quality standards after applying MR artifact correction routines. EEG quality 800 

was assessed by standards that were defined prior to the experimental design and that are 801 

routinely used in the field (Becker et al., 2011; Freyer et al., 2009; Ritter et al., 2010; Ritter et 802 

al., 2007): occurrence of spikes in frequencies >20 Hz in power spectral densities, excessive 803 

head motion and cardio-ballistic artifacts. Research was performed in compliance with the 804 

Code of Ethics of the World Medical Association (Declaration of Helsinki). Written informed 805 

consent was provided by all subjects with an understanding of the study prior to data 806 

collection, and was approved by the local ethics committee in accordance with the 807 

institutional guidelines at Charité Hospital Berlin. Subjects with a self-reported history of 808 

neurological, cognitive, or psychiatric conditions were excluded from the experiment. 809 

Structural (T1-weighted high-resolution three-dimensional MP-RAGE sequence; TR = 1,900 810 

ms, TE = 2.52 ms, TI = 900 ms, flip angle = 9°, field of view (FOV) = 256 mm x 256 mm x 811 

192 mm, 256 x 256 x 192 Matrix, 1.0 mm isotropic voxel resolution), diffusion-weighted 812 

(T2-weighted sequence; TR = 7,500 ms, TE = 86 ms, FOV = 192 mm x 192 mm, 96 x 96 813 

Matrix, 61 slices, 2.3 mm isotropic voxel resolution, 64 diffusion directions), and fMRI data 814 

(two-dimensional T2-weighted gradient echo planar imaging blood oxygen level-dependent 815 

contrast sequence; TR = 1,940 ms, TE = 30 ms, flip angle = 78°, FOV = 192 mm x 192 mm, 3 816 

mm x 3 mm voxel resolution, 3 mm slice thickness, 64 x 64 matrix, 33 slices, 0.51 ms echo 817 

spacing, 668 TRs, 7 initial images were acquired and discarded to allow magnetization to 818 

reach equilibrium; eyes-closed resting-state) were acquired on a 12-channel Siemens 3 Tesla 819 

Trio MRI scanner at the Berlin Center for Advanced Neuroimaging, Berlin, Germany. 820 

Extracted structural connectivity matrices intend to give an aggregated representation of the 821 
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strengths and time-delays of interaction between regions as mediated by white matter fiber 822 

tracts. As for the original model by Deco et al. (Deco et al., 2014), conduction delays were 823 

neglected in this study as it was shown previously that they can be neglected for region-level 824 

simulations and activity that is slower than oscillations in the gamma range (Proix et al., 825 

2016). Strength matrices Cij were divided by their respective maximum value for 826 

normalization. In short, the pipeline proceeds as follows: for each subject a three-dimensional 827 

high-resolution T1-weighted image image was used to divide cortical gray matter into 68 828 

regions according to the Desikan-Killiany atlas using FreeSurfer’s (Fischl, 2012) automatic 829 

anatomical segmentation and registered to diffusion data. The gyral-based brain parcellation 830 

is generated by an automated probabilistic labeling algorithm that has been shown to achieve 831 

a high level of anatomical accuracy for identification of regions while accounting for a wide 832 

range of inter-subject anatomical variability (Desikan et al., 2006). The atlas was successfully 833 

used in previous modelling studies and provided highly significant structure-function 834 

relationships (Honey et al., 2009; Ritter et al., 2013; Schirner et al., 2015). Details on 835 

diffusion-weighted and fMRI preprocessing can be found in Schirner et al. (Schirner et al., 836 

2015) Briefly, probabilistic white matter tractography and track aggregation between each 837 

region-pair was performed as implemented in the automatic pipeline and the implemented 838 

distinct connection metric extracted. This metric weights the raw track count between two 839 

regions according to the gray-matter/white-matter interface areas of both regions used to 840 

connect these regions in distinction to other metrics that use the unweighted raw track count, 841 

which was shown to be biased by subject-specific anatomical features (see Schirner et al. 842 

(Schirner et al., 2015) for a discussion). After preprocessing, the cortical parcellation mask 843 

was registered to fMRI resting-state data of subjects and average fMRI signals for each region 844 

were extracted. The first five images of each scanning run were discarded to allow the MRI 845 

signal to reach steady state. To identify RSN activity a spatial Group ICA decomposition was 846 

performed for the fMRI data of all subjects using FSL MELODIC (Beckmann & Smith, 847 
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2004) (MELODIC v4.0; FMRIB Oxford University, UK) with the following parameters: high 848 

pass filter cut off: 100 s, MCFLIRT motion correction, BET brain extraction, spatial 849 

smoothing 5 mm FWHM, normalization to MNI152, temporal concatenation, dimensionality 850 

restriction to 30 output components. ICs that correspond to RSNs were automatically 851 

identified by spatial correlation with the nine out of the ten well-matched pairs of networks of 852 

the 29,671-subject BrainMap activation database as described in Smith et al. (Smith et al., 853 

2009) (excluding the cerebellum network). All image processing was performed in the native 854 

subject space of the different modalities and the brain atlas was transformed from T1-space of 855 

the subject into the respective spaces of the different modalities. 856 

 857 

EEG preprocessing. Details of EEG preprocessing are described in supplementary material 858 

of Schirner et al. (Schirner et al., 2015). First, to account for slow drifts in EEG channels all 859 

channels were high-pass filtered at 1.0 Hz (standard FIR filter). Imaging Acquisition Artefact 860 

(IAA) correction was performed using Analyser 2.0 (v2.0.2.5859, Brain Products, Gilching, 861 

Germany). The onset of each MRI scan interval was detected using a gradient trigger level of 862 

300 µV/ms. Incorrectly detected markers, e.g. due to shimming events or heavy movement, 863 

were manually rejected. To assure the correct detection of the resulting scan start markers 864 

each inter-scan interval was controlled for its precise length of 1940 ms (TR). For each 865 

channel a template of the IAA was computed using a sliding average approach (window 866 

length: 11 intervals) and subsequently subtracted from each scan interval. For further 867 

processing, the data was down sampled to 200 Hz, imported to EEGLAB and low-pass 868 

filtered at 60 Hz. ECG traces were used to detect and mark each instance of the QRS complex 869 

in order to identify ballistocardiogram (BCG) artifacts. The reasonable position and spacing 870 

of those ECG markers was controlled by visual inspection and corrected if necessary. To 871 

correct for BCG and artifacts induced by muscle activity, especially movement of the eyes, a 872 

temporal ICA was computed using the extended Infomax algorithm as implemented in 873 
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EEGLAB. To identify independent components (ICs) that contain BCG artifacts the 874 

topography plot, activation time series, power spectra and heartbeat triggered average 875 

potentials of the resulting ICs were used as indication. Based on established characteristics, 876 

all components representing the BCG were identified and rejected, i.e., the components were 877 

excluded from back-projection. The remaining artificial, non-BCG components, accounting 878 

for primarily movement events especially eye movement, were identified by their 879 

localization, activation, power spectral properties and ERPs. Detailed descriptions of EEG 880 

and fMRI preprocessing have been published elsewhere (Becker et al., 2011; Freyer et al., 881 

2009; Ritter et al., 2010; Ritter et al., 2007). 882 

 883 

Biologically based model input. EEG source imaging was performed with the freely 884 

available MATLAB toolbox Brainstorm using default settings and standard procedure for 885 

resting-state EEG data as described in the software documentation (Tadel et al., 2011). Source 886 

space models were based on the individual cortical mesh triangulations as extracted by 887 

FreeSurfer from each subject’s T1-weighted MRI data and downsampled by Brainstorm. 888 

From the same MRI data, head surface triangulations were computed by Brainstorm. Standard 889 

positions of the used EEG caps (Easy-cap; 64 channels, MR compatible) were aligned by the 890 

fiducial points used in Brainstorm and projected onto the nearest point of the head surface. 891 

Forward models are based on Boundary Element Method head models computed using the 892 

open-source software OpenMEEG and 15002 perpendicular dipole generator models located 893 

at the vertices of the cortical surface triangulation. The sLORETA inverse solution was used 894 

to estimate the distributed neuronal current density underlying the measured sensor data since 895 

it has zero localization error (Pascual-Marqui, 2002). EEG data was low-pass filtered at 30 Hz 896 

and imported into Brainstorm. There, the epochs before the first and after the last fMRI scan 897 

were discarded and the EEG signal was time-locked to fMRI scan start markers. Using 898 

brainstorm routines, EEG data was projected onto the cortical surface using the obtained 899 
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inversion kernel and averaged according to the Desikan-Killiany parcellation that was also 900 

used for the extraction of structural and functional connectomes and region-averaged fMRI 901 

signals. The resulting 68 region-wise source time series were imported to MATLAB, z-score 902 

normalized and upsampled to 1000 Hz using spline interpolation as implemented by the 903 

Octave function interp1. To enable efficient simulations, the sampling rate of the injected 904 

activity was ten times lower than model sampling rate. Hence, during simulation identical 905 

values have been injected during each sequence of ten integration steps. 906 

 907 

Simulation and analysis. Simulations were performed with a highly optimized C 908 

implementation of the previously described model on the JURECA supercomputer at the 909 

Juelich Supercomputing Center. Simulation and analyses code and used data is open source 910 

and available from online repositories (Schirner et al. (2017), see “Data and code 911 

availability”). An exhaustive brute-force parameter space scan using 3888 combinations of 912 

the parameters G and ωBG
(E,I) was performed for each subject. Each of these combinations was 913 

computed 12 times to iteratively tune Ji values. As control setup, further simulations were 914 

performed with random permutations of the input time series. Therefore, each source activity 915 

time series was randomly permutated (individually for each region and subject) using the 916 

Octave function randperm() and injected into simulations using all parameter combinations 917 

that were previously used. As an additional control situation the original dynamic mean field 918 

model as described in Deco et al. (Deco et al., 2014) was simulated for the 15 SCs. Here, the 919 

parameters G and JNMDA were varied and FIC tuning was performed using the same algorithm 920 

as used for the source activity injection model. The simulation and FIC optimization process 921 

was identical for all three models. The length of the simulated time series for each subject was 922 

21.6 minutes. Simulations were performed at a model sampling rate of 10,000 Hz. BOLD 923 

time series were computed for every 10th time step of excitatory synaptic gating activity using 924 

the Balloon-Windkessel Model (Friston et al., 2003). From the resulting time series every 925 
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1940th step was stored in order to obtain a sampling rate of simulated fMRI that conforms to 926 

the empirical fMRI TR of 1.94 s. The first 11 scans (21.34 s) of activity were discarded to 927 

allow model activity and simulated fMRI signal to stabilize. For each subject and modelling 928 

approach the simulation result that yielded the highest average correlation between all 68 929 

empirical and simulated regions time series for all tested parameters was used for all analyses. 930 

To ensure region-specificity of simulation results only corresponding simulated and empirical 931 

region time series were correlated in the case of raw fMRI, respectively, for resting-state 932 

networks only simulated regions that overlap with the spatial activation pattern of the 933 

respective network were used for estimating prediction quality. Specifically, for RSN 934 

analysis, only those regions were compared with the temporal modes of RSNs that had a 935 

spatial overlap of at least 40 % of all voxels belonging to the respective region. To assess 936 

time-varying prediction quality, a correlation analysis was performed in which a window with 937 

a length of 100 scans (194 s) was slid over the 68 pairs of empirical and simulated time series 938 

and the average correlation over all 68 regions was computed for each window. For the 939 

estimation of signal correlation, the computation of entries of FC matrices and as a measure 940 

of similarity of FC matrices Pearson’s linear correlation coefficient was used. FC matrices 941 

were compared by stacking all elements below the main diagonal into vectors and computing 942 

the correlation coefficient of these vectors. Short-term FC prediction quality was estimated by 943 

computing the mean correlation obtained for all window-wise correlations of a sliding 944 

window analysis of empirical and simulated time series (window-size: 100 scans = 194 s). 945 

To ensure scale-freeness of empirical and simulated signals, region time series were tested 946 

using rigorous model selection criteria; on average 79 % of all 1020 region-wise time series 947 

(15 subjects x 68 regions) for the seven analysed signal types (empirical fMRI, simulated 948 

fMRI, simulated fMRI without global coupling, simulated fMRI without FIC, simulated fMRI 949 

without FIC and without global coupling, α-power, α-regressor) tested as scale-free; for every 950 

signal type every subject had at least five regions to test as scale-free. PSDs were computed 951 
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using the Welch method as implemented in Octave, normalized by their total power and 952 

averaged. Resulting average power spectra were fitted with a power-law function f(x) = axβ 953 

using least-squares estimation in the frequency range 0.01 Hz and 0.17 Hz which is identical 954 

to the range for which the test for scale invariance was performed. Frequencies below were 955 

excluded in order to reduce the impact of low-frequency signal confounds and scanner drift, 956 

frequencies above that limit were excluded to avoid aliasing artefacts in higher frequency 957 

ranges (TR = 1.94 s, hence Nyquist frequency is around 0.25 Hz). In order to compare the 958 

scale invariance of our empirical fMRI data with results from previous publications (He, 959 

2011), we also computed power spectra in a range that only included frequencies < 0.1 Hz.  960 

In order to adequately quantify scale invariance we applied rigorous model selection to every 961 

time series to identify power-law scaling and excluded all time series from analyses that were 962 

described better by a model other than a power-law. Nevertheless, we compared the obtained 963 

results from this strict regime with results obtained when all time series were included and 964 

found them to be qualitatively identical. To test for the existence of scale invariance we used 965 

a method that combines a modified version of the well-established detrended fluctuation 966 

analysis (DFA) with Bayesian model comparison (Ton & Daffertshofer, 2016). DFA is, in 967 

contrast to PSD analyses, robust to both stationary and nonstationary data in the presence of 968 

confounding (weakly non-linear) trends. Rather than averaging the mean squared fluctuations 969 

over consecutive intervals as in conventional DFA, this method uses the values per interval to 970 

approximate the distribution of mean squared fluctuations with kernel density estimation. 971 

This allows for estimating the corresponding log-likelihood as a function of interval size 972 

without presuming the fluctuations to be normally distributed, as in the case of conventional 973 

DFA and therefore gives a non-parametric estimate of the log-likelihood for fitted models. 974 

Furthermore, conventional DFA does not provide any means to determine whether a power 975 

law is present or not. It is important to note, that a simple linear fit of the detrended 976 

fluctuation curve without proper comparison of the obtained goodness of fit with that of other 977 
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models would entirely ignore alternative representations of the data different than a power 978 

law. For quantification of the goodness of fit with simple regression its corresponding 979 

coefficient of determination, R2, is ill-suited as it measures only the strength of a linear 980 

relationship and is inadequate for nonlinear regression (Ton & Daffertshofer, 2016). Here, we 981 

assess power-law scaling in the context of DFA, i.e. the optimality of a straight line fit of 982 

fluctuation magnitude against interval size in a log-log representation, with non-parametric 983 

model selection using the Bayesian information criterion in order to compare the linear model 984 

against alternative models. It is important to note that with this method the assessment of 985 

power-law scaling is based on maximum likelihood estimation, which overcomes the 986 

limitations of a minimal least-squares estimate obtained from linear regression in the 987 

conventional DFA approach. Details of the used method can be found elsewhere (Ton & 988 

Daffertshofer, 2016). Briefly, the method first estimates the cumulative sum of each time 989 

series. Next, signals are divided into non-overlapping intervals of increasing length, for a 990 

range of window sizes (48 time windows in steps from 3 to 50 data points). Then, for each 991 

interval the linear trend is removed and the root mean squared (RMS) fluctuation for each 992 

detrended interval is computed. Interval size is plotted against the RMS magnitude of 993 

fluctuations in a log-log representation and model-fits with 11 different models are computed 994 

using maximum likelihood estimation. A straight line on the log-log graph indicates scale 995 

invariance expressed as F(n) ∝ nα, with n the interval size, F(n) detrended fluctuation and α, 996 

the scaling exponent, which represents the slope of the straight line fit (α ≅ 0.5, indicates 997 

uncorrelated white noise, while in the case of α > 0.5 the auto-correlation function decays 998 

slower than the auto-correlation function of Brownian motion, indicating long-term 999 

‘memory’). Lastly, likelihoods are used to compute Bayesian information criteria (BIC) for 1000 

each model, which are used to select among models. BIC take into account model accuracy 1001 

(as quantified by maximum likelihood) and model complexity, which scores the number of 1002 

free parameters used in the different models. Optimality in the context of BIC therefore yields 1003 
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a maximally accurate while minimally complex explanation for data, i.e., the optimal 1004 

compromise between goodness-of-fit and parsimony. For the different signals the majority of 1005 

time series were tested as being scale free: 83 % for empirical fMRI, 69 % for simulated 1006 

fMRI, 71 % for simulated fMRI with deactivated FIC, 83 % for simulated fMRI with 1007 

deactivated global coupling, 86 % for simulated fMRI with deactivated global coupling and 1008 

FIC, 90 % for α-power and 70 % for the α-regressor. 1009 

To compute grand average waveforms, state-variables were averaged over all 15 subjects and 1010 

68 regions (N = 1020 region time series) time-locked to the zero crossing of the α-amplitude, 1011 

which was obtained by band-pass filtering source activity time series between 8 and 12 Hz; to 1012 

obtain sharp average waveforms, all α-cycle epochs with a cycle length between 95 and 105 1013 

ms were used (N = 4,137,994 α-cycle). For computing ongoing α-power time courses, 1014 

instantaneous power time series were computed by taking the absolute value of the analytical 1015 

signal (obtained by the Hilbert transform) of band-pass filtered source activity in the 8 – 10 1016 

Hz frequency range; the first and last ~50 s were discarded to control for edge effects. To 1017 

compute the α-regressor, power time series were convolved with the canonical hemodynamic 1018 

response function, downsampled to fMRI sampling rate and shifted relative to fMRI time 1019 

series to account for the lag of hemodynamic response. The highest negative average 1020 

correlation over all 68 region-pairs obtained within a range of +/-3 scans shift was used for 1021 

comparison with simulation results.  1022 

 1023 

Statistical analyses. All statistical analyses were performed using MATLAB (The 1024 

MathWorks, Inc., Natick, Massachusetts, United States). Data are represented as box-and-1025 

whisker plots. As normality was not achieved for the majority of data sets (assessed by 1026 

Lilliefors test at significance level of 0.05), differences between groups were compared by 1027 

non-parametric statistical tests, using either two-tailed Wilcoxon rank sum test or, in case of 1028 
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directional prediction, one-tailed Wilcoxon rank sum test; a value p < 0.05 was considered 1029 

significant. 1030 

 1031 

Data and code availability. Brain network models are implemented in the open source 1032 

neuroinformatics platform The Virtual Brain that can be downloaded from 1033 

thevirtualbrain.org. Code and data that support the findings of this study can be obtained from 1034 

https://github.com/BrainModes/The-Hybrid-Virtual-Brain and https://osf.io/mndt8/ (DOI 1035 

10.17605/OSF.IO/MNDT8). 1036 

  1037 
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to derive mechanisms of brain function. 1221 
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