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Abstract

Genetic information can be highly sensitive and can be used to identi-
fied its source. To conceal genetic information, cryptographic methods
can be applied to genetic material itself, concealing sensitive infor-
mation prior to the generation of sequence data. The cryptographic
method described here uses randomly divided subsets of barcodes and
random pooling to securely generate pools of genetic material. The
privacy obtained by these methods are measured here using differen-
tial privacy.

1 Introduction

Genetic data can contain sensitive health information, such as risk of cancer
[Gen94] or neurodegenerative disease [DHMB*11, RMWT'11|. Genetic data
can also be used to identify its source (see [HSRT08, Clal10, JYW*09, VH09,
EN14]). Furthermore, when genetic data is combined with other information
about an individual, identification of that individual becomes even easier
[EN14, HHH*15]. This leads to important ethical considerations for those
collecting genetic data for research or diagnostics [KBDV ™10, EWG™14].
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Consequently, many researchers have turned their attention to protecting ge-
netic privacy. Informed consent can help the participants of a genetic study
understand their risks, and frameworks are being developed to help guide
scientists who collect genetic information [LCVC08, EWGT'14]. To allow
genetic data to be shared between researchers, various methods of encryp-
tion can help prevent re-identification [CMM13, CCL*, DDC14a, DDC14b,
BBDC*11, JWB*17, KBLV13, KJLM08, KL15, LGDM10, Mal04, TJTW*16,
XKB*14, SSB16].

Those methods are designed for genetic data. The methods described here
take a different approach. Here cryptographic methods are applied to genetic
material itself, securing genetic information at the molecular level. This ap-
proach adds an additional layer of security, allowing genetic material to be
sent to untrusted parties for analysis without revealing sensitive information
to those parties.

The cryptographic method proposed here utilizes random molecular bar-
codes, sometimes referred to as unique molecular identifiers or tags. The bar-
coding of genetic material uses nucleotides as codes. The DNA nucleotides
adenine, cytosine, thymine and guanine can be combined in a polymer to
form a code. With only four nucleotide bases a large number of codes can
be generated. For example, with a nucleotide composed of n or fewer bases,
>0 4" possible codes can be generated. Trillions of possible codes can be
generated with short barcodes of only n < 20.

Various biotechnologies have found applications for random barcodes [SNP*16,
ZLZ714, SJSX12, SKJ*16, LLC*16, GBET15, 1ZJ*t14, KVKT12, BRL*15].
These technologies utilize barcoding at the molecular level to improve genetic
sequencing accuracy, or examine unique and rare mutations present within
a sample. The use of molecular barcoding has yet to be applied to genetic
information security. Here, a cryptographic method using random molecular
barcodes on genetic material is described.
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Barcodes

?77? % generated in
subsets...

Randomly Divide Distributed into
Barcodes into separate wells
Subsets for shipping

Figure 1: A set of barcodes is randomly divided into sub-
sets. DBarcodes are generated in combination with nucleotides
used to affix the barcodes to nucleic acids (e.g. adapters). Each
subset of barcodes is sealed within a well on a plate. The barcodes
present in each subset are only known to the consumer. Barcodes
are randomly divided into unique subsets each time they are man-
ufactured.

2 Methods

2.1 Overview

To begin this crypotgraphic method, genetic material is digested to form sep-
arate, unlinked molecules. Second, these molecules are each given random
barcodes. Third, the barcoded molecules are combined with other genetic
material that has been barcoded, which serve as decoys. Genetic information
is concealed because the connections between variants are disrupted, hiding
diploid genotypes and haplotypes. Also, the use of decoys can obfuscate
which variants in the pool belong to the sample. This general method can be
applied in a variety of ways, providing the ability to conceal different forms
of genetic information with varying levels of security.
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Both randomness and secrecy are required when generating the barcodes.
This method takes a set of barcodes, and with secrecy, it randomly divides
this set into subsets (Figure 1). FEach subset is labelled, and a table of
barcodes and labels is provided to the consumer (e.g. Table 1). The consumer
can then use the subsets of barcodes to label their genetic samples so that
only they know which barcodes belong to which sample.

Subset name  # in subset Barcode sequence
A 1 ATCCCATGGTAGTCCTTAGA
A 2 CTTGGGAGTCTATCACCCCT
A 3 AGGGCCCATATCTGGAAATA
A 4 GACGCCAAGTTCAATCCGTA
A 5 TTCCGACGTACGATGGAACA
B 1 GTGTGGGTGAGACGTGCTTC
B 2 ATTTATACCCTACGCAGGCT
B 3 GGACCGAGGTCCGCAAGGCG
B 4 CGGCGGTGCACAAGCAATTG
B 5 ACAACTAACCACCGTGTATT
Z 9,999 CATTATGGTACCAGGGACTT

Table 1: Example of randomized subsets of barcodes. Bar-
codes are randomly divided into numerous subsets for each con-
sumer. Only the consumer is provided the unique table that can
be used to determine which barcodes are in which subsets.

The barcoding can occur in many ways. Barcodes can be added before or dur-
ing an enrichment step. Barcoding after or without enrichment can result in
a unique barcode for each molecule (Figure 2). If polymerase-chain-reaction
(PCR) amplifies the genetic material after it has been barcoded, the resulting
molecules would share identical barcodes, indicating they originated from the
same molecule and belong to a particular sample (Figure 3). Either way, the
barcodes act as random identifiers of the sample. After pooling and analysis,
the table of barcodes is required to determine which results belong to which
sample.
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Nucleotides Barcodes
BOOCBGOD B1B2B3B4B5B6B7 ...
DOOTGHOG B9997 B9998 B9999

Ligation

COTOPERB1 DEOCDPBBE2
CETCHEEOB3
CETCHEEGBS
CGHVCOFPEBE BEOTOTTBE
CETCHECOBT
® [ [

GETCOEopBI99T7 TOTCREEeBI9I8 PITGHEEGX-BI999

Figure 2: Ligation of barcodes to nucleic acids. A subset of
barcodes is ligated to target nucleic acids, resulting in a unique
identifier for each molecule. Only the consumer has knowledge
about the barcodes used for a specific sample.

Nucleotides Barcodes
OETDLBEOD Al A2 A3 A4 ...
it iy g A9998 A9999
PCR
DPTTRFOGAT
CEOTCOFOPA]

DPOPBGSPA2 GEGOTRTOGAT
SGBCOOSBA2
DGO CRPOPA3
GO OGAL
® [ ] L]
OGP GOGSPA9998 SGOTDOSPA998

SO PSPOGGA9999 COCCRFGPA9999

Figure 3: Barcoding before or during enrichment. Nucleic
acids are amplified along with barcodes, resulting in multiple nu-
cleic acids with identical barcodes. Nucleic acids that share the
same barcode will have originated from the same molecule.
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The method of pooling, in which decoys are combined with the sample(s),
can be simple or complex, depending on the extent to which one choses to
conceal their sample. A simple method of pooling is to barcode a group
of samples and combine them together in a pool. These different samples
would then act as decoys for each other. More advanced pooling methods can
combine samples with non-sample decoys, chosen to conceal specific types of
genetic information. The privacy that can be obtained with different pooling
methods will be examined here.

Barcoded Barcoded
Sample Decoys

Samples pooled
prior to sequencing

Sequencing
Sequencing Results Sequencing
ey G v Find the sample's results for
ATIGCGTTICTTTGACCTTTTAACCGC TC TCTTAGAAGAGAGACAGATAGCTT s m l
B barcodes it
GCCCATAACTIGGTGCGAATACGGGTCGTAGCAATGTICGICTGACTATGAIC ATAATACGTGCTGTCCCACGCACATGGTAGATTIGGAC
TACATATTACAGGCGGTACGTCTGCTTTGGTCAGCCTCTAATGGCTCGTE ﬂJlGA

TAGTGCAGCCGC TGGTGATCAC TCGATGACC TCGEC ICCCCAT TGCAACTAC

BTCGC
CTCTCCWCC‘CIAGCAGTCTGGTCTNGGIAJIACYACJIGGIACTJIACCTVCCTAG

Figure 4: Pooling barcoded nucleic acids. The final step to
concealing genetic information is the pooling of sample nucleic
acids with decoy nucleic acids. A table of barcodes can be used
to determine which sequences belong to which samples.
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2.2 Measuring Privacy

The privacy of this process can be examined using the differential privacy
method of [Dwo06| using the equation:

PIK(G) € S] < eap(e) - PIK(G) € S (1)

in which e represents the privacy obtained by removing a single individual’s
genetic material from G to obtain G’. S is the range of possible outputs
from the process K. A group of individuals with genotypes G is examined.
The genetic material from G is converted into genetic data, K(G), through
process K. The probabilities are taken over "coin flips" of K.

This randomization procedure differs from those typically used in differen-
tial privacy. Here, one can rely on the randomness of a molecular process
to obtain privacy, as well as a computer or coin to direct the randomization
procedures. This process can be as simple as labeling a group of samples
with random barcodes and pooling them together to be sequenced, or more
complicated, mutating and amplifying sample genetic material to conceal
specific mutations.

To demonstrate how one can measure privacy using this method, consider
a scenario in which a small part of the individuals genomes are examined.
Assume that only two variants are present within the population in this re-
gion. Denote alleles or haplotypes as "A" for the common variant and "a"
for the alternative, less frequent variant. The frequency of the less frequent
variant, denoted as p, is thus on (0,0.5]. The frequency within the genetic
data, however, is on [0, 1], depending on the genotypes of the individuals
being analyzed as well as the process by which the genetic data is gener-
ated. Here, the genotypes of the individuals in the pool are assumed to be
in Hardy-Weinberg equilibrium.

Differential privacy methods are applied to a wide variety of data-sets, and
variety of methods can be used to estimate differential privacy on these dif-
ferent data (e.g. [WLF16, BNST16, BD14]). Many methods examine the
sensitivity of the randomization procedure, the maximum difference in out-
put that can be generated [Dwo08§|, as:
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Af =mar||K(G) = K(G)]x. (2)

Denote G, (G4 44,) as the pool of genetic material with the genetic material
of an individual’s with genotype aa (AA or Aa) removed. For many of the
procedures examined here, removal of homozygous rare alleles results in the
largest change in the output. That is, it can be shown that

1K(G) = K(Gaa) Il 2 ||K(G) — K(Glaajaa)ll1

for many procedures K. Consequently, concealing genetic information for
individuals with uncommon genotypes is more difficult than concealing that
of those with more common genotypes. Therefore, measuring the privacy ob-
tained by removing an individual with the aa genotype determines the value
of e. If the frequency of the rare allele is small enough that no aa individuals
are present in the pool, privacy is measured with K(G’y,).

With the above considerations, equation [1] can be restated as:

P[K(G) € 5]
< (Fgy e ) o

for many procedures K. This can lead to a comparison between Kullback-
Leibler Divergence (KLD) [Kul97] and differential privacy [WLF16, BNST16,
BD14|. The KLD between two distributions is a measure of the information
gained if one distribution is used in place of the other. For two distributions,

P and Q:

P
KLD(P||Q) ;PZ log <Q) :

This can be related to privacy measured in [3|, as the E(e) is the same
as KLD(K(G)||K(G.,)), which has been termed "On-Average KL-Privacy"
[WLF16]. Therefore, the differential privacy measured here can be inter-
preted as the difference in information between the entire pool of genetic
material, and the pool with the aa genotype individual’s genetic material
removed (from the perspective of the original pool). That is, the information
lost if K(G) is encoded by K(G! ).
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Consider a pool of genetic material from N individuals that has been ampli-
fied X times, resulting in 2N X alleles in the pool. Simply pooling together
genetic material and sequencing a portion of that pool is a randomization
procedure that offers privacy. Sampling from a well mixed pool results in
data for each allele that follows a hypergeometric distribution. If a sequenc-
ing method provides y total sequences, then the probability of z sequences
with the "a" variant, P,(a), from a pool of size 2N X is:

(2) G, t)
P.(a) = =% (4)
(QNXp)
To measure privacy in this method, compare (4) with the probability of
sequence results from the same pool with one individual with aa genotype
removed, resulting in:

(2) Gaxpax )
. d
( 2NX—2X ) (5)

2N Xp—2X

P(a) =

Measuring the KLD between these two distributions provides the expected
KL-privacy for aa genotypes, setting the bound e:

¢ = KLD(P,(a)||P.(a ZP (i/%) (6)

The variables here have significance in a genetic sequencing analysis, and thus
their values must be chosen carefully so that the proposed analysis would be
reasonable. The number of times an allele from an individual is sequenced
in a pool, P,(allele), is also a hypergeometric function determined by the
values of X and y chosen for a pool of N individuals,

(1) X"
oy (7)

X

P, (allele) =

Sequencing analyses are designed so that each allele from every individual
achieves an appropriate number of reads. The average number of times an
individual’s allele will be sequenced is y/2N. This expectation, however, may
not be likely in many designs, and a more appropriate design would use (7) to
ensure that each individual receives sufficient coverage with an appropriate
probability.
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2.3 Advanced methods

First, consider that the amplification amount, X, can be a random variable.
The randomness can be directed by a computer or by flips of a coin, randomly
selecting an amount for each sample, X;, to be added to the pool. Now, con-
sider that the amplification occurs by PCR, and this process is intrinsically
random. The randomness of amplification can be further randomized by a
computer. For example, a computer can provide a random number of cycles
of PCR by which each sample is amplified, or a random quantity of the var-
ious PCR ingredients to further vary the amount by which each sample is
amplified.

Any random amplification procedure results in the X becoming a random
variable. Here, the random amplification is applied to each individual sample,
such that each allele in the sample receives the same amplification. Conse-
quently, the privacy measured in (6) must then be measured over the possible
values of X. The addition of randomness to the process in the amplification
can increase privacy provided by this method. In fact, due to the imprecision
of aliquoting genetic material, as well as the randomness that occurs in PCR,
one may consider X to always be random. To help estimate the privacy the
randomness of PCR can be modeled, e.g. [JK03, Pia04, YY09, LJJ05].

Mutation can also be utilized for privacy. Mutations randomly occur dur-
ing PCR amplification [KZ15, PO17|, with some polymerases having higher
mutation rates, for various different types of mutation [PO17]. Furthermore,
site directed mutagenesis, e.g. [Car86, HAT+89, HHH"89, LGH90, WCS*94,
KMO97], can be utilized to obtain specific mutations from the sample. That
is, a proportion of the sample can be (randomly) mutated to become decoys
with specific variations to be added to the pool. Importantly, the mutated
genetic material must be labelled uniquely and combined with uniquely la-
belled, non-mutated material, so that one can determine which sequencing
results belong to the non-mutated genetic material. Methods using mutation
can add additional sequencing costs because the sequencing of mutated ge-
netic material usually does not provide useful information to the consumer.
However, as sequencing costs continue to decrease, processes that include
mutation will become increasingly cost effective.
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Applying a random mutation step alters the equations used to estimate pri-
vacy. The total size of the pool of genetic material can be generalized, rep-
resented here by the variable Z. The pool Z can then be divided into the
quantities of the separate alleles, here 7 = Z, + Z, = QZiVX . The num-
ber of specific alleles in the pool is the sum of the contribution from each
genotype. For Z,:

2Np(1-p)

Z_2ZX+ Z X, (8)

and similarly for Z4:

N(1-p)? 2Np(1—p)
Zi=2 Y Xt Y X, )
k=1 j=1

The hypergeometric (4) then becomes:

7Z—
(%) (z2)
7 .
()
Denote Z! as the number of "a" alleles in a pool from which an individual
with genotype aa has been removed:

P.(a) = (10)

Np2—1 2Np(1-p)

—QZX+ZX (11)

The total resulting pool size for this pool, Z'is simply Z = Zs+ 2! =
2 Ziv_l X. With the new variables for the size of the altered pool and quan-
tity of "a" alleles in the pool, (5) then can be generalized as:

(1) (Z2Y)
(z)

P (a) = (12)
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If mutations are considered, then the final pool Z can be modeled as a mixture
of alleles that have been replicated and mutated from an original pool of
samples. Denote the mutations between alleles as:

1A
A;\a
Ha

If the mutation between the two variants are equal (u, = pa), then the
number of "a" alleles in the pool is:

2Np(1—p) N(1—p)?

N2
Zazzzp:xiu— Z X; 42 Z Xyt (13)
=1

and the number of "A" alleles is:

N(p—1)? 2Np(1 p)
Za=2 Y Xi(1-p) Z X+22Xp, (14)
=1

Now consider the pool in which an 1nd1v1dual with genotype aa has had their
genetic material removed. Denote this comparison pool as Z/ = 2 Zjlv_l X =
Za + Z! and its quantity of "a" alleles as Z/, then:

Np2—1 2Np(1-p) N(1-p)?

Z,=2 ) X(1- Z X, +2 Z Xip. (15)

As before, privacy is measured by comparing (10) and (12) using (6).

3 Results

3.1 Non-random pooling

Privacy is measured for pools of varying numbers of individual samples, each
sample pooled with equal proportions (Figure 5). Populations, N, of 400, 800
and 1,600 individuals, among a range of allele frequencies are examined, with
the amplification X = 10°. The number of reads is 8,000, 16,000 and 64,000
for 400, 800 and 1,600 individuals, respectively, providing a P,>s(allele) >
0.97, with an average of 10 reads per allele.
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Figure 5: Privacy obtained by pooling samples together.
The log (base 10) values of ¢ for different pool sizes and different
allele frequencies. Samples are pooled together in equal propor-
tions for N=400 (black), N=800 (blue), and N=1600 (red). Sam-
ples were amplified to have 10° molecules prior to pooling, and
the pool was sequenced 20 - N such that the average number of
sequences per allele is 10. If the allele frequency is small enough
that zero "aa" genotypes are expected in the pool, then privacy
is measured by removing an "Aa" genotype individual from the
pool instead of aa individuals (points plotted with ).
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3.2 Random pooling with mutation

To examine random pooling and mutation, a population of 100 samples is
used (Figure 6). For comparison, non-random pooling of each 100 samples
is measured (black points). For random pooling, each individual has 1,000
of each of their alleles added to the pool, and then, for each sample, a coin
is flipped two times, and an additional 1,000 of each allele is added for every
flip that landed heads (red points). The resulting quantity of each allele for
each sample in the pool follows a binomial distribution. The same random
amplification method then is applied, but with 20% (orange points) and 40%
(blue points) of the alleles mutated to the other variant. Random pooling
provides more privacy than non-random pooling, and privacy is further in-
creased if a mutation step is applied.

A random selection of 4,000 reads is then obtained from the pool, resulting
in an average of 20 reads per individual when a mutation step is not applied.
With a mutation step, some individuals receive far fewer reads and some
receive far more (Figure 7). Furthermore, the mutated alleles, which have
been uniquely tagged to indicate they are mutants, do not necessarily pro-
vide useful information about the sample. Consequently, pooling procedures
which apply mutations result in fewer informative reads.
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Figure 6: Privacy obtained by randomly pooling samples
together with mutation. The log (base 10) values of € for dif-
ferent pool sizes, different allele frequencies, for different pooling
methods. Black points represent pooling samples of 100 individ-
uals in equal, non-random proportions. Red points represent a
random pooling of 100 individuals (see text for details). Orange
(blue) points represent a random pooling of 100 individuals with
a mutation rate, u, of 0.2 (0.4). If the allele frequency is small
enough that zero "aa" genotypes are expected in the pool, then
privacy is measured by removing an "Aa" genotype individual
from the pool instead of aa individuals (points plotted with ).
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Figure 7: Probability of read number for sample alleles
for different pooling methods. The number of reads for non-
random pooling (black points) approximately follows a binomial
distribution. Red points represent a random pooling of 100 indi-
viduals. Orange and blue points are random amplification, with
a mutation step applied. The reads of mutated alleles are not
counted, as they are not typically informative.
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4 Discussion

The statistics presented here demonstrate that genetic information can be
concealed with the methods proposed. The proposed methods have a wide
range of potential applications in genetics, and are not limited to those ex-
amined in the results section. For example, the methods can be applied to
more than one genetic loci, or to genetic loci that that have more than two
states, such as tandem repeats. The use of differential privacy to measure
the expected privacy of these methods can also be applied to these other ap-
plications. Alternatively, detailed models of adversarial knowledge can also
be used to estimate privacy.

Any application of these methods requires careful attention to how infor-
mation exists within target genetic material, and how it can be concealed.
Because this method does not necessarily conceal all information present
within genetic material, the consumer needs to decide which information
they conceal, and how they conceal it. For example, the basic application
of these methods does not conceal the allele frequency in the samples. Ad-
vanced applications can conceal the allele frequencies, but may require more
sequencing reads to obtain the same amount of information. Importantly,
due to correlations between genetic variants, applying these methods to mul-
tiple loci requires special considerations to estimate differential privacy (see
[CYXX16, KM11]| for estimating differential privacy with correlated data).

The advanced methods presented in the results section can be applied with
readily available technology, a coin to randomly determine the quantity of
genetic material to add to the pool and a controlled quantity of mutated al-
leles obtained through site directed mutagenesis. However, one can consider
all molecular genetics lab work to have a degree of randomness (even when
randomness is not desired). Consequently, all applications of this method
will have more randomness, and thus usually more privacy, than the ideal
applications measured here. Modeling PCR randomness to estimate pri-
vacy requires a detailed understanding of genetic information, DNA/RNA
replication, as well as mutation rates. However, for many applications of
this technology non-random pooling may be sufficient, allowing for relatively
straightforward measures of privacy.
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Ultimately, the details of the cryptographic method used by any consumer of
this technology can be kept secret, and can be altered when applied to differ-
ent groups of samples. This allows the consumer to control how they conceal
their genetic information, further inhibiting potential adversaries from ex-
tracting useful data from the sequencing results. The appropriate use of
securely generated random barcodes allows sensitive genetic information to
be concealed within genetic material, securing it at its source. With hope,
these methods will permit the collection of genetic information without jeop-
ardizing sensitive information.
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