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Abstract

Quantifying cell morphology is fundamental to the statistical study of cell popu-
lations, and can help us unravel mechanisms underlying cell and tissue morphogen-
esis. Current methods, however, require extensive human intervention, are highly
sensitive to parameter choice, or produce metrics that are difficult to interpret
biologically. We therefore developed a novel method, Lobe Contribution Elliptical
Fourier Analysis (LOCO-EFA), which generates from digitalised cell outlines mean-
ingful descriptors that can be directly matched to morphological features. We show
that LOCO-EFA provides a tool to phenotype efficiently and objectively popula-
tions of cells by applying it to the complex shaped pavement cells of Arabidopsis
thaliana wild type and speechless leaves. To further validate our method, we ana-
lysed computer-generated tissues, where cell shape can be specified in a controlled
manner. LOCO-EFA quantifies deviations between the specified shape that an
individual in silico cell takes up when in isolation and the resultant shape when
they are allowed to interact within a confluent tissue, thereby assessing the role of
cell-cell interactions on population cell shape distributions.

Summary statement

Novel method (LOCO-EFA) quantifies complex cell shapes, extracting meaningful biolo-
gical features such as protrusion number and amplitude; here shown for plant pavement
cells and validated on in silico tissues.

Introduction

Cell geometry has long fascinated biologists (Thompson, 1917). This interest is driven by
a wide range of underlying scientific questions. For instance, cell shape changes can be
linked to physiological responses of cells, such as membrane protrusions during apoptosis
and migration (Charras and Paluch, 2008); they are involved in controlling tissue homeo-
stasis (Marinari et al., 2012; Veeman and Smith, 2013) and underlie cell behaviour such as
chemotaxis to ensure survival (Keren et al., 2008; Driscoll et al., 2012). The cell shape it-
self also influences intracellular processes such as microtubule organisation (Gomez et al.,
2016) and the stress patterns in plant epithelia (Sampathkumar et al., 2014); it indirectly
positions the plane of cell division (Minc et al., 2011) and can even determine the way
a flower attracts pollinators (Noda et al., 1994). Given the rich diversity of processes in
which cell shape plays a decisive role, either actively or passively, it is not surprising that
the qualitative and quantitative study of cell shape characteristics, cell morphometrics,
has become important in developmental biology, enriching molecular and genetic tech-
niques. In parallel, recent advances in imaging technology, including microscopy, usage
of fluorescent proteins and imaging software, allow us to collect and access remarkable
amounts of cell morphological data, which in turn urgently calls for analytic tools for the
extraction of meaningful cell shape information (Zhong et al., 2012). In stark contrast
to the technological advances on the imaging front, there are relatively few automatic
and quantitative tools available to analyse complex cell shapes (Rajaram et al., 2012;
Ljosa et al., 2012; Ivakov and Persson, 2013). This gap reflects the non-trivial nature of
this task: cell shape is often irregular and variable, making it very difficult to establish
universal criteria encompassing cell geometry.
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To illustrate the issues involved in capturing quantitative aspects of complex cell
shapes, consider the case of pavement cells in the plant epidermis (Figure 1A, B) or am-
nioserosa cells in the Drosophila embryo (Figure 1C). Pavement cells present a striking
development, requiring multiple locally divergent growth fronts within each cell, which are
coordinated amongst neighbouring cells; amnioserosa cells present dynamical cell shape
fluctuations within a confluent tissue. The resultant jigsaw-puzzle-like features of such
cells illustrate the challenges in quantitatively characterising cell shape: 1) their com-
plex non-holomorphic geometry cannot be captured in a meaningful way with traditional
shape metrics (see below); and 2) the lack of recognisable landmarks (neither these plant
nor animal cells have distinct features to serve as reference points), renders a myriad of
shape statistics that have been developed in other fields (such as principal component
and Procrustes analysis) effectively useless (Klingenberg, 2010).

Traditional metrics for cell morphology include cell area, cell perimeter, aspect ratio
and form factor. Useful as general descriptors, the shape information that can be extrac-
ted from them is limited. Very different shapes may yield a similar aspect ratio or form
factor (Figure 1D-H). Besides not being unique, such descriptors tend to omit informa-
tion regarding biologically relevant shape features (Fu et al., 2005). Several approaches
classically used to quantify cells, including pavement cells, are summarised in Table 1.
Some of those methods, such as the skeleton method, are highly sensitive to image noise
as well as to the precise choice of parameters (for an example, see Le et al., 2006). Other
metrics, such as lobe length and neck width assessments (Fu et al., 2005), are entirely
dependent on humans to judge what a lobe is. Such decisions then strongly impact the
average lobe length and neck width measurements (Figure 1 and Figure S1). It renders
these metrics highly variable from cell to cell, from phenotype to phenotype and from
human to human. In this respect, recently an automatic method was developed to count
lobes and indentations (Wu et al., 2016), making this process more reliable. As we will
discuss further on, such a method, although already very useful, finds its limitations when
the characteristics of the shape reside in the distribution and amplitude of lobes, not only
in their number. For instance, some Arabidopsis mutants can present pavement cells
with lobes that look more elongated or shallower, but which occur at a similar spatial
frequency (Lin et al., 2013).

Promising alternatives are methods that take into account the full cell outline in-
formation and then simplify the contour of a cell into a series of coefficients that can be
employed as shape descriptors in a multivariate study (Ivakov and Persson, 2013; Pincus
and Theriot, 2007). One example of these methods is Elliptical Fourier Analysis (EFA),
that has been used to quantify two-dimensional complex shapes (Kuhl and Giardina,
1982; Diaz et al., 1989; Schmittbuhl et al., 2003). It takes the coordinates of the outline
and decomposes them into a series of related ellipses (described by EFA coefficients) that
can be combined to reconstitute that given shape. Despite its wide usage in morphometric
studies, EFA cannot retrieve information that directly relates to morphological features
of a cell, obstructing biological interpretation. This is because the EFA coefficients are
highly dependent on how the cell outline is approximated (a detailed explanation is given
in the Supplementary Materials and Methods).

Here we present a new method based on EFA, termed Lobe-Contribution Elliptic
Fourier Analysis (LOCO-EFA), that overcomes the common obstacles described above.
Our method also uses the information of the whole cell contour but, unlike EFA, provides
a set of metrics that directly relate to morphological features, permitting the assessment
of cell shape complexity in an objective and automatic manner. Importantly, it is not
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sensitive to cell orientation or imaging resolution.

To validate the usage of our method on larger cellular datasets, we analyse pavement
cell populations from confocal images of Arabidopsis thaliana. We then complement this
study with the analysis of synthetic tissues generated using the Cellular Potts model
(Graner and Glazier, 1992; Glazier and Graner, 1993), in which pavement-like cells have
a parametrised specified shape. The latter approach also allows us to touch on a fun-
damental question in developmental biology, by asking to what degree the resultant cell
shape within a confluent tissue context is shaped by cell-to-cell interactions and to what
degree it can be explained by intracellular shape control mechanisms. Specifically, here
we explore the influence of cell neighbours on the morphogenesis of individual cells by
measuring the divergence of their specified cell shape within an isolated context to the
shape taken up when being immersed within a tissue. This analysis, performed on in
silico tissues, allows us to quantify such differences for a generic situation by combining
CPM and LOCO-EFA .

Results

Quantitative characterisation of cell shape using LOCO-EFA

Applying EFA to quantify cell shapes, we came across a number of specific shortcomings.
We first explain those issues to highlight our motivation and choices that led to the
development of LOCO-EFA. Detailed mathematical implementation is provided in the
Supplementary Materials and Methods. Here, we focus on explaining the analysis in
terms of its biological relevance, emphasising how it can be applied and interpreted.

The shape analysis proposed here is linked to harmonic compositions of digitalised
cell shape outlines. We find it useful to compare the decomposition of a complex cell
shape, such as that of a pavement cell, to the way one decomposes the sounds of mu-
sical instruments. This analogy will be used throughout the manuscript for purposes
of illustrating the different traits that our morphometric analysis is capturing. For ex-
ample, when listening to a note generated by an instrument, a quantifiable observable is
the pitch. Within the context of pavement cell shape this corresponds to the observed
number of lobes or, as we will explain in detail, to the dominant spatial frequency of
the pavement cell outline. Another quantifiable property of musical note is its volume,
the amplitude. In terms of cell shape this corresponds to the extent to which lobes and
indentations are protruded and retracted. Finally, the timbre of musical instruments is
what essentially distinguishes, for example, a clarinet from an oboe, as both play the
same note (same pitch) at the same volume. An analogous notion in cell shape studies
would be the ability to capture additional aspects of cell shape morphology, as well as to
recognise subtle differences between cells, even when the number of lobes and their level
of protrusion is the same.

As a starting point, Elliptical Fourier Analysis (EFA, Kuhl and Giardina, 1982) can
be used to describe the contour of any complex two-dimensional shape, including non-
holomorphic shapes such as pavement cells, which most other methods are unable to
capture (see Figure S2 and Supplementary Materials and Methods). Using the coordinates
of the two-dimensional (cell) outline (Figure S3A), EFA decomposes the shape into an
infinite series of ellipses (also referred to as “modes” or “harmonics”). This series of
ellipses, n = 1---00, can then be combined in the following way to exactly retrieve the
original shape: each nth elliptic harmonic traces n revolutions around the first ellipse
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while orbiting around the previous (n — 1) harmonic ellipse, which in its turn is orbiting
around its previous one (n — 2), and so forth (Figure S3B). This summation results in an
outline being ‘drawn’, as is visualised in Movie S1. Obviously, a cut-off has to be chosen
for the number of modes that are taken into account. In general this will be at a value
for which the cell contour description is reasonably close to the original cell outline. The
fact that each ellipse represents a certain harmonic suggests that it captures dominant
spatial frequencies within the original shape. This is why it has been considered to be a
reasonable descriptor for cell outline properties (Schmittbuhl et al., 2003).

When shapes are quantified using the EFA method, however, the pitch, i.e., the most
basic cellular feature to quantify, is actually not directly retrieved, not even for the most
simple shapes. For instance, one might expect a six-sided shape to present a strong
contribution from the 6th mode. Instead, the EFA method represents such a shape as a
mixed contribution from the two adjacent modes, the 5th and 7th mode (Figure 2D and
Figure S3C). This mismatch is a consequence of how the individual ellipses obtained from
decomposing the outline contribute to the outline. Each ellipse does so by rotating either
clockwise or counterclockwise. The direction of this rotation in respect to the direction
of rotation of the first mode causes either an increase or a decrease in the actual number
of features being drawn, always one off from the actual mode (Figure S3D, E, Movie S2
and MovieS3). As a consequence, the ‘pitch’ obtained using EFA does not correspond
to actual cell features, which hinders interpreting the resultant values of this method.
Moreover, EFA coefficients on their own are redundant, i.e., there are more parameters
than needed to specify the same specific shape (Haines and Crampton, 2000). Therefore,
comparison of cell shapes on the basis of their EFA coefficients (for example, by means of
principle component analysis) becomes nonsensical. Together, these traits make the EFA
method unsuitable for reliable quantification of cell morphology and renders prohibitive
any meaningful comparisons between multiple cell outlines.

Diaz et al. (1990) proposed a heuristic solution for the mismatch between actual
shape features and EFA’s dominant harmonics, using the fact that the relative direction
of rotation is a main determinant of the generated pitch (see Supplementary Materials
and Methods for details). It turns out, however, that each ellipse is simultaneously
contributing to two different spatial frequencies, something this heuristic can not solve
(see Figure S3F and Movie S4). As a consequence, although their method is often (but
not always) able to correctly recapitulate the ‘pitch’, it is never able to correctly capture
the amplitude or timbre of the cell shape. Further details regarding the range of issues
when using EFA are discussed in depth in the Supplementary Materials and Methods.

To overcome these limitations we essentially propose a new basis for the outline recon-
struction, which we have coined L,,, after lobe number. In a similar manner as EFA, the
modes can be summed up to recreate the original shape and each individual mode is cap-
tured by a set of four unique parameters. However, there are two important distinctions.
Firstly, any possible cell outline is now only represented by one unique combination of £,
coefficients. In the Supplementary Materials and Methods we discuss in detail the steps
required to eliminate all levels of redundancy for shape analysis. Secondly, cell shape fea-
tures such as the protrusion number (the “pitch”), their amplitude (the “volume”) and the
characteristic lobe distributions (“timbre”) are directly represented by the L, coefficients.
The L, coefficients are obtained after decomposing each EFA harmonic into its exact, spe-
cific contributions to two separate £,, modes (Figure2A—C). In general, the EFA modes
n — 1 and n + 1 both partly contribute to mode L,,, although some specific exceptions
apply (see Figure S4). The resulting method, which we coin Lobe Contribution-EFA or
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LOCO-EFA, thus consists of: eliminating multiple representations of a given outline; de-
composing each nth elliptical EFA mode into two separate lobe contributions; and finally
integrating those separate modes into single LOCO-EFA modes. Every £,, mode can then
be regarded to represent two oppositely rotating circles, each with its own starting point
for the rotation, the four £, coefficients providing the radii and starting angles of both
circles. We next assign a scalar L, value, to specifically capture the amplitude contri-
bution (“volume”) of each mode. We found that in order to correctly capture this, both
the radii of and the angular distance between the starting points of the two contributing
circles, as well as the starting point of the main circle, £, have to be taken into account
(see Figure 2C, and Supplementary Materials and Methods for further details regarding
its derivation). Calculating the L,, values results in a spectrum representing the relative
contribution of each individual mode to the cell shape (Figure S3C). For instance, the
spectrum of the six-lobed test shape used for Figure S3C indeed contains a pronounced
peak at mode six, as well as a peak at mode one, which represents the overall circular
shape of that outline. The original shape can be reconstructed using all modes up to a
specific mode number. This allows us to visually appreciate the specific contribution of
mode six to the six-lobed test shape (compare Figure 2E with Figure 2D).

To further illustrate how LOCO-EFA characterises shapes, we apply it to simple geo-
metrical shapes with variable numbers of protrusions (Figure 3A-I). Indeed, LOCO-EFA
robustly determines the main L,-mode of each shape corresponding to the correct num-
ber of lobes (Figure3J). Each L,, profile provides information about the composition of
all morphological periodicities contributing to the shape, reflecting the geometry being
considered. We next tested if LOCO-EFA also correctly captures the “volume”, by ap-
plying the method to generated shapes of the same “pitch” (i.e., having a same number
of lobes), but with variable amplitudes (Figure 3N—Q). Indeed, the magnitude of the L,
components changes accordingly (Figure 3T), and their absolute value quantitatively cor-
responds to the size of the extensions. Thus, LOCO-EFA not only retrieves the main
number of morphological features of hypothetical cell shapes, but also a range of addi-
tional characteristics.

Following the analogy of sound decomposition, a more nuanced perception for quan-
tification is timbre. Timbre can be understood as residing in the additional amplitude
spectrum. It is determined by which overtones are emphasised in relation to one another.
For cell shape studies, we consider “timbre” analysis the ability to capture additional
aspects of the cell shape complexity, besides the main number of protrusions/lobes which
a cell presents. This additional information should enable distinction between different
cellular phenotypes, such as between wild type and mutants (Lin et al., 2013). To il-
lustrate, Figure 3R, S show two additional six-sided shapes which differ in “timbre” from
Figure 3Q, with their accompanying L, values (Figure3T). For both shapes, there is a
clear peak at Lg, reflecting their six-lobedness, and additional peaks or overtones, such
as Lg, capturing the elongated nature of these shapes, and so forth. Thus, LOCO-EFA
retrieves not only the main number of morphological features of an hypothetical cell (i.e.,
lobes), but also important fine-grained characteristics.

From the full characterisation of cell shape by £,, modes, additional objective metrics
can be derived to help quantify different aspects of “cell shape complexity”. We here define
four metrics: XOR difference; marginal difference; cumulative difference; and entropy.

Firstly, complementary to the magnitude of each individual L, mode, the cell shape
complexity can be estimated using the information of the approximation to the original
shape by the first N LOCO-EFA modes only. It addresses the question how relevant
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each subsequent L,, mode is for explaining that specific shape. Figure 2E already illus-
trated the importance of a specific mode for reconstructing the original shape (in that
case, mode six). One can straightforwardly quantify the relative contribution of that
mode for explaining the shape by calculating the total difference (in area, expressed as
either number of grid points or um?) between the original shape and the superimposed
reconstructed shape when the first N LOCO-EFA modes are used. To do so, we take the
XOR (exclusive or) between the original and reconstructed cells (see Figure S5). In this
context, a more “complex” shape is one in which more LOCO-EFA modes are needed to
obtain a good match between the reconstruction and the real shape (i.e., when the XOR
approaches zero only at higher N numbers). For this criterion, note that a circular cell
can be perfectly reconstituted using only the contribution of the first LOCO-EFA mode
(N = 1), and is therefore the least complex shape with an XOR value of zero for the
whole spectrum. On the other hand, cells presenting a high number of heterogeneous
lobes require a high number of modes for XOR to approach zero (Figure 3). This can be
observed in Figure 3K, U, which show the XOR difference profiles for the series of test
shapes.

This manner of defining cellular complexity can be further compressed by taking
the total area under the XOR difference curve, a scalar quantity which we call the
cumulative difference (cd). It derives a single value from the XOR spectrum, with higher
values for more complex shaped cells. The more similar the cell shape is to a circle
(which can be perfectly described using the first LOCO-EFA mode only), the more the
cd value approximates zero. Figure 3M, W shows the cd values for the series of test shapes.
From these, it becomes clear that cd becomes high for shapes that strongly deviate from
circular, it is therefore not just correlated with having many lobes. In general, however,
when morphological protrusions increase in number or become larger in amplitude, the
cumulative difference also increases since higher order modes are required to approximate
the shape.

XOR profiles typically do not change smoothly. Instead, some modes peak as they
strongly contribute in capturing the main features of the shape. Hence, the marginal
decrease in the XOR value when an extra mode is added, coined marginal difference,
provides additional information about the shape’s dominant modes (Figure 3L, V). This
measure is comparable to the L, values, also determining something akin to “pitch” and
“amplitude”. We found, however, that it bears a higher discriminatory power for more
complex and irregular cell shapes. Moreover, in the case that a cell shape has signific-
ant contributions from a combination of different modes, then high marginal difference
levels can be directly linked to specific cellular features (see Figure S5). Thus, the mar-
ginal difference can help identifying which modes are the most relevant for specific shape
aspects.

Finally, one can argue that shape complexity is not solely about high numbers and
large amplitudes of the protrusions, but instead reflects overall irregularity of the protru-
sions. For example, with the previous measures a highly regular star-shaped cell with five
outspoken lobes could be quantified as being as complex as a highly distorted cell with
different amplitudes and distributions of five lobes, albeit less pronounced than the star-
shaped case. One might therefore prefer to define cell shape complexity as the tendency
of a cell to deviate from geometrically well-defined periodic outlines. A useful measure
for this alternative definition of “cell shape complexity” is calculating the Shannon en-
tropy F of the L,, spectrum. The entropy measure is based upon the information content
contained within the distribution over the whole L, profile (see Equation 47 in the Sup-
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plementary Materials and Methods). For many shapes, the entropy measure yields very
similar results to the cumulative difference. They diverge for cell outlines having a strong
contribution from the lower modes. We observe that in these cases the entropy values
deliver more meaningful results in regard to what one considers being more “complex”.
This is due to the fact that lower modes can have a large contribution to the cumulative
difference. For example, there can be a high contribution from L, in the case that a cell
is very elongated. Simply being elongated, however, does not so much represent shape
complexity in the way defined above. For such a simple elongated shape, the cumulative
difference (i.e., the integral or area under the curve of the XOR between the original and
reconstructed profile) can be very similar to a cell with contributions distributed among
many modes. We would consider the latter outline, however, to be much more ‘complex’.
The entropy measure is able to correctly capture this form of complexity.

Next, we measured the L,, profiles and corresponding cell shape complexity measures
for a population of real cell shapes, which are much less geometric than the idealised cases
treated so far.

LOCO-EFA applied to plant pavement cells

To validate our method, and its derived measures introduced above, we analysed Ara-
bidopsis thaliana leaf epidermal pavement cells, individual cells that were tracked in vivo
over time as well as whole populations of cells at a single time point. Actual biological
cells, such as pavement cells, can be highly asymmetrical, with their L, landscape char-
acterised by multiple peaks (Figure 3S, T). This is because the outline of an asymmetrical
cell with a given number of protrusions placed quasi-periodically along its edge can be
interpreted as multiple protrusion frequencies superimposed. In general, the total number
of hand-counted lobes in a cell image matches to a peak at the corresponding L,, value
(but note here that hand-counting is very subjective). For instance, for nine lobes a peak
will be observed at Lg. However, if the lobes are distributed in a more or less pentagonal
clustered fashion, this would lead to an additional peak at Ls, whilst superimposed on a
triangular shaped cell basis a L3 contribution would be found, and so forth.

Pavement cells acquire their characteristic jigsaw puzzle-like shape through multipolar
growth patterns, such that relative simple shaped cells become highly complex over time
(Figure 4A-G). Notably, the smooth shape changes over time are clearly reflected in the
L,, profiles over time (Figure4l). Its initial squarish shape and later nine- and thirteen-
lobeness are well captured by the LOCO-EFA method, through peaks at mode L4, Ly,
and L3, and corresponding peaks in the marginal difference profile. In contrast, when
the EFA method is used (Kuhl and Giardina, 1982), the third and fifth mode are erro-
neously indicated to represent shape features, as well as other mismatches (Figure4H).
Importantly, the smooth transition in cell shape development over time is captured by a
corresponding smooth change in the LOCO-EFA L, profile for the different time points,
but by highly irregular changes in the EFA profile. This illustrates that very comparable
shaped cells have very different EFA profiles, making EFA further unsuitable to analyse
real pavement cell populations. Figure S6 presents the robust time dynamics analysis for
yet another pavement cell using LOCO-EFA.

To visualise the shape characteristics of populations of pavement cells, we applied
the analysis to leaves of the speechless mutant (MacAlister et al., 2007), which does not
generate during the leaf development any other cell types such as meristemoids or stomata
(Figure 1B, Figure 5A), as well as to wild type leaf epidermis, consisting of pavement cells,
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stomata and other cells from the stomatal lineage (Figure 1A, Figure 5B).

Using LOCO-EFA, it is straightforwardly possible to dissect the precise contribution
of each mode for each cell in the population. Figure5A, B show the spatial distribution
of cells within a tissue which are predominantly 4-, 5-, 6-, or 7-lobed, by colour-coding
the cells according to those specific L,, values. Very few cell shapes present only a single
high L, value. Instead the majority of shapes are composed of significant contributions
stemming from multiple modes. Consequently, simply manually counting, or applying
automatic counting algorithms, for such biological cells the number of lobes would lead
to incomplete information regarding their shape. It would be difficult to compare mutant
phenotypes. Moreover, our data shows pavement cells do not have a population-wide
preferential L,, with a highest contribution to the shape (Figure 5A, B).

The heterogeneity in modes that composes real populations of pavement cells suggests
that their resultant cell shapes cannot be explained solely by currently proposed intracel-
lular molecular mechanisms underlying lobe and indentation patterning. This is because
those mechanisms, based on the existence of two counteracting pathways (one for lobe
formation and another for indentation formation, see details in Xu et al., 2010) should
give rise to Turing-like instabilities which are therefore expected to generate symmetrical
shapes (Vanag and Epstein, 2009). Moreover, these models would predict that equally
sized cells exhibit equal lobe numbers. However, the cell shape patterning takes place
within a confluent tissue, which obviously complicates how individual cells generate their
shape. In the experimental setting it is very hard to distinguish between the preferred
shape of each individual cell due to its intracellular patterning, and the constraints im-
posed by the tissue. It is well-known that if cells prefer to be round, they will take up
an hexagonal shape within a tissue context (Thompson, 1917), but it is unclear what to
expect for multi-lobed shapes. Therefore, to both better understand what should be our
expectation when a population of cells with complex shape preferences form a confluent
tissue alike the leaf, and to further validate the LOCO-EFA method on populations of
cells, we performed cell-based simulations of interacting cells with prespecified cell shape
preferences, and employed LOCO-EFA on the resulting in silico tissue.

Applying LOCO-EFA to in silico populations and the effect of
interactions between preferred cell shapes

We create in silico cells using the Cellular Potts Model (CPM), an energy-based frame-
work that allows us to represent cells and their dynamics through small membrane exten-
sions and retractions (see Methods section). In its basic form, CPM cell shapes emerge
due to the interaction between interfacial tension (the strength of which can depend on
the cell types involved), internal cellular pressure and cortical tension (Magno et al.,
2015). Here we used an extension of the CPM which predefines intrinsic forces causing
elongation and lobeness, resulting in more complex cell shapes. This extension consists
in applying additional, cell-specific forces each time a cell extension or retraction is con-
sidered, giving rise to elongated and/or multilobed preferred cell shapes (Equation 3).
Three additional forces are used that capture (i) an intrinsic tendency to elongate; (ii) a
tendency to form a specified number of lobes; and (iii) an additional force for the cell to
round up (Figure 5E-G, van Rooij et al. (2017a) and Movie S5). The latter term robustly
prevents cells from falling apart, especially within a confluent tissue with many conflicting
preferred cell shapes. A population of cells, all with a same preferred shape, were then
allowed to interact with each other within a tissue context. In this way we can compare
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the shape of a single cell in isolation with the shape cells attain within a tissue.

We here present the analysis on two distinct specified shapes (Figure 5C, D; see Table S1
for the specific parameters used). Both preferred shapes have six lobes, the cells shown
in Figure 5D moreover tend to be elongated. Above the panels we plot the shape that
the cells attain in isolation. Although the same cell shape is specified for all cells within
the population, cells acquire very different shapes due to their local interactions. We
quantified this diversity using LOCO-EFA. This was done by colour-coding the contri-
bution of L,~L7 (as indicated for each panel), for both the isolated cells and for the
resultant shapes of all the cells within the simulated tissue. As expected, the isolated
cells present a very high contribution by Lg, with marginal contributions from the other
modes. In contrast, due to the cellular interactions within the tissue, other modes can
also become prominent, highly varying from cell to cell, even though each cell has exactly
the same specified shape. Thus, although a cell in isolation would be able to generate
regular protrusions with specific amplitudes, the periodical lobe formation becomes in-
hibited in a packed tissue environment, with symmetry and shape distortions being a
direct consequence of tissue packing (Figure 5C, D). Such a tendency was observed for all
simulations performed, irrespective of the specified cell shape, i.e., the number of lobes,
their amplitude, and the level of overall cell elongation, as well as over a wide range of
parameter values for the cell-cell interactions (Figure S7, Figure S8). Radially, well-spaced
periodically lobed cell shapes are not likely space filling, hence resolving the competition
between preferred shape and confluency seems to be a universal driving force to complex
cell shapes.

Discussion

The progress in microscopy and imaging techniques within the biological sciences gen-
erates a need for adequate analytic tools to capture relevant information efficiently and
objectively (Zhong et al., 2012). Image acquisition through high-throughput microscopy
approaches generates amounts of data that are beyond the human ability (or patience)
to be analysed manually, demanding computational automatic tools. We have developed
a new analytic tool which takes as the input the contour of a 2D cell projection, and ex-
tracts from it, in an efficient and parameter-independent manner, quantitative meaningful
cell shape information. Importantly, the pipeline can be integrated within other recent
advances in segmentation techniques (Fernandez et al., 2010; van Rooij et al., 2017b), to
fully automate shape analysis of series of images.

Our method can intuitively be understood using the analogy of music perception. To
quantify an instrument playing a certain note, say a violin playing the note A, one would
firstly wish to have a device that can capture which note is played. We have indeed
shown that LOCO-EFA, unlike EFA, is able to correctly determine the analogous feature
for shapes, which is the number of protrusions.

A recent method developed by Wu et al. (2016) can also be employed to count the
number of protrusions. When the biological question asked requires not only the “pitch”
to be measured, but also the “volume” and “timbre”, corresponding to lobe amplitude
and other irregularities, such a method will be insufficient. Indeed, LOCO-EFA provides
a broader spectrum of the shape properties, a holistic set of measurements that allows
complex morphologies to be quantified in a reproducible manner.

We illustrated how the measurements obtained with LOCO-EFA can be interpreted,

10


https://doi.org/10.1101/157842
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/157842; this version posted June 30, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

first using simple shapes (geometrical or symmetrical forms), then extending the analysis
to highly asymmetric shapes, for which the pavement cells of Arabidopsis are a good
paradigm. To assess the performance of our technique, we extended our study to confocal
microscopy images of populations of pavement cells. Such a shape analysis is biologically
relevant, because many of the players accounting for the lobe and indentation patterning
are known (Xu et al., 2010; Grieneisen et al., 2017), enabling one to extend the study of
cell shape control to mutants and experimental interferences in the future. We found that
very few cells have a symmetrical shape, i.e., they can not be represented well by a single
high L, value. Such composition in real cell shapes of several L, values is not likely
to be explained only by the existence of two counteracting pathways specifying lobe
and indentation identities. Our in silico approach instead suggests that the dynamics
of space-filling complex shapes can dramatically increase the overall irregularity: even
when the CPM cells are specifically programmed to develop well-defined characteristic
shapes, the interactions between them trigger the formation of highly deviating cell shape
characteristics. As a result of being within the tissue, the main, specified mode decreases
in strength while other modes become relevant. Altogether it leads to very asymmetrical
resultant shapes, even though very symmetrical shapes were specified.

Although our synthetic data is but a phenomenological reconstruction of real shapes,
our results suggest that the local influence of neighbours during pavement cell develop-
ment should be important for the acquisition of their final shape. To assess this hypothesis
in further studies it will be crucial to perform quantitative shape analysis on in vivo cell
populations over time, combined with growth tensor analysis (i.e., determination of the
spatial pattern in growth rate and its anisotropy). Such studies, combined with genetic
or physical perturbations in cell growth and deformation, and with in silico cell growth
models, should allow untangling of the relationship between the cell shape as specified at
the cellular level and the resultant shape arising from the complex interactions between
the cells at the tissue level.

When LOCO-EFA was applied to cell tracking data, we observed that the profiles of
those dynamically changing cells varied smoothly over time. Such trajectories are distinct
from cell-to-cell and provide unique fingerprints of each individual developing cell. This
opens the possibility of using the L, modes as cell identifiers within a temporal sequence
of images, to help track populations of cells automatically.

Although we have here applied LOCO-EFA to objectively measure cell shape differ-
ences in pavement cells, providing us a powerful tool to evaluate pavement cell shape
dynamics and compare plant phenotypes, it can also be applied to different cell types
with complex cell shapes of any species, as well as to any other layouts, such as entire
leaves, within or outside the realm of biology. Recently, Fourier analysis was applied
to quantify myosin polarity (asymmetrical distribution of molecules) in animal epithelia
(Tetley et al., 2016). In a similar way, the LOCO-EFA method could be applied to
quantify the cellular distribution of molecules within complex cell shapes. Finally, our
method could be integrated within recent image analysis pipelines, allowing one to ex-
tract and analyse cell shape information in a high throughput manner (van Rooij et al.,
2017b; Heller et al., 2016; Stegmaier et al., 2016).
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Material and Methods

Confocal images and image processing

Columbia wild type or speechless mutant (MacAlister et al., 2007) leaves expressing
pmCherry-Aquaporin (Nelson et al., 2007) were imaged using a confocal microscope Leica
SP5 at comparable stages and in comparable regions. Further image processing was done
using ImageJ and images were segmented using in-house software (Segmentation Potts
Model (van Rooij et al., 2017b)). Cells changing over time were imaged using a custom-
made perfusion chamber (Robinson et al., 2011; Sauret-Giieto et al., 2012; Kuchen et al.,
2012).

Shape descriptors

Average lobe lengths and neck widths were calculated using ImagelJ (Analyse — Measure).
The skeleton was calculated using Better Skeletonization by Nicholas Howe, available
through MATLAB File Exchange.

Geometric shapes

All geometric shapes were generated by the “superformula” described in Gielis (2003),
and were analysed in the same manner as the confocal images.

XOR and other measurements

All the grid points belonging to each individual real or synthetic pavement cell were
compared to all the grid points captured by the subsequent series of LOCO-EFA recon-
structions. A reconstruction of level N takes into account the first N £, modes. The in
silico cells were generated using the Cellular Potts Model, which is a grid-based formal-
ism, while for the experimental data the grid points were directly defined by the imaging
resolution. The scripts used to calculate the XOR and to colour-code the real and syn-
thetic cells were written in the coding language C. Shape approximations, cumulative
difference and entropy were calculated using the first 50 L,, modes. To capture cell shape
complexity linked to protrusions rather than mere anisotropy, cumulative difference is
calculated from the second L,, mode onwards. This value turned out to be more than
sufficient to capture any cell shape given the grid point resolution used for all cases here.
Note, however, that very high resolution images might require additional modes to fully
capture the shape.

Cellular Potts Model generating complex cell shapes

The Cellular Potts Model (CPM) is an energy-based model formalism used to model
cellular dynamics in terms of Cell Surface Mechanics (Magno et al., 2015). Individual
cells are described by a set of grid points on a lattice. In this manuscript we used the CPM
to generate in silico cells with relatively complex shape preferences that are allowed to
interact within a confluent setting. During each simulation step a grid point is chosen in a
random fashion to evaluate whether its state changes into one of its neighbouring states,
effectively corresponding to a small cell shape modification at that point. To evaluate
if such state change will occur, the energy change is calculated that such a copy would
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cause. This is done by calculating the change in the configurational energy as defined by
the following Hamiltonian, which sums up the energy contribution of each pixel within
the entire field as well as of all cells:

H=35 T (1= by, ) + D dalae = 4+, 3 (e =PI, (1)

ij il
J refers to the coupling energy, summed over all grid points (7,j) and their eight (2nd

order) neighbours (7', j'). The Kronecker delta term (1 —Oey o _,) simply assures that
»30%4 g

neighbouring lattice sites of the same state (i.e., belonging to the same cell) do not
contribute to the total energy of the system. The variables a. and p. denote respectively
the actual cell area and the actual cell perimeter for each cell (¢); the parameters A and
P denote the target cell area and perimeter. The parameters A, and A, describe the
resistance to deviate from the target area and perimeter, respectively. The probability
a copying event is accepted depends on the change in the Hamiltonian, AH = Hprer —
Hpe fore, in the following way:

1 it AH<-Y,
P=q . (2)
e it AH>-Y,

where Y corresponds to the yield or ability of a membrane to resist a force and T (simula-
tion temperature) captures additional stochastic fluctuations. Copying events which de-
crease H by at least Y will always be accepted, otherwise acceptance follows a Boltzmann
probability distribution (Equation 2).

To generate cells with a particular number of preferred protrusions, we modify the
change in the Hamiltonian as is calculated for every evaluated copying event, effectively
shortcutting intracellular biochemistry and biophysics, in the following way. Simulated
cells are attributed with a specified preferred number of lobes, amplitude of lobes, overall
elongation and roundness, implemented by modifying the change in the Hamiltonian for
every evaluated copy event as follows (van Rooij et al., 2017a):

AH = AH — veos(nf) — xcos(2a) — u(+/A/m — ). (3)

Those three additional terms are evaluated for both cells involved in the copying event,
so there are effectively six additional terms. The first term captures the tendency to form
n lobes, with v capturing the propensity to extend to form a lobe or to retract to form
an indentation, thus giving rise to the amplitude or pointedness of the lobes. € describes
the angle between any of the n equally spread out target directions for outgrowth and
the vector determined by the coordinates of the grid point under evaluation and the
centre-of-mass of the cell (hereafter called the copy vector) (Figure 5E). To clarify, when
a cell extension is considered right on top of one of the target directions, then nf = 0,
cos(nf) = 1, and tendency to extend is maximally increased, while halfway two target
directions, nf = m, cos(nf) = —1, and the tendency to extend is maximally suppressed.

The second term in Equation 3 captures an overall elongation, implemented in a similar
fashion. The parameter y corresponds to the propensity to elongate and « is the angle
between the elongation vector and the copy vector.

If only these two terms are used, cells within tissue simulations can easily lose co-
herence, i.e., fall apart. Therefore a third term was added, capturing a propensity to
roundness. The parameter p captures the resistance of a cell to deviate from a circle,
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with 7 being the length of the copy vector, and /A /71 being the preferred radius of cell,
given its target area. For further details, see van Rooij et al. (2017a).

Importantly, the target lobe and elongation vectors are not fixed during the simulation.
At intervals of 100 simulation time steps they are dynamically updated, in order to attain
the most favourable position, effectively “accommodating” its lobe positions with respect
to its neighbours. During a vector update step, the preferred directions of extension are
matched to the set of directions the current shape of cells presents the strongest level of
extension.

The initial cell positions within the field were randomly chosen. Simulations were
run for 10000 time steps (see an example in Movie S5). Parameters used for each used
specified cell shape are given in Table S1.
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Figure 1: Complex cell shapes and the shortcomings of traditional shape quan-
tifiers. (A-C) Complex cell shapes in both plant (A, B) and animal (C) tissues. (A, B)
Pavement cells of Arabidopsis thaliana wild type (A) and speechless mutant (B), char-
acterised by jigsaw-like shapes consisting of multiple alternating protrusions (lobes) and
indentations. (C) Amnioserosa cells in the Drosophila embryo also present cell shapes
with similar complexity. Scale bars 50 um. (D—G) Individual cells from the imaged tissues
(upper panel), and the corresponding segmented cell outlines (lower panel). Scale bars
10 pm. (H) Traditional metrics to quantify cell shape can lead to similar values for very
different shapes and are sensitive to parameter choices and imaging conditions. Here we
compare the cells D-G. See also Figure S1.
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Figure 2: To get LOCO. (A) Each EFA elliptic harmonic is decomposed into two
counter-rotating circles. (B) Mode L, is composed of the counter-clockwise rotating
n+ 1th EFA harmonic circle and the clockwise rotating n — 1th circle. (C) The combined
amplitude contribution to L,, (yellow line) of the two counter-rotating circles with radii
At and A_ | is also dependent on the offset in their starting points and the offset
of the overall (mode 1) starting point, which together determine the initial phase shift
(green dots) in the amplitude contribution of each rotor. (D,E) Comparison of closed
contour reconstruction through either EFA (D) or LOCO-EFA (E). Although both ap-
proximations eventually converge to the original 6-lobed star shape (labelled ‘Original’),
the reconstruction using EFA harmonics (D) generates a spurious shape after addition of
the 5th harmonic and only recovers the original shape after addition of the 7th harmonic,
whereas the reconstruction using LOCO-EFA (E) reconstitutes the original shape only at
the 6th mode, matching the number of protrusions. The number of modes used for each
sequential reconstruction is indicated below each shape.
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Figure 3: Interpreting LOCO-EFA-derived measures for geometrical and asym-
metric shapes. (A-I) Symmetrical and well-defined geometrical shapes with normalised
area. (J-L) L,, XOR, and marginal difference profiles for shapes (A-I). (J,L) For each
geometric shape, a clear peak appears in the profiles, this main contributor to the shape
always coinciding with the number of protrusions. (M) Cumulative difference (cd) and
entropy for shapes (A-I). (N-Q) Symmetrical shapes with increasing protrusion amp-
litude. (R,S) Asymmetrical shapes. (T-V) L,, XOR, and marginal difference profiles
for shapes (N-S). Increasing protrusion amplitude leads to increasing peak levels in the
profiles. Asymmetric shapes present multiple peaks, indicating that multiple modes are

needed to recapitulate the original shape. (W) Cumulative difference (cd) and entropy
for shapes (N-S).
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Figure 4: LOCO-EFA metrics on a cell changing its shape over time. (A-G)
Sequence of a tracked pavement cell growing over time with normalised area. (H) P,
and marginal difference profiles using EFA. Applying EFA modes to approximate the cell
shapes leads to erratic profiles that fail to recover the biological sequence of development,
as can be observed in the P, profile and as spurious peaks at the third and fifth har-
monics in the marginal difference profile. (I) L,, and marginal difference profiles using
LOCO-EFA. The LOCO-EFA measurements recover the smooth transitions during the
cell morphogenesis. The overall square symmetry of the cell is captured by a peak at Ly,
the formation of lobes by a smooth increase in Lg, and later Li3.
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Figure 5: LOCO-EFA analysis on in vivo and in silico pavement cells. (A,B)
LOCO-EFA applied to speechless mutant (A) and wild type (B) leaf tissue. Colour
coding depicts the L, values for 4 different L,, modes (n = 4...7), as indicated above
each panel, with the scale shown below each panel. It shows that very few cell shapes
can be reasonably captured through a single L, mode, revealing the complexity of the
cell shapes. (C,D) LOCO-EFA applied to in silico pavement cells reveals the degree of
divergence from their specified shape that interacting cells within a tissue experience. Two
different specified cell shape populations are shown (SCS1 and SCS3, each with six lobes,
see Table S1). The specified shapes are depicted above each panel. Colour coding within
the panels and of the specified shapes above each panel again depicts the L,, values, with
the scale shown below each panel. Because cells interact with each other within the tissue,
strong deviations in L, contributions can be observed. (E-G) Modelling framework to
generate the in silico tissues. (E) Standard Cellular Potts Model is modified to allow for
a specified number of lobes (here, n = 5) to be formed at a regular radial spacing («).
(F) This gives rise to a symmetric, multi-lobed specified cell shape, shown in red. (G)
Within a tissue context, however, the same specified shape deforms as to accompany the
neighbouring cells.
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Table 1: Distinct shape descriptors have been used to quantify pavement cells.
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Measure Description Reference
Average lobe  Length of each lobe and the distance between opposite (Fu et al.,
length and  indentations within a cell (called necks) are shown in 2005)
neck width ~ Figure S1. The final measure for a cell is the average of
all lobe lengths and the average of all the neck widths.
These measurements depend on human criteria to
identify lobes and necks, and are given in absolute length
units (thus, incomparable throughout growth stages).
Form factor  Defined as %, where p is the perimeter and A is cell (Bai et al.,
(or area. A circle corresponds to a form factor 1, the lowest 2010; Russ,
circularity) value possible. 2011;
Andriankaja
et al., 2012)
Skeleton This metric relies on the number of end points of a (Le et al.,
skeleton representation of the cell shape. The skeleton is 2006; Russ,
formed by iteratively removing pixels from a grid-based 2011)
cell shape representation, such that eventually a
branched one-dimensional graph remains. There are
different variants of this algorithm to skeletonise shapes;
the resulting branch patterns and length of branches
highly depends on the parameters used and are very
sensitive to the image resolution.
Average Defined as %s, where c¢ is the circularity and s the (Sorek et al.,

polarity score

number of skeleton end points.

2011)
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Supplementary Materials and Methods

Decomposing shape: Lobe Contribution Elliptical Fourier Ana-
lysis (LOCO-EFA)

In this section, we first summarise previous efforts to make EFA coefficients interpretable
within a morphometrics perspective and explain why matching EFA coefficients with
shape features generally does not hold. We describe in detail our new method, Lobe
Contribution Elliptical Fourier Analysis (LOCO-EFA). We show how it provides quant-
itative and biologically interpretable measurements that are unique for a given shape,
overcoming the shortfalls of the previous methods.

Standard Fourier Analysis cannot be used to quantify complex cell shapes

Standard Fourier Analysis has been widely used to analyse cell morphology. It can,
however, only be applied when cells present simple holomorphic shapes, i.e., when the
radii emanating from the centroid of a cell intersect its outline only once (Figure S2A and
Pincus and Theriot (2007)). When the geometry of a cell is more complex, as in the case
of pavement cells, and radii emanating from the centroid can intersect the outline more
than once, the shape cannot be decomposed using a Fourier expansion based on polar
coordinates (Figure S2B and Schmittbuhl et al. (2003)).

Elliptical Fourier Analysis fails to align mode frequency with morphological
features

In 1982 Kuhl and Giardina proposed the Elliptical Fourier Analysis (EFA) to describe the
contour of any two-dimensional shape (both holomorphic and non-holomorphic), derived
from the coordinates of all the points along its outline.

In short, EFA takes the z and y coordinates of a closed contour and decomposes it
into an infinite summation of related ellipses:

2(t) —ap + i (an cos (@) + B, sin (@)) | (4a)
s =0+ Y (% cos (@) + 6, sin (@)) , (4b)

n=1

where o, 8,, 7, and ¢,, are the so-called EFA coefficients and oy and ~y are the x- and
y-offset of the initial contour. The detailed derivation of the formulae for ag, Yo, s, Ba,
vn and 6, can be found in Kuhl and Giardina (1982). They are calculated from a discrete
chain of contour points (z;,y;) with i« = 1,..., K (see Figure S3A), K being the total
number of points along the closed contour. We define (z9,y0) = (zx,yx), given that
cell contours are closed. Now imagine drawing the contour of the cell, then At; is the
time spent drawing the line segment of the contour that links (x;_1,y;-1) to (x;,y;), i.e.,

At; = \/(:UZ — xi,l)Q + (y; — yi71)2 = /Az? 4+ Ay?. Note that At; is not fixed but can
vary for each interval. Define T as the total time spent to draw the whole contour, i.e.,
T :Zfilﬁti. The “time” passed while drawing the contour, starting from contour point
(x0,Y0), or, equivalently, the distance passed along the contour to reach each contour
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point (z;,y;), is referred to as t;, i.e., t; = 22:1 At,, with tg = 0, and tx = T, the “total
drawing time” or total perimeter length (see Figure 1 in the main text). Given that no
equal spacing between the points is required, it is straightforward to define K observation
points from any kind of cell contour. The only requirements are that the contour is closed
and the coordinates form an ordered list that follows the contour. The EFA coefficients
are then given by:

T A.ﬁEl 27’L7th 2n7rt2-_1
W =553 g \C08 7 — oS —— (ba)
i=1 !
K
T A.TZ . 27L7Tt1 . 2717'('151',1
Bn =55 (sm — sin —) : (5b)
on?n? A, T T
T K Ayl 27171'@ 27171'2?@',1
Tn =5 A \ 08— — o8 — : (5¢)
i=1 !
K
T Ayz . 27’L7Tt2 . 2n7rti_1
=523 At (sm 7 —sin T) . (5d)
i=1 !

The offset to the contour is given by:

:_Z(;XCZ (2 —t2) + &t —ti 1)>+xo, (6a)

1 Ayz 2 2

where & = Z;;ll Axj — qu Zz ! LDty e = Z Ay] Ay’ Zl ! LAty and § =& = 0.
Further details and full derlvatlon can be found in Kuhl and Glardlna (1982).

Each set of four coefficients yields an ellipse (also referred to as the “nth mode” or “nth
elliptic harmonic”), with a certain orientation and a certain starting point. The original
cell outline can thus be expressed as an infinite summation of ellipses. Note that z(¢) and
y(t) are periodic functions with period equal to T.

A visual way to understand how the set of ellipses gives rise to the final shape is as
follows: the second elliptic harmonic traces two clockwise or counter-clockwise revolutions
around the first harmonic; the third harmonic traces three revolutions around the path
drawn by the second harmonic; and the nth harmonic traces n revolutions around the
path drawn by the previous harmonic (see Figure S3 and Movie S1).

Diaz et al. (1990) proposed a heuristic measure regarding the contribution of each har-
monic to the shape through an approximation of the perimeter of each ellipse multiplied
by its harmonic number n:

M, + A3,

P, =2mn ,
2

(7)

where A\, and Ay, are the major and minor axis of the nth ellipse. Moreover, Diaz et al.
(1990) introduced an additional correction to capture the complex relationship between
EFA modes and shape feature periodicity.
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The direction of rotation of the nth harmonic ellipse is given by the determinant of

the EFA coefficients matrix, det [ o

v G } , i.e., the direction of rotation is given by the
n n

sign of
Tn = O‘n(;n - /8an . (8)

If r,, < 0, the elliptic harmonic is rotating clockwise; if r,, > 0 the elliptic harmonic
is rotating counter-clockwise. When EFA is used for shape approximation, mode n con-
tributes to shape features with an n + 1 or n — 1 periodicity. This is in contrast to
standard Fourier Analysis, in which mode n contributes to shape features with an n
periodicity. Standard Fourier Analysis, however, is only possible for holomorphic shapes,
and hence cannot be applied to, for example, pavement cells. Diaz et al. (1990) observed
that whether mode n predominantly contributes to shape features with an n 4+ 1 or with
an n — 1 periodicity strongly depends on whether the nth harmonic rotates together
with or against the direction of the first harmonic (see Movie S2 and Movie S3). This
effect of presenting contributions to the n 4 1'th and n — 1’th mode depending on the
rotation direction of the first and nth harmonic is a common phenomenon observed for
objects orbiting around others (hereafter referred to as the relative direction effect). A
well-known example of the relative direction effect is the rotation of the Earth and its
movement around the sun. The actual number of rotations our planet makes per year
(as observed from “star-rise to star-rise”, the so-called sidereal days) is one off from the
number of days we perceive in a year (from “sunrise to sunrise”, the so-called solar days).
Because our planet rotates around its axis in the same direction as it moves around the
Sun, the number of solar days per year is 365, one less than the number of sidereal days
per year, which is 366. If the rotation of Earth would have been in the opposite direction
as its movement around the sun, the number of solar days per year would instead have
been 367. In light of exactly the same principle, Diaz et al. (1990) introduced that when
the nth elliptic harmonic is moving in the same direction as the first harmonic, its shape
contribution P, should be assigned to n — 1; inversely, when the direction of a given mode
is opposite to the first harmonic, its shape contribution P, should be assigned to n + 1.

We will show below that this simple heuristic is reasonable as long as the ellipse
marginally deviates from a circle, but is is not valid in general. When the aspect ratio of
the ellipse (A1, /A2, ) is large (i.e., the elliptical harmonic is very flat, deviating significantly
from a circular shape), the proposed rule fails to apply. Figure S3F illustrates a situation
when the rotation direction of the first and third harmonic are opposite (and no other
modes are used), yet instead of generating a contour with n — 1 = 2 protrusions, as
expected from the heuristic rule, a four-sided outline is generated, clearly illustrating that
this method of P, shifting does not work in general (see also Movie S4). Moreover, it is
not possible to reconstruct the original shape using the P, values, and therefore cannot be
used for additional analysis based on shape reconstruction as presented in the main paper.
This strongly limits usage of EFA for biological shape interpretations and statistical
population analysis. Surprisingly, although EFA has been used to quantify morphology
at the organ level, relative direction effect has typically been ignored altogether (Yoshioka
et al., 2005; Friefl and Baylac, 2003; Neto et al., 2006; Iwata et al., 1998, 2010; Chitwood
et al., 2013).

Realising that the source of the problem is linked to the eccentricity of the ellipses,
it became clear to us that we could overcome this issue by essentially decomposing each
ellipse into two counter-rotating circles. All circles can then be redistributed, forming a
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new base. The details of how to do so are discussed below. We call the new base L,
which, when summed up, can also reconstitute the original shape.

Contouring the limitations: Lobe Contribution Elliptical Fourier Analysis
(LOCO-EFA)

To capture the biologically relevant cell shape features, overcoming the limitations of using
P, and rotation-dependent n + 1, n — 1 adjustments, we have developed an alternative
method coined Lobe Contribution Elliptical Fourier Analysis (LOCO-EFA). As the name
indicates, it correctly maps the contribution of each mode/harmonic to the corresponding
morphological features. This is done by separating each elliptic harmonic into two circular
harmonics, each rotating in an opposite direction.

First we rewrite the EFA (Equation4) in matrix form:

o l-leles e ] [wtE ] 0

n=1 T

~

with the infinite sum being truncated at the Nth order harmonic.
Equation 9 can concisely be expressed as

N
[X(0)] = [Ao] + ) [A [Ma(®)] (10)
n=1
in which [X(¢)] corresponds to the drawn cell outline [ 583 1; [Ap] represents the
spatial offset [ 30 ]; [A,,] corresponds to the EFA coefficients matrix { 3” ?" ]; and
0 n n

cos (22) : : :

[M,,(t)] refers to the rotor sin ( P )| (For clarity, we will use the notation [..] through-
T

out to emphasise we are dealing with matrices; not to be confused with |..| that represents
determinant, which we here only refer to as det|..].)

The LOCO-EFA method consists of three steps: 1) eliminate multiple representations
of the same outline; 2) decompose each nth elliptic harmonic into two circular harmonics,
each rotating in an opposite direction; and 3) determine £, and L, for all N modes.
Below we describe these steps in detail.

(1) Eliminate multiple representations of the same outline

It had already been noted that EFA coefficients are redundant and therefore compromise
statistical analysis and shape comparisons (Haines and Crampton, 2000). We found that
there are three sources of degeneracy in the EFA coefficients that therefore have to be
eliminated. First, a contour can be drawn starting from any arbitrary initial point along
the contour. While exactly the same outline is drawn, each starting point is represented
by a completely different set of EFA coefficients for all modes [A,,]. Basically, whenever
the starting point is changed, all elliptic harmonics take a different orientation (Kuhl and
Giardina, 1982). The first step is therefore to transform the EFA coefficients such that
the starting point of the first harmonic is always positioned at, for standardisation, the
extreme of the semi-major axis (see further below). The second source of degeneracy,
however, is that such a normalisation still allows for two possible representations of the
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outline, since each of the two extremes along the semi-major axis can be chosen as the
starting point. Moreover, a third source of degeneracy is due to the fact that the outline
can be drawn clockwise or counter-clockwise. Clearly, all three sources of degeneracy
have to be removed to make any comparison between cells sensible.

The first step is to determine where the new starting point should be positioned, as
well as the scaled amount of time or temporal angle (T1 = 2”%) required to reach the
starting point (see Kuhl and Giardina, 1982). As stated above, we wish the starting
point to coincide with one of the extremes of the semi-major axis of the first harmonic.

Points along the first harmonic (z1,y;) can be described as :

x1(T) =0y cosT + fysinT, (11a)

y1(7) =vy1cosT + dysinT, (11b)

with 7 = M being the scaled time or temporal angle. By differentiating the magnitude

of the first harmonlc ellipse E(T \/xl 2+ y1(7)? and setting its derivative to zero
(dE( 7 = O) the temporal angles can be found at which the extremes along the semi-

major and semi-minor axes of the first harmonic are reached (Kuhl and Giardina, 1982):

2(a1 By + 7101) )

14
+ 7. 12
T B "

2

1
7 (v) = 5 arctan

The values v = 0,1, 2,3 give the four possible solutions along both the axes, after
which the same points get repeated. For LOCO-EFA, it is required (see further below)
to limit the starting point to the semi-major axis only. To satisfy this condition, the
second derivative of E(7), evaluated at the temporal angle, should be negative, i.e.,

% < 0. Substituting the found solutions into the second derivative results in v = 0
T1

and v = 2 belonging to the points along the semi-major axis whenever the denominator
of the arctan term is positive, and the solutions ¥ = 1 and v = 3 belonging to the points
along the semi-major axis whenever the denominator of the arctan term is negative.
A very straightforward computational implementation of this result is to make use of
the four-quadrant inverse tangent function (atan2) as provided by most programming
languages (i.e., such that atan2(1,1) = 7/4 is different from atan2(—1,—1) = —3x7/4).
Then, using

71 = (0.batan2 (2(04151 +7101), af + ’Y% - 67 - 5%) (13)

automatically and unambiguously ensures that the temporal angle 71 is located at one of
the extremes of the semi-major axis.

This still leaves two ways to position the starting point (one for each of the extremes
of the semi-major axis) and thereby two distinct representations of a same outline. We
therefore further restrict 7 to always lie within the first or second quadrant (I or II in
Figure S9A). This is achieved by testing if the obtained 7; that shifts the starting point
of the first harmonic to the semi-major axis indeed positions it within quadrant I or II.
To shift the starting point we first introduce a time shift 7/ = 7 — 7y such that at 7/ =0
the first harmonic is positioned along its semi-major axis:
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[A1] [M1(t)] = [A4] [_Ml (r"+7)], (14a)
—w[ o], e
— | e ) i) ] (14c)

) ) E
(A cpsm))—smgfﬂ [cos(w” | (14d)

| sin (71) + cos (71 sin (77
= [Al] [Q/Jﬁ] [Ml(T/)] ) (146)
= [A][My(7)] (14f)

were [¢5,] is the rotation operator, rotating by an angle 7 and [A}] = [A] [¢r,]. The
spatial angle at the shifted starting point p is given by

"
o(v) = arctan <J) + . (15)
1
Again, a single, unique and correct solution for ¢ can be obtained by using o =
atan2(v, o) instead. The starting point lies in quadrant III or IV when ¢ < 0. In that
case, 11 is modified as follows:

= (n+mn). (16)

Otherwise (when the starting point is already in quadrant I or II), 7 = 7.
The new EFA coefficients corrected for the starting point then become:

{a B } _ [an 5711 {cos(m-l*) —sin(n7t) | (17)

ox Y On sin (n7})  cos (n7y)

Finally, we ensure that the direction of contour approximation of the first harmonic is
always counter-clockwise (i.e., that ; > 0, Equation 8). Besides removing redundancy by
restricting the freedom of choice regarding the overall direction of contour approximation,
this transformation also guarantees a unique correspondence between the properties of
each subsequent harmonic and its contribution to the morphological features. When the
direction of the first harmonic is clockwise (r; < 0), we therefore invert the direction of
motion of all ellipses, maintaining thereby their inter-relationships. This can be done by
running “time” backwards:

St

S

- i L 2nm(—t)
[ z(—t) ] _ | o B } Ccos T
y(—1) Lm0 sin 2"%(%)
[ an B } [ cos (%) } (18)
| v on ][ —sin (B)
_|en A {COS(QT;“M) }
L =0 | L s (B ]

In short, whenever r; < 0, all indices 3} and ¢} should be negated. After these
steps, each unique cell contour is represented by a unique set of EFA coefficients. Note
that the steps above do not alter the layout, nor do they rotate the shape. In certain
study contexts, however, it might be desirable to rotate the contour itself, positioning
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the semi-major axis, for example, to be parallel to the x-axis (or in any other preferred
orientation). The details on how to perform those rotations can be found in Kuhl and
Giardina (1982). Please note that unlike in their study, our subsequent analysis does not
require such a cell contour realignment.

For simplicity of notation in the rest of the Supplementary Materials and Methods
we refer to the [A,] matrix, which elements have been normalised regarding the starting
point and direction of reconstruction of the first harmonic:

el b](% 8]

*
Cn Tn

After all possible sources of redundancy have been removed, the next step of the
LOCO-EFA method is to split each elliptic harmonic into two counter-rotating circles.

(2) Decompose each nth elliptic harmonic into two circles with opposite dir-
ection of rotation

In order to find the contribution of nth harmonic to a given morphological feature, we
rewrite the [A,] matrices in Equation9 such as to explicitly introduce the length of the
semi-major and semi-minor axis of the nth ellipse (A1, and Ag,).

For this purpose, it is necessary to introduce both the temporal and the spatial rotation
operator of each elliptic harmonic, given by [¢7, ] and [t¢g, ], respectively. The temporal
operator is defined as

onl = | o e | (20)

sin¢,  coso,

and the spatial operator is defined as

(21)

[ ]_[cosén —sin@nl
Snl — )

sinf, cos@,

where ¢, is the temporal angle (i.e., the time 7,, required to rotate to the semi-major
axis) and 6,, the spatial angle (i.e., the angle of this position along the semi-major axis
with the positive x-axis) (Figure S9A).

Equation 10 can be written as:

X0 = [Ad] + D s, [¥s,) " [Au] [ ] o) [Ma(1)] (22)

given that [g |[1hs,] " and [¢hr,] [, ] correspond to the identity matrix [I].
Equation 10 can also be written in a form which directly highlights the contribution
of the semi-major and semi-minor axis:

N

(X (0] = [Ao] + ) s, ] [An] [0, )7 [Ma(8)] - (23)

n=1

This equation can be understood as follows: for each mode, correctly position the
starting point relative to the semi-major axis, transform the original circle into an ellipse,
its semi-major axis along the x-axis and semi-minor axis along the y-axis, and finally ro-
tate the ellipse to its correct position (see Figure S9B-D). Since both descriptions should
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be equivalent, by combining Equation 22 and Equation 23, the [A,] matrix can be iden-
tified, with Ay, corresponding to the length of the semi-major axis, and the modulus of
A2, to the length of the semi-minor axis of the nth ellipse:

S N e v B

(24)

Note that this process is similar to a singular value decomposition of [4,], with the
difference that here Ay, (but not \y,,) can be negative. The temporal angle ¢,, corresponds,
for each elliptic harmonic, to the scaled time 7,, to reach an extreme along the semi-major
axis (Figure S9). Similarly to Equation 12, this corresponds to

1 < 2(anby + cndy) ) v

On(v) = 5 arctan P + LR (25)

Once again, using atan2 ensures that ¢, corresponds to the semi-major axis (see above).
For the next steps of the analysis (see below) it is essential that ¢, corresponds to the
temporal angle to reach the semi-major axis, not the semi-minor axis, hence usage of
atan2 or any equivalent function which determines the quadrant of the return value is
essential.

The spatial angle 0, (see FigureS9) can be calculated after applying the temporal
modification:

0,(v) = arctan C—’f + v, (26)
an
where ¢, and a,, are the new coefficients after the temporal transformation (i.c., after
applying [A,] [¥7,]). Again, it is essential to use atan2 to ensure that ¢, and 6, are both
relative to the same extreme of the semi-major axis. It does not matter, however, which
of the two extremes is being used, hence for this step no check is required regarding the
quadrants. Applying Equation 24 then provides Ay, and As,. Deriving a temporal and
spatial angle relative to the semi-major axis and both being related to the same extreme
guarantees that A;, > 0 (while Ay, can be positive or negative, depending on the rotation
direction of the rotor) and |Ay,| > |Agn].
Using the above, the EFA (Equation 10) can be rewritten as:

o]

— [A] —l—iv: [ cosf, —sin@n} [A(l)n A(in } [ cos ¢, sino¢, } { cos (227:%7:5)) } |
n=1

sinf, cos6, —sin¢, coso, sin ( o

(27)

Written in this form, the contribution of each harmonic can easily be separated to
correctly map to morphological feature number. The diagonal matrix containing the
length of the semi-major and semi-minor axis of each nth mode can be decomposed into
two diagonal matrices, each corresponding to circular orbits moving in opposite directions:

AR il [ (R

A 0 cos ¢,  sing, cos ( Q”T” )
+ 0 —=x_, —sing, cosd, sin (M) )

T

(28)

no
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where Ay, and A_, are the radii of those circles (Figure2).
Summing up the diagonal matrices in Equation 28 yields

o]

M=

o cosf, —sinb, A, +A-, 0 cos ¢,  sing, cos (227t)

= [Ao] +n:1 { sinf,,  cosf, ] [ 0 Ay, — A, } { —sin¢g, coso, } { sin (Q"TT”) ’
(29)

in which the major and minor axes of each elliptic harmonic are
AL, =My, AL, (30a)
Ao, = A1, — A, (30b)

and hence the radii of each oppositely-rotating circle is given by
)\"l‘n :(Aln + >\2n)/27 (31&)

Given that A1, > 0 and |A1,| > Ao, Ay, and A_ are always positive. To approx-
imate the cell contour (z(t),y(t)) using the circles A\, and A_, requires completing the
transformations using the spatial (6,,) and temporal angle (¢,) as calculated before, most
clearly seen through the expression

N

(X (0] = [Ao] + Y s ] [Ay, + AT [r,] 7 [Ma(1)] (32)
n=1

The term A, presents the subset of the nth elliptic harmonic which is moving in the

same direction as the first harmonic, therefore purely contributing to n — 1 “lobes”, i.e.,

shape features with periodicity n — 1. In contrast, A__ presents the subset moving in

the opposite direction, purely contributing to n + 1 “lobes” (shape features) only. Their

contributions can be separated by writing:

(X (t)] = [Ao] + Z [Ay ] [M(t)] + Z [A_ ] [M(1)] (33)
where
[A;.] = [Ws,] [Ny [Wr,]) ™, for j =+, —. (34)

This can be further simplified. Straightforwardly, [¢s, ] [Ay, ] = [¥s,] Ay, [I] = [A+,] [¥s,]-
Regarding [Ay, ],

[ cos#,, —sinb, A 0
W] [A-] = | sinf, cost, } { 0 =X, } ’ (35a)
[ A_, cos®, +\_ sind,

B A_ sinf, —A_ cosf, } ’ (35b)

B :AO” _f} {fzisnegn (SEZZ} ’ (35¢)
[P5 0 ][@i e ] a
= (A=) s, (350)
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Thus,
[A_n] - [A_n] [wsn}_l [an]_l N (36b)
Hence, introducing ¢, =6, — ¢, and (_ = —0, — ¢,, Equation 34 can be written as
which corresponds to
a; b;
[A]n} = |: C]An d],n :|
Jn - Fin (38)

_ {)\jn 0 }{COSCM —sin(;, for j = +. —.

0 g\ Sin(jn COSCjn

We next label those matrices with respect to their lobe contribution instead of their
EFA mode. To make the distinction, we here use subscript n to indicate the EFA mode,
and subscript | to indicate the LOCO-EFA mode. In general, [Ay,] = [A4,.,] and
[A_,] = [A,n_l}. There are, however, a few exceptions, see Figure S4:

1) The overall offset of the contour is not solely given by [Ag]. An additional contri-
bution to the offset is coming from [A, _,]. Note, however, that the contribution from
[A, _,]isin fact not a perfect offset to the contour, but also causes a kidney bean-shaped
distortion to the contour, its deviation from a pure offset becoming more pronounced
when the contribution of this mode relative to the overall contour size is larger (see
Figure S4B).

2) The overall circular shape of the contour (i.e., LOCO-mode 1) receives solely a
contribution from [Ay, _ ] itself, i.e., [Ay,_,] = [A4,_.]

3) When N EFA modes are taken into account, then LOCO-mode N only receives a
contribution from [A_ _ ]

4) Likewise, when taking N EFA modes into account, there is still a contribution to
LOCO-mode L = N + 1, solely coming from [A_ _,].

Defining [My,] = [My41] and [M_,| = [M,,—1], with the exceptions [M,,_ | = [M,—s]
and [My,_,| = [M,—], then the same shape approximation can be achieved through
LOCO-EFA as through EFA:

(X (@] = [Ao] + [Ag ] My ()] + [Ag,o ] [My L, (2)]

S . 39
+ ) AL M (0] + > TAL] M, (1)) - (39)

Equation 39 can be used to reconstruct the shape up to a certain L number, requiring
EFA coefficients up to mode L + 1:

[(Xi=a(8)] = [Ao] + [Aq o] My ()] + [As ] [My L, ()] (40a)

=2 =2

(40D)
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Each LOCO-EFA mode can be fully described by the combination of the radii and the
starting positions of both circles. The radii are, as previously defined, A\, = A4 ., and
A_, = A_,_,, with the exceptions A\y,_, = Ay, _, and A\__, = 0, and A\y_, = Ay, _, and
A_,_, = 0. The starting points of both circles are defined as ¢y, = ¢4, ., and (_, = (_, |,
again with the exceptions (;,_, = (4,_, and (4,_, = (4,_,. Together this gives a set of
four coefficients £, = (Ay,, A_,, (4,,(-,) that fully capture each LOCO-EFA mode and
allow for a full reconstitution of the original shape:

[X(t)] = [AO] + [A-H:o] [¢C+l:0:| [M-H:o (t)] + [A+z=1] [¢C+l:1} [M+z:1 (t)]

L—2 L (41)
+ Z [A-i-z] [¢C+l] [M-H (t)] + Z [A—z] [@DC—J [M_l(t)] .

In the next section we derive how from those values a single amplitude value can be
found, the L; contribution.

(3) L; amplitude contributions

In this section we first show that the contribution to the shape of the two counter-
rotating circles of a specific LOCO-EFA mode is not simply determined by the radii
of those circles, but also depends on the relative position of the starting points. We
then derive a heuristic which optimally captures its contribution, determining as well the
limits of this approximation. To illustrate how a difference between the starting points
(4, and ¢, of mode [ can affect the generated amplitude, we first plot the contribution of
L3 = (Ayy, Ay, 1y, (—5) superimposed on £, = (1,0,0,0), i.e., superimposed on the unit
circle starting at zero degrees. As long as A\y,, A_, are not too large, a single amplitude
value a (which is the amplitude of deviation from the unit circle) can be observed for
any phase w; peak amplitude values A occur for specific phases 2 (as illustrated in
Figure S10I). Figure SIOA-C depict the shape contribution of the negative rotor (green),
positive rotor (red) and their summed contribution (orange), as a function of the phase
w, for L3 = (0.15,0.15,0,0). This scenario illustrates that even though the negative
rotor makes two sidereal rotations while the positive rotor makes four sidereal rotations,
the amplitude pattern that they generate not only has a period three in both cases, as
argued throughout the paper, but also perfectly match one another regarding the phases
at which the peaks and troughs in the amplitude pattern are reached. The summed
contribution (Figure S10C) therefore indeed yields a peak amplitude exactly equal to
Ay, + A, In contrast, when both rotors are exactly out-of-phase (L3 = (0.15,0.15,0, 7),
Figure SI0D-F), the peaks and troughs are exactly out-of-phase as well, and the patterns
almost (but not totally) cancel each other out (Figure S10F). To determine the effective
contribution of a LOCO-EFA mode we therefore have to determine the phase at which
each rotor reaches its peak amplitude.

The angles 2, €2_ at which the positive and negative rotor reach their peak amplitude
can be calculated straightforwardly. They occur when the phase of the rotor itself is
equivalent to the overall phase generated by £; (as illustrated in Figure S10G). The
phase of £, starts at (,, while the phase of the positive rotor starts at (., (illustrated
in Figure SI0K). When the pattern is laid down, the phase of the positive rotor changes
(I +1) times faster than the phase of £; (Equation41). Thus, regarding the phase at
peak amplitude it holds that
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Qp = 0+1) (Q, = ) + G4 + 270, (42a)
_ZQ‘H = <+l — (l + 1)C+1 + 27”/, (42b)
— 2
Q= (4 ST 2T, (420)
where v is any integer, and the values v = 0,1,...,l — 1 provide the complete set

of phases at which peak amplitude is reached. Likewise, the negative rotor rotates
(I — 1) times faster than £, and in the opposite direction, hence starting at —(_, (see
Figure S10J). Regarding the phase at peak amplitude it therefore holds that

Q—z = _(l - 1) (Q-H - g—h) - g—z + 27y, (43&)
0, =—-C,+ (-1, +2mv, (43b)
Q - C—h + C—z 27

it S B e B (43c)

To assess the summed amplitude contribution we next fit the amplitude pattern laid
down by each rotor to a sine wave, exactly matching both the peak amplitude and the
phase at which the peak amplitude is reached, and then sum those two contributions:

Aqy = )‘-H cos (lw + <+1 - (l + 1)C+1) ) (44&)
a-, = )\*l cos (lw + C*z o (l o 1)C+1) ) (44b)
ay +a-, = /\-I-z cos (lw + C—i—z - (l + 1)€+1) + )\_l cos (lw + C—z - (l - 1)C+1) : (44C)

Equation 44a exactly matches the peak amplitude and its phase of the positive rotor,
as derived in Equation 42, while Equation 44b exactly matches the peak amplitude and
its phase of the negative rotor, as derived in Equation43. While peak amplitude and
phase match perfectly, Figure S10G, H illustrate that for not too large values of Ay, A\_,
also the rest of the pattern presents a close match.

Using standard trigonometry, the summed amplitude can be written as

ay, +a_, =a, = \/)\3” + A2+ 20 A cos (Cy, — (o — 2G4, ) cos (lw + §) (45a)

where

Cl = atan2 (/\-H sin (C-h - (l + 1)C+1) + >‘—z sin (C_l - (l - 1)C+1) ) )‘-H cos (C+1 - (l + 1)C+1)
+ A o8 (Cy — (1= 1)Cy) -
(45b)

Figure S101 illustrates that for not too large values of A,,, A_, this expression provides
a close match to the pattern generated by the £; mode, here illustrated using both a
different phase and a different amplitude for both rotors. Using the equation above, the
amplitude or contribution of mode [ can hence be defined as

L= A%, + 02, 4 20 cos (G, — G, — 204). (46)
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While above we have performed a more formal derivation, a more intuitive way to
understand the amplitude contribution of the positive and negative rotor combined, is
in terms of how much the amplitude contributions of both rotors are out-of-phase with
each other. The most straightforward moment to determine their phase shift is at the
initial point of drawing the cell’s outline. As illustrated in Figure S10J, K, the phase shift
regarding the amplitude contribution of the negative rotor is given by (4, +(_,, and of the
positive rotor by (4, — (4,. To understand the graphical argument for the negative rotor
case, one has to realise that the negative rotor rotates clockwise, and hence its starting
angle is —(_, (for the positive rotor it is simply (4,), while for the same reason the phase
shift between initial amplitude and maximum amplitude has to be calculated clockwise
(instead of standard counterclockwise, as done for the positive rotor), again as shown in
Figure S10J, K. Plotting the phase shift and strength of both amplitude contributions as
vectors and then adding them up then provides the above equation for L; (as is depicted
in Figure 2C).

Note that the pattern can never be perfectly described by a sine wave, which is why
four parameters are needed to describe each mode, rather than the two required by
Equation 45. Even when following Equation 45 the two waves cancel each other out, this
is not exactly the case, as seen in Figure S10F. There is therefore no additional level
of redundancy, as the usage of the L; numbers might suggest, even when the value of
L; = 0. When the amplitude of a rotor becomes larger, the generated pattern starts to
deviate from a sine wave (Figure S10J,K), and their summed pattern from Equation 45
(Figure S10L). For simple closed contours (which cell outlines should always be), the devi-
ations cannot be very large, since otherwise the contour becomes non-simple (i.e., crosses
itself). This confinement in deviations for cell outlines allows us to base a significant part
of our analysis on L; values.

Moreover, we observe that the positive rotor generates protrusions that are flatter
than a sine wave (FigureS10B,J), whereas the negative rotor generates lobes that are
more pointy (Figure S10A, K). The extent of “flatness” or “pointiness” of each mode can
be determined by the proportion wy, = Ay, /(Ay, + A_,) and w_, = 1 —w,,, respectively;
a useful additional measure if needed.

Entropy measurement

The entropy measure is defined as

L
E=-> filnf;, (47)
=1

where f; refers to the relative proportion of each L; for a given L number of modes
L

analysed, i.e., fi = —7——.
Zl:l Ly

Final remarks

To summarise, the LOCO-EFA method consists in: 1) eliminating degeneracies in the
EFA coefficients; 2) decomposing each elliptic harmonic into two circles rotating in op-
posite directions (A4, and A_ ) and therefore contributing to n — 1 and n + 1 number
of lobes (more generally, morphological features); and 3) calculating the offset between
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starting points of these two circles derived from each ellipse to estimate the amplitude of
the L;th lobe contribution.

To eliminate cell area effects (for example, when looking at shape diversity within a
cell populations), it might also be desirable to normalise for cell size by dividing each L,
value by the square root of the cell area. This then provides a complete description of
the number of lobes and their amplitude, which can be used to characterise and quantify
intrinsic cell shape properties, irrespective of cell area, spacing between sampling points,
and rotations or inversions of the cell (Figure S11A,B). Changes in the image resolu-
tion, however can of course affect the fine-grained information retrieval, but only if the
resolution becomes very low (Figure S11C, D).
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Supporting Figures

A

Lobe length Neck width

Sl

B

p=45 p=65 p=85

Figure S1: Subjective choices involved in neck width and lobe length determin-
ation and Skeletonisation. (A) Neck width and lobe length depend on human criteria
for both identifying and quantifying such structures, as indicated by the question-marks.
(B) Both the number of skeleton end-points and the length of the branches strongly de-
pend on the parameter settings used for the skeletonisation algorithm. Here, parameter
p (see material and Methods) was set to 45 (left), 65 (middle), or 85 (right). For those
values, the number of predicted lobes varies between 6 and 8.
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Figure S2: Holomorphic and non-holomorphic shapes. (A) In holomorphic shapes
all radii starting from the centroid intersect the outline only once. (B) In non-holomorphic
shapes some radii intersect more than once. Very few pavement cells have a holomorphic
shape, the majority presenting highly complex non-holomorphic outlines. The outline of
non-holomorphic shapes cannot be represented as a function of the angle, precluding, for
example, standard Fourier analysis.
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Figure S3: Cell outline reconstruction using EFA and LOCO-EFA. (A) Calcu-
lating the EFA coefficients from a cell outline. The discrete chain of contour points can
be positioned arbitrarily (for example, the points do not have to be associated to an un-
derlying grid). Also the distances between points can be arbitrarily long. (B) Sequential
approximation of the cell’s contour. The first harmonic forms an elliptic shape (1, blue).
The second harmonic describes an elliptic orbit (2-6, red), orbiting twice while moving
around the first harmonic (2,3). Their summed trajectories are shown in green. The
third elliptic harmonic (4-6, orange) orbits thrice while moving around this summed tra-
jectory (4-6). The summation of the first three elliptic harmonics is shown in blue. See
Movie S1 for this dynamical reconstitution of the cell contour. (C) The EFA coefficients
cannot be directly linked to shape features, here shown through the power contribution
of each harmonic (P,) (upper panel): the main P, contributions of a six-pointed star-like
shape (shown as an inset) come from the 5th and 7th harmonic. To align the coefficients
to actual shape features, Diaz et al. (1990) proposed to shift the contribution of each
harmonic to either n + 1 or n — 1, depending on the rotation direction of each individual
harmonic (middle panel). This brings the main shape contributor and the actual number
of shape features in alignment to each other. This method, however, does not always
hold (see F), and moreover generates a range of spurious contributions from a large set
of different modes, which is a notorious issue that hampers analysis of complex shapes
using standard EFA (Haines and Crampton, 2000). The LOCO-EFA method correctly
aligns the shape assessment and the real shape features (lower panel), without generating
any additional spurious contributions. Moreover, unlike the other methods, the values
correctly represent the amplitude of the shape features. (D-F) Contours (shown in blue),
generated from the first (green) and third EFA harmonic (orange) only. The number of
morphological protrusions (lobes) specified by the nth EFA mode is affected, but not fully
determined, by its rotation direction. The heuristic rule proposed by Diaz et al. (1990)
states that if the first harmonic and the nth harmonic rotate in the same direction, a
contour is generated with n — 1 protrusions, while if their rotation direction is opposite,
the contour will contain n + 1 lobes. This rule, however, is only correct when the elliptic
harmonic has a circular shape (D, E), in which case indeed overall shapes are generated
with either 2 (D) or 4 lobes (E), simply dependent on the rotation direction with respect
to the first mode. When, however, the elliptic harmonic has a higher eccentricity (F),
the final shape can have n + 1 protrusions (4 lobes) even though the rotation direction
of the first and third harmonic are opposite. This is a consequence of each single EFA
mode actually contributing to two different spatial modes. See also Movie S2-54.
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Figure S4: Schematic mapping between EFA modes and LOCO-EFA modes.
(A) Each nth EFA mode contributes to both n+ 1 and n — 1 morphological periodicities.
The red arrows represent the contributions of the nth EFA mode to n+ 1 protrusions, due
to the clockwise rotations of the circular harmonics A_ . The blue arrows indicate the
contributions to n — 1 protrusions, due to the counter-clockwise rotations of the circular
harmonics A\, ,. A few exceptions apply: The second EFA mode contributes to a shift
in the positioning of the layout, i.e., to LOCO-EFA mode 0 (A4, blue and dashed line),
rather than to the overall size of the layout, as might have been expected. The first
EFA mode contributes to the overall circular size of the layout (Ay,, blue and dashed
line), rather than to a shift in the positioning of the layout, as might have been expected.
The zeroth EFA mode only contributes to a shift in the positioning of the layout (yellow
line). Finally, the two highest LOCO-EFA modes have incomplete contributions, given
any cutoff in the number of EFA modes. (B-E) The contribution A, is not simply an
offset of the contour, but also involves a kidney bean-shaped distortion, more pronounced
for larger contributions. Mode A4, (the circular mode) is shown in blue; mode A, in
red; their summation in green; and the predicted shape if the contribution were purely an
offset in magenta. (B) A;, being 10% of A\, ,, effectively resulting in just an offset to the
shape outline (C). (D,E) A4, being 30% of A,, resulting in a clear kidney bean-shaped
distortion of the shape.
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Figure S5: XOR measure extracted from the LOCO-EFA coefficients to provide
additional information regarding the cell shape complexity. (A) Original cell
contour. (B) LOCO-EFA reconstruction taking the first n £,, modes into account, as
indicated below the panels. (C) Determination of the level of mismatch between the
original cell shape and its nth order truncated LOCO-EFA approximation, by applying
an XOR (Exclusive OR) function.
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Figure S6: Additional example of LOCO-EFA metrics on a cell changing its
shape over time. (A-G) Sequence of a tracked pavement cell growing over time with
normalised area. (H) P,, XOR difference and marginal difference profiles, cumulative
difference and entropy using EFA. (I) L,,, XOR difference and marginal difference profiles,
cumulative difference and entropy using LOCO-EFA. See also the first example presented
in Figure4 in the main text.
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Figure S7
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Figure S7: Confluent in silico cell populations, simulated with three types of
specified cell shapes (SCSs) and different number of specified lobes. Paramet-
ers for the different specified cell shapes are given in TableS1. (A-H) Cells with large
protrusions (Specified Cell Shapes 1, SCS1), with specified lobe number increasing from
3 (A) to 10 (H); (I-P) Cells with small protrusions (SCS2), with specified lobe number
increasing from 3 (I) to 10 (P); (Q-X) Elongated cells (SCS3), with specified lobe num-
ber increasing from 3 (Q) to 10 (X). Specified cell shapes, as resulting from single-cell
simulations, are shown above each panel. Cells are randomly coloured. See also Figure 5
and Figure S8.
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Figure S8: Divergence between specified cell shapes and resultant population-
level cell shape diversity within confluent in silico cell populations. The mis-
match is visualised as the difference in LOCO-EFA-derived measures between the average
for confluent population simulations and its value for single cell simulations. Three types
of specified cell shapes (SCSs) were simulated, as indicated for each column, and paramet-
rised in Table S1. Lobe numbers vary from 3 to 10, as indicated for each row and depicted
in FigureS7. (A-C) Difference between the average L, ((L,)) values of the cells of the
simulated populations and that of a single simulated cell. (D-F) Difference between aver-
age XOR ((XOR)) of the cells of the simulated population and that of a single simulated
cell. (G-I) Same as in (A-C, D-F), but now for marginal difference (Md). In all cases
the specified cell shape becomes less pronounced in the confluent population simulations
(indicated by negative values that all measures yield at the given specified lobe number),
while the cells present an increased shape diversity and complexity (seen by the broad
flanking regions with positive values in the profiles, indicating a large range of modes that
contribute to the shapes). These effects are present regardless of the number of specified
lobes or the combination of parameters used, but becomes less pronounced at higher lobe
numbers. See also Figure 5.
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Figure S9
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Figure S9: Temporal and spatial transformations required to calculate the pre-
cise contribution of each EFA mode. (A) The blue ellipse depicts an elliptic har-
monic, given by [X(t)] = [A] [M(t)], while the grey circle depicts the unit circle, given
by [X(¢)] = [M(t)]. The temporal angle ¢ is the scaled time required to move along an
elliptic harmonic from the starting point at 7 = 0 to one extreme along the semi-major
axis (green filled circles). The angle ¢ cannot be trivially derived from the spatial po-
sition at 7 = 0, requiring first an effective projection upon the unit circle (green open
circles). The spatial angle # is the inclination of the elliptic harmonic. After apply-
ing the appropriate spatial and temporal transformations to the EFA coefficients using
this geometrical interpretation, the semi-major and semi-minor axis, A\; and Ay, can be
straightforwardly obtained. To eliminate multiple representations of the same outline,
the starting point of the first harmonic is specifically positioned at the extreme along
the semi-major axis which lies in either quadrant I or II, given by temporal angle 77
(Equation 17). In contrast, all other temporal angles ¢,, used, while also positioned along
the semi-major axis, are not confined to quadrant I or II. (B-E) Visual interpretation
of Equation 23 as a step-wise construction of the elliptic harmonic. The matrix [M (t)]
corresponds to the unit circle (B). For each mode, first the starting point relative to the
semi-major axis is correctly positioned (C); then the original circle is transformed into
an ellipse, its semi-major axis along the x-axis and semi-minor axis along the y-axis (D);
and finally the ellipse is rotated to its correct position (E). See further details in the
Supplementary Materials and Methods.
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Figure 510: Impact of LOCO-EFA starting points (;, and (_, on the amp-
litude of the reconstructed shape. All panels show L3 = (A, Ay, (4y,(—y) SU-
perimposed on £; = (1,0,(;,,0), i.e., the unit circle. In (A-F), £; = (1,0,0,0).
(A) Amplitude a as a function of phase w (as depicted in I) for the negative rotor
only (£3 = (0,0.15,0,0)), shown in green. For several phases also the rotor (light
blue) itself is drawn. Note that by plotting the rotor in the (w,a) plane, the circles
are slightly deformed. (B) Same for the positive rotor only (L3 = (0.15,0,0,0)),
in red. (C) Same for both rotors superimposed (L3 = (0.15,0.15,0,0)), in orange.
(D-F) Alike (A-C), but for an out-of-phase starting angle of the negative rotor. (D)
L3 = (0,0.15,0,7), in green; (E) L3 = (0.15,0,0,0), in red; (F) £3 = (0.15,0.15,0, 7),
in orange. In (G-L), £; = (1,0,%m,0). (G) Pattern generated by the negative ro-
tor only (L3 = (0,0.1,0,—%#)), shown in green, compared to the equation a_, =
A, cos (lw+ (-, — (I — 1)(4,) (Equation 44b), in dark blue. They present a close match.
(H) Same for the positive rotor only (L3 = (0.075, 0, %7?, 0)), shown in red, compared to
ay, = Ay, cos (lw+ (¢, — (1 4+ 1)(4,) (Equation44a), show in dark blue, again presenting

a close match. (I) Same for both rotors superimposed (L3 = (0.0?S,O.l,%ﬂ,—%ﬂ)),

shown in orange, and a; = /A%, + A, + 2\ A, cos (¢4, — (-, — 2¢4,) cos (lw + ()
(Equation 45), show in dark blue, again presenting a close match. Panel (G) also illus-
trates that at peak amplitude the phase of the main and subrotor are equal; panel (I) also
illustrates the concepts amplitude (a); peak amplitude (A); phase (w); and phase at peak
amplitude (Q). (J-L) Alike (G-I), but for larger amplitude. (J) £3 = (0,0.2,0, —7),
in green; (K) (L3 = (0.15,0, %7?,0), in red; (L) L3 = (0.15,0.2,%7r,—%7r), in orange.
Panel (J) and (K) also illustrate how the initial phase shifts with respect to the amp-
litude contribution of the negative and positive rotor depend on (;,, and on (_, and (4,
respectively. They are given by (4, + (_, for the negative rotor and by (;, — (4, for the
positive rotor.
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Figure S11: LOCO-EFA is invariant to image rotation or mirroring, nor sens-
itive to image resolution. (A) The cell outline of an experimentally observed cell was
mirrored along the y-axis and/or rotated over different angles, after which LOCO-EFA
was applied to each image separately. (B) The L, values and other derived metrics were
invariant to those transformations. (C) The resolution of the original image was reduced,
such that the number of contour points decreased from 1104 to 253, 108 and 27 (from
left to right, respectively). (D) The L,, numbers and the associated metrics only deviated
from the high-resolution values when the resolution was very low and the cell outline
was clearly deviating from original cell outline. This in contrast to the skeletonisation
method, for which even marginal resolution reductions can cause large deviations in the
outcome.

51


https://doi.org/10.1101/157842
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/157842; this version posted June 30, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supporting Table

Table S1: Three types of specified cell shapes (SCS) as used in Figure S7 and Figure S8.

SCS1  SCS2 SCS3

Target Area 858 1167 1197
Pointedness 6912 5328 5207

Number of lobes 3-10 3-10 3-10
Roundness 382 518 434

Elongation 4 28 5927
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Supporting Movies

Movie S1: Approximation of a closed contour using Elliptic Fourier Analysis.
A given two-dimensional shape can be approximated using EFA by summing n elliptic
harmonics as follows: each nth elliptic harmonic traces n clockwise or counter-clockwise
revolutions while moving around the previous elliptic harmonic.

Movie S2: Direction of rotation opposite to the first harmonic ellipse. EFA
mode 3 generating a shape with 4 features, its rotation direction opposite to the rotation
direction of the first harmonic.

Movie S3: Direction of rotation same as the first elliptic harmonic. EFA mode
3 generating a shape with 2 features, its rotation direction the same as the rotation
direction of the first harmonic.

Movie S4: Exception of the rule regarding rotation direction. If the eccentricity
of an elliptical harmonic is very high, the number of generated lobes does not follow the
rule-of-thumb proposed by Diaz et al. (1990). Here, EFA mode 3 generates a shape with
4 features, although its rotation direction is the same as the rotation direction of the first
harmonic.

Movie S5: Example of an in silico simulation of a population of cells with more
complex specified shapes. CPM simulation of multi-lobed cells take up pavement-like
cell shapes when they are allowed to interact with their neighbours within a confluent
tissue.
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Supporting Code

loco-efa_example.c Code written in C which applies the full procedure to calculate the
L; and L; values to any file containing contour coordinates. For each computational
step it is indicated where the relevant mathematical details can be found in the
Supplementary Materials and Methods. We have intentionally kept the code as
bare as possible, without for example any graphical interface, to allow it to be
trivially compiled and run on any platform. Details regarding compilation and
execution can be found in the header of the file.

cell_outline.csv Contour data of the cell presented in Figure 3S, Figure S3A and Figure S11.
This file, or any other file containing contour data, can be used as an input for the
program.
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