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Abstract

Dropout in single cell RNA-seq (scRNA-seq) applications causes many transcripts to go
undetected. It induces excess zero counts, which leads to power issues in differential expression
(DE) analysis and has triggered the development of bespoke scRNA-seq DE tools that cope
with zero-inflation. Recent evaluations, however, have shown that dedicated scRNA-seq tools
provide no advantage compared to traditional bulk RNA-seq tools. We introduce zingeR, a
zero-inflated negative binomial model that identifies excess zero counts and generates obser-
vation weights to unlock bulk RNA-seq pipelines for zero-inflation, boosting performance in
scRNA-seq differential expression analysis.

Introduction

Transcriptomics has become one of the standard tools in modern biology to unravel the molecular
basis of biological processes and diseases. One of the most common applications of transcriptome
profiling is the discovery of differentially expressed (DE) genes, which exhibit changes in average
expression levels across conditions.’ 2 Over the last decade, RNA-seq has become the standard
technology for transcriptome profiling enabling researchers to study average gene expression over
bulks of cells.#® The advent of single cell RNA-seq (scRNA-seq) enabled high-throughput tran-
scriptome profiling of single cells and disrupted research on developmental trajectories, cell-to-cell
heterogeneity and the discovery of novel cell types, amongst others.6 !

In scRNA-seq, individual cells are first captured and the RNA is converted to cDNA in a reverse
transcription step upon which vast amplification of the minute amount of starting material occurs
prior to sequencing.'? Many scRNA-seq protocols have been published to conduct these core
steps, 318 but despite these advances, scRNA-seq data remains inherently noisy. Dropout events
cause many transcripts to go undetected due to inefficient cDNA polymerisation, amplification bias
or low sequencing depth, leading to excessive zero counts, as compared to bulk RNA-seq data.!8 19
The presence of dropouts suggest two different types of zeros in scRNA-seq data: biological zeros,
when a gene is simply not expressed in the cell, and excess zeros, when a gene is expressed in
the cell but it was not observed for technical reasons other than a low sequencing depth. In the
count data analysis literature this is also referred to as zero-inflation. In addition, scRNA-seq


https://doi.org/10.1101/157982
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/157982; this version posted June 30, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

counts are inherently more variable than bulk RNA-seq data because the transcriptional signal
is not averaged across thousands of individual cells (Supplementary Figure 1), making cell-to-
cell heterogeneity, cell type mixtures and stochastic expression bursts important contributors to
between-sample variability.” 20

In RNA-seq applications, abundances are typically estimated by using counts, which represent
the number of sequencing reads mapping to an exon, transcript or gene. Popular RNA-seq DE
tools like edgeR? and DESeq2! assume a negative binomial count distribution across biological
replicates, while limma-voom? uses linear models to model log-transformed counts and observation-
level weights to account for the mean-variance relationship of the count data. These bulk RNA-
seq tools have can also be applied for scRNA-seq DE analysis?! . However, dropouts and high
variability in scRNA-seq data raised concerns about the utility of existing bulk RNA-seq tools
for scRNA-seq data analysis. This has triggered the development of novel dedicated tools, which
typically introduce an additional component to account for excessive zero counts through, for
example, zero-inflated (scde??) or hurdle models (MAST'?). However, Jaakkola et al. (2016)%3
and Soneson & Robinson (2017)?* have recently shown that these bespoke tools do not reveal
systematic benefits over standard RNA-seq tools in scRNA-seq applications.

We argue that standard RNA-seq tools, however, still suffer in performance due to zero-inflation
with respect to the negative binomial distribution. We illustrate this using biological coefficient
of variation (BCV) plots,?> which visualize the mean-variance relationship of the counts. Note,
that the BCV plots of scRNA-seq datasets contain striped patterns (Supplementary Figure 2 for
scRNA-seq datasets subsampled to ten samples), that are indicative for genes with few positive
counts (Supplementary Figure 3) and very high dispersion estimates. Randomly adding zeros
to bulk RNA-seq data, likewise consisting of ten samples, also results in very similar striped
patterns (Figure 1). The negative binomial models implemented in DESeq2 and edgeR will thus
accommodate excess zeros by overestimating the dispersion parameter, which jeopardizes the
power to discover differential expression in the presence of zero-inflation. However, a correct
identification of the introduced excess zeros and downweighting them by assigning a weight of
zero in dispersion estimation and model fitting reconstructs the original mean-variance relationship
(Figure 1c), recovering the power to detect differential expression (Figure 1d). Hence, identifying
and downweighting excess zeros provide the key to unlock RNA-seq tools for scRNA-seq differential
expression analysis.

We therefore propose zingeR (Zero Inflated Negative binomial Gene Expression in R), a tool
for scRNA-seq DE analysis using a zero-inflated negative binomial (ZINB) distribution. zingeR
efficiently identifies excess zeros and provides observation weights to unlock bulk RN A-seq pipelines
for zero-inflation. zingeR is shown to outperform competing methods on simulated RNA-seq and
simulated scRNA-seq datasets. We also demonstrate zingeR’s gain in performance in a case study
on a differential expression analysis between neuronal cell types using publicly available data. The
method and a novel simulation framework for scRNA-seq data are incorporated in the R package
zingeR and are available at https://github.com/statOmics/zingeR.

Results

zingeR extends bulk RINA-seq tools towards zero-inflation

In this manuscript, we argue that standard RNA-seq tools applied in scRNA-seq applications still
suffer from zero-inflation with respect to the negative binomial distribution. We propose zingeR,
a tool for scRNA-seq DE analysis using a zero-inflated NB (ZINB) distribution, a two component
mixture between a point mass at zero (¢) and a NB distribution (fy5)
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with y,; the expression counts for gene g in sample 7, 7; the mixture probability for an excess zero
count, ug; and ¢4 respectively the negative binomial mean and dispersion parameters. zingeR uses
the EM-algorithm for fitting the mixture distribution, where we use the association between the
cell’s sequencing depth and zero abundance to estimate 7;. Upon convergence, zingeR, produces
posterior probabilities that a zero belongs to the count component
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which can be used as observation weights in the analysis. We build upon edgeR to fit the ZINB
model and assess DE using the negative binomial component of the mixture.

As in the introduction, we will demonstrate the problem and the solution provided by the zingeR
method using BCV plots. We have already noted that adding zeros to bulk RNA-seq data re-
sults in striped patterns (Figure 1b, 2a), that are indicative for genes with few positive counts
(Supplementary Figure 3) and very high dispersion estimates. The zingeR model, however, iden-
tifies many introduced excess zeros as such (Figure 2a-c), by classifying them to the zero-inflation
component of the ZINB mixture distribution. As expected, distinguishing biological from excess
zeros is harder for genes with a lower expression, since those genes often have higher dispersion
estimates (Figure 2b). Using zingeR posterior probabilities as observation-level weights in edgeR
recovers the original BCV plot and mean-variance trend (Figure 2d), illustrating zingeR’s ability
to account for zero-inflation. Hence, they provide the key to unlocking standard RNA-seq tools for
zero-inflation. The BCV plot of the scRNA-seq Islam dataset (Figure 2e) shows a similar striped
pattern as in the zero-inflated RNA-seq data. For scRNA-seq data, however, we also observed a
trend between zero abundance and the cell’s sequencing depth (Supplementary Figure 4), infor-
mation that we integrate in the zingeR model component for excess zeros (Figure 2f). Moreover,
the data are more variable and the zero-inflation pattern is more subtle than in the RNA-seq
example, resulting in a higher classification uncertainty of the zeros (Figure 2g). However, also
in scRNA-seq applications, a decrease in dispersion estimates is achieved (Figure 2h), suggesting
that zero-inflation patterns were indeed present and have been accounted for.

RNA-seq simulation study

First, we evaluate zingeR in an RNA-seq context. We use zingeR weights in conjunction with
edgeR (zingeR_edgeR) and DESeq2 (zingeR_DESeq2) and compare them to state-of-the-art bulk
RNA-seq tools edgeR,? 2% DESeq2! with default and positive counts normalization (see Online
Methods) and limma-voom;® scRNA-seq dedicated tools scde,?? MAST!® and NODES;?¢ and
metagenomeSeq?” developed for zero-inflation in metagenomics applications. We use the frame-
work from Zhou et al. (2014)2® to estimate gene-wise parameters from the Bottomly dataset?? and
simulate RNA-seq counts for a two-group comparison according to a gene-wise negative binomial
distribution where the means and dispersions are jointly sampled to respect the original mean-
variance relationship. In a first scenario, we evaluate the methods in a zero-inflated RNA-seq
setting, by randomly replacing 5% of all counts with excess zeros. The false discovery propor-
tion - true positive rate (FDP-TPR) curves (Figure 3) clearly illustrate that all conventional
RNA-seq DE tools break down since the excess zeros inflate dispersion estimates (Figure 2b) and
thus compromise performance. zingeR, however, correctly identifies excess zeros, and thus recov-
ers the original mean-variance relationship, boosting performance for the differential expression
analysis. zingeR_edgeR has superior performances in this simulation, but is closely followed by
zingeR_DESeq2 and scde. However, scde provides very conservative FDR control as suggested
by its FDR working points. All three methods use a zero-inflated negative binomial distribution
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to model the counts, and convincingly outperform the other tools. MAST also outperforms the
bulk RNA-seq tools, but is inferior to the methods using zero-inflated distributions. Furthermore,
zingeR_edgeR and zingeR_DESeq2 even attain a similar performance as an edgeR or DESeq2 anal-
ysis using the ground truth, i.e. by assigning excess zeros a zero weight, clearly demonstrating
the correct identification of excess zeros by the zingeR algorithm. Moreover, in the absence of
zero-inflation, the performance of zingeR_edgeR and zingeR_DESeq2 is not deteriorated (Figure
3) and they converge to a regular edgeR (DESeq2) analysis. Hence, adopting the zingeR methods
will not harm the analysis in any case.

scRNA-seq simulation study

The RNA-seq simulation study has shown that tools adopting zero-inflated distributions have
superior performances in an RNA-seq setting with excess zeros. scRNA-seq data, however, are
noisier than RNA-seq data and the excess zeros do not occur completely at random. Therefore,
we provide a scRNA-seq data simulation paradigm that retains gene-specific characteristics as
well as global associations across all genes. More specifically, we estimate the dataset-specific
associations between zero abundance with the sequencing depth and average expression rates and
explicitly model this in our simulation framework (Supplementary Figures 4-5). The scRNA-seq
simulation is based on two datasets: the Islam'® mouse dataset, which compares 48 embryonic
stem cells to 44 embryonic fibroblasts in mouse, and the 48h and 72h timepoints of the human
Trapnell®® dataset, comparing differentiating human myoblasts at the 48h (85 cells) and 72h (64
cells) timepoints. The datasets differ in their extent of zero-inflation (Supplementary Figure 6) and
provide a basis for method evaluation and comparison at different degrees of zero-inflation that
occur in practice. The simulated datasets successfully mimic the characteristics of the original
datasets (Supplementary Figures 7, 8), suggesting good quality of the simulated data. Figure
4 (Supplementary Figure 9) illustrates that many methods break down on the simulated Islam
dataset due to a high degree of zero-inflation. Surprisingly, even methods specifically developed to
deal with excess zeros like MAST, scde and metagenomeSeq suffer from poor performances. The
DESeq2 methods, however, are able to cope with a high degree of zero-inflation. In general, it is
a good strategy to disable the imputation step in DESeq2, since it deteriorates its performance in
scRNA-seq data (Supplementary Figure 10). The zingeR models dominate all competitors in terms
of sensitivity and specificity, providing high power and good FDR control. These results persist
even when simulating DE with high fold changes (> 3) (Supplementary Figure 11). Although scde
had good performances in the bulk RNA-seq simulations it has low power and bad FDR control
in a high zero-inflation setting. Note, however, that the remaining methods also suffer from poor
FDR control.

Since zero-inflation is fairly modest in the Trapnell dataset, most methods perform better than
in the Islam simulation (Figure 4). zingeR_edgeR, zingeR-DESeq2, MAST and DESeq2 with
positive counts normalization, outperform the remaining methods in this simulation in terms of
sensitivity and provide good FDR control. scde is their closest competitor, however the method is
again overly conservative. Notably, DESeq2 has very liberal FDR control, but the positive counts
normalization results in a dramatic performance boost. The scRNA-seq method NODES provides
good sensitivity, but it also suffers from a very liberal FDR control. Note, that the performance
of all methods is still lower than in the bulk RNA-seq simulation due to the high level of noise
associated with scRNA-seq experiments.

Case study: differential expression between neuronal cell types

Finally we apply zingeR to a publicly available scRNA-seq dataset for neuronal cell types in
mouse.!! In this experiment, cells from the dorsal root ganglion were robotically picked and the 5’
end of the transcripts were sequenced. After quality control, the authors considered 622 cells which
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were classified in eleven neuronal cell type categories. The authors acknowledge the existence of
a batch effect that is related to the picking session of the cells, where all cells were picked in three
separate picking sessions. We find that the batch effect is not only associated with expression
but also influences the association of sequencing depth with zero abundance (Figure 5a).3! Large
differences in sequencing depth between batches (picking sessions) causes an attenuation of the
global association across all batches (Figure 5a). We therefore add the batch effect as a covariate
in both the zingeR count model and zero-excess model. Upon correction for batch effects, a better
identification of excess zeros is achieved (Figure 5b) with a higher classification certainty. This
shows the generality of the zingeR method: both the count component as well as the zero-excess
model component can be modelled in a very flexible way, providing an optimal assessment of dif-
ferential expression while accounting for any factor that can improve the identification of excess
zeros. The authors identify genes that characterize each cell type by comparing the expression
for each neuronal cell type with the average expression of the remaining cell types. In the orig-
inal manuscript, the analysis was performed with scde?? with a batch correction procedure that
accounts for the picking sessions. Supplementary Table 1 shows that all methods provide higher
numbers of significant genes than scde, and zingeR_edgeR has the highest number of significant
genes across all methods. This is in agreement with the simulation studies, where zingeR_edgeR
typically provides highest sensitivity. However, since a higher number of differentially expressed
genes may arise due to a higher number of false positives, we evaluated the false positive rate
in this dataset using 30 random 45 vs. 45 mock comparisons. In every condition, 15 cells from
each of the three picking sessions are randomly selected over all cell types, thereby controlling for
potential confounding by this batch variable, and we test for significance of the mock variable.
The FPR is controlled by both zingeR variants, suggesting that the high number of significant
genes for the zingeR models is not due to a higher fraction of false positives in the significance list
(Figure 5¢). The mock comparison also shows that limma-voom is too liberal in some evaluations
and MAST consistently provides somewhat liberal results, while especially metagenomeSeq is ex-
tremely liberal. In addition, a uniform p-value distribution is observed for zingeR_edgeR in the
mock comparison, while there seems to be issues with the null distribution of the test statistics
from DESeq2 methods and scde, which produce too conservative p-values (Supplementary Figure
12).

Discussion

We used default bulk RNA-seq normalization procedures and adopted positive counts normaliza-
tion for DESeq2,3? which has been shown to boost its performance. Novel normalization proce-
dures have been developed for scRNA-seq data analysis (e.g. scran®®), but a thorough comparison
of normalization methods falls outside the scope of this contribution. The zingeR implementa-
tion, however, allows the user to supply custom normalization factors, which opens the zingeR
data analysis workflow towards any normalization method that produces normalization factors or
offsets.

In all simulations, we have used the zingeR count component for inference, using either edgeR
or DESeq2. However, zingeR’s posterior probabilities can also be used to unlock other stan-
dard RNA-seq workflows in zero-inflation situations. Supplementary Figure 13 shows that zingeR
observation weights also boost performance of limma-voom in an scRNA-seq context, where we
combine heteroscedastic weights with the posterior probabilities. Similar to the default limma-
voom method, the zingeR_limma-voom implementation suffers from a liberal FDR control.

Our simulations complement the findings of Jaakkola et al. (2016)?* and Soneson & Robinson
(2017),%* but additionally suggest that the performance of dedicated scRNA-seq methods depends
on the degree of zero-inflation. Although MAST, metagenomeSeq and scde were explicitly devel-
oped to address excess zeros, they suffer from poor performance in a high zero-inflation setting,
as is demonstrated in the Islam simulation study.

The method was demonstrated on scRNA-seq protocols relying on standard read counting. Re-
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cently, unique molecular identifiers (UMI) have been proposed to reduce the measurement variabil-
ity across samples.'® In UMI-based protocols, transcripts are labeled with a small random UMI
barcode prior to amplification. After amplification and sequencing, one then counts the number
of unique UMIs found for every transcript, which then corresponds to the number of sequenced
UMI-labeled transcripts. It has previously been shown®* that UMI-tagged data follow a negative
binomial distribution. Hence, the zingeR methods will also provide good results for UMI-based
data as they have the desirable property to converge towards a regular edgeR (DESeq2) analysis
in the absence of zero-inflation. The latter is an important property and demonstrates zingeR’s
broad applicability.

Conclusions

In summary, we provide a realistic simulation framework for single cell RN A-seq data and introduce
a novel tool zingeR that successfully identifies excess zeros related to dropout events in scRNA-seq
experiments. We confirmed that state of the art scRNA-seq tools do not improve upon common
RNA-seq tools for differential expression analysis of single cell RNA-seq experiments. The zingeR
workflows, however, outperform current methods and have the merit to converge to conventional
RNA-seq analyses in the absence of zero-inflation. Standard inference is provided by the count
component of the ZINB model and our tool produces posterior probabilities that can be used as
observation-level weights by conventional RNA-seq tools. Hence, zingeR has the promise to unlock
traditional RNA-seq DE workflows for zero-inflated data and will assist researchers, data analysts
and developers to improve the power to detect DE in the presence of excess zeros.
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Figure 1: Zero-inflation results in overestimated dispersions and jeopardizes power to discover
differential expression. The biological coefficient of variation (BCV) is the square root of the
NB dispersion parameter. (a) The BCV plot of a regular bulk RNA-seq experiment. Dispersion
estimates generally show a smooth decrease for genes with higher expression. (b) Simulating
zero-inflation by randomly introducing 5% excess zero counts inflates dispersion estimates for the
genes with excess zeros. This significantly distorts the estimated mean-variance relationship, as
represented by the red line. (¢) Downweighting excess zeros by assigning the introduced zeros
a weight of zero in dispersion estimation recovers the original mean-variance trend. (d) False
discovery proportion - true positive rate (FDP-TPR) performance curves on the zero-inflated data
shows that the performance of edgeR (red curve) is deteriorated in a zero-inflated setting due to
an overestimation of the dispersion parameter. However, assigning the introduced zeros a weight
of zero in the dispersion estimation and model fitting results in a dramatic performance boost.
Hence, it is the key to unlocking RNA-seq tools for zero-inflation.
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Figure 2: Zero-inflation distorts the mean-variance trend in (sc)RNA-seq data but is correctly
identified by the ZINB model. The top panels represent simulated RNA-seq data while the bottom
panels represent the scRNA-seq dataset from Islam et al. (2011).16 The biological coefficient of
variation (BCV) is the square root of the NB dispersion parameter. (a) Simulated RNA-seq
dataset for a two-group comparison with five samples in each group. Randomly replacing 5%
of the expression counts with zeros induces zero-inflation and distorts the mean-variance trend
by overestimating the dispersion parameter. The colors represent the average zingeR posterior
probability for all zeros from a gene. (b) ROC curve for the correct identification of excess
zeros, as stratified by the average log CPM. A very good classification precision is obtained for
genes with moderate and high expression, while the identification is harder on genes with low
expression, since these genes often have higher dispersion estimates. (c) Histogram of zingeR
posterior probabilities for the excess zeros in the zero-inflated bulk RNA-seq dataset. The white
bar at 0 represents the number of introduced excess zeros. Most excess zeros are identified as
such by zingeR, see also Supplementary Figure 4. (d) Effectively downweighting excess zeros
using the posterior probabilities recovers the original mean-variance trend and inference on the
NB count component will now no longer be biased because of zero-inflation patterns, illustrating
zingeR’s ability to account for excess zeros. (e) BCV plot for the Islam dataset'® shows that higher
variability is observed in scRNA-seq data as compared to bulk RNA-seq data. As in (b), zero-
inflation induces striped patterns in the BCV plot leading to an overestimation of the dispersion
parameter of the count component. (f) The sequencing depth of a cell is related to the abundance
of zeros, information used by zingeR to identify excess zeros in scRNA-seq datasets when fitting
the ZINB model. The pink curve represents the estimated marginal mean on excess zeros for a
cell and the difference between the curve and the datapoints represents the estimated expected
fraction of zeros that belong to the count component. (g) zingeR posterior probabilities for all
zeros in the Islam dataset identify both NB and excess zeros. However, due to the increased noise
in scRNA-seq datasets, some zeros are harder to classify as compared to bulk RNA-seq data. (h)
Using the zingeR posterior probabilities as observation weights results in lower estimates of the
dispersion parameter, unlocking powerful differential expression analysis with standard RNA-seq
DE methods.


https://doi.org/10.1101/157982
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/157982; this version posted June 30, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a b
overall overall
1.00+ 1.00+
0.75 0.75+
e e
O 0.50+ O 0.50+
= =
1
0.254 1, 0.25+
1
1
1
1
1
I
L0
0.004 31! 0.00+
A~ N OO O N 0D —
S ococoocococooco
(@ >}
=@- DESeq2 ©- MAST =@- edgeRTruth =@- zingeR_DESeq2
=@- DESeq2Truth =@~ NODES =@~ limma_voom =@- zingeR_edgeR
DESeq2_poscounts =@= edgeR scde

Figure 3: Comparison of methods on simulated RNA-seq data. The left panel (a) shows perfor-
mance curves on the simulated dataset where 5% of the counts were set to zero. Conventional
RNA-seq methods break down due to zero-inflation while most scRNA-seq methods perform rea-
sonably. scde seems to have a good performance in a moderate zero-inflation setting, however it
provides very conservative FDR control as suggested by its FDR working points. zingeR_edgeR
outperforms all other methods and in fact performs close to an edgeR analysis based on the
truth, where the introduced zeros are effectively downweighted by setting their weights to zero,
showing that zingeR_edgeR correctly identified most excess zeros. A similar result is observed
for zingeR_DESeq2. Right panel (b) shows the performance of the evaluated methods on simu-
lated RNA-seq data, suggesting a superior performance of zingeR_edgeR and providing evidence
that the method performs well in non zero-inflation settings. Note, that the working points for
zingeR_DESeq2 are more conservative as compared to DESeq2 due to the use of the t-distribution
instead of the Gaussian distribution for the Wald test.
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Figure 4: Comparison of methods on simulated scRNA-seq data. (a) Performance on scRNA-seq
data based on Islam simulation. (b) Performance based on Trapnell simulation. The zingeR
workflows clearly outperform other methods in case of severe zero-inflation (a) and are among
the best performers in the Trapnell simulation with few excess zeros (b). Note, that the positive
counts normalization provides an enormous boost in performance for DESeq2 in the Trapnell
simulation. Dedicated methods scde and metagenomeSeq specifically developed to deal with excess
zeros are dominated in both simulations by zingeR workflows and by DESeq2 with positive counts
normalization. DESeq2 curves in panel (a) are cut-off due to NA p-values as a result of independent
filtering. Full FDP-TPR curves are provided in Supplementary Figure 9.
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Figure 5: Case study on neuronal cells. (a) The association of zero abundance with sequencing
depth. The three different picking sessions differ in their sequencing depth, causing an attenuated
global relationship (blue line). However, accounting for the batch effect in zingeR’s zero-excess
model, allows for a correct model of sequencing depth with zero abundance. (b) The distribution
of posterior probabilities with (white) and without (green) including the batch effect in the zero-
excess model. Including the batch effect results in many more zeros being identified as truly
zero excess (i.e. the higher bar near a posterior probability of zero) and negative binomial zeros,
hence increasing classification certainty. (c¢) False positive rate (FPR) evaluation on 30 mock
comparisons across all cell types. Note, that a different scale is used for metagenomeSeq.

Methods

Negative binomial model

Let Yy, be the read counts for gene g in sample i. Many RNA-seq differential expression (DE)
analysis tools™ 2?35 assume the read counts to follow a negative binomial (NB) distribution

Ygi ~ NB(Mgia ¢g)a

11


https://doi.org/10.1101/157982
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/157982; this version posted June 30, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

with pg; the expected count in sample ¢ and ¢, the NB dispersion parameter. We adopt the
negative binomial parametrization Y ~ NB(u, ¢), then E(Y) = u and Var(Y) = pu + ¢u?. Due
to the low sample size in common RNA-seq experiments dispersion estimates as estimated with
standard maximum likelihood theory are often unreliable and empirical Bayes methods?®:37 are
used to borrow information across genes. The negative binomial distribution is then embedded
in a generalized linear model (GLM) with a log-link to model the mean p,; of experiments with
complex designs, i.e.
log pg;: = X8 + log Ny,

with X; the covariates for observation i, B the model parameters of the linear predictor, and
log N; an offset used for normalization, e.g., to correct for differences in sequencing depth and
composition.3®

The zero-inflated negative binomial model (ZINB)

The major difference between scRNA-seq and bulk RNA-seq experiments is arguably the high
abundance of zeros in scRNA-seq datasets. Traditionally, excess zeros are dealt with by the use
of hurdle models or zero-inflated distributions, as recently proposed by Finak et al. (2015),'°
Kharchenko et al. (2014)%? and Paulson et al. (2013).2” A zero-inflated count distribution fz;
is a two component mixture distribution between a point mass at zero § and a count distribution
feount, in our case the negative binomial distribution fyp:

fz1(Wgis tgis Og, ™) = mid + (1 — m;) fnv B (Lgir Pg)

with 7; the mixture parameter indicating the probability for a count to be an excess zero in sample
i. The model parameters {fq4:, ¢4, T} can be estimated with maximum likelihood. However, no
closed form solutions exist and we develop an expectation maximization (EM) algorithm for high
throughput data. Note, that the ZINB model provides posterior probabilities that a count yg;
belongs to the count component given the observed X; and N;, which play a central role in our
EM algorithm and can be used as observation weights in regular RNA-seq workflows. Let Zy; be
an indicator variable, where z4; = 1 if y4; belongs the zero-inflation component and zg; = 0 if yg;
originates from the count component, then the posterior probabilities are given by

l-—m i)
Wy = P(zgi = 0|Xy, N;) = (1 =) v ity %).
’ ’ fZI(ygi§Ngi»¢gv7Ti)

EM algorithm

The EM-algorithm recasts the mixture model into a missing data problem by introducing the
latent variable Zg;, which is assumed to follow a Bernoulli distribution: Zg; ~ B(mw;). Hence, the
likelihood

L(ygii pgir g, mi) = | [{mi6 + (1 = m:) v (gir dg)}
=1

can be augmented with the zg; resulting in the joint likelihood

n

L(Ygis 2gi; Hgir Pg, Ti) = Hﬁz'zgi {1 = mi) fvs(pgi, (i)g)}(l%gi)

=1
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which in turn allows an efficient factorization by conditioning on zg,. The EM-algorithm iterates
over an expectation (E) and maximization (M) step until convergence. In the E-step the expected
joint log likelihood is calculated given the data and the current values of the parameter estimates,
i.e. the parameter estimates in the previous iteration k, ok = {,ulgi7 (;SZ, wf“} In the M-step the
expected log-likelihood is maximized to update the parameter estimates. For our mixture model,
the expected joint log-likelihood I(yg;, z4:) given the data and the current parameter estimates
equals

Qk+1 = E(l(ygia Zy'i)|ygia ek) = E(Zgi|ygi7 ek) 10%(71'5) + [1 - E(Zgi‘ygi’ ok)] log(1 — Wf)‘F
[1 = E(2gilygs, ak)] IOg[fNB(Mgiv ¢§)]

which shows that calculating Q**! only involves replacing z, by its conditional expectation
E(243|ygi,0") after which Q! can be maximized over the mixture distribution parameters. In
this expression, 71']; represents the parameter estimate for gene ¢ in step k, and similar notation is
used for the other parameters.

1. E-step: Calculate Q**! using the conditional expectations E(zgi\ygi,ok), which are the
posterior probabilities for counts to belong to the zero-inflation component:

Ak
5

i+ (1= 78) b (g i, 0F)

E(z4ilygi, 0%) =

2. M-step: Maximize Q**! to update parameter estimates.

(a) The parameters for the count component { ,u’;i, ¢§} are updated using the edgeR frame-
work? by incorporating observation-level weights w’;i (Equation (1)). In principle, any
negative binomial software tool that allows for weights can be used in this step, but
we have found edgeR to provide accurate and fast results. Note, we use gene-wise
dispersion estimates and we do not use shrinkage within the EM-algorithm.

k

(b) The mixture parameters 7¥ are updated with a logistic regression model of E(z,:|y,:, 8*)

on the effective library size of a sample fo ! to estimate the expected probability of

zero-inflation for a cell 7
log{ i } =X«
1— T

where X is the model matrix containing an intercept and the effective library size
Nf = siN; with N; the library size and s; the normalization factor for cell ¢ as es-
timated with a global scaling normalization procedure. The normalization procedures
used in this manuscript are implemented as default options in the zingeR package. How-
ever, zingeR can work with any global scaling normalization procedure when providing
user-defined normalization factors as an optional argument. Optionally, other predic-
tors can be used in the zero-excess model that are associated with zero-inflation, for
example the batch effects in our case study. To gain power, the zero-excess model may
also incorporate a measure for the gene’s average expression which is also linked to zero
abundance (Supplementary Figure 5). However, we found that this model deteriorates
FDR control and consider this a topic for further research.

3. Iterate step 1 and 2 until convergence of the data log-likelihood.
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Speeding up the EM algorithm

Estimating the negative binomial parameters {14, ¢4} for the count component is the most com-
puter intensive step of the EM algorithm. In order to reduce computational burden we developed
an EM-algorithm that only estimates the count component parameters after iterative convergence
between the mixture parameters 7; and the posterior probabilities wgy;. The algorithm can be
described in pseudocode as follows

input : A matrix of single-cell gene expression counts and design matrix

output: A matrix of posterior probabilities

initialization of EM-parameters {iigi, dg, T };

j=0;

for i — maxit do

=i+

E-step: estimate posterior probabilities wg;;

if i=1 or posterior probabilities converged then

‘ M-step on count component: estimate {14, dgg}

end

M-step on mixture parameters: estimate ;;

if convergence of posterior probabilities then
if j=1 then break (EM-algorithm has converged);
J=0;

end

end

The fast version of the EM-algorithm provides very similar distributions for the posterior proba-
bilities on the Islam and Trapnell datasets (Supplementary Figure 6).

Inference

We only consider statistical inference on the count component of the mixture distribution. For
zingeR_edgeR, we refit the models with the posterior probabilities of the converged algorithm and
adopt approximate empirical Bayes shrinkage of the dispersion. Downweighting is accounted for in
the statistical test by adjusting the degrees of freedom of the null distribution accordingly. More
specifically, we reintroduce the moderated F-test in the edgeR package where the denominator
residual degrees of freedom for a particular gene are adjusted by the extent of zero-inflation that
was identified for this gene, i.e. df, = Zfil wg; — p where df, are the degrees of freedom for gene
g, wy; the posterior probabilities for gene g in sample 7 and p the number of model parameters
estimated in the NB GLM.

We also extended the DESeq2 package to accommodate for zero-inflation by providing the option
to use observation-level weights in the parameter estimation steps. DESeq2’s default normalization
procedure requires geometric means of counts, which are zero for genes with at least one zero count.
This limits the number of genes that can be used for normalization in scRNA-seq applications.
We therefore implemented the normalization method suggested in the phyloseq package,? which
calculates geometric means for a gene by only using its positive counts, so genes with zero counts
could still be used for normalization purposes. The phyloseq normalization procedure can now
be adopted by specifying the type poscounts in the DESeq2 estimateSizeFactors function. To
account for downweighting of excess zeros, we replace the Gaussian null distribution of the Wald
test by a t-distribution with adjusted degrees of freedom as in the zingeR_edgeR analysis.

For limma-voom, heteroscedastic weights are estimated based on the mean-variance trend of the
log-transformed counts with the voom method. The heteroscedastic weights are then multiplied
with the zero-inflation weights, which are then used in a weighted linear model fit. To account
for downweighting, the residual degrees of freedom of the linear model fit are adjusted before the
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empirical Bayes variance shrinkage and are therefore also propagated to the residual degrees of
freedom from the moderated statistical tests.

For the zero-inflated methods, we use the independent filtering procedure that was developed in
the genefilter package and used in DESeq2! to improve performance where possible.?® Similar to
DESeq2, we use the average expression strength (or the average fitted values) of each gene as its
filter criterion and all genes with normalized mean below a filtering threshold are discarded for
the multiple testing adjustment. By default, a threshold is chosen that maximizes the number of
differentially expressed features.

RNA-seq data simulation

We simulate realistic RNA-seq data based on the framework provided by Zhou et al. (2014).28
In brief, we estimate gene-wise means 1, and dispersions ¢, from the Bottomly dataset?” and
simulate RN A-seq counts according to a gene-wise negative binomial distribution where the means
and dispersions are jointly sampled to respect the mean-variance relationship. We consider a two-
group comparison with five biological replicates in every group. In the RNA-seq simulation, 20,000
genes are simulated according to the negative binomial distribution and fold changes are simulated
according to an exponential distribution truncated at 2 as in Soneson et al. 2016.4° We incorporate
zero-inflation by randomly replacing 5% of all counts by zeros.

scRINA-seq data simulation

We extend the framework from Zhou et al. (2014)2?8 towards scRNA-seq applications and provide
user-friendly software to simulate scRNA-seq data as part of the zingeR R package. The user
can input a real scRNA-seq dataset to extract feature-level parameters for generating scRNA-
seq counts. Library sizes for the simulated samples are by default resampled from the real
dataset but they can also be specified. The simulation framework models positive and zero
counts separately using a hurdle model. For the positive counts, expression fractions 5\9 =
m Dic {y0:>0} Ygi /N; are empirically estimated and dispersions ¢, are estimated according
to a zero-truncated negative binomial (ZTNB) distribution. The zero abundance pgy; of a gene g is
modelled as a function of an interaction between its expression intensity (in terms of average log
counts per million A;) and the sequencing depth of the sample i using a semiparametric additive
logistic regression model, motivated by dataset-specific associations observed in real scRNA-seq
datasets (Supplementary Figures 3, 5). The simulation paradigm jointly samples the gene-wise
estimated parameters {j\g, ¢Eg, Ag, pgi} to retain gene specific characteristics present in the original

dataset. We use the expected probability on zero counts p, = % to introduce zero counts by
simulating from a binomial process. Positive counts are then simulated according to a ZTNB dis-
tribution with mean fig; = Ag; N, and dispersion ¢4, with IV the simulated library size for sample
1. The framework acknowledges both gene-specific characteristics as well as broad dataset-specific
associations across all genes and provides realistic scRNA-seq data for method evaluation.

We evaluate performance based on both the Islam'® and a subset of the Trapnell*® dataset.
The count table from the Islam dataset was downloaded from the Gene Expression Omnibus
with accession number GSE29087. The Islam dataset considers 44 embryonic fibroblasts and 48
embryonic stem cells in mouse. Negative control wells are removed and 11,796 genes with at
least five positive counts are retained for analysis. For the simulation, we replicate a dataset
with two groups of 40 samples. The Trapnell dataset is downloaded from the preprocessed single-
cell data repository conquer (http://imlspenticton.uzh.ch:3838/conquer).?* We only use a
subset of the Trapnell dataset from the 48h and 72h timepoints of differentiating human myoblasts
to generate a two-group comparison. Wells that do not contain one cell or that contain debris were
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removed from the dataset. We use a more stringent filtering criterion for the larger Trapnell dataset
and retained 24,576 genes with at least 10 positive counts. The simulated dataset contains two
conditions with 75 samples in each condition, thereby replicating the sample size of the Trapnell
dataset.

Case study

The expression data for the case study was downloaded from Supplementary Data accompanying
the original paper downloaded at http://linnarssonlab.org/drg/. Non single-cells are removed
and only neuronal cells are retained for analysis, resulting in the set of 622 cells that were used
for the main analyses in Usoskin et al. (2014).'! For differential expression analysis, the picking
session was included as a covariate in all models. Contrasts were defined for the model coefficients
to test for mean differential expression between one cell type and the average across all other cell
types. Posterior probabilities are estimated with zingeR using 500 EM iterations or until conver-
gence. For the mock comparison, we create two conditions with 45 cells each. In every condition
15 cells from each picking session are randomly selected over all cell types, for 30 iterations. In
every iteration we test for significance of the mock variable and evaluate the false positive rate by
considering the proportion of p-values < 0.05.

Method comparison

We compare zingeR to state of the art RNA-seq tools edgeR (v3.19.0),%24! DESeq2 (v1.17.1)*
and limma-voom (v3.30.13);3 scRNA-seq dedicated tools scde (v2.1.2),22 MAST (v0.933)!Y and
NODES (v0.0.0.9010);26 and metagenomeSeq (v1.15.4)%7 developed to account for zero-inflation
in metagenomics applications. A ZINB model is also implemented in ShrinkBayes,*?> but the
method does not scale to the typical sample sizes observed in scRNA-seq data and has many
tuning parameters, which leads us to not consider the method for comparison purposes. For all
methods, all genes are considered for analysis unless the method has a default filtering step (e.g.
independent filtering step for DESeq2 and zingeR based on the p-values). All samples are retained
for analysis except for the NODES analysis where the default filtering step on the samples was
used since it would frequently run into errors otherwise. For DESeq2, we allowed for default
shrinkage of the fold changes because this notably improved its performance and we disabled
the default imputation step. Also, for the zingeR_DESeq2 analysis we used the new poscounts
normalization procedure explained above. Other settings were set to the default for all other
methods. Performance is compared based on false discovery proportion-true positive rate (FDP-
TPR) curves using the iCOBRA package.*®> The p-values for all methods have been corrected
with the Benjamini and Hochberg FDR method,** unless specified otherwise.

Implementation

All code to reproduced the analyses reported in the paper are available at https://github.
com/statOmics/zingeRPaper. Our method and the simulation framework is available as an R
package zingeR: zero-inflated negative binomial gene expression in R and development will be
hosted on GitHub at https://github.com/statOmics/zingeR. The package will be submitted
to R/Bioconductor (http://www.bioconductor.org).
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