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Perceptual decision-making, studied using two-alternative forced-choice tasks, is explained by 
sequential sampling models of evidence accumulation, which correspond to the dynamics of 
neurons in sensorimotor structures of the brain1 2. Response inhibition, studied using stop-signal 
(countermanding) tasks, is explained by a race model of the initiation or canceling of a response, 
which correspond to the dynamics of neurons in sensorimotor structures3 4. Neither standard 
model accounts for performance of the other task.  Sequential sampling models incorporate 
response initiation as an uninterrupted non-decision time parameter independent of task-related 
variables. The countermanding race model does not account for the choice process. Here we show 
with new behavioral, neural and computational results that perceptual decision making of varying 
difficulty can be countermanded with invariant efficiency, that single prefrontal neurons 
instantiate both evidence accumulation and response inhibition, and that an interactive race 
between two GO and one STOP stochastic accumulator fits countermanding choice behavior. 
Thus, perceptual decision-making and response control, previously regarded as distinct 
mechanisms, are actually aspects of more flexible behavior supported by a common neural and 
computational mechanism. The identification of this aspect of decision-making with response 
production clarifies the component processes of decision-making. 

We investigated whether perceptual decisions and response inhibition, which have been studied with 
different tasks and explained by different models, can be performed concurrently, whether they are 
accomplished by different neurons in separate circuits or by a common pool of neurons in a single 
circuit and whether perceptual decision making and countermanding can be unified computationally.  

Three macaque monkeys performed a visual saccade choice countermanding task. On each trial, a 
checkerboard was presented with varied coherence of cyan and magenta colors. The monkeys reported 
the majority color with a saccade to one of two peripheral visual targets (Fig. 1a). On a minority of trials 
a visual stop-signal was presented after a variable stop-signal delay. On no-stop trials reinforcement was 
earned for a correct choice. On stop trials reinforcement was earned for canceling the choice saccade. 
Performance data from each monkey replicated classic features of both tasks (Fig. 1b, Extended Data 
Fig. 1, Extended Data Table 1). Response times and error rate increased with difficulty across both task 
dimensions. The duration of response inhibition, known as stop-signal reaction time (SSRT), was 
invariant with coherence. These behavioral results, confirmed in humans5, show that perceptual decision 
making and response inhibition operate concurrently and efficiently instead of competing for common 
resources.  
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Figure 1 | Perceptual decision countermanding task.  a, No-stop trials (top panel) 
began by fixating a central spot. After a variable delay, two targets appeared in the 
periphery. After another variable delay, a 10 x	10 cyan-magenta checkerboard choice 
stimulus (magnified inset) appeared 3° directly above the fixation spot, and the fixation 
spot simultaneously disappeared. Fluid reward was delivered if monkeys shifted gaze to 
the target assigned to the respective colors. On a minority of trials (stop trials, bottom 
panel), the fixation spot reappeared after a variable stop-signal delay. Reward was 
delivered if monkeys canceled the planned saccade. b, Upper left, Psychometric functions 
for no stop (black) and non-canceled (red) trials. The variation of choice probability with 
color coherence is shown by the Weibull function fit to the mean (circles) and SD (bars). 
Upper right, Inhibition functions from all sessions. The variation of response inhibition 
stop-signal delay is shown by the Weibull function fit to the values. Lower left, Mean and 
SD of response time (RT) as a function of color coherence for correct (circle) and error 
(diamond) no-stop (black) and noncanceled (red) trials. Trends of correct RT highlighted 
by connecting lines. Noncanceled RT was systematically less than no-stop RT, justifying 
the application of the Logan race model. Lower right, Mean and SD stop-signal reaction 
time (SSRT) derived from race model as a function of color coherence. SSRT did not 
vary with decision-making difficulty. 

 
In two monkeys, neural spiking was recorded in the frontal eye field (FEF), a prefrontal area at the 

interface of visual attention processing and saccade production6. This report is based on ~1400 neural 
spiking samples of which >1000 were modulated during the task with ~300 exhibiting presaccadic 
ramping activity. Of presaccadic units, ~60% were modulated with the difficulty of the perceptual 
choice in a manner that parallels the evidence accumulation process (Fig. 2, Extended Data Fig. 2), 
replicating previous observations7. Also, when choice saccades were canceled, ~40% of units modulated 
before SSRT in a manner sufficient to control saccade initiation, replicating previous observations8 9 10. 
We now report that ~25% of the presaccadic neurons exhibited both perceptual choice modulation and 
modulation before SSRT when saccades were canceled (Extended Data Table 2). Presaccadic ramping 
neurons in FEF have been identified computationally with the GO process of countermanding11 12 and 
with evidence accumulation for perceptual decision making7 13 14. These new results show that evidence 
accumulation and response inhibition are multiplexed in prefrontal cortex. If so, then in what sense can 
they be regarded as distinct processes? 

  
 
 
 
 
 
Figure 2 | Neural mechanism of countermanding 
perceptual decision making. Representative neurons 
from monkey Br (a) and Jo (b) representing perceptual 
decision variable and instantiating GO process. Discharge 
rate is plotted as a function of time relative to choice 
stimulus presentation (left) and saccade (right).  Activity 
accumulated faster with higher color coherence (thin 
solid lines: high color coherence is black; low color 
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coherence is grey) but was inhibited before SSRT on canceled stop signal trials (thick 
lines).  

Finding neural modulation for both perceptual decision difficulty and response inhibition in 
individual neurons entails a unity of choice and stopping models. To test that unity, we evaluated 
interactive race models consisting of 2 stochastic accumulators for each response alternative (GOcorrect, 
GOerror) plus a STOP accumulator (Fig 3). We consider three mechanisms of choice (race, feed-forward 
inhibition, and lateral inhibition between GO units) and one mechanism of inhibition (inhibition from 
STOP to GO units). We tested five versions of parametric manipulation, allowing combinations of drift 
rate and/or starting point to vary across choice difficulty and response alternatives. We evaluated how 
well each version of the three model architectures fit the correct and error RT distributions, accuracy, 
and SSRT across levels of discrimination difficulty and stop-signal delays. Each architecture accounted 
for the combination of choosing and stopping performance (Fig 3, Table 3, Extended Data Table 3), 
with only modest differences in the goodness of fit of race, feedforward inhibition and lateral inhibition 
decision mechanisms. Decision difficulty was accounted for by variation in drift rates. Decision error 
rates were accounted for by combination of relative baseline levels and drift rates. Response inhibition 
was accounted for by late, potent inhibition of the GO units by the STOP unit. These results demonstrate 
the graceful computational unification of the two primary models of decision-making and response 
control. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 | Simplest model of countermanding perceptual 
decision-making.  a, Architecture of tested models. Alternative 
decisions are committed when the accumulated activation of one of 
the GO units reaches a threshold. The accumulation of each GO 
unit was driven either by the evidence supporting each alternative 
or by the difference in evidence through feedforward inhibition. 
The activation of each GO unit could simply race or be modulated 
through lateral inhibition. Decisions are canceled if the activation of 
a STOP process potently inhibits the GO units. b, Fit (lines) to 
correct (circle) and error (square) degenerate cumulative RT across 
color coherence.  c, Fit to inhibition functions across color 
coherence.  d, SSRT across color coherence.  
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Table 3 | Parameters of best-fit models for each dataset.  Each alternative choice 
architecture was endorsed by a dataset, but late-potent inhibition of the STOP unit was 
necessary to fit all datasets. 

 
 
The performance measured during neural recordings corresponded to performance measured in other 

monkeys and four human participants5. Hence, while novel, the task demands were not unusually 
demanding. The patterns of neural modulation observed corresponded to patterns observed previously in 
monkeys performing tasks that require only saccade countermanding8, 9 or tasks that require only 
perceptual decision making7 15 16. Therefore, the novel observation of neurons that signal perceptual 
decisions being countermanded can be regarded as robust. Other neurons were found that only signaled 
perceptual decisions or that enacted countermanding. Further research is needed to elucidate the 
circuitry of these diverse neurons, but the incidence of neurons contributing to both functions confirms 
the unity of two previously distinguished cognitive operations.  

The novel countermanding perceptual decision model fit performance of individual monkeys 
effectively as well as fits to perceptual decision or to countermanding performance alone11 12 17 18. Thus, 
the interactive race model unifies previously distinct model frameworks. The lateral inhibition and 
feedforward inhibition differences were less clear, but we regard this as evidence for the robustness of 
the unification and an indication that mathematically distinct but functionally similar neural networks 
can accomplish common functions19. Crucially, the necessity of late, potent inhibition of the STOP units 
on the GO units demonstrates that response inhibition does not operate as just another choice. 

Our findings demonstrate a specific linkage between response preparation and perceptual decisions 
in prefrontal cortex that contradicts an earlier conclusion that frontal cortex does not contribute to 
evidence accumulation20 and can support performance without posterior cortical areas21. Under these 
testing conditions the decision process is identified with response choice, which correspond 
grammatically and logical with decide to22. Thus, other neural processes must accomplish decide that, 
the categorization of observations that can be true/false, unlike choices. Evidence for neural processes of 
categorization distinct from response production has been reported in neurophysiological23 24, human 
EEG25 26 and functional imaging27 28 studies.   

To conclude, new performance, neural and computational modeling results demonstrate that 
perceptual decisions and response inhibition are not separate processes but instead just different 
descriptions of a single process tested in different modes of operation. 
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METHODS 
Monkey preparation. All experimental protocols were in accordance with National Institute of Health 
standards for care and use of laboratory animals and approved by the Vanderbilt University Institutional 
Animal Care and Use Committee. Performance data were collected from two macaques (1 female M. 
mulatta 5.4 kg identified as X, 15 sessions, and 1 male M. radiata 7.4 kg identified as Br, 15 sessions). 
Neural and performance data were collected from two macaques (Br, 82 sessions and another male M. 
radiata 11 kg identified as Jo18 sessions). Cilux headposts and chambers (Crist Instruments) were 
implanted using standard surgical procedures. Monkeys sat comfortably with head restrained in a 
primate chair, facing a CRT (46˚ x 36˚ visual angle, 70 Hz refresh rate) in a dark room. Stimulus 
presentation, reward delivery, and task contingences were controlled by TEMPO/VIDEOSYNC 
software (Reflective Computing, Olympia, WA). Eye position was digitized at 1 kHz using an Eyelink 
1000 eye tracker (SR Research) and streamed to a data acquisition system (Plexon). Fluid reinforcement 
was delivered with a solenoid-operated gravity-flow system.  

Perceptual decision countermanding task. The goal of the choice countermanding task was to 
choose whether a discriminatory stimulus contained more cyan or magenta and respond appropriately, 
though on some trials cancel the response when a stop-signal was presented. Each trial began when the 
subject fixated a spot in the center of the display (Fig. 1A: dashed circle is gaze position). After a 
variable duration (400-800 ms), two targets (1° square) appeared in the periphery, one in each hemifield 
10° in amplitude from the central fixation spot and 180° from each other. Monkeys maintained fixation 
for another variable duration (400-800 ms), then the fixation spot was extinguished and simultaneously a 
choice stimulus appeared on the vertical meridian 3° above the central fixation spot. The choice stimulus 
was a 10x10 square checkerboard (magnified inset in Fig. 1) with a randomized pattern of isoluminant 
(30 cd/m2 on 13 cd/m2 gray background) cyan and magenta checker squares, and subtended 1°. The 
appearance of the choice stimulus and coincident disappearance of the fixation spot cued subjects to 
choose a saccade target by discriminating whether the checkerboard contained more cyan or magenta 
checkers. The assignment of cyan or magenta to leftward or rightward responses was counterbalanced 
across monkeys. Stimulus discriminability was manipulated trial to trial by randomly varying the color 
coherence of cyan and magenta checkers from among a set of 4 (in neural sessions) or 6 (in behavioral 
sessions) possible values. To obtain a broad range of choice accuracy, the coherence values were 
determined separately for each monkey (Br: [41%, 45%, 48%, 52%, 55%, 59%] or [42%, 47%, 53%, 
58%]; Xe: [35%, 42%, 47%, 53%, 58%, 65%]; Jo: [40%, 44%, 56%, 60%]). After the choice stimulus 
appeared, on no-stop trials  monkeys earned juice reward for a saccade to the correct target within 1000 
ms. RTs were defined as the duration between the onset of the checkerboard stimulus and when eye 
movement velocity exceeded 30 degrees/sec away from fixation in the direction of one of the targets. A 
stop-signal was presented on ~33% of trials, but could vary between sessions (30-45% of trials) as we 
adjusted task parameters. During a stop trial the fixation spot reappeared after a variable stop-signal 
delay (SSD). Monkeys earned juice reward for canceling the saccade and maintaining gaze on the 
fixation spot. SSD was adjusted trial-to-trial using a staircase procedure within each color coherence 
level, to elicit equal proportions of canceled and noncanceled stop trials. SSD was increased randomly 
1-3 steps (step size was constant within each session but could vary between sessions: [14, 29, 43, 57, 
72, 86, or 100] ms/step = 3-7 70 Hz screen refreshes, using constant step increments within each 
session): after a canceled stop trial, and it was decreased randomly 1-3 steps after a noncanceled stop 
trial. The randomness of the stepping procedure was used to prevent SSD tracking by subjects, and SSD 
tracking was independent for each choice stimulus color coherence level. A saccade to the incorrect 
target on no-stop trials or a saccade to either target on stop trials resulted in a brief timeout. A saccade to 
the checkerboard stimulus at any time aborted the trial and resulted in a brief timeout. Aborts were rare 
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(Br behavioral sessions: 1.6%; X behavioral sessions: 0.6%; Br neural recording sessions: 2.0%; Jo 
neural recording sessions: 1.6% of all trials). After receiving reward or timeouts, monkeys experienced a 
1 second inter-trial interval. Macaque Br performed 15 behavioral sessions for modeling for a total of 
33,258 trials, mean = 2,217 trials per session. Macaque Xe performed 15 behavioral sessions for 
modeling for a total of 25,927 trials, mean = 1,729 trials per session. Macaque Br performed 82 neural 
recording sessions for a total of 101,683 trials, mean = 1,240 trials per session. Macaque Jo performed 
18 neural recording sessions for a total of 29,621 trials, mean = 1,646 trials per session. Of the neural 
recording sessions, 5 sessions each were chosen from Br and Jo for modeling. Modeled neural recording 
sessions were chosen based on behavioral performance and to ensure a nearly equal sample of trials 
from each monkey. 

Behavioral analyses. Each monkey provided multiple data collection sessions, so behavioral 
analyses throughout the study were performed within-subjects (across sessions). A few training sessions 
included unusually long noncanceled RTs during the earliest SSD trials. We consider these trials 
outliers, because they could be due to subjects not noticing the stop-signal (because it appeared so 
rapidly after fixation offset), or making an inadvertent saccade to a target without holding central 
fixation long enough to complete a stop trial. Therefore throughout our analyses we excluded trials that 
contained RTs greater or less than three standard deviations of the mean of the no-stop RT distribution 
in a given session. No results differed when the outlier trials were included.  Choice performance was 
analyzed with respect to accuracy and RTs. Accuracy was quantified in psychometric functions, which 
plot the probability of making a saccade to the rightward target as a function of the percentage of 
rightward target color (color coherence) in the checkerboard. Psychometric functions were fit with a 
Weibull curve using maximum likelihood methods. The variation of RT was quantified as a function of 
color coherence in chronometric functions. To compare stopping performance across categorical choice 
difficulty, we estimated SSRT within each color coherence level. Given the large number of 
experimental conditions, we obtained at least ~50 stop-signal trials for each color coherence per session. 
Based on recent work, SSRT was calculated using the integration method (Verbruggen et al. 2013).  

Neural analyses. Neuronal spiking activity was recorded from two macaques (Br and Jo). Data were 
collected from Br over multiple sessions using various types of electrodes (47 sessions using single 
tungsten electrodes, 13 sessions using multi-channel (8 or 24) U-Probe vector arrays, and 19 sessions 
using 32-channel Neuronexus vector arrays. Neurons were considered task-modulated if their spiking 
activity varied as a function of visual stimuli and/or eye movements. 551 modulated units were recorded 
from Br. Data were collected from Jo over 18 sessions using 32-channel Neuronexus vector arrays. 376 
modulated units were recorded from Jo. Each recording session, 800-1600 trials were collected to obtain 
enough data for statistical analyses. Electrode drift over time was unavoidable throughout each session. 
Thus single unit isolation often changed over the course of the session. Therefore we collapsed all units 
on each electrode channel into a single multi-unit for analyses, which provided stable spiking activity. 
Neurons were classified based on their response properties during task epochs.  

We analyzed a population of neurons for this study consisting of two classes. Movement neurons 
modulated spiking activity leading to saccade initiation. Specifically, spike rates during the 50 ms 
leading to saccade exceeded those during the 300 ms prior to targets onset, assessed by paired t-test. 
Visuo-movement neurons modulated spiking activity the same as movement neurons, but in addition 
modulated 50-125ms after targets onset by paired t-test. We consider movement and visuomovement as 
one population in our analyses. Saccadic neuronal response fields were defined as the direction that 
elicited the highest spike rates during the 50ms prior to saccade initiation. Spiking activity was analyzed 
with respect to varying perceptual choice difficulty (color coherence) and response inhibition or 
initiation.  
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We tested whether unit spiking activity varied by color coherence in the interval following choice 
stimulus presentation leading to saccade initiation. For each neuron, the time when discharge rate began 
to represent the decision variable was determined based on a differential spike density function (SDF) 
test8. The mean no-stop trial SDF with the strongest color coherence signaling a response out of the 
movement field was subtracted from that of the strongest color coherence signaling a response into the 
movement field. A baseline difference discharge rate was calculated in the 500 ms prior to choice 
stimulus presentation. The beginning of decision variable representation was defined as the time at 
which the difference between mean SDFs reached 2 standard deviations of the baseline epoch 
differential SDF, and remained above 2 SD for at least 75 ms. A neuron contributed to the decision if it 
varied by both response direction and color coherence. To test whether a unit varied by response 
direction, we compared discharge rates between the choice stimulus and saccade initiation between no-
stop trials with responses into versus out of RF using a Wilcoxon rank sum test. To test whether a unit 
varied by color coherence, we compared mean SDFs during the decision epoch between easy and hard 
color coherence levels, within each response direction. Following previous work7, adapted for 
differences in behavioral tasks, a neuron contributed to the decision if the mean SDFs varied with color 
coherence for choices into the RF and either did not vary or varied in opposite sign for choices out of the 
RF.  

To determine whether unit activity modulated with respect to response inhibition, we repeated the 
cancel time differential SDF test8. Within each condition (SSD x color coherence level), we subtracted 
mean SDFs of canceled stop trials SDFs from mean SDFs of latency matched no-stop trial, aligned on 
checkerboard onset. We defined a baseline epoch as 500 ms prior to checkerboard onset. Significant 
difference between mean SDFs was defined as the time at which the difference between mean canceled 
stop and latency-matched no-stop mean SDFs reached 2 standard deviations of the baseline epoch 
differential SDF, and remained 2 SD for at least 75ms. Cancel time was defined as the time of difference 
between the mean SDFs, minus the SSD within that condition, minus the SSRT within the session. We 
analyzed all stop trial conditions with at least 10 trials. A neuron contributed to response inhibition if it 
had a condition that canceled within 20 ms of SSRT for the session. 

Interactive race model.  We extended the interactive race model (Boucher et al. 2007; Logan et al. 
2015) to include perceptual two-alternative forced choice. The model included three stochastic 
accumulators. Two GO units accumulated evidence corresponding to the two decision alternatives. One 
STOP unit was activated upon stop-signal presentation. During no-stop-signal trials, a choice was made 
when one GO unit reached its threshold first. During stop-signal trials, if one of the GO units reached its 
respective threshold before the STOP unit, a noncanceled choice was made. If the Stop-signal reached 
its threshold, it inhibited the GO units. If the inhibition prevented both GO units from reaching 
threshold, the response was canceled.  

We tested three alternative model architectures to determine which one provided the best fit to 
behavioral performance. The architectures differ with respect to how the GO units interacted with each 
other while accumulating toward threshold: 1) Race: units race to threshold independently, 2) Lateral 
Inhibition: units inhibited each other as a function of their respective level of activation 3) Feedforward 
Inhibition: the input to one unit inhibited the other. In each model the STOP unit inhibited both GO units 
uniformly via lateral inhibition. 

Unit activation was governed by these equations:  

𝐆𝐎:		𝑑𝑎GOi 𝑡 =	
𝑑𝑡
𝜏 𝝁𝐆𝐎𝐢 −	𝝁𝑮𝑶𝒋𝝁𝑮𝑶𝒋 −	𝜷𝑮𝑶𝒋𝒂𝑮𝑶𝒋 −	𝛽𝑆𝑇𝑂𝑃𝑎𝑆𝑇𝑂𝑃 𝑡 −𝑘𝐺𝑂𝑎𝐺𝑂𝑖 +	

𝑑𝑡
𝜏 𝜉 
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𝐒𝐓𝐎𝐏:	𝑑𝑎BCDE 𝑡 = 	
𝑑𝑡
𝜏 𝜇GHIJ −		𝑘BCDE𝑎BCDE +	

𝑑𝑡
𝜏 𝜉 

For each unit, the activation a increases as a function of multiple factors. u is the input to the 
respective unit (drift rate), v is the weight of feedforward inhibition (set to zero during Race and Lateral 
Inhibition model fits), β is the weight of lateral inhibition (set to zero for the GO unit during Race and 
Feedforward Inhibition model fits), k is a leakage parameter, and ξ is Gaussian noise. Other model 
parameters include unit threshold zc (discussed above for each unit); starting value z0, which is the initial 
level of unit activation, specified by a uniform distribution from trial to trial from a value of zero to z0; 
non-decision time (tnd), which is the time before a unit begins activation toward threshold, meant to 
account for duration of encoding and response execution by the brain. 

For each architecture (Race, Lateral Inhibition, and Feedforward Inhibition), we fit 5 combinations 
of parameters free to vary across conditions: 1) Starting value varied between response directions (GO 
units); 2) Drift rate varied between choice difficulty (checker coherence), symmetric across response 
directions; 3) Starting value varied between response directions and drift rate varied between choice 
difficulty, symmetric across response directions; 4) Drift rate varied across choice difficulty, non-
symmetric across response directions (so all 6 or 4 levels of choice difficulty, for the behavioral or 
neural datasets, respectively, had independent drift rates); 5) Starting value varied between response 
directions and drift rate varied between choice difficulty, non-symmetric across response directions. We 
chose to allow starting value to vary among response direction because each monkey displayed response 
time biases with respect to response direction. Allowing drift rate to vary among conditions emulates 
classic drift diffusion and stochastic accumulator models of choice. Models 1-2 were fit to test whether 
implausible models would fit the data well. Models 3-5 were fit to test whether plausible models would 
fit the data well, and better than models 1-2. Alternative parameter variation versions, allowing 
threshold and/or non-decision time to vary between response directions, did not improve fits to the 
behavioral performance. Models were fit by minimizing the chi-square statistic using the Nelder-Mead 
simplex algorithm in MATLAB. Model goodness of fit was assessed using the BIC statistic as follows: 

Behavioral performance of monkeys Xe and Br were collected during sessions recording only 
behavior. Additional behavioral performance of Br and Jo was collected during neural recording 
sessions.  
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