Sophie R Atkinson^{1*}, Samuel Marguerat^{1,2,3*}, Danny A Bitton¹, Maria Rodríguez-López¹, Charalampos Rallis^{1,6}, Jean-François Lemay⁴, Cristina Cotobal¹, Michal Malecki¹, Juan Mata⁵, François Bachand⁴, Jürg Bähler¹⁺ ¹ University College London, Research Department of Genetics, Evolution & Environment and UCL Cancer Institute, London, WC1E 6BT, UK. ² MRC London Institute of Medical Sciences (LMS), London W12 0NN UK ³ Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN UK ⁴ Université de Sherbrooke, Department of Biochemistry, Sherbrooke, Quebec J1H 5N4, Canada. ⁵ Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK. ⁶ Current address: University of East London, School of Health Sports and Bioscience, London, EN15 4LZ, London, UK. * Equal contributions. ⁺ Correspondence: Email: j.bahler@ucl.ac.uk Address: Prof. Jürg Bähler, University College London, Gower Street, Darwin Building - GEE, London WC1E 6BT, United Kingdom Phone: +44(0)203-108-1602 Running title: Long non-coding RNAs in fission yeast <u>Keywords</u>: Transcriptome, pervasive transcription, RNAi, nuclear exosome, cytoplasmic exonuclease, NMD pathway, Schizosaccharomyces pombe, RNA degradation, antisense RNA, divergent transcription. # **Abstract** Genomes are pervasively transcribed with a profusion of non-coding transcripts. Long non-coding RNAs (lncRNAs), which are longer than 200 nucleotides but often unstable, contribute a substantial and diverse portion to non-coding transcriptomes. Most lncRNAs are poorly annotated and understood, although several play defined roles in gene regulation and diseases. Here we systematically uncover and analyse lncRNAs in Schizosaccharomyces pombe. Based on RNA-seq data from RNA-processing mutants and physiological conditions, we identify 5775 novel lncRNAs, nearly 4-times the previously annotated lncRNAs in S. pombe. These lncRNAs show strong changes in expression, mainly derepression, under the genetic and physiological perturbations, most notably during late meiosis. Most lncRNAs are cryptic and targeted by three RNA-processing pathways: the nuclear exosome, cytoplasmic exonuclease, and RNAi. Double-mutant analyses reveal substantial coordination and redundancy among these pathways. We classify lncRNAs by their dominant pathway into cryptic unstable transcripts (CUTs), Xrn1-sensitive unstable transcripts (XUTs), and Dicer-sensitive unstable transcripts (DUTs). XUTs and DUTs are enriched for antisense lncRNAs, while bidirectional lncRNAs are often CUTs and actively translated. The cytoplasmic exonuclease, along with RNAi, functions in dampening the expression of thousands of lncRNAs and mRNAs that become derepressed during meiosis. Antisense lncRNA expression mostly negatively correlates with sense mRNA expression in the physiological, but not in the genetic conditions. Intergenic and bidirectional lncRNAs emerge from nucleosome-depleted regions, upstream of positioned nucleosomes. This broad survey of the lncRNA repertoire and characteristics in S. pombe, and the interwoven regulatory pathways that target lncRNAs, provides a rich framework for their further functional analyses. # Introduction Advances in array- and sequencing-based technologies have revealed that genomes are more pervasively transcribed than expected from their protein-coding sequences. For example, 70-80% of the human genome is transcribed but less than 2% encodes proteins (Djebali et al. 2012). So-called long non-coding RNAs (lncRNAs), which exceed 200 nucleotides in length but lack long open reading frames, make up a substantial and diverse portion of the non-coding transcriptome. The functions, if any, of most lncRNAs are not known, although several have well-defined roles in gene regulation and other cellular processes, and are also implicated in diseases (Geisler and Coller 2013; Batista and Chang 2013; Mercer and Mattick 2013; Guttman and Rinn 2012; Rinn and Chang 2012). The lncRNAs are often lowly expressed but show more changes in expression levels between different tissues or conditions than do the protein-coding messenger RNAs (mRNAs) (Cabili et al. 2011; Derrien et al. 2012; Pauli et al. 2012; Hon et al. 2017). In general, lncRNAs are transcribed by RNA polymerase II (Pol II) and seem to be capped and polyadenylated (Cabili et al. 2011; Derrien et al. 2012; Guttman et al. 2009), although more recent findings show that the patterns of transcription and RNA processing can radically differ between mRNAs and lncRNAs (Schlackow et al. 2017; Tuck and Tollervey 2013; Quinn and Chang 2016; Mukherjee et al. 2017). Some lncRNAs engage with ribosomes, which can trigger nonsense-mediated decay (NMD) to dampen their expression but may also produce functional peptides in some cases (de Andres-Pablo et al. 2017; Quinn and Chang 2016; Malabat et al. 2015; Wery et al. 2016). Given the profusion, diversity and low expression levels of lncRNAs, their full description and annotation is still ongoing and evolving (Mattick and Rinn 2015; St. Laurent et al. 2015; Atkinson et al. 2012). A conceptually simple way to classify lncRNA genes is by their position relative to neighbouring coding genes. For example, long intervening non-coding RNAs (lincRNAs), resulting from transcription of intergenic regions that do not overlap any mRNAs, have been the subject of much research in mammalian cells (Ulitsky and Bartel 2013; Rinn and Chang 2012; Schlackow et al. 2017). Antisense lncRNAs are transcribed in the opposite direction to mRNAs, with which they completely or partially overlap, and they can affect sense transcript levels via diverse mechanisms (Pelechano and Steinmetz 2013; Mellor et al. 2016). As a final example, bidirectional lncRNAs emerge close to the transcriptional start site of a coding gene but run in the opposite direction; most eukaryotic promoters initiate divergent transcription leading to widespread bidirectional lncRNAs, although transcriptional elongation is often only productive in the sense direction (Quinn and Chang 2016; Grzechnik et al. 2014). Bidirectional transcription has been proposed to drive the origination of new genes (Wu and Sharp 2013) and to modulate gene-expression noise (Wang et al. 2011). Pervasive transcription is potentially harmful as it can affect the expression of coding genes (Mellor et al. 2016), and nascent RNAs can compromise genome stability (Li and Manley 2006). Cells therefore apply RNA surveillance systems to keep the expression of lncRNAs in check (Jensen The fission yeast Schizosaccharomyces pombe provides a potent model system to study gene regulation. In some respects, the RNA metabolism of fission yeast is more similar to metazoan cells than budding yeast. For example, RNA interference (RNAi) (Castel and Martienssen 2013), RNA uridylation (Schmidt et al. 2011), and Pab2/PABPN1-dependent RNA degradation (Lemay et al. 2010; Lemieux et al. 2011; Beaulieu et al. 2012) are conserved from fission yeast to humans, but are absent in budding yeast. Several genome-wide studies have uncovered widespread lncRNAs (Dutrow et al. 2008; Wilhelm et al. 2008; Rhind et al. 2011; Eser et al. 2016), and over 1500 lncRNAs are currently annotated in the PomBase model organism database (McDowall et al. 2014). Studies with natural isolates of S. pombe revealed that only the most highly expressed lncRNAs show purifying selection (Jeffares et al. 2015), but the regulation of many lncRNAs is affected by expression quantitative trait loci (Clément-Ziza et al. 2014). Over 85% of the annotated S. pombe lncRNAs are expressed below one copy per cell during proliferation, and over 97% appear to be polyadenylated (Marguerat et al. 2012). Ribosome profiling showed that as many as 24% of lncRNAs are actively translated (Duncan and Mata 2014). As in other organisms, a large proportion of the S. pombe lncRNAs are antisense to mRNAs and have been implicated in controlling the meiotic gene expression programme (Ni et al. 2010; Chen et al. 2012; Bitton et al. 2011). Diverse chromatin factors function in suppressing antisense and other lncRNAs in S. pombe, including the HIRA histone chaperone (Anderson et al. 2009), the histone variant H2A.Z (Zofall et al. 2009; Clément-Ziza et al. 2014), the Clr4/Suv39 methyltransferase together with RNAi (Zhang et al. 2011), the Spt6 histone chaperone (DeGennaro et al. 2013), and the CHD1 chromatin remodeller (Pointner et al. 2012; Hennig et al. 2012; Shim et al. 2012). A few lncRNAs have been functionally characterized in S. Transcriptome analyses under different selective conditions, such as in RNA-processing mutants, have proven useful to define lncRNAs in budding yeast. Here we analyse transcriptome sequencing under multiple genetic and physiological perturbations in fission yeast to maximize the detection and initial characterization of lncRNAs. Some of these RNA-seq samples have previously been analyzed with respect to mRNA processing and expression (Bitton et al. 2015; Lemieux et al. 2011; Schlackow et al. 2013; Marguerat et al. 2012; Lemay et al. 2014). They interrogate pathways, such as RNAi and Pab2/PABPN1, which are conserved in humans but not in budding yeast. We identify 5775 novel, unannotated lncRNAs, in addition to the previously annotated lncRNAs. The expression of lncRNAs is more extensively regulated in different physiological conditions than the expression of mRNAs, including stationary phase, quiescence and, most notably, meiotic differentiation. Many lncRNAs comprise unstable transcripts that are degraded by three partially overlapping RNA-processing pathways: the nuclear exosome, the RNAi machinery, or the cytoplasmic exonuclease. Analogous to budding yeast, we classify the unstable lncRNAs targeted by Rrp6, Dcr1 and Exo2 into CUTs, DUTs and XUTs, respectively. We further analyse the positions and expression of all novel and annotated lncRNAs with respect to neighbouring mRNAs, and other biological characteristics such
as translation and nucleosome patterns. This extensive study provides a framework for functional characterization of lncRNAs in fission yeast and beyond. ## **Results** ### **Detection of novel lncRNAs** To broadly identify lncRNAs in fission yeast, we examined strand-specific RNA-seq data that have been acquired under multiple genetic and physiological conditions. We analyzed the transcriptomes of twelve RNA-processing mutants to facilitate detection of RNAs that may be rapidly degraded (Table S1). This mutant panel affects proteins for key pathways of RNA processing and degradation: Rrp6, a 3'-5' exonuclease of the nuclear RNA exosome (Harigaya et al. 2006; Lemay et al. 2014); Dis3, a 3'-5' exonuclease/endonuclease of the core RNA exosome (Wang et al. 2008); Ago1 To detect novel lncRNAs longer than 200 nucleotides, we designed a segmentation heuristic, optimised by its ability to detect the previously annotated lncRNAs (Methods). Applying this approach to the RNA-seq data covering the broad genetic and physiological perturbations, we identified 5775 novel, unannotated lncRNAs in addition to the ~1550 previously annotated lncRNAs. We assigned systematic names, *SPNCRNA.2000* to *SPNCRNA.7774*, to these novel lncRNAs (Table S3). Of these unannotated lncRNAs, 159 fully or partially overlapped on the same strand with 171 of the 487 novel lncRNAs recently reported (Eser et al. 2016) (Table S4). The novel lncRNAs were generally shorter (mean 797 nt) than the annotated lncRNAs (mean 1233 nt) and mRNAs (mean 2148 nt) (Figure S1a). While some sequence library protocols can generate spurious antisense RNAs (Perocchi et al. 2007), our protocol is resilient to this artefact as it relies on ligating two RNA oligonucleotides to fragmented mRNAs. We mostly analyzed polyA-enriched samples, because almost all *S. pombe* lncRNAs are polyadenylated (Marguerat et al. 2012). As a control, we compared the data to samples depleted for ribosomal RNA (rRNA) in *rrp6*\(\textit{\textit{2012}}\). Examples of novel lncRNAs are provided in a browser view in Figure S2. None of the novel lncRNAs overlapped with mRNAs on the same strand using current PomBase annotations, and only 21 overlapped using CAGE (Li et al. 2015) and polyA data (Mata 2013), respectively, for transcription start and termination sites (Table S5). Thus, the novel lncRNAs do not represent alternative transcription start or termination sites of known mRNAs. On the other hand, 3650 of 5138 protein-coding regions (71%) overlapped by at least 10 nucleotides with antisense lncRNAs, either annotated or novel. The 1461 (28.4%) of coding regions not associated with antisense lncRNAs were enriched for the 20% shortest mRNAs ($p \sim 1.6E-16$), including those encoding ribosomal proteins ($p \sim 1.1E-05$), as well as for several features associated with high gene expression, including high mRNA levels ($p \sim 0.004$) (Pancaldi et al. 2010), stable mRNAs ($p \sim 2.1E-09$) (Hasan et al. 2014), and mRNAs that show high Pol II occupancy ($p \sim 2.4E-05$) and high ribosome density ($p \sim 1.2\text{E-}41$) (Lackner et al. 2007). These enrichments suggest that highly expressed genes are either protected from antisense transcripts or interfere with antisense transcription. Figure 1 shows the relative expression changes of all mRNAs, annotated lncRNAs and novel lncRNAs in the genetic and physiological conditions. For all conditions, differential expression was determined relative to three reference samples (exponentially proliferating wild-type and auxotrophic control cells in minimal medium with supplements; Table S2). This panel of reference samples encompasses different genetic markers and supplements used for the other conditions. Only 403 RNAs, including 184 novel lncRNAs, were differentially expressed between wild-type and auxotrophic control cells grown in rich yeast extract (YE) medium compared to minimal media (>2-fold change, p <0.05) (Fig. 1). Thus, the growth medium and auxtrophic markers only minimally affect lncRNA expression. All differential expression data are available in Table S3. Figure 1. Hierarchical clustering of gene expression in different RNA-metabolism mutants and physiological conditions. Expression profiles are shown for all 5177 mRNAs (top), 1573 annotated IncRNAs (middle) and 5775 novel, unannotated IncRNAs (bottom). Changes in RNA levels in response to the different genetic and physiological conditions (indicated at bottom) relative to control cells grown in minimal medium are color-coded as shown in the color-legend at bottom right (log2 foldchanges). RNA from rrp6 and exo2 samples indicated by asterisks has been depleted for rRNA instead of polyA purification. Details on the strains and conditions used are provided in Tables S1 and S2. Figures 1b and 1c show the expression of the previously annotated and novel lncRNAs, respectively. Compared to mRNAs, much higher proportions and numbers of lncRNAs showed strong differential expression, mostly induced, under the different genetic and physiological conditions (Fig. 1; Figure S3). The following mutants led to the most pronounced effects on lncRNA expression: nuclear exosome (rrp6-ts, rrp6\Delta, dis3-54), RNAi (ago1\Delta, dcr1\Delta, rdp1\Delta), and the cytoplasmic exonuclease ($exo2\Delta$). In nuclear exosome mutants, most lncRNAs were strongly derepressed, in stark contrast to the mRNAs which showed a higher proportion of repressed transcripts in this condition (Fig. 2a; Figure S3). Many of the novel lncRNAs in particular were also strongly derepressed in RNAi and exo2 mutants and in meiotic cells (Fig. 2a), most notably during late meiotic stages (Mei 6-8h; Fig. 1c; Figure S3). On the other hand, the novel lncRNAs showed generally lower expression levels in both genetic and physiological conditions than the annotated lncRNAs, and much lower than the mRNAs (Fig. 2b). Remarkably, only 54 novel lncRNAs were neither up- nor down regulated in any of the conditions (>2-fold change, p <0.05). This result argues against sequencing artefacts and supports that the levels of these transcripts are modulated in response to different conditions. Together, their low expression levels and induction under specialized conditions can explain why the novel lncRNAs have not been identified in previous studies (Wilhelm et al. 2008; Rhind et al. 2011; Eser et al. 2016). In conclusion, these findings indicate that the novel lncRNAs comprise many cryptic transcripts that are mainly degraded by three RNA-processing pathways during mitotic proliferation: the nuclear exosome, the RNAi machinery, and the cytoplasmic exonuclease Exo2. The other RNA processing factors analyzed here seem to play only minor or redundant roles in lncRNA modulation. Many lncRNAs become induced under specific physiological conditions when they might play specialized roles. **Figure 2.** Gene expression in major groups of genetic and environmental conditions. **a** Left graph: box plot of expression ratios (condition relative to control) of all mRNAs, annotated and novel lncRNAs in nuclear exosome ($rrp6\Delta$, rrp6-ts), RNAi ($ago1\Delta$, $dcr1\Delta$, $rdp1\Delta$) and cytoplasmic exonuclease ($exo2\Delta$) mutants. Right graph: as left but for quiescence, stationary phase and meiosis conditions. The horizontal dashed lines indicate 2-fold induction and repression. **b** As in panel a, but for expression levels (RPKM scores). In budding yeast, different groups of lncRNAs have been named according to the RNA-processing pathways controlling their expression. For example, CUTs are targeted for degradation by the nuclear exosome (Neil et al. 2009; Xu et al. 2009), and XUTs are targeted for degradation by the cytoplasmic exonuclease Xrn1 (ortholog of *S. pombe* Exo2) (van Dijk et al. 2011). We introduce an analogous classification of lncRNAs to the one in budding yeast to provide a framework for analysis. Based on the panel of RNA-processing mutants tested here, the nuclear exosome, the cytoplasmic exonuclease, and the RNAi machinery are the three main pathways targeting lncRNAs in *S. pombe* (Fig. 1; Fig. 2). These three pathways thus provide a natural way to classify the lncRNAs as CUTs and XUTs (corresponding to the budding yeast classes of the same names) and DUTs (Dicer-sensitive unstable transcripts). DUTs define a novel class not applicable to budding yeast which lacks the RNAi machinery. Using a fuzzy clustering approach (Methods), we classified both the novel and previously annotated lncRNAs that were significantly derepressed in at least one of the following mutants: rrp6∆ (CUTs), dcr1\(alpha\) (DUTs) or exo2\(alpha\) (XUTs). Of 7308 lncRNAs, 2068 remained unclassified because they were not significantly derepressed in any of the three mutants (1896 lncRNAs) or could not be assigned to a single class (172 lncRNAs). The remaining lncRNAs were classified into 2732 CUTs (493 annotated, 2239 novel), 1116 XUTs (181 annotated, 935 novel), and 1392 DUTs (209 annotated, 1183 novel). The resulting three classes were quite distinct (Fig. 3a). These class associations are provided in Tables S3 and S5. As expected, the lncRNAs of a given class were most highly expressed on average in the mutant used to define the class, although they were also more highly expressed in the other two mutants than in wild-type cells (Fig. 3b). This pattern was also evident when clustering the three lncRNA classes separately based on the expression changes in the different RNA-processing mutants (Fig. 3c): lncRNAs of a given class were most highly derepressed in the mutant used to define this class, and in mutants affecting the same pathway, but they also tended to be derepressed in mutants of other pathways. These results show that the lncRNAs of a given class are not exclusively derepressed in the mutant used to define this class. Thus, lncRNAs can be degraded by different pathways although one pathway is typically dominant for a given lncRNA which
is used here for classification. **Figure 3.** Classification of IncRNAs into CUTs, DUTs and XUTs. - **a** The IncRNAs significantly induced (DESeq2; adjusted p \leq 0.05) in $rrp6\Delta$, $dcr1\Delta$ or $exo2\Delta$ mutants were clustered into CUTs, DUTs and XUTs, respectively, using the Mfuzz R package (default parameters, 3 clusters specified). The clustering shows the 5586 uniquely classified IncRNAs after filtering those with a membership score <0.7. The red/blue colours indicate the mean RPKM values in the 3 mutants as indicated, scaled by subtracting the mean of the row and division by the standard deviation of the row (z-score). The assigned clusters are indicated at left. - **b** Box plots of RPKM values (log2) of all CUTs (left), DUTs (middle) and XUTs (right) in control (MM) and mutant cells as indicated. The data for the biological repeats 1 and 2 are ploted separately. - **c** Hierarchical clustering of genetic conditions for all CUTs, DUTs and XUTs as indicated. Changes in RNA levels in response to the different genetic conditions (indicated at bottom) relative to control cells grown in minimal medium are color-coded as shown in the color-legend at bottom right (log2 fold-changes). To further dissect the functional relationships among the nuclear exosome, RNAi, and cytoplasmic exonuclease pathways, we attempted to construct double and triple mutants of $rrp6\Delta$, $dcr1\Delta$ and $exo2\Delta$. We did not manage to generate an $rrp6\Delta$ $exo2\Delta$ mutant among 24 tetrads dissected from this cross. Amongst the tetrads analyzed with three viable spores, the non-surviving spore was always of the $rrp6\Delta$ $exo2\Delta$ genotype, with a significant difference between observed and expected frequencies of wild-type, single and double mutant spores (chi-square test, p ~10⁻⁴; based on 61% surviving spores). We conclude that the $rrp6\Delta$ $exo2\Delta$ double mutant is not viable. This synthetic lethality indicates that the nuclear exosome and cytoplasmic exonuclease together exert an essential role. This shared essential role of Rrp6 and Exo2 could involve processing of lncRNAs, which are much more affected in the corresponding mutants than are mRNAs (Figure S3). It is possible that the cytoplasmic exonuclease can serve as a backup to degrade transcripts that escaped degradation by the nuclear exosome. Conversely, the $exo2\Delta \ dcr1\Delta$ and $rrp6\Delta \ dcr1\Delta$ double mutants were viable, although the latter showed growth defects that were stronger than for either single mutant (Figure S4). While the $exo2\Delta \ dcr1\Delta$ cells were elongated like the $exo2\Delta$ cells (Szankasi and Smith 1996), the $rrp6\Delta$ and $rrp6\Delta \ dcr1\Delta$ cells were of normal length, with the double mutant looking sick (Figure S4). These findings suggest that the nuclear exosome and RNAi machineries can back each other up to some extend. We also attempted to construct an $rrp6\Delta \ exo2\Delta \ dcr1\Delta$ triple mutant by mating of the $exo2\Delta \ dcr1\Delta$ and $exp6\Delta \ dcr1\Delta$ double mutants. This mating only produced ~17% viable spores, suggesting that the RNAi machinery is required for spore survival. As expected, we did not obtain any triple mutant among 24 tetrads dissected from this cross (chi-square test, p ~10⁻⁴; based on number of surviving spores). Thus, both the $exp6\Delta \ exo2\Delta \ dcr1\Delta$ double mutant and the $exp6\Delta \ exo2\Delta \ dcr1\Delta$ triple mutant are not viable. Consistent with lncRNAs being targeted by multiple pathways (Fig. 3b,c), these results point to some redundancy in function between the different RNA degradation pathways (Discussion). We analyzed the transcriptomes of the $exo2\Delta dcr1\Delta$ and $rrp6\Delta dcr1\Delta$ double mutants by RNA-seq. The $rrp6\Delta dcr1\Delta$ double mutant showed a greater number of derepressed lncRNAs than either single mutant, especially among the novel lncRNAs (Fig. 3c; Figure S3). The 5647 lncRNAs that were significantly derepressed in the $rrp6\Delta dcr1\Delta$ double mutant (expression ratio >2, p <0.05) included 2653 CUTs and 1317 DUTs, but also 884 XUTs and 793 unclassified lncRNAs. This result again shows that the nuclear exosome and RNAi have partially redundant roles and can back each other up with respect to many RNA targets. Moreover, these two nuclear pathways can degrade most XUTs that are further targeted by the cytoplasmic exonuclease. These findings highlight a prominent role of the joint activity of the nuclear exosome and RNAi to suppress a large number of lncRNAs. In contrast, the *exo2* Δ *dcr1* Δ double mutant showed fewer derepressed XUTs and DUTs than either single mutant (Fig. 3c; Figure S3). The 2272 lncRNAs that were significantly derepressed in the double mutant included only 675 XUTs and 658 DUTs, but 786 CUTs and 153 unclassified #### Classification of lncRNAs by neighbouring mRNA positions We also classified all known and novel lncRNAs into the main types based on their positions relative to the neighbouring mRNAs: Bidirectional, Antisense and Intergenic (Fig. 4a). The criteria for these assignments, and overlaps between different classes, are specified in the Methods. In total, we defined 1577 Bidirectional (539 annotated, 1038 novel), 4474 Antisense (575 annotated, 3899 novel) and 1189 Intergenic (356 annotated, 833 novel) lncRNAs, besides 108 that overlapped mRNAs in sense direction (103 annotated, 5 novel). Lists for these lncRNA classes are provided in Table S5. Figure 4a shows that the Bidirectional lncRNAs were enriched for CUTs. The Antisense lncRNAs were enriched for XUTs and, most notably, for DUTs, while the Intergenic lncRNAs were enriched for other, not classified lncRNAs. Similar trends were also evident when analysing the lncRNA types the other ways round (Fig. 4b): while most CUTs, DUTs and XUTs were Antisense, only the DUTs and XUTs were enriched for Antisense lncRNAs, while the CUTs were enriched for Bidirectional lnsRNAs. # Figure 4 (next page). Analyses of IncRNAs by positions relative to mRNAs. - **a** We defined all annotated and novel IncRNAs into three main positional types, represented schematically: 1577 Bidirectional, 4474 Antisense and 1189 Intergenic RNAs, leaving only 108 IncRNAs that overlapped mRNAs in sense direction (Methods). Pie charts of the corresponding proportions of CUTs, DUTs, XUTs and other IncRNAs are provided beneath each positional type, and also for all (annotated and known) IncRNAs. Significantly enriched slices are indicated with asterisks (R prop.test function, p <10⁻⁶). - **b** Pie charts of the proportions of Bidirectional, Antisense, Intergenic and Sense IncRNAs for all (annotated and known) IncRNAs, and among the CUTs, DUTs and XUTs. Significantly enriched slices are indicated with asterisks (R prop.test function, p <10⁻⁴). Figure 4 ### **Expression patterns of lncRNAs** The expression of lncRNAs could merely reflect the expression of neighboring mRNAs, or it could actively control the expression of neighbouring mRNAs. We analyzed the relationship between Bidirectional and Antisense lncRNAs and their associated mRNAs (Fig. 4a). We calculated the correlation coefficients for expression levels of each lncRNA-mRNA pair across all genetic and physiological conditions. Figure 5a shows that the expression of the Bidirectional lncRNAs tended to positively correlate with the expression of their associated mRNAs, for both the genetic and physiological conditions. The Antisense lncRNAs, on the other hand, revealed significant differences for genetic *vs* physiological conditions. They mainly correlated negatively with sense mRNA expression in the physiological, but not in genetic conditions (Fig. 5a). Thus, accumulation of Antisense lncRNAs in the different RNA processing mutants seems to generally not be sufficient to repress mRNA levels. These striking contrasts between the two lncRNA classes and the different types of conditions provide clues about the lncRNA-mRNA expression relationships for Bidirectional and Antisense lncRNAs (Discussion). The gene expression signatures revealed that lncRNAs became stabilised under specific physiological conditions, which could reflect specialized roles under these conditions (Fig. 1; Fig. 2a). We checked whether the different lncRNAs showed distinct regulatory patterns by clustering the classes separately based on their expression changes in the different physiological conditions. When clustering CUTs, DUTs and XUTs, the physiological conditions clustered into three groups in all cases that showed distinct patterns of lncRNA expression (Figure S5): late meiosis, stationary phase (triggered by glucose limitation), and quiescence/early meiosis (both triggered by nitrogen limitation). These three groups reflect the major physiological states sampled by the different conditions. The expression changes of CUTs, DUTs and XUTs, however, did substantially differ across the physiological conditions. Most lncRNAs in all three classes, and among novel lncRNAs in general, were strongly induced in late meiosis (Mei 8h; Figures S3 and S5). Many lncRNAs were also induced during stationary phase and quiescence/early meiosis, with CUTs being relatively most conspicuous in these conditions (Figures S3 and S5). We also analyzed the lncRNAs classified by their positions relative to neighbouring mRNAs. As expected from the results in Figure 4, the nuclear exosome mutants showed the highest proportion of derepressed Bidirectional lncRNAs but were also prominent in derepressing Antisense and Intergenic lncRNAs (Fig. 5b). Again, the $rrp6\Delta dcrl\Delta$ double mutant led to derepression of a large number of lncRNAs, particularly Intergenic and Antisense lncRNAs (Fig. 5b). Among the physiological conditions, late meiosis (Mei 8h) showed the highest proportions of induced lncRNAs for all three classes; this response was most notable for Antisense lncRNAs, many of which were
highly induced, while much fewer Intergenic lncRNAs were induced (Fig. 5b,c). Overall, the Bidirectional, Antisense and Intergenic lncRNAs showed stronger class-specific expression signatures in the physiological conditions than did the CUTs, XUTs and DUTs (Fig. 5c vs Figure S5). But expression patterns across the different physiological conditions are not sufficiently distinct to predict class membership based on these patterns. **Figure 5 (next page).** Expression patterns of Bidirectional, Antisense and Intergenic IncRNAs. **a** Pearson correlation coefficients for RPKM expression data of each Bidirectional IncRNA-mRNA pair (left) and each Antisense IncRNA-mRNA pair (right). The correlation data are shown separately for all genetic and physiological conditions as indicated on X-axes. For Antisense IncRNAs, the difference between the distributions in genetic *vs* physiological conditions is highly significant (P_{Wilcoxon} = 4.6e-170). - **b** Histograms showing the numbers and proportions of the induced (orange), repressed (blue) and all other (grey) transcripts for the different IncRNA classes as indicated. Differentially expressed genes were defined as those being >2-fold induced (average of two biological repeats) or repressed and showing significant changes (p <0.05) compared to reference as determined by DESeq2. - **c** Hierarchical clustering of physiological conditions for different lncRNA classes as indicated. Changes in RNA levels in response to the different physiological conditions (indicated at bottom) relative to control cells grown in minimal medium are color-coded as shown in the colour-legend at bottom (log2 fold-changes). Figure 5 ### Nucleosome profiles of lncRNA regions Transcribed regions are often accompanied by distinct patterns of nucleosome distribution. As a proxy for nucleosome distributions around lncRNA regions, we sequenced mononucleosomal DNA to compare the chromatin organization between protein-coding and non-coding transcribed regions in proliferating wild-type cells. We only analyzed lncRNA regions that did not overlap with any mRNA regions to minimize confounding data from coding transcription (although some mRNA transcription start sites may remain among the Bidirectional lncRNA data). Figure 6 shows that both Bidirectional and Intergenic lncRNAs initiated in nucleosome-depleted regions, at the 5'-end of a positioned nucleosome. This feature was shared with mRNA regions, although these regions showed much higher nucleosome densities and higher order of subsequent nucleosomes. In general, intergenic regions showed lower nucleosome densities than do mRNA regions, as has been observed before (Lantermann et al. 2010). We conclude that there are both similarities (around the transcription start site) and differences in chromatin organization between coding and non-coding regions. Figure 6. Nucleosome patterns for coding and non-coding transcribed regions. Nucleosome profiling data for all mRNA loci (left), 509 Bidirectional IncRNA loci and 1119 Intergenic IncRNA loci (right) in proliferating wild-type cells. Bidirectional IncRNA loci that overlap mRNAs in antisense direction are not included. Seventy Intergenic IncRNA loci that showed unusually high histone occupancies were omitted from the plot (Table S8). The top graphs show the average nucleosome profiles for the different types of transcribed regions, aligned to the transcription start sites (TSS). The lower graphs show heatmaps for the first 2 kb of all transcribed regions analysed, ordered by transcript length from top (longest RNAs) to bottom (shortest RNAs). The sequencing score is colorcoded as shown in the legend at bottom right. #### Translation of lncRNAs Ribosome profiling before and during meiotic differentiation has revealed that as much as 24% of the annotated lncRNAs are actively translated (Duncan and Mata 2014). Such translation typically increases during meiosis and involves short open reading frames (ORFs), often more than one per lncRNA. In addition, translation has been detected in numerous unannotated regions of the genome (Duncan and Mata 2014). We analyzed these ribosome-profiling data (Duncan and Mata 2014), covering the whole genome of proliferating and meiotic cells, to assess translation of the different classes of annotated and novel lncRNAs defined above. Details of all 771 translated non-coding regions are provided in Table S6. Table 1 shows the numbers and percentages of actively translated lncRNAs, both for all translated regions of ≥ 1 codon and for a conservative set of translated regions with ≥ 10 codons. Overall, the novel lncRNAs showed a much lower proportion of translated transcripts than the annotated lncRNAs. This result likely reflects their lower expression levels (Fig. 2). Such low expression makes it harder to obtain sufficient ribosome-profiling reads to determine translation for most lncRNAs, especially because no ribosome profiling data were available for most conditions in which the novel lncRNAs became derepressed. Nevertheless, 66 or 148 novel lncRNAs were found to be actively translated using the more or less conservative cutoff, respectively. Among the main classes, the Bidirectional lncRNAs showed the largest numbers and proportions of translated RNAs, which were highly enriched (Table 1; P = 1.7e-26). Moreover, up to 30% of the 108 previously annotated lncRNAs overlapping mRNAs in sense direction were actively translated. This finding suggests that some of these RNAs are alternative 'untranslated regions' of the mRNAs with translation of short upstream ORFs (Duncan and Mata 2014). Table 1. Data of actively translated IncRNA classes | IncRNA | Total IncRNAs | Translated IncRNAs | Proportion translated: | |---------------|---------------|--------------------|------------------------| | | | All / ≥10 codons | All / ≥10 codons | | All | 7348 | 557 / 256 | 7.6% / 3.5% | | Novel | 5775 | 148 / 66 | 2.6% / 1.1% | | CUTs | 2732 | 210 / 85 | 7.7% / 3.1% | | DUTs | 1392 | 40 / 17 | 2.9% / 1.2% | | XUTs | 1116 | 60 /33 | 5.4% / 3.0% | | Bidirectional | 1577 | 224 / 98 | 14.2% / 6.2% | | Antisense | 4474 | 215 / 104 | 4.8% / 2.3% | | Intergenic | 1189 | 86 / 42 | 7.2% / 3.5% | | Sense | 108 | 32 / 12 | 29.6% / 11.1% | It is not clear to what extent any stable, functional peptides are generated by all this translational activity. The engagement of lncRNAs with ribosomes could trigger NMD and degradation via the cytoplasmic exonuclease (de Andres-Pablo et al. 2017; Quinn and Chang 2016; Malabat et al. 2015). We therefore checked whether the translated lncRNAs were enriched among those being derepressed in the $upfI\Delta$ mutant which is defective for NMD (Rodríguez-Gabriel et al. 2006). There were no significant overlaps between the translated RNAs and the novel, annotated or all lncRNAs derepressed in $upfI\Delta$ cells. Moreover, despite being enriched for translated lncRNAs, the Bidirectional lncRNAs showed no significant overlap with RNAs derepressed in $upfI\Delta$ cells. This finding is consistent with Bidirectional lncRNAs being mainly targeted by the nuclear exosome rather than the cytoplasmic exonuclease (Fig. 4). Conversely, the translated XUTs and Antisense lncRNAs were both significantly enriched for RNAs derepressed in $upfI\Delta$ cells (P = 6.7e-24 and 1.5e-25, respectively). This result is consistent with the cytoplasmic exonuclease being the major pathway for NMD-mediated RNA degradation. Together, these findings suggest that engaging with ribosomes triggers the degradation of many XUTs and Antisense lncRNAs, but not of Bidirectional lncRNAs which are thus more likely to produce peptides. # **Discussion** This study has uncovered 5775 novel lncRNAs. Compared to mRNAs and previously annotated lncRNAs, these novel lncRNAs are subject to stronger and more widespread differential expression, mostly induction, in response to multiple genetic and physiological conditions (Figs. 1 and 2). Analysis of lncRNA expression across a broad panel of RNA-processing mutants indicates that the nuclear exosome, the RNAi pathway and the cytoplasmic exonuclease are key pathways targeting lncRNAs. Analogous to budding yeast, we have classified lncRNAs into CUTs, DUTs and XUTs, defined by the pathway which preferentially degrades them. Notably, mRNAs are much less affected by the absence of these pathways than are lncRNAs (Fig. 1). The relatively fewer changes in mRNA expression in mutants of these RNA-processing pathways suggests that lncRNAs are important targets of the corresponding proteins. Unstable lncRNAs have been most extensively described at a genomewide level in budding yeast which guided our classification. The lncRNA classes defined here show both similarities and differences to the classes defined in budding yeast, as highlighted below. The ~2000 budding yeast CUTs are derepressed upon deletion of the nuclear-specific exosome subunit Rrp6 and transcribed divergently from mRNAs with which they positively correlate in expression (Neil et al. 2009; Xu et al. 2009). These findings are similar to our results (Figs. 3, 4 and 5a). A difference, however, is that budding yeast CUTs are greatly stabilized by loss of Trf4, a key component of the exosome-targeting TRAMP complex (Wlotzka et al. 2011; Frenk et al. 2014), while fission yeast CUTs are only marginally affected by loss of the TRAMP subunits Cid14 (Fig. 1; Figure S3) and Mtr4 (data not shown). This result indicates a TRAMP-independent mechanism of exosomal degradation of CUTs in fission yeast. Indeed, the polyA-binding protein Pab2, functioning in a complex called MTREC, has been shown to target meiotic or unspliced mRNAs and lncRNAs in fission yeast (Yamanaka et al. 2010; McPheeters et al. 2009; Lee et al. 2013; Egan et al. 2014; Zhou et al. 2015; St-André et al. 2010). A Pab2-dependent mechanism for targeting CUTs is supported by our data that show a stronger derepression of CUTs in *pab2* mutants than in *cid14*
mutants, although both mutants show much smaller effects than the exosome mutants *rrp6* and *dis3* (Figs. 1 and 3; Figure S3). Also in human cells, many lncRNAs are targeted for exosomal degradation by PABPN1, an ortholg of Pab2 (Beaulieu et al. 2012; Meola et al. 2016). Exosome depletion in mammalian cells has revealed lncRNAs divergently transcribed from promoter regions of protein-coding genes (Quinn and Chang 2016; Grzechnik et al. 2014; Jensen et al. 2013), reminiscent of yeast CUTs. Whether the evolutionary conservation of this principle reflects functional importance of CUTs or their transcription, or simply that they are non-functional by-products of the basic mechanics of transcription, remains an open question. The ~850 SUTs in budding yeast are detectable in proliferating wild-type cells, and they are processed differently from CUTs (Neil et al. 2009; Tuck and Tollervey 2013). SUTs could be considered analogous to previously annotated lncRNAs in fission yeast, which can be readily detected in proliferating wild-type cells (Wilhelm et al. 2008; Rhind et al. 2011) and whose expression is less variable than for novel lncRNAs across the different conditions (Fig. 1). CUTs and SUTs almost exclusively originate from nucleosome-depleted regions at the ends of coding genes (Jensen et al. 2013). Our nucleosome profiling data also suggest a strong tendency of Bidirectional and Intergenic lncRNAs to initiate in nucleosome-depleted regions upstream of positioned nucleosomes (Figure 6). These nucleosome data are only approximate, as we did not determine the profiles under the different genetic or physiological conditions when lncRNAs become more highly expressed. The ~1700 budding yeast XUTs are derepressed upon deletion of the cytoplasmic exonuclease Xrn1 (ortholog of *S. pombe* Exo2), and they are mostly antisense to mRNAs and anti-correlate with sense expression (van Dijk et al. 2011). These findings are similar to our results (Figs. 3, 4 and 5a). The targeting of XUTs by a cytoplasmic exonuclease implies their efficient export to the cytoplasm. However, the proposed inhibitory functions of XUTs on coding transcription are likely mediated cotranscriptionally, and so the relevance of their cytoplasmic export is unclear (Hansen et al. 2013; Tuck and Tollervey 2013). In budding yeast, XUTs are targeted by the NMD pathway before being degraded by Xrn1, and this pathway can be regarded as the last filter to dampen lncRNA expression (Malabat et al. 2015; Wery et al. 2016). Consistent with the cytoplasmic exonuclease acting as a backup system, we find that also many CUTs and DUTs are targeted by Exo2 and the NMD factor Upf1 (Fig. 3; Figure S3). Our XUTs and Antisense lncRNAs that engage with ribosomes, but not other classes of lncRNAs, are significantly enriched for RNAs derepressed in *upf1*4 cells, supporting a role of the NMD in Exo2 degradation. Although there are overlaps of lncRNA expression in the absence of Upf1 and Exo2, much fewer lncRNAs are derepressed in *upf1* than in *exo2* mutants (Fig. 3c; Figure S3). Absence of two other regulators of cytoplasmic RNA degradation, Ski7 and Pan2 (Lemay et al. 2010; Wolf and Passmore 2014), has only subtle effects on lncRNA derepression (Fig. 3c; Figure S3). These results suggest that Exo2 plays the major role and can degrade lncRNAs independently of these other factors. However, a limitation of the current study is that RNA-seq only measures steady-state RNA levels, which integrates transcription and degradation. Findings from budding yeast indicate that mRNA levels can be adjusted by buffering mechanisms, allowing compensation of increased degradation by increased transcription or *vice versa* (Haimovich et al. 2013; Sun et al. 2017). Xrn1, the Exo2 ortholog, is required for this buffering. So it is possible that the weak derepression phenotypes of cytoplasmic RNA degradation mutants, other than *exo2*, reflect that lncRNA levels are efficiently buffered in these mutants. More work is required, however, to investigate whether the buffering system is conserved in fission yeast and whether lncRNAs are subject to it. Budding yeast has no analogous lncRNA class to the DUTs defined here, because the RNAi pathway is missing (Harrison et al. 2009). Our results show that RNAi is important to control lncRNA expression in fission yeast, most notably Antisense lncRNAs that are derepressed in late meiosis (Figs. 4 and 5b,c). In fission yeast, RNAi can dampen RNA expression via either transcriptional or post-transcriptional mechanisms (Castel and Martienssen 2013; Smialowska et al. 2014). Our data do not allow to distinguish between these two possibilities. Although RNAi is not required for antisense-mediated transcriptional repression at three meiotic mRNAs (Chen et al. 2012), our and other results (Bitton et al. 2011) indicate a prominent global role of RNAi to suppress many Antisense lncRNAs. About 75% of all DUTs are Antisense lncRNAs. RNAi plays an even more important role than Exo2 in repressing Antisense lncRNAs, but also targets Bidirectional and Intergenic lncRNAs (Fig. 4). It is not clear whether the RNAi machinery is involved to a similar extent in controlling lncRNAs in multicellular organisms. NUTs are another class of unstable lncRNAs in budding yeast, which substantially overlap with CUTs and XUTs (Schulz et al. 2013). NUTs are detected upon depletion of Nrd1, a member of the Nrd1-Nab3-Sen1 (NNS) complex that promotes transcriptional termination of lncRNAs (Schulz et al. 2013). NNS-mediated termination occurs in a TRAMP-dependent manner (Tudek et al. 2014). Nrd1 and Nab3 binding motifs are depleted in mRNAs but enriched in NUTs, indicating that NNS selectively terminates this class of lncRNAs. Fission yeast, however, does not show a similar motif bias (Aylin Cakiroglu, personal communication). Furthermore, no NNS complex was identified in fission yeast, and depletion of Seb1 impairs polyA-site selection but not RNA abundance (Lemay et al. 2016). Thus, a class corresponding to NUTs does not appear to exist in fission yeast. This conclusion is also consistent with Pab2, rather than TRAMP, being more important for exosome-mediated degradation of lncRNAs. The different lncRNA classes based on RNA-processing pathways, while useful, are fairly arbitrary and overlapping. IncRNAs can be targeted by multiple redundant or coordinating pathways in an intricate backup system, although one pathway is often dominant for a given lncRNA. Moreover, RNA-processing mutants can lead to cellular re-routing of RNA degradation. Accordingly, there are substantial overlaps between different lncRNA classes in both budding and fission yeast. We find that cells require either the nuclear exosome or cytoplasmic exonuclease to survive, with the absence of both pathways being lethal. While these pathways function in other aspects of RNA metabolism, this synthetic lethality points to the importance of dampening the extensive lncRNA expression. On the other hand, cells survive without the cytoplasmic exonuclease and RNAi or without the nuclear exosome and RNAi. Surprisingly, cells lacking both the cytoplasmic exonuclease and RNAi show fewer derepressed XUTs and DUTs than cells lacking only one of these pathways (Figure S3). This suppression might reflect that lncRNAs that cannot be degraded by RNAi are effectively targeted by the nuclear exosome. Consistent with this possibility, absence of both the nuclear exosome and RNAi leads to poor growth and large numbers of derepressed lncRNAs (Figures S3 and S4). These findings indicate partially redundant roles for the nuclear exosome and RNAi pathways, which can back each other up with respect to many RNA targets. These two nuclear pathways can also degrade most XUTs that are further targeted by the cytoplasmic exonuclease. Several studies in fission yeast have shown that the RNAi and exosome pathways have overlapping functions to repress aberrant transcripts (Buhler et al. 2008; Zhang et al. 2011; Zofall et al. 2009) as well as meiotic mRNAs and other genomic regions (Yamanaka et al. 2013, 2010; Sugiyama and Sugioka - Sugiyama 2011). Our study highlights that the nuclear exosome and RNAi pathways also cooperate to suppress thousands of lncRNAs. The expression levels of most lncRNAs are highly induced in non-dividing states (stationary phase and quiescence) and during meiotic differentiation, most notably late meiosis when over 3000 Antisense lncRNAs are induced (Figs. 1 and 5b,c). These results raise the possibility that lncRNAs have functions during these conditions. It is known that unstable lncRNAs, normally targeted for rapid degradation, can become stabilised and functional under specialized conditions (Camblong et al. 2007; Houseley et al. 2008). Environmentally regulated changes to RNA quality-control activities can alter transcriptomes and mediate responses to stress (Joh et al. 2016). RNA-processing pathways might become down-regulated under certain physiological conditions, allowing lncRNAs to accumulate. The mRNA levels of relevant RNA-processing genes do not strongly change in response to our physiological conditions, although mRNAs encoding nuclear-exosome components decrease ~2.7-fold during meiosis (Bitton et al. 2015, and data not shown). Many meiotic mRNAs are repressed in mitotic cells by the RNAi and exosome pathways and derepressed during meiosis (Yamanaka et al. 2013, 2010; Sugiyama and Sugioka-Sugiyama 2011). Derepression of lncRNAs during meiosis and other specialized conditions could involve similar regulation. In fact, our findings indicate that the Exo2 cytoplasmic exonuclase also plays an important role in repressing many lncRNAs, but also many middle meiotic genes (Mata et al. 2002) that are derepressed in *exo2* mutants and during meiosis. These results put Exo2 on the map as a new regulator of meiotic gene expression. In addition to derepression, the induction of lncRNAs could involve increased transcription
(Castelnuovo et al. 2014). In fact, RNA-processing factors likely regulate RNA levels via coordinated interplays between transcription and degradation (Haimovich et al. 2013; Sun et al. 2017), and changes in this coordination could lead to the accumulation of different lncRNAs in different physiological conditions. Antisense transcripts are the most widespread class of lncRNAs. In our data, over 70% of coding sequences are transcribed on the other strand by at least one Antisense lncRNA. This finding complements and extends previous analyses on antisense transcription in fission yeast (Wilhelm et al. 2008; Dutrow et al. 2008; Ni et al. 2010; Rhind et al. 2011; DeGennaro et al. 2013; Eser et al. 2016; Chen et al. 2012; Bitton et al. 2011; Zofall et al. 2009; Clément-Ziza et al. 2014; Zhang et al. 2011; Marguerat et al. 2012). Antisense lncRNAs include CUTs, DUTs, XUTs and other lncRNAs, with XUTs and especially DUTs being strongly enriched (Fig. 4). Thus, several RNA processing pathways can be involved in controlling Antisense lncRNAs. Previous studies have reported repressive effects of Antisense lncRNAs on their sense mRNAs (Bitton et al. 2011; Chen et al. 2012; Leong et al. 2014; Ni et al. 2010; Marguerat et al. 2012). Accordingly, we find a strong global tendency towards anti-correlation between Antisense lncRNA-mRNA expression levels under physiological conditions (Fig. 5a). In contrast, Antisense lncRNA expression shows a slight tendency towards positive correlation with mRNA expression under the genetic conditions (Fig. 5a). Thus, stabilization of Antisense lncRNAs in the absence of different RNA processing factors appears generally not to be sufficient to repress mRNA expression. This finding suggests that Antisense lncRNAs generally control mRNA expression at the level of transcription (e.g. by transcriptional interference or altered chromatin patterns) rather than functioning as transcripts. Alternatively, many Antisense lncRNAs might simply reflect opportunistic transcription, enabled by down-regulation of the dominant mRNAs running in sense direction, with the anti-correlated expression reflecting passive, indirect effects. The ~29% of protein-coding regions not associated with Antisense lncRNAs are enriched for highly expressed genes, suggesting that these genes are either protected from, or interfere with, antisense transcription. Despite the global anti-correlation (Fig. 5a), there are large numbers of Antisense lncRNAs that go against the trend, indicating that the expression relationships between lncRNAs and mRNAs involve multiple processes and cannot be explained by a few regulatory or indirect mechanisms. This conclusion is consistent with diverse findings on Antisense lncRNA processes in other systems (Pelechano and Steinmetz 2013; Mellor et al. 2016). This comprehensive study increases the number of lncRNAs annotated in fission yeast by almost 5-fold. The novel lncRNAs are typically lowly expressed but become highly derepressed in response to different genetic and physiological perturbations. In stark contrast, the mRNAs and annotated lncRNAs show less widespread changes in expression, especially in the genetic perturbations. The nuclear exosome, RNAi machinery, and cytoplasmic exonuclease are the dominant RNA-processing pathways degrading lncRNAs, used to define the CUTs, DUTs and XUTs, respectively. Bidirectional lncRNAs are enriched for CUTs and translating ribosomes, and positively correlate with divergent mRNA expression. Antisense lncRNAs are enriched for DUTs and XUTs, are mostly derepressed in late meiosis, and negatively correlate with sense mRNA expression in physiological, but not in genetic conditions. Intergenic lncRNAs are enriched for lncRNAs not classified as CUTs, DUTs or XUTs. The transcripton of Intergenic and Bidirectional lncRNAs initiates from regions that in wild-type cells are nucleosome-depleted, just upstream of a positioned nucleosome. Given their low expression and other features, it seems likely that any regulatory functions mediated by most lncRNAs are in *cis* and co-transcriptional. Our findings highlight a substantial role of RNAi, in coordination with the nuclear exosome, in controlling a large number of lncRNAs typified by the new class of DUTs. Moreover, the findings reveal a prominent new function of the Exo2 cytoplasmic exonuclease, together with RNAi, in dampening the expression of both lncRNAs and mRNAs that become derepressed during meiosis. The nuclear exosome and cytoplasmic exonuclease together play an essential role for cell viability. The three RNA-processing pathways show overlapping roles and can target most lncRNAs with different affinities, forming an intricate and intertwined RNA-surveillance network. Besides these fresh biological insights, this study provides broad data on diverse lncRNA characteristics and a rich resource for future studies on lncRNA functions in fission yeast and other organisms. # Methods ## S. pombe strains All strains, physiological and growth conditions (Edinburgh minimal media, EMM2, or Yeast Extract media, YE), and independent biological repeats used for RNA-seq in the current study are detailed in Tables S1 and S2. The PCR-based approach (Bähler et al. 1998) was used for gene deletions of *exo2*, *pan2*, and strains used to generate double mutants. Double mutants among *dcr1*, *rrp6* and *exo2* were created by crossing the corresponding single mutants (Tables S1). Strain *h dcr1::nat ura4* was generated using the PCR-based approach (Bähler et al. 1998). Random spore analysis was used to create the other single mutant strains with the correct mating-types. Strains were crossed and incubated on malt extract agar (MEA) for 2-3 days at 25°C. Tetrads were treated with zymolyase (0.5 mg/ml, MP Biomedicals Europe) and incubated at 37°C for at least 4 h to release spores. Spores were germinated on YE agar plates before being replica plated to selective EMM2 plates as appropriate. All deletion junctions were PCR verified (Bähler et al. 1998). Crosses and selection by random spore analysis were as follows: h^+ ade6-M216 leu1-32 ura4-D18 his3-D1 rrp6::URA4 was crossed with h^- ura4-D18 with selection on EMM2 plates to create h^+ rrp6::URA4 ura-D18; h^- exo2::kanMX6 ade6-216 was crossed with h^+ ura4-D18 with selection on YE + kanamycin plates, and on EMM2 plates with or without uracil, to select for h^+ exo2:: kanMX6 ura-D18 and h^- exo2:: kanMX6 ura-D18. Tetrad analysis was used to analyse the meiotic products resulting from the crosses in all combinations of the rrp6 Δ , $dcr1\Delta$ and exo2 Δ single mutant strains. Strains were crossed and incubated on MEA plates for 2-3 days at 25°C. The resulting tetrads were dissected using a micromanipulator (Singer Instruments), and spores germinated on YE plates after 5 days of growth. Haploid colonies arising from germinated spores were then streaked to selective plates to test for KAN, NAT and URA markers. All deletion junctions in double-resistant colonies were PCR-verified (Bähler et al. 1998). #### **Growth conditions** All mutant cell cultures were harvested at mid-log phase (optical density, OD₅₉₅ = 0.5). For stationary-phase experiments, wild-type cells were grown in EMM2 at 32°C. A sample representing 100% survival was harvested when cultures reached a stable maximal density. Colony forming units (CFUs) were measured every 24 hours after this initial time-point, and another sample harvested when cultures reached 50% survival. For quiescence experiments, cells were grown in EMM2 at 32°C an OD₆₀₀ of 0.2, before being centrifuged, washed twice in EMM2 without nitrogen (NH₄Cl) and cultured in EMM2 without nitrogen at 32°C. Cells under nitrogen starvation reached an OD₆₀₀ of 0.8 within 24 hours, and were harvested at 24 hours and 7 days after nitrogen removal. For meiotic timecourses, *pat1-114* diploid cells were grown to mid-log phase before being shifted to EMM2 without nitrogen. Cells were incubated at 25°C overnight to synchronise them in G1 phase. Meiosis was induced by addition of NH₄Cl to final concentration of 0.5 g/L and incubation at 34°C (0 hr timepoint). Cells were harvested by centrifugation of 50 ml cultures at 2300 rpm for 3 min, and pellets were snap-frozen and stored at -80°C prior to RNA extraction. ### RNA-seq experiments and initial analyses RNA was extracted from harvested cells using a hot-phenol method (Bähler and Wise 2017). The quality of total extracted RNA was assessed on a Bioanalyser instrument (Agilent). Strand-specific RNA-seq libraries were prepared using an early version of the Illumina TruSeq Small RNA Sample Prep Kit. For polyA-enriched samples, library preparation and sequencing protocols were as described by Lemieux et al. (2011), and for samples depleted for rRNAs ($rrp6\Delta$, $exo2\Delta$), as described (Bitton et al. 2014). RNA-seq libraries were sequenced on an Illumina HiSeq 2000 instrument, using single-end runs with 50 bp reads (The Berlin Institute for Medical Systems Biology, Germany). Reads were aligned to the fission yeast genome with the exonerate software (Slater and Birney 2005), and reads matching to multiple genomic locations were assigned at random to one of these locations. Reads containing up to 5 mismatches (not clustered at read ends) were kept for further analysis. Between 20 and 50 million mappable reads were obtained for each library (~80-85% of total reads were mappable). Expression scores were calculated for annotated features using the genome annotation available in PomBase on 9th May 2011 (Wood et al. 2012). Reads per kilobase of transcript per million reads mapped (RPKMs) for annotated features correlated strongly between biological replicates ($r_{Pearson} > 0.98$). Mapping and expression score pipelines were performed as described (Lemieux et al. 2011). ### Segmentation of sequence data to define novel lncRNAs A simple heuristic was designed to detect novel lncRNAs from
RNA-seq data. This segmentation heuristic was optimised for its ability to detect the 1557 annotated lncRNAs, and validated by visual inspection of RNA-seq data. Custom scripts for segmentation of RNA-seq data were written in *R* and *Perl*. The following RNA-seq data from initial sequencing runs were pooled (2 biological repeats each): rrp6-ts, $exo2\Delta$, dis3-54, $pab2\Delta$, nmt1-mtr4 (Lemay et al. 2014; Bitton et al. 2015), $ago1\Delta$, $rdp1\Delta$, $dcr1\Delta$, $pan2\Delta$, $upf1\Delta$, Stat 100%, Stat 50%, Quies 24 h, Quies 7d, Meiotic pool (Schlackow et al. 2013), YE1, and Refence (control) (Tables S1 and S2). Segments were delimited from the pooled data using a 10 hits/bp cut-off. Segments <100 bp apart and differing in pooled read density (average hits/bp of segment) by <10-fold were joined together. Using the PomBase genome annotation (May 2011), segments overlapping annotations on the same strand, including untranslated regions, were removed. We discarded segments of <200 bp as lncRNAs are defined by an arbitrary minimal length cut-off of 200 nt (Mattick and Rinn 2015), reflecting RNA-seq library protocols that exclude small RNAs. The remaining consecutive segments >200 bp defined 5775 novel lncRNAs. ## Analyzing of RNA expression Novel lncRNAs defined by the segmentation process described above, together with all annotated transcripts, were analysed using the Bioconductor DESeq2 package (Love et al. 2014). Differentially expressed genes were defined as those being >2-fold induced (average of two biological repeats) or repressed and showing significant changes (adjusted p <0.05) compared to three reference samples as determined by DESeq2. For hierarchical clustering of expression data, log2 ratios were clustered in R with the pheatmap package, using the Euclidian distance measure and the ward.D or ward.D2 clustering options. For expression correlation analyses, we evaluated the similarity of expression levels of Bidirectional and Antisense lncRNAs to the expression levels of their neighbouring mRNAs using normalised expression values across the the entire dataset. Vectors of mRNA-lncRNA pairs were generated and Pearson's correlation coefficients were computed. For lncRNAs associated with multiple mRNAs, only the nearest mRNA was considered. Functional enrichments of gene lists were performed using the AnGeLi tool (Bitton et al. 2015b). #### Classification into CUTs, DUTs and XUTs Differential expression data from $dcr1\Delta$, $exo2\Delta$ or $rrp6\Delta$ mutants were filtered to retain only transcripts that were significantly induced in ≥ 1 mutant compared to wild-type controls (expression ratio >2 and adjusted p-value <0.05). RPKM values from independent biological repeats for the differentially expressed RNAs were then standardized to have a mean value of 0 and a standard deviation of 1, followed by clustering using the Mfuzz clustering function in R (Kumar and E. Futschik 2007). The number of clusters "c" was set to 3 and the fuzzification parameter "m" to 1.25. To further reduce ambiguity when associating RNAs to clusters, the minimum membership value of a lncRNA belonging to a specific cluster was set to 0.7 (Kumar and E. Futschik 2007). For this classification, more recent PomBase annotations were used which contained only 1533 annotated lncRNAs (7308 annotated and novel lncRNAs in total). ### Classification into Bidirectional, Antisense and Intergenic IncRNAs To assess whether a given annotated or novel lncRNA overlaps with any mRNAs in either orientation, we systematically aligned the lncRNA coordinates relative to the annotation in Ensembl *S. pombe*, Assembly ASM294v2, release 33 (Flicek et al. 2014), enhanced by a modified annotation set that better delineates transcript boundaries. To this end, we exploited Transcription Start Sites (TSS) determined using Cap Analysis of Gene Expression (CAGE) (Li et al. 2015) and Transcription Termination Sites (TTS) defined using genome-wide polyadenylation site mapping (Mata 2013). For genes without these higher quality boundaries, we used the annotated TSS and TTS. All TSS and TTS used are provided in Table S7. We called overlaps in either orientation when ≥1 nt was shared between transcripts. Using the same criteria, we tested for overlaps with novel lncRNAs that have been recently reported (Eser et al. 2016) (Table S4). Using these overlap criteria, we classified all known and novel lncRNAs based on their proximity to nearby mRNAs. We defined lncRNAs as Intergenic if they do not overlap with any nearby mRNA, Sense-overlapping lncRNAs if they overlapped with any mRNA on the same strand, Antisense if they overlap ≥1 nt with a mRNA on the opposite strand, and Bidirectional if their TSS was <300 nt up- or down-stream of a TSS of a mRNA on the opposite strand. Naturally, given the compact fission yeast genome, there was some overlap between these classes. We reassigned lncRNAs present in two classes using the following criteria. lncRNAs classified as both Bidirectional and Intergenic (482 lncRNAs) or as Bidirectional and Antisense (1068 lncRNAs) were assigned to Bidirectional lncRNAs only. The 135 lncRNAs classified as both Sense-overlapping and either 86 ### Translation analysis of lncRNAs For the ribosome profiling analysis, we systematically looked for overlaps between the translated regions defined by Duncan & Mata (2014) and all annotated and novel lncRNAs. The significance of enrichments among different lncRNA classes was determined using the *prop.test* function in R. ### **Mutant phenotyping** Live log-phase cells in YE medium were imaged using phase-contrast microscopy (Hamamatsu digital camera C4742-95 fitted to Zeiss Axioskop microscope). One ml of culture was pelleted at 6000 rpm for 30 sec, and 2 µl of pelleted cells were mounted on a microscope slide. Images were captured using 5ms exposure and a 63x oil objective. The growth of mutant strains was profiled using the BioLector micro-fermentation system (m2p-labs). Based on light scattering, the BioLector records biomass values at 620 nm. Cells of each strain were grown for 36 h in pre-cultures, which were then used to inoculate microtiter plates with 48 'flower'-shaped wells (m2p-labs) filled with YE medium. The cell density in each well was adjusted to an OD of 0.15, with the final culture volume being 1.5ml. Gas permeable adhesive seals (Thermo Fisher Scientific) were used to cover the wells of the plate. Triplicate cultures were prepared for each strain tested. Micro-fermentations were performed with the following settings: temperature 32°C, humidity 99%, shaking 1000 rpm and light scattering data were obtained every three min over a 48 hour period. Growth parameters were extracted from the recorded growth curves. Calculation of the maximum slope during the exponential phase provided an estimation of the maximum growth rate, while the average growth rate was calculated as the average biomass change per unit time during exponential phase. For a semiquantitative analysis of cell growth, a spot assay was employed. For each strain, 5 µl of four serial (ten-fold) dilutions of log-phase cells were spotted onto a YE plate which was imaged after 3 days of growth at 32°C. # **Nucleosome profiling** Mononucleosomal DNA (MNase digested DNA) from exponentially growing wild-type (972 h²) cells in EMM2 was generated as reported (Lantermann et al. 2009). Sequencing libraries from MNase-digested DNA were prepared using the NEBNext ChIP-Seq Library Prep Master Mix Set for Illumina (E6240S). Pair-end 50 bp reads where obtained with an Illumina MiSeq sequencer at the Genomics and Genome Engineering Facility at the UCL Cancer Institute. MNAse sequencing data was mapped using Bowtie2 (Langmead and Salzberg 2012). Nucleosome maps for visualisation were performed with nucwave (Quintales et al. 2015), following the web recommendations (http://nucleosome.usal.es/nucwave/). Data were analysed using the 'computeMatrix reference-point' and 'heatmapper' functions from the deeptools package with transcription start sites as reference points (Ramírez et al. 2014). #### Data access Sequencing data have been submitted to the European Nucleotide Archive under accession numbers PRJEB7403, E-MTAB-708, E-MTAB-2237, MTAB-1154, E-MTAB-1824 (RNA-seq; for sample accessions, see Tables S1 and S2) and ERS1792795, ERS1792796 (nucleosome profiling). ## Acknowledgements We thank Philipp Korber for comments on the manuscript, Wei Chen (Berlin Institute for Medical Systems Biology) for help with RNA-sequencing, and Pawan Dhami (Genomics and Genome Engineering Facility at UCL Cancer Institute) for help with sequencing for the nucleosome profiling. This work was funded by a Wellcome Trust Senior Investigator Award (grant number 095598/Z/11/Z) and a Royal Society Wolfson Research Merit Award to JB. SM was supported by the Medical Research Council, FB by a grant from the Canadian Institutes of Health Research (MOP-106595), and JM by a BBSRC project grant [BB/M021483/1]. ## **Disclosure declaration** The authors declare that they have no competing interests. ### **Supplemental material** Supplemental tables: Table S1. RNA metabolism mutants used. Table S2. Physiological conditions used. Table S3. Expression values for all RNAs and all conditions. Table S4. Overlap of novel lncRNAs with those reported by Eser et al (2016). Table S5. ncRNA classes and information on overlaps between lncRNAs and coding sequences or mRNAs. Table S6. Polysome profiling analysis of actively translated lncRNAs. Table S7. All TSS and TTS used. Table S8. lncRNA regions showing unusually high histone occupancy. Supplemental figures: Additional file 2: Supplementary figures. Figure S1. Heat map of data from genetic screens for respiratory deficient mutants. Figure S2. Browser view of selected novel lncRNAs. Figure S3. Numbers and proportions of induced and repressed transcripts for different RNA classes. Figure S4. Phenotyping of double
mutants. Figure S5. Expression changes of CUTs, DUTs and XUTs in different physiological conditions. #### References - Anderson HE, Wardle J, Korkut S V., Murton HE, Lopez-Maury L, Bähler J, Whitehall SK. 2009. The Fission Yeast HIRA Histone Chaperone Is Required for Promoter Silencing and the Suppression of Cryptic Antisense Transcripts. *Mol Cell Biol* 29: 5158–5167. http://mcb.asm.org/cgi/doi/10.1128/MCB.00698-09. - Ard R, Tong P, Allshire RC. 2014. Long non-coding RNA-mediated transcriptional interference of a permease gene confers drug tolerance in fission yeast. *Nat Commun* **5**: 5576. http://www.nature.com/doifinder/10.1038/ncomms6576. - Atkinson SR, Marguerat S, Bähler J. 2012. Exploring long non-coding RNAs through sequencing. *Semin Cell Dev Biol* **23**: 200–5. http://www.ncbi.nlm.nih.gov/pubmed/22202731 (Accessed July 13, 2012). - Bähler J, Wise JA. 2017. Preparation of Total RNA from Fission Yeast. *Cold Spring Harb Protoc* **2017**: pdb.prot091629. http://cshprotocols.cshlp.org/content/2017/4/pdb.prot091629.abstract. - Bähler J, Wu JQ, Longtine MS, Shah NG, McKenzie A, Steever AB, Wach A, Philippsen P, Pringle JR. 1998. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. *Yeast* 14: 943–51. http://www.ncbi.nlm.nih.gov/pubmed/9717240. - Batista PJ, Chang HY. 2013. Long Noncoding RNAs: Cellular Address Codes in Development and Disease. *Cell* **152**: 1298–1307. http://www.sciencedirect.com/science/article/pii/S0092867413002018. - Beaulieu YB, Kleinman CL, Landry-Voyer AM, Majewski J, Bachand F. 2012. Polyadenylation-Dependent Control of Long Noncoding RNA Expression by the Poly(A)-Binding Protein Nuclear 1. *PLoS Genet* 8: e1003078. - Bitton DA, Grallert A, Scutt PJ, Yates T, Li Y, Bradford JR, Hey Y, Pepper SD, Hagan IM, Miller CJ. 2011. Programmed fluctuations in sense/antisense transcript ratios drive sexual differentiation in S. pombe. *Mol Syst Biol* **7**: 559. http://www.ncbi.nlm.nih.gov/pubmed/22186733 (Accessed July 18, 2012). - Bitton DA, Atkinson SR, Rallis C, Smith GC, Ellis DA, Chen YYC, Malecki M, Codlin S, Lemay JF, Cotobal C, et al. 2015. Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast. *Genome Res* 25: 884–896. - Bitton DA, Rallis C, Jeffares DC, Smith GC, Chen YYC, Codlin S, Marguerat S, Bähler J. 2014. LaSSO, a strategy for genome-wide mapping of intronic lariats and branch points using RNA-seq. *Genome Res* 24. - Bitton DA, Schubert F, Dey S, Okoniewski M, Smith GC, Khadayate S, Pancaldi V, Wood V, Bähler J. 2015b. AnGeLi: A tool for the analysis of gene lists from fission yeast. *Front Genet* **6**: 1–9. - Bühler M, Spies N, Bartel DP, Moazed D. 2008. TRAMP-mediated RNA surveillance prevents spurious entry of RNAs into the Schizosaccharomyces pombe siRNA pathway. *Nat Struct Mol Biol* **15**: 1015–1023. http://dx.doi.org/10.1038/nsmb.1481. - Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL. 2011. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. *Genes Dev* **25**: 1915–1927. http://genesdev.cshlp.org/content/25/18/1915.abstract. - Camblong J, Iglesias N, Fickentscher C, Dieppois G, Stutz F. 2007. Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. *Cell* **131**: 706–717. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1802 2365. - Castel SE, Martienssen RA. 2013. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. *Nat Rev Genet* **14**: 100–112. http://dx.doi.org/10.1038/nrg3355. - Castelnuovo M, Zaugg JB, Guffanti E, Maffioletti A, Camblong J, Xu Z, Clauder-Münster S, Steinmetz LM, Luscombe NM, Stutz F. 2014. Role of histone modifications and early termination in pervasive transcription and antisense-mediated gene silencing in yeast. *Nucleic Acids Res* **42**: 4348. +. - Chen HM, Rosebrock AP, Khan SR, Futcher B, Leatherwood JK. 2012. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe. *PLoS One* 7: e29917. - Clément-Ziza M, Marsellach FX, Codlin S, Papadakis MA, Reinhardt S, Rodríguez-López M, Martin S, Marguerat S, Schmidt A, Lee E, et al. 2014. Natural genetic variation impacts expression levels of coding, non-coding, and antisense transcripts in fission yeast. *Mol Syst Biol* 10: 764. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4299605&tool=pmcentrez&rendertype=abstract. - Colin J, Candelli T, Porrua O, Boulay J, Zhu C, Lacroute F, Steinmetz LM, Libri D. 2014. Roadblock Termination by Reb1p Restricts Cryptic and Readthrough Transcription. *Mol Cell* **56**: 667–680. http://www.sciencedirect.com/science/article/pii/S1097276514008363. - de Andres-Pablo A, Morillon A, Wery M. 2017. LncRNAs, lost in translation or licence to regulate? *Curr Genet* **63**: 29–33. http://dx.doi.org/10.1007/s00294-016-0615-1. - DeGennaro CM, Alver BH, Marguerat S, Stepanova E, Davis CP, Bähler J, Park PJ, Winston F. 2013. Spt6 Regulates Intragenic and Antisense Transcription, Nucleosome Positioning, and Histone Modifications Genome-Wide in Fission Yeast. *Mol Cell Biol* 33: 4779–4792. - http://mcb.asm.org/cgi/doi/10.1128/MCB.01068-13. - Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, et al. 2012. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. *Genome Res* 22: 1775–1789. https://www.scopus.com/inward/record.uri?eid=2-s2.0- - 84865727393&doi=10.1101%2 Fgr.132159.111&partner ID=40&md5=d8ce56209ee846c3f5935ac222b6c9b3. - Ding D-Q, Okamasa K, Yamane M, Tsutsumi C, Haraguchi T, Yamamoto M, Hiraoka Y. 2012. Meiosis-Specific Noncoding RNA Mediates Robust Pairing of Homologous Chromosomes in Meiosis. *Science* (80-) **336**: 732 LP-736. http://science.sciencemag.org/content/336/6082/732.abstract. - Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, et al. 2012. Landscape of transcription in human cells. *Nature* **489**: 101–108. http://dx.doi.org/10.1038/nature11233. - Duncan CDS, Mata J. 2014. The translational landscape of fission-yeast meiosis and sporulation. *Nat Struct Mol Biol* **21**: 641–647. http://dx.doi.org/10.1038/nsmb.2843. - Dutrow N, Nix DA, Holt D, Milash B, Dalley B, Westbroek E, Parnell TJ, Cairns BR. 2008. Dynamic transcriptome of Schizosaccharomyces pombe shown by RNA-DNA hybrid mapping. *Nat Genet* **40**: 977–986. - $http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=PubMed\&dopt=Citation\&list_uids=1864\\1648.$ - Egan ED, Braun CR, Gygi SP, Moazed D. 2014. Post-transcriptional regulation of meiotic genes by a nuclear RNA silencing complex. *RNA* **20**: 867–881. http://rnajournal.cshlp.org/content/20/6/867.abstract. - Ehrensberger KM, Mason C, Corkins ME, Anderson C, Dutrow N, Cairns BR, Dalley B, Milash B, Bird AJ. 2013. Zinc-dependent Regulation of the adh1 Antisense Transcript in Fission Yeast. *J Biol Chem* **288**: 759–769. http://www.jbc.org/content/288/2/759.abstract. - Eser P, Wachutka L, Maier KC, Demel C, Boroni M, Iyer S, Cramer P, Gagneur J. 2016. Determinants of RNA metabolism in the Schizosaccharomyces pombe genome. *Mol Syst Biol* **12**: 857. http://msb.embopress.org/content/12/2/857.abstract (Accessed November 23, 2016). - Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fitzgerald S, et al. 2014. Ensembl 2014. *Nucleic Acids Res* **42**: D749. +. - Frenk S, Oxley D, Houseley J. 2014. The Nuclear Exosome Is Active and Important during Budding Yeast Meiosis ed. J. Bähler. *PLoS One* **9**: e107648. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161446/. - Geisler S, Coller J. 2013. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. *Nat Rev Mol Cell Biol* **14**: 699–712. http://www.ncbi.nlm.nih.gov/pubmed/24105322 (Accessed October 18, 2013). - Grzechnik P, Tan-Wong SM, Proudfoot NJ. 2014. Terminate and make a loop: regulation of transcriptional directionality. *Trends Biochem Sci* **39**: 319–327. http://www.sciencedirect.com/science/article/pii/S0968000414000851. - Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, et al. 2009. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. *Nature* **458**: 223–227. - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1918 2780. - Guttman M, Rinn JL. 2012. Modular regulatory principles of large non-coding RNAs. *Nature* **482**: 339–46. http://www.ncbi.nlm.nih.gov/pubmed/22337053 (Accessed May 22, 2013). - Haimovich G, Medina D a, Causse SZ, Garber M, Millán-Zambrano G, Barkai O, Chávez S, Pérez-Ortín JE, Darzacq X, Choder M. 2013. Gene expression is circular: factors for mRNA degradation also foster mRNA synthesis. *Cell* **153**: 1000–11. http://www.ncbi.nlm.nih.gov/pubmed/23706738. - Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. 2013. Natural RNA circles function as efficient microRNA sponges. *Nature* **495**: 384–8. http://www.ncbi.nlm.nih.gov/pubmed/23446346 (Accessed May 22, 2013). - Harigaya Y, Tanaka H, Yamanaka S, Tanaka K, Watanabe Y, Tsutsumi C, Chikashige Y, Hiraoka Y, Yamashita A, Yamamoto M. 2006. Selective elimination of messenger RNA prevents an incidence of untimely meiosis. *Nature* **442**: 45–50. http://dx.doi.org/10.1038/nature04881. - Harrison BR, Yazgan O, Krebs JE. 2009. Life without RNAi: noncoding RNAs and their functions in Saccharomyces cerevisiaeThis paper is one of a selection of papers published in this Special Issue, entitled 30th Annual International Asilomar Chromatin and Chromosomes Conference, and has undergon. *Biochem Cell Biol* 87:
767–779. https://doi.org/10.1139/O09-043. - Hasan A, Cotobal C, Duncan CDS, Mata J. 2014. Systematic Analysis of the Role of RNA-Binding Proteins in the Regulation of RNA Stability ed. G.P. Copenhaver. *PLoS Genet* **10**: e1004684. - http://dx.plos.org/10.1371/journal.pgen.1004684. - Hennig BP, Bendrin K, Zhou Y, Fischer T. 2012. Chd1 chromatin remodelers maintain nucleosome organization and repress cryptic transcription. *EMBO Rep* **13**: 997 LP-1003. http://embor.embopress.org/content/13/11/997.abstract. - Hirota K, Miyoshi T, Kugou K, Hoffman CS, Shibata T, Ohta K. 2008. Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs. *Nature* **456**: 130–134. http://dx.doi.org/10.1038/nature07348. - Hon C-C, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJL, Gough J, Denisenko E, Schmeier S, Poulsen TM, Severin J, et al. 2017. An atlas of human long non-coding RNAs with accurate 5' ends. *Nature* **543**: 199–204. http://dx.doi.org/10.1038/nature21374. - Houseley J, Rubbi L, Grunstein M, Tollervey D, Vogelauer M. 2008. A ncRNA Modulates Histone Modification and mRNA Induction in the Yeast {GAL} Gene Cluster. *Mol Cell* **32**: 685–695. http://www.sciencedirect.com/science/article/pii/S1097276508008101. - Houseley J, Tollervey D. 2009. The Many Pathways of RNA Degradation. *Cell* **136**: 763–776. http://www.sciencedirect.com/science/article/pii/S0092867409000671. - Jeffares DC, Rallis C, Rieux A, Speed D, Převorovský M, Mourier T, Marsellach FX, Iqbal Z, Lau W, Cheng TMK, et al. 2015. The genomic and phenotypic diversity of Schizosaccharomyces pombe. *Nat Genet* **47**: 235–241. http://www.nature.com/doifinder/10.1038/ng.3215. - Jensen TH, Jacquier A, Libri D. 2013. Dealing with Pervasive Transcription. *Mol Cell* **52**: 473–484. http://www.sciencedirect.com/science/article/pii/S1097276513007983. - Joh RI, Khanduja JS, Calvo IA, Mistry M, Palmieri CM, Savol AJ, Sui SJH, Sadreyev RI, Aryee MJ, Motamedi M. 2016. Survival in Quiescence Requires the Euchromatic Deployment of Clr4/SUV39H by Argonaute-Associated Small {RNAs}. *Mol Cell* 64: 1088–1101. http://www.sciencedirect.com/science/article/pii/S1097276516307560. - Kilchert C, Wittmann S, Vasiljeva L. 2016. The regulation and functions of the nuclear RNA exosome complex. *Nat Rev Mol Cell Biol* 17: 227–239. - http://dx.doi.org/10.1038/nrm.2015.15% 5 Cnhttp://www.nature.com/doifinder/10.1038/nrm.2015.15. - Kumar L, E. Futschik M. 2007. Mfuzz: A software package for soft clustering of microarray data. *Bioinformation* **2**: 5–7. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2139991/. - Lackner DH, Beilharz TH, Marguerat S, Mata J, Watt S, Schubert F, Preiss T, Bähler J. 2007. A Network of Multiple Regulatory Layers Shapes Gene Expression in Fission Yeast. *Mol Cell* **26**. - Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nat Meth* **9**: 357–359. http://dx.doi.org/10.1038/nmeth.1923. - Lantermann A, Strålfors A, Fagerström-Billai F, Korber P, Ekwall K. 2009. Genome-wide mapping of nucleosome positions in Schizosaccharomyces pombe. *Methods* **48**: 218–225. http://www.sciencedirect.com/science/article/pii/S1046202309000267. - Lantermann AB, Straub T, Strålfors A, Yuan G-C, Ekwall K, Korber P. 2010. Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. *Nat Struct Mol Biol* 17: 251–7. http://www.ncbi.nlm.nih.gov/pubmed/20118936 (Accessed November 2, 2012). - Lee NN, Chalamcharla VR, Reyes-Turcu F, Mehta S, Zofall M, Balachandran V, Dhakshnamoorthy J, Taneja N, Yamanaka S, Zhou M, et al. 2013. Mtr4-like protein coordinates nuclear RNA processing for heterochromatin assembly and for telomere maintenance. *Cell* **155**: 1061–1074. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3974623/. - Lemay J-F, Larochelle M, Marguerat S, Atkinson S, Bähler J, Bachand F. 2014. The RNA exosome promotes transcription termination of backtracked RNA polymerase II. *Nat Struct Mol Biol* **21**: 919–926. http://www.nature.com/doifinder/10.1038/nsmb.2893. - Lemay J-F, Marguerat S, Larochelle M, Liu X, van Nues R, Hunyadkürti J, Hoque M, Tian B, Granneman S, Bähler J, et al. 2016. The Nrd1-like protein Seb1 coordinates cotranscriptional 3' end processing and polyadenylation site selection. *Genes Dev* 30. - Lemay JF, D'Amours A, Lemieux C, Lackner DH, St-Sauveur VG, Bähler J, Bachand F. 2010. The Nuclear Poly(A)-Binding Protein Interacts with the Exosome to Promote Synthesis of Noncoding Small Nucleolar RNAs. *Mol Cell* 37: 34–45. - Lemieux C, Marguerat S, Lafontaine J, Barbezier N, Bähler J, Bachand F. 2011. A Pre-mRNA degradation pathway that selectively targets intron-containing genes requires the nuclear poly(A)-binding protein. *Mol Cell* 44. - Leong HS, Dawson K, Wirth C, Li Y, Connolly Y, Smith DL, Wilkinson CRM, Miller CJ. 2014. A global non-coding RNA system modulates fission yeast protein levels in response to stress. *Nat Commun* **5**: 3947. http://www.nature.com/doifinder/10.1038/ncomms4947. - Li H, Hou J, Bai L, Hu C, Tong P, Kang Y, Zhao X, Shao Z. 2015. Genome-wide analysis of core promoter - structures in Schizosaccharomyces pombe with DeepCAGE. *RNA Biol* **12**: 525–537. http://dx.doi.org/10.1080/15476286.2015.1022704. - Li X, Manley JL. 2006. Cotranscriptional processes and their influence on genome stability. *Genes Dev* **20**: 1838–1847. http://genesdev.cshlp.org/content/20/14/1838.abstract. - Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**: 550. http://dx.doi.org/10.1186/s13059-014-0550-8. - Malabat C, Feuerbach F, Ma L, Saveanu C, Jacquier A. 2015. Quality control of transcription start site selection by nonsense-mediated-mRNA decay ed. T.H. Jensen. *Elife* 4: e06722. https://doi.org/10.7554/eLife.06722. - Marguerat S, Schmidt A, Codlin S, Chen W, Aebersold R, Bähler J. 2012. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. *Cell* **151**: 671–683. - Mata J. 2013. Genome-wide mapping of polyadenylation sites in fission yeast reveals widespread alternative polyadenylation. *RNA Biol* **10**: 1407–1414. http://dx.doi.org/10.4161/rna.25758. - Mata J, Lyne R, Burns G, Bähler J. 2002. The transcriptional program of meiosis and sporulation in fission yeast. *Nat Genet* **32**: 143–147. - Mattick JS, Rinn JL. 2015. Discovery and annotation of long noncoding RNAs. *Nat Struct Mol Biol* **22**: 5–7. http://dx.doi.org/10.1038/nsmb.2942. - McDowall MD, Harris M a., Lock a., Rutherford K, Staines DM, Bähler J, Kersey PJ, Oliver SG, Wood V. 2014. PomBase 2015: updates to the fission yeast database. *Nucleic Acids Res* **43**: D656–D661. http://nar.oxfordjournals.org/lookup/doi/10.1093/nar/gku1040. - McPheeters DS, Cremona N, Sunder S, Chen H-M, Averbeck N, Leatherwood J, Wise JA. 2009. A Complex Gene Regulatory Mechanism that Operates at the Nexus of Multiple RNA Processing Decisions. *Nat Struct Mol Biol* 16: 255–264. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776722/. - Mellor J, Woloszczuk R, Howe FS. 2016. The Interleaved Genome. Trends Genet 32: 57–71. - Meola N, Domanski M, Karadoulama E, Chen Y, Gentil C, Pultz D, Vitting-Seerup K, Lykke-Andersen S, Andersen JS, Sandelin A, et al. 2016. Identification of a Nuclear Exosome Decay Pathway for Processed Transcripts. *Mol Cell* **64**: 520–533. http://www.sciencedirect.com/science/article/pii/S1097276516305743. - Mercer TR, Mattick JS. 2013. Structure and function of long noncoding RNAs in epigenetic regulation. *Nat Struct Mol Biol* **20**: 300–7. http://www.ncbi.nlm.nih.gov/pubmed/23463315 (Accessed May 21, 2013). - Mukherjee N, Calviello L, Hirsekorn A, de Pretis S, Pelizzola M, Ohler U. 2017. Integrative classification of human coding and noncoding genes through RNA metabolism profiles. *Nat Struct Mol Biol* **24**: 86–96. http://dx.doi.org/10.1038/nsmb.3325. - Neil H, Malabat C, d/'Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A. 2009. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. *Nature* **457**: 1038–1042. http://dx.doi.org/10.1038/nature07747. - Ni T, Tu K, Wang Z, Song S, Wu H, Xie B, Scott KC, Grewal SI, Gao Y, Zhu J. 2010. The prevalence and regulation of antisense transcripts in Schizosaccharomyces pombe. *PLoS One* **5**: e15271. - Oda A, Takemata N, Hirata Y, Miyoshi T, Suzuki Y, Sugano S, Ohta K. 2015. Dynamic transition of transcription and chromatin landscape during fission yeast adaptation to glucose starvation. *Genes to Cells* **20**: 392–407. - Pancaldi V, Schubert F, Bähler J. 2010. Meta-analysis of genome regulation and expression variability across hundreds of environmental and genetic perturbations in fission yeast. *Mol Biosyst* 6. - Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, Fan L, Sandelin A, Rinn JL, Regev A, et al. 2012. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. *Genome Res* 22: 577–591. http://genome.cshlp.org/content/22/3/577.abstract. - Pelechano V, Steinmetz LM. 2013. Gene regulation by antisense transcription. *Nat Rev Genet* **14**: 880–893. http://dx.doi.org/10.1038/nrg3594. - Perocchi F, Xu Z, Clauder-Münster S, Steinmetz LM. 2007. Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D. *Nucleic Acids Res* **35**: e128. http://nar.oxfordjournals.org/content/35/19/e128.abstract. - Pointner J, Persson J, Prasad P, Norman-Axelsson U, Strålfors A, Khorosjutina O, Krietenstein N, Peter Svensson J, Ekwall K, Korber P. 2012. CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe *EMBO J* 31: 4388 LP-4403. http://emboj.embopress.org/content/31/23/4388.abstract. - Preker P, Nielsen J, Kammler S, Lykke-Andersen S, Christensen MS, Mapendano CK, Schierup MH,
Jensen TH. 2008. RNA Exosome Depletion Reveals Transcription Upstream of Active Human Promoters. *Science* (80-) 322: 1851 LP-1854. http://science.sciencemag.org/content/322/5909/1851.abstract. - Quinn JJ, Chang HY. 2016. Unique features of long non-coding RNA biogenesis and function. *Nat Rev Genet* **17**: 47–62. http://dx.doi.org/10.1038/nrg.2015.10. - Quintales L, Vázquez E, Antequera F. 2015. Comparative analysis of methods for genome-wide nucleosome cartography. *Brief Bioinform* **16**: 576. +. - Ramírez F, Dündar F, Diehl S, Grüning BA, Manke T. 2014. deepTools: a flexible platform for exploring deep-sequencing data. *Nucleic Acids Res* **42**: W187. +. - Rhind N, Chen Z, Yassour M, Thompson D a, Haas BJ, Habib N, Wapinski I, Roy S, Lin MF, Heiman DI, et al. 2011. Comparative functional genomics of the fission yeasts. *Science* **332**: 930–6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3131103&tool=pmcentrez&rendertype=abstract (Accessed July 26, 2012). - Rinn JL, Chang HY. 2012. Genome Regulation by Long Noncoding RNAs. *Annu Rev Biochem* **81**: 145–166. https://doi.org/10.1146/annurev-biochem-051410-092902. - Rodríguez-Gabriel MA, Watt S, Bähler J, Russell P. 2006. Upf1, an RNA helicase required for nonsense-mediated mRNA decay, modulates the transcriptional response to oxidative stress in fission yeast. *Mol Cell Biol* **26**. - Schlackow M, Marguerat S, Proudfoot NJ, Bahler J, Erban R, Gullerova M. 2013. Genome-wide analysis of poly(A) site selection in Schizosaccharomyces pombe. *RNA* **19**. - Schlackow M, Nojima T, Gomes T, Dhir A, Carmo-Fonseca M, Proudfoot NJ. 2017. Distinctive Patterns of Transcription and RNA Processing for Human lincRNAs. *Mol Cell* **65**: 25–38. http://www.sciencedirect.com/science/article/pii/S1097276516307742. - Schmidt M-J, West S, Norbury CJ. 2011. The human cytoplasmic RNA terminal U-transferase ZCCHC11 targets histone mRNAs for degradation. *RNA* 17: 39–44. http://rnajournal.cshlp.org/content/17/1/39.abstract. - Schulz D, Schwalb B, Kiesel A, Baejen C, Torkler P, Gagneur J, Soeding J, Cramer P. 2013. Transcriptome Surveillance by Selective Termination of Noncoding RNA Synthesis. *Cell* **155**: 1075–1087. http://www.sciencedirect.com/science/article/pii/S0092867413013007. - Shah S, Wittmann S, Kilchert C, Vasiljeva L. 2014. lncRNA recruits RNAi and the exosome to dynamically regulate pho1 expression in response to phosphate levels in fission yeast. *Genes Dev* **28**: 231–244. http://genesdev.cshlp.org/cgi/doi/10.1101/gad.230177.113 (Accessed February 3, 2014). - Shim YS, Choi Y, Kang K, Cho K, Oh S, Lee J, Grewal SIS, Lee D. 2012. Hrp3 controls nucleosome positioning to suppress non-coding transcription in eu- and heterochromatin. *EMBO J* **31**: 4375 LP-4387. http://emboj.embopress.org/content/31/23/4375.abstract. - Slater GSC, Birney E. 2005. Automated generation of heuristics for biological sequence comparison. *BMC Bioinformatics* **6**: 31. http://dx.doi.org/10.1186/1471-2105-6-31. - Smialowska A, Djupedal I, Wang J, Kylsten P, Swoboda P, Ekwall K. 2014. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe. *Biochem Biophys Res Commun* **444**: 254–259. http://www.sciencedirect.com/science/article/pii/S0006291X14000813. - St-André O, Lemieux C, Perreault A, Lackner DH, Bähler J, Bachand F. 2010. Negative regulation of meiotic gene expression by the nuclear poly(a)-binding protein in fission yeast. *J Biol Chem* **285**. - St. Laurent G, Wahlestedt C, Kapranov P. 2015. The Landscape of long noncoding RNA classification. *Trends Genet* **31**: 239–251. http://www.sciencedirect.com/science/article/pii/S0168952515000542. - Sugiyama T, Sugioka-Sugiyama R. 2011. Red1 promotes the elimination of meiosis-specific mRNAs in vegetatively growing fission yeast. *EMBO J* **30**: 1027–1039. http://emboj.embopress.org/content/30/6/1027.abstract. - Sun M, Schwalb B, Pirkl N, Maier KC, Schenk A, Failmezger H, Tresch A, Cramer P. 2017. Global Analysis of Eukaryotic mRNA Degradation Reveals Xrn1-Dependent Buffering of Transcript Levels. *Mol Cell* **52**: 52–62. http://dx.doi.org/10.1016/j.molcel.2013.09.010. - Szankasi P, Smith GR. 1996. Requirement of S. pombe exonuclease II, a homologue of S. cerevisiae Sep1, for normal mitotic growth and viability. *Curr Genet* **30**: 284–293. http://dx.doi.org/10.1007/s002940050134. - Tuck AC, Tollervey D. 2013. A Transcriptome-wide Atlas of RNP Composition Reveals Diverse Classes of mRNAs and lncRNAs. *Cell* **154**: 996–1009. http://www.sciencedirect.com/science/article/pii/S0092867413009574. - Tudek A, Porrua O, Kabzinski T, Lidschreiber M, Kubicek K, Fortova A, Lacroute F, Vanacova S, Cramer P, Stefl R, et al. 2014. Molecular Basis for Coordinating Transcription Termination with Noncoding RNA Degradation. *Mol Cell* 55: 467–481. http://www.sciencedirect.com/science/article/pii/S1097276514005322. - Ulitsky I, Bartel DP. 2013. lincRNAs: Genomics, Evolution, and Mechanisms. *Cell* **154**: 26–46. http://www.sciencedirect.com/science/article/pii/S0092867413007599. - van Dijk EL, Chen CL, d'Aubenton-Carafa Y, Gourvennec S, Kwapisz M, Roche V, Bertrand C, Silvain M, Legoix-Ne P, Loeillet S, et al. 2011. XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. *Nature* **475**: 114–117. http://dx.doi.org/10.1038/nature10118. - Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS, Martienssen RA. 2002. Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi. *Science* (80-) **297**: 1833–1837. http://science.sciencemag.org/content/297/5588/1833.abstract. - Wang G-Z, Lercher MJ, Hurst LD. 2011. Transcriptional coupling of neighboring genes and gene expression - noise: evidence that gene orientation and noncoding transcripts are modulators of noise. *Genome Biol Evol* **3**: 320–31. http://www.ncbi.nlm.nih.gov/pubmed/21402863 (Accessed July 18, 2012). - Wang S-W, Stevenson AL, Kearsey SE, Watt S, Bähler J. 2008. Global role for polyadenylation-assisted nuclear RNA degradation in posttranscriptional gene silencing. *Mol Cell Biol* 28. - Wery M, Descrimes M, Vogt N, Dallongeville A-S, Gautheret D, Morillon A. 2016. Nonsense-Mediated Decay Restricts LncRNA Levels in Yeast Unless Blocked by Double-Stranded RNA Structure. *Mol Cell* **61**: 379–392. http://www.sciencedirect.com/science/article/pii/S1097276515009764. - Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bähler J. 2008. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. *Nature* **453**: 1239–43. http://www.ncbi.nlm.nih.gov/pubmed/18488015 (Accessed July 13, 2012). - Wlotzka W, Kudla G, Granneman S, Tollervey D. 2011. The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. *EMBO J* **30**: 1790 LP-1803. http://emboj.embopress.org/content/30/9/1790.abstract. - Wolf J, Passmore LA. 2014. mRNA deadenylation by Pan2–Pan3. *Biochem Soc Trans* **42**: 184 LP-187. http://www.biochemsoctrans.org/content/42/1/184.abstract. - Wood V, Harris M a., McDowall MD, Rutherford K, Vaughan BW, Staines DM, Aslett M, Lock A, Bähler J, Kersey PJ, et al. 2012. PomBase: A comprehensive online resource for fission yeast. *Nucleic Acids Res* **40**: 695–699. - Wu X, Sharp PA. 2013. Divergent Transcription: A Driving Force for New Gene Origination? *Cell* **155**: 990–996. http://www.sciencedirect.com/science/article/pii/S0092867413014062. - Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Munster S, Camblong J, Guffanti E, Stutz F, Huber W, Steinmetz LM. 2009. Bidirectional promoters generate pervasive transcription in yeast. *Nature* **457**: 1033–1037. http://dx.doi.org/10.1038/nature07728. - Yamanaka S, Mehta S, Reyes-Turcu FE, Zhuang F, Fuchs RT, Rong Y, Robb GB, Grewal SIS. 2013. RNAi triggered by specialized machinery silences developmental genes and retrotransposons. *Nature* **493**: 557–560. http://dx.doi.org/10.1038/nature11716. - Yamanaka S, Yamashita A, Harigaya Y, Iwata R, Yamamoto M. 2010. Importance of polyadenylation in the selective elimination of meiotic mRNAs in growing S. pombe cells. *EMBO J* **29**: 2173 LP-2181. http://emboj.embopress.org/content/29/13/2173.abstract. - Yamashita A, Shichino Y, Yamamoto M. 2016. The long non-coding RNA world in yeasts. *Biochim Biophys Acta Gene Regul Mech* **1859**: 147–154. http://www.sciencedirect.com/science/article/pii/S1874939915001716. - Zhang K, Fischer T, Porter RL, Dhakshnamoorthy J, Zofall M, Zhou M, Veenstra T, Grewal SIS. 2011. Clr4/Suv39 and RNA Quality Control Factors Cooperate to Trigger RNAi and Suppress Antisense RNA. *Science* (80-) 331: 1624 LP-1627. http://science.sciencemag.org/content/331/6024/1624.abstract. - Zhou Y, Zhu J, Schermann G, Ohle C, Bendrin K, Sugioka-Sugiyama R, Sugiyama T, Fischer T. 2015. The fission yeast MTREC complex targets CUTs and unspliced pre-mRNAs to the nuclear exosome. *Nat Commun* **6**: 7050. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455066/. - Zofall M, Fischer T, Zhang K, Zhou M, Cui B, Veenstra TD, Grewal SIS. 2009. Histone H2A.Z cooperates with RNAi and heterochromatin factors to suppress antisense RNAs. *Nature* **461**: 419–422. http://dx.doi.org/10.1038/nature08321.